
An Introduction
to ZigBee®

019-0162 • 080924-D

The latest revision of this manual is available on the Rabbit Web site,
 www.digi.com, for free, unregistered download.

http://www.rabbit.com/
www.digi.com

An Introduction to ZigBee®

Part Number 019-0162–D • 080924 • Printed in U.S.A.

Digi International Inc. © 2012 • All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit and Dynamic C® are registered trademarks of Digi International Inc.
Windows® is a registered trademark of Microsoft Corporation

ZigBee® is a registered trademark of the ZigBee Alliance

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International Inc.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International Inc.
ii

Table of Contents

Chapter 1. Introduction 1

Chapter 2. Wireless Communication 3
2.1 Communication Systems .. 3
2.2 Wireless Network Types... 3

2.2.1 WPAN ... 3
2.2.2 WLAN ... 4
2.2.3 WWAN ... 4

2.3 Wireless Network Topologies .. 4
2.4 Wireless Standards.. 5
2.5 Security in a Wireless Network .. 6

2.5.1 Security Risks ... 6

Chapter 3. IEEE 802.15.4 Specification 7
3.1 Scope of 802.15.4 ... 7

3.1.1 PHY Layers ... 7
3.1.2 MAC Layer ... 7

3.2 Properties of 802.15.4 ... 8
3.2.1 Transmitter and Receiver .. 8
3.2.2 Channels .. 8

3.3 Network Topologies ... 9
3.4 Network Devices and their Operating Modes... 9
3.5 Addressing Modes Supported by 802.15.4 ... 10

3.5.1 PAN ID ... 10

Chapter 4. ZigBee Specification 11
4.1 Logical Device Types ... 11
4.2 ZigBee Stack Layers ... 12

4.2.1 Network (NWK) Layer ... 12
4.2.2 Application (APL) Layer .. 13

4.2.2.1 Application Support Sublayer (APS) .. 13
4.2.2.2 Application Framework ... 14
4.2.2.3 ZigBee Device Profile (ZDP) .. 14

4.3 ZigBee Addressing ... 15
4.3.1 ZigBee Messaging ... 15
4.3.2 Broadcast Addressing ... 15
4.3.3 Group Addressing ... 15

4.4 ZigBee Application Profiles ... 16
4.4.1 ZigBee Device Profile ... 17

Chapter 5. Rabbit and ZigBee 19
xbee_readline.. 24
hex_dump ... 24
hexstrtobyte .. 25
xbee_millisecond_timer ... 25
xbee_seconds_timer ... 26
xbee_ser_baudrate .. 26
xbee_ser_break ... 27
An Introduction to ZigBee digi.com iii

http://www.digi.com

xbee_ser_close .. 27
xbee_ser_flowcontrol.. 28
xbee_ser_get_cts ... 29
xbee_ser_getchar... 29
xbee_ser_invalid ... 30
xbee_ser_open... 30
xbee_ser_portname ... 31
xbee_ser_putchar .. 31
xbee_ser_read ... 32
xbee_ser_rx_flush ... 32
xbee_ser_rx_free... 33
xbee_ser_rx_used.. 33
xbee_ser_set_rts.. 34
xbee_ser_tx_flush ... 34
xbee_ser_tx_free ... 35
xbee_ser_tx_used.. 35
xbee_ser_write .. 36
xbee_dev_dump .. 37
xbee_dev_init.. 37
xbee_dev_reset.. 38
xbee_dev_tick ... 38
xbee_frame_dump_modem_status ... 39
xbee_frame_write ... 40
xbee_cmd_clear_flags... 41
 xbee_cmd_create.. 41
xbee_cmd_execute.. 42
xbee_cmd_init_device .. 43
xbee_cmd_list_execute ... 43
xbee_command_list_status ... 44
xbee_cmd_query_device... 45
xbee_cmd_query_status.. 46
xbee_cmd_release_handle .. 46
xbee_cmd_send... 47
xbee_cmd_set_callback .. 47
xbee_cmd_set_command.. 48
xbee_cmd_set_flags.. 49
xbee_cmd_set_param.. 49
xbee_cmd_set_param_bytes ... 50
xbee_cmd_set_param_str.. 51
xbee_cmd_set_target... 51
xbee_cmd_simple ... 52
xbee_cmd_tick .. 53
xbee_identify .. 53
xbee_disc_device_type_str ... 54
xbee_disc_nd_parse .. 54
xbee_disc_node_id_dump .. 55
xbee_fw_buffer_init.. 55
xbee_fw_install_ebl_tick .. 56
xbee_fw_install_init.. 56
xbee_fw_install_oem_tick .. 58
xbee_fw_status_ebl... 58
xbee_fw_status_oem... 59
wpan_cluster_match ... 61
wpan_endpoint_get_next .. 62
iv digi.com

http://www.digi.com

wpan_conversation_register ... 62
wpan_conversation_timeout... 63
wpan_endpoint_dispatch .. 63
wpan_endpoint_match.. 64
wpan_endpoint_next_trans... 64
wpan_endpoint_of_cluster ... 65
wpan_endpoint_of_envelope.. 66
wpan_envelope_create ... 66
wpan_envelope_dump.. 67
wpan_envelope_reply... 68
wpan_envelope_send.. 68
wpan_tick ... 69
xbee_wpan_init... 69
addr64_equal .. 70
addr64_format .. 70
addr64_is_zero ... 71
addr64_parse... 71
zdo_ endpoint_state .. 72
zdo_handler .. 73
zdo_match_desc_request .. 73
zdo_mgmt_leave_req ... 74
zdo_send_bind_req... 75
zdo_send_descriptor_req.. 75
zdo_send_nwk_addr_req.. 76
zdo_send_response ... 77
zcl_build_header... 78
zcl_check_minmax ... 79
ZCL_CMD_IS_CLUSTER .. 79
ZCL_CMD_IS_MFG_CLUSTER ... 80
ZCL_CMD_IS_PROFILE.. 80
ZCL_CMD_MATCH... 81
zcl_command_build ... 82
zcl_command_dump... 82
zcl_convert_24bit ... 83
zcl_decode_attribute... 83
zcl_default_response .. 84
zcl_encode_attribute_value .. 84
zcl_find_attribute.. 85
zcl_general_command.. 85
zcl_invalid_cluster.. 86
zcl_invalid_command... 86
zcl_parse_attribute_record ... 87
zcl_send_response .. 88
zcl_status_text .. 88
zcl_basic_server ... 89
zcl_comm_reset_parameters .. 89
zcl_comm_restart_device ... 90
zcl_identify_command ... 91
zcl_identify_isactive... 92
zcl_gmtime ... 92
zcl_mktime ... 93
zcl_time_client ... 93
zcl_time_find_servers... 94
zcl_time_now ... 94
An Introduction to ZigBee digi.com v

http://www.digi.com

zcl_sizeof_type ... 95
ZCL_TYPE_IS_ANALOG .. 96
ZCL_TYPE_IS_DISCRETE .. 96
ZCL_TYPE_IS_REPORTABLE.. 96
ZCL_TYPE_IS_SIGNED... 97
zcl_find_and_read_attributes.. 97
zdo_send_match_desc... 98
xbee_io_configure... 99
xbee_io_get_analog_input .. 100
xbee_io_get_digital_input .. 101
xbee_io_get_digital_output .. 101
xbee_io_get_query_status... 102
xbee_io_query... 102
xbee_io_response_dump... 103
xbee_io_response_parse ... 103
xbee_io_set_digital_output ... 104
xbee_io_set_options.. 105
sxa_get_analog_input ... 106
sxa_get_digital_input.. 107
sxa_get_digital_output.. 107
sxa_init_or_exit .. 108
sxa_io_configure... 108
sxa_io_dump... 109
sxa_io_set_options.. 109
sxa_io_query ... 110
sxa_io_query_status.. 111
sxa_set_digital_output .. 111
sxa_tick ... 112

Appendix A. Glossary of Terms 115
ad-hoc network.. 115
application object .. 115
attribute ... 115
Bluetooth... 115
BPSK .. 115
cluster.. 115
cluster ID... 115
cluster tree... 115
coordinator .. 115
CSMA-CA .. 116
device description ... 116
end device ... 116
endpoint .. 116
FFD ... 116
IEEE.. 116
EUI-64 .. 116
IrDA .. 116
LAN .. 116
mesh .. 116
multi-hop... 117
node... 117
O-QPSK .. 117
peer-to-peer ... 117
point-to-multipoint.. 117
vi digi.com

http://www.digi.com

point-to-point .. 117
profile ... 117
router... 117
RF ... 117
RFD .. 117
RSSI.. 118
self-healing network ... 118
star .. 118
UWB... 118
WPAN .. 118
ZDP... 118

Index 119
An Introduction to ZigBee digi.com vii

http://www.digi.com

viii digi.com

http://www.digi.com

 1. INTRODUCTION

This manual provides an introduction to the various components of a ZigBee network. After a quick over-
view of ZigBee, we start with a description of high-level concepts used in wireless communication and
move on to the specific protocols needed to implement the communication standards. This is followed by a
description of using a Rabbit-based board and Dynamic C libraries to form a ZigBee network.

ZigBee, a specification for communication in a wireless personal area network (WPAN), has been called
the “Internet of things”. Theoretically, your ZigBee-enabled coffee maker can communicate with your
ZigBee-enabled toaster. The benefits of this technology go far beyond the novelty of kitchen appliances
coordinating your breakfast. ZigBee applications include:

• Home and office automation

• Industrial automation

• Medical monitoring

• Low-power sensors

• HVAC control

• Plus many other control and monitoring uses

ZigBee targets the application domain of low power, low duty cycle and low data rate requirement devices.
Figure 1.1 shows a block diagram of a ZigBee network with five nodes.

Figure 1.1ZigBee Network

Before going further, note that there is a list of glossary terms in Appendix A.

��������	��

��
���

��	����������������	������

��
����
An Introduction to ZigBee digi.com 1

http://www.digi.com

.

2 digi.com Introduction

http://www.digi.com

 2. WIRELESS COMMUNICATION

This chapter presents a select high-level overview of wireless communication.

2.1 Communication Systems
All wireless communication systems have the following components:

• Transmitter

• Receiver

• Antennas

• Path between the transmitter and the receiver

In short, the transmitter feeds a signal of encoded data modulated into RF waves into the antenna. The
antenna radiates the signal through the air where it is picked up by the antenna of the receiver. The receiver
demodulates the RF waves back into the encoded data stream sent by the transmitter.

2.2 Wireless Network Types
There are a number of different types of networks used in wireless communication. Network types are typ-
ically defined by size and location.

2.2.1 WPAN
A wireless personal area network (WPAN) is meant to span a small area such as a private home or an indi-
vidual workspace. It is used to communicate over a relatively short distance. The specification does not
preclude longer ranges being achieved with the trade-off of a lower data rate.

In contrast to other network types, there is little to no need for infrastructure with a WPAN.

Ad-hoc networking is one of the key concepts in WPANs. This allows devices to be part of the network
temporarily; they can join and leave at will. This works well for mobile devices like PDAs, laptops and
phones.

Some of the protocols employing WPAN include Bluetooth, ZigBee, Ultra-wideband (UWB) and IrDA.
Each of these is optimized for particular applications or domains. ZigBee, with its sleepy, battery-powered
end devices, is a perfect fit for wireless sensors. Typical ZigBee application domains include: agricultural,
building and industrial automation, home control, medical monitoring, security and, lest we take ourselves
too seriously, toys, toys and more toys.
An Introduction to ZigBee digi.com 3

http://www.digi.com

2.2.2 WLAN
Wireless local area networks (WLANs) are meant to span a relatively small area, e.g., a house, a building,
or a college campus. WLANs are becoming more prevalent as costs come down and standards improve.

A WLAN can be an extension of a wired local area network (LAN), its access point connected to a LAN
technology such as Ethernet. A popular protocol for WLAN is 802.11, also known as Wi-Fi.

2.2.3 WWAN
A wireless wide area network (WAN) is meant to span a large area, such as a city, state or country. It
makes use of telephone lines and satellite dishes as well as radio waves to transfer data. A good description
of WWANs is found at: http://en.wikipedia.org/wiki/WWAN.

2.3 Wireless Network Topologies
This section discusses the network topologies supported by the IEEE 802.15.4 and ZigBee specifications.
The topology of a network describes how the nodes are connected, either physically or logically. The
physical topology is a geometrical shape resulting from the physical links from node to node, as shown in
Figure 2.1. The logical topology maps the flow of data between the nodes.

Figure 2.1 Physical Network Topologies Supported by ZigBee

IEEE 802.15.4 supports star and peer-to-peer topologies. The ZigBee specification supports star and two
kinds of peer-to-peer topologies, mesh and cluster tree.

ZigBee-compliant devices are sometimes specified as supporting point-to-point and point-to-multipoint
topologies.

�	�� ���
	���������
�
4 digi.com Wireless Communication

http://www.digi.com
http://en.wikipedia.org/wiki/WWAN

2.4 Wireless Standards
The demand for wireless solutions continues to grow and with it new standards have come forward and
other existing standards have strengthened their position in the marketplace. This section compares three
popular wireless standards being used today and lists some of the design considerations that differentiate
them.

Each wireless standard addresses the needs of a different market segment. Choosing the best-fit wireless
standard is a crucial step in the successful deployment of any wireless application. The requirements of
your application will determine the wireless standard to choose.

For more information on design considerations, see Technical Note 249, “Designing with Wireless Rab-
bits.”

Table 2-1 Comparison of Wireless Standards

Wireless Parameter Bluetooth Wi-Fi ZigBee

Frequency band 2.4 GHz 2.4 GHz 2.4 GHz

Physical/MAC layers IEEE 802.15.1 IEEE 802.11b IEEE 802.15.4

Range 9 m 75 to 90 m
Indoors: up to 30 m
Outdoors (line of sight):
up to 100 m

Current consumption 60 mA (Tx mode)
400 mA (Tx mode)
20 mA (Standby mode)

25-35 mA (Tx mode)
3 µA (Standby mode)

Raw data rate 1 Mbps 11 Mbps 250 Kbps

Protocol stack size 250 KB 1 MB
32 KB
4 KB (for limited
function end devices)

Typical network join
time

>3 sec variable, 1 sec typically 30 ms typically

Interference avoidance
method

FHSS
(frequency-hopping
spread spectrum)

DSSS
(direct-sequence spread
spectrum)

DSSS
(direct-sequence spread
spectrum)

Minimum quiet
bandwidth required

15 MHz (dynamic) 22 MHz (static) 3 MHz (static)

Maximum number of
nodes per network

7 32 per access point 64 K

Number of channels 19 13 16
An Introduction to ZigBee digi.com 5

http://www.digi.com

2.5 Security in a Wireless Network
This section discusses the added security issues introduced by wireless networks. The salient fact that sig-
nals are traveling through the air means that the communication is less secure than if they were traveling
through wires. Someone seeking access to your network need not overcome the obstacle of tapping into
physical wires. Anyone in range of the transmission can potentially listen on the channel.

Wireless or not, a network needs a security plan. The first thing to do is to decide what level of security is
appropriate for the applications running on your network. For instance, a financial institution, such as a
bank or credit union offering online account access would have substantially different security concerns
than would a business owner offering free Internet access at a coffee shop.

2.5.1 Security Risks
After you have decided the level of security you need for your network, assess the potential security risks
that exist.

• Who is in range of the wireless transmissions?

• Can unauthorized users join the network?

• What would an unauthorized user be able to do if they did join?

• Is sensitive data traveling over the wireless channel?

Network security is analogous to home security: You do not want your house to be a target so you do
things to minimize your risk, whether that be outside lighting, motion sensors, or even just keeping bushes
pruned back close to the house so bad guys have fewer hiding places.

Deterrence is the goal because nothing is guaranteed to be 100% safe in the real world.
6 digi.com Wireless Communication

http://www.digi.com

 3. IEEE 802.15.4 SPECIFICATION

This chapter is an overview of the IEEE 802.15.4 specification. 802.15.4 defines a standard for a low-rate
WPAN (LR-WPAN).

3.1 Scope of 802.15.4
802.15.4 is a packet-based radio protocol. It addresses the communication needs of wireless applications
that have low data rates and low power consumption requirements. It is the foundation on which ZigBee is
built. Figure 4.1 shows a simplified ZigBee stack, which includes the two layers specified by 802.15.4: the
physical (PHY) and MAC layers.

3.1.1 PHY Layers
The PHY layer defines the physical and electrical characteristics of the network. The basic task of the
PHY layer is data transmission and reception. At the physical/electrical level, this involves modulation and
spreading techniques that map bits of information in such a way as to allow them to travel through the air.
Specifications for receiver sensitivity and transmit output power are in the PHY layer.

The PHY layer is also responsible for the following tasks:

• enable/disable the radio transceiver

• link quality indication (LQI) for received packets

• energy detection (ED) within the current channel

• clear channel assessment (CCA)

3.1.2 MAC Layer
The MAC layer defines how multiple 802.15.4 radios operating in the same area will share the airwaves.
This includes coordinating transceiver access to the shared radio link and the scheduling and routing of
data frames.

There are network association and disassociation functions embedded in the MAC layer. These functions
support the self-configuration and peer-to-peer communication features of a ZigBee network.

The MAC layer is responsible for the following tasks:

• beacon generation if device is a coordinator

• implementing carrier sense multiple access with collision avoidance (CSMA-CA)

• handling guaranteed time slot (GTS) mechanism

• data transfer services for upper layers
An Introduction to ZigBee digi.com 7

http://www.digi.com

3.2 Properties of 802.15.4
802.15.4 defines operation in three license-free industrial scientific medical (ISM) frequency bands. Below
is a table that summarizes the properties of IEEE 802.15.4 in two of the ISM frequency bands: 915 MHz
and 2.4 GHz.

3.2.1 Transmitter and Receiver
The power output of the transmitter and the sensitivity of the receiver are determining factors of the signal
strength and its range. Other factors include any obstacles in the communication path that cause interfer-
ence with the signal.

The higher the transmitter’s output power, the longer the range of its signal. On the other side, the
receiver’s sensitivity determines the minimum power needed for the radio to reliably receive the signal.
These values are described using dBm (deciBels below 1 milliwatt), a relative measurement that compares
two signals with 1 milliwatt used as the reference signal. A large negative dBm number means higher
receiver sensitivity.

3.2.2 Channels
Of the three ISM frequency bands only the 2.4 GHz band operates world-wide. The 868 MHz band only
operates in the EU and the 915 MHz band is only for North and South America. However, if global
interoperability is not a requirement, the relative emptiness of the 915 MHz band in non-European coun-
tries might be an advantage for some applications.

For the 2.4 GHz band, 802.15.4 specifies communication should occur in 5 MHz channels ranging from
2.405 to 2.480 GHz.

Table 3-1. Comparison of IEEE 802.15.4 Frequency Bands

Property Description
Prescribed Values

915 MHz 2.4 GHz

Raw data bit rate 40 kbps 250 kbps

Transmitter output power 1 mW = 0 dBm

Receiver sensitivity
(<1% packet error rate)

-92 dBm -85 dBm

Transmission range Indoors: up to 30 m; Outdoors: up to 100 m

Latency 15 ms

Channels 10 channels 16 channels

Channel numbering 1 to 10 11 to 26

Channel access CSMA-CA and slotted CSMA-CA

Modulation scheme BPSK O-QPSK
8 digi.com IEEE 802.15.4 Specification

http://www.digi.com
www.digi.com

3.3 Network Topologies
According to the IEEE 802.15.4 specification, the LR-WPAN may operate in one of two network topolo-
gies: star or peer-to-peer. 802.15.4 is designed for networks with low data rates, which is why the acronym
“LR” (for “low rate”) is prepended to “WPAN.”

Figure 3.1 Network Topologies Supported by IEEE 802.15.4

As shown in Figure 3.1, the star topology has a central node with all other nodes communicating only with
the central one. The peer-to-peer topology allows peers to communicate directly with one another. This
feature is essential in supporting mesh networks.

3.4 Network Devices and their Operating Modes
Two types of devices can participate in a LR-WPAN: a full function device (FFD) and a reduced function
device (RFD).

An RFD does not have routing capabilities. RFDs can be configured as end nodes only. They communicate
with their parent, which is the node that allowed the RFD to join the network.

An FFD has routing capabilities and can be configured as the PAN coordinator. In a star network all nodes
communicate with the PAN coordinator only so it does not matter if they are FFDs or RFDs. In a peer-to-
peer network there is also one PAN coordinator, but there are other FFDs which can communicate with not
only the PAN coordinator, but also with other FFDs and RFDs.

There are three operating modes supported by IEEE 802.15.4: PAN coordinator, coordinator, and end
device. FFDs can be configured for any of the operating modes. In ZigBee terminology the PAN coordina-
tor is referred to as simply “coordinator.” The IEEE term “coordinator” is the ZigBee term for “router.”

������������	��

���������	����������

 �����������	����������

�	�����!����" �����	���������!����"

���������	�������#
An Introduction to ZigBee digi.com 9

http://www.digi.com

3.5 Addressing Modes Supported by 802.15.4
802.15.4 supports both short (16-bit) and extended (64-bit) addressing.

An extended address (also called EUI-64) is assigned to every RF module that complies to the 802.15.4
specification.

When a device associates with a WPAN it can receive a 16-bit address from its parent node that is unique
in that network.

3.5.1 PAN ID
Each WPAN has a 16-bit number that is used as a network identifier. It is called the PAN ID. The PAN
coordinator assigns the PAN ID when it creates the network. A device can try to join any network or it can
limit itself to a network with a particular PAN ID.

ZigBee PRO defines an extended PAN ID. It is a 64-bit number that is used as a network identifier in place
of its 16-bit predecessor.
10 digi.com IEEE 802.15.4 Specification

http://www.digi.com
www.digi.com

4. ZIGBEE SPECIFICATION

This chapter gives an overview of the ZigBee specification. ZigBee, its specification and promotion, is a
product of the ZigBee Alliance. The Alliance is an association of companies working together to ensure
the success of this open global standard.

ZigBee is built on top of the IEEE 802.15.4 standard. ZigBee provides routing and multi-hop functions to
the packet-based radio protocol.

Figure 4.1 ZigBee Stack

4.1 Logical Device Types
The ZigBee stack resides on a ZigBee logical device. There are three logical device types:

• coordinator

• router

• end device

It is at the network layer that the differences in functionality among the devices are determined. See
Table 4-1 for more information. It is expected that in a ZigBee network the coordinator and the routers will
be mains-powered and that the end devices can be battery-powered.

��"
�����$�"���%�&'(

����$�"��

)*�+
,+-

�!!����	����.��������

�!!����	���������#��/�$�"��

��	#��/�$�"���%�01(

2��3��
An Introduction to ZigBee digi.com 11

http://www.rabbit.com

In a ZigBee network there is one and only one coordinator per network. The number of routers and/or end
devices depends on the application requirements and the conditions of the physical site.

Within networks that support sleeping end devices, the coordinator or one of the routers must be desig-
nated as a Primary Discovery Cache Device. These cache devices provide server services to upload and
store discovery information, as well as respond to discovery requests, on behalf of the sleeping end
devices.

4.2 ZigBee Stack Layers
As shown in Figure 4.1, the stack layers defined by the ZigBee specification are the network and applica-
tion framework layers. The ZigBee stack is loosely based on the OSI 7-layer model. It implements only the
functionality that is required in the intended markets.

4.2.1 Network (NWK) Layer
The network layer ensures the proper operation of the underlying MAC layer and provides an interface to
the application layer. The network layer supports star, tree and mesh topologies. Among other things, this
is the layer where networks are started, joined, left and discovered.

When a coordinator attempts to establish a ZigBee network, it does an energy scan to find the best RF
channel for its new network. When a channel has been chosen, the coordinator assigns the logical network
identifier, also known as the PAN ID, which will be applied to all devices that join the network.

A node can join the network either directly or through association. To join directly, the system designer
must somehow add a node’s extended address into the neighbor table of a device. The direct joining device
will issue an orphan scan, and the node with the matching extended address (in its neighbor table) will
respond, allowing the device to join.

Table 4-1. Comparison of ZigBee Devices at the Network Layer

ZigBee Network Layer Function Coordinator Router End Device

Establish a ZigBee network .

Permit other devices to join or leave the
network . .

Assign 16-bit network addresses . .

Discover and record paths for efficient message
delivery . .

Discover and record list of one-hop neighbors . .

Route network packets . .

Receive or send network packets . . .

Join or leave the network . . .

Enter sleep mode .
12 digi.com ZigBee Specification

http://www.digi.com

To join by association, a node sends out a beacon request on a channel, repeating the beacon request on
other channels until it finds an acceptable network to join.

The network layer provides security for the network, ensuring both authenticity and confidentiality of a
transmission.

4.2.2 Application (APL) Layer
The APL layer is made up of several sublayers. The components of the APL layer are shown in Figure 4.2.
and discussed below. The ovals symbolize the interface, called service access points (SAP), between dif-
ferent sublayer entities.

Figure 4.2 ZigBee-Defined Part of Stack

4.2.2.1 Application Support Sublayer (APS)

The APS sublayer is responsible for:

• binding tables

• message forwarding between bound devices

• group address definition and management

• address mapping from 64-bit extended addresses to 16-bit NWK addresses

• fragmentation and reassembly of packets

• reliable data transport

The key to interfacing devices at the need/service level is the concept of binding. Binding tables are kept
by the coordinator and all routers in the network. The binding table maps a source address and source end-
point to one or more destination addresses and endpoints. The cluster ID for a bound set of devices will be
the same.

As an example, consider the common control problem of maintaining a certain temperature range. A
device with temperature-sensing circuitry can advertise its service of providing the temperature as a

�!!����	������!!��	���4��"���%���(

�!!����	���������#��/

�!!����	���
546��	��-*

�!!����	���
546��	�

2
�
5
��
������

��	��
����

2��3����������546��	
%2�5(

�!!����	����%��$(�$�"��

��	#��/�%�01(�$�"��

7��!���	��-* 7��!���	�
 7��!���	�*

+++
+++

�
�4���
8�	������
An Introduction to ZigBee digi.com 13

http://www.digi.com

READ_TEMPERATURE cluster ID. A controller (for a furnace or a fan, perhaps) could discover the tem-
perature sensor device. The binding table would identify the endpoint on the temp sensor that accepts the
READ_TEMPERATURE cluster ID, for example. One temperature sensor manufacturer might have end-
point 0x11 support this cluster ID, while another manufacturer might use endpoint 0x72 to support this
cluster ID. The controller would have to discover both devices and would then create two binding table
entries, one for each device. When the controller wants to read the temperature of all sensors, the binding
table tells it which address and endpoint the READ_TEMPERATURE packet should be sent to.

4.2.2.2 Application Framework

The application framework is an execution environment for application objects to send and receive data.
Application objects are defined by the manufacturer of the ZigBee-enabled device. As defined by ZigBee,
an application object is at the top of the application layer and is determined by the device manufacturer. An
application object actually implements the application; it can be a light bulb, a light switch, an LED, an I/O
line, etc. The application profile (discussed in Section 4.4) is run by the application objects.

Each application object is addressed through its corresponding endpoint. Endpoint numbers range from 1
to 240. Endpoint 0 is the address of the ZigBee Device Profile (ZDP). Endpoint 255 is the broadcast
address, i.e., message are sent to all of the endpoints on a particular node. Endpoints 241 through 254 are
reserved for future use.

ZigBee defines function primitives, not an application programming interface (API).

4.2.2.3 ZigBee Device Profile (ZDP)

The ZDP is responsible for overall device management, specifically it is responsible for:

• initializing the APS sublayer and the NWK layer

• defining the operating mode of the device (i.e., coordinator, router, or end device)

• device discovery and determination of which application services the device provides

• initiating and/or responding to binding requests

• security management

Device discovery can be initiated by any ZigBee device. In response to a device discovery inquiry end
devices send their own IEEE or NWK address (depending on the request). A coordinator or router will
send their own IEEE or NWK address plus all of the NWK addresses of the devices associated with it. (A
device is associated with a coordinator or router if it is a child node of the coordinator or router.)

Device discovery allows for an ad-hoc network. It also allows for a self-healing network.

Service discovery is a process of finding out what application services are available on each node. This
information is then used in binding tables to associate a device offering a service with a device that needs
that service.
14 digi.com ZigBee Specification

http://www.digi.com

4.3 ZigBee Addressing
Before joining a ZigBee network (i.e., a LR-WPAN), a device with an IEEE 802.15.4-compliant radio has
a 64-bit address. This is a globally unique number made up of an Organizationally Unique Identifier (OUI)
plus 40 bits assigned by the manufacturer of the radio module. OUIs are obtained from IEEE to ensure
global uniqueness.

When the device joins a Zigbee network, it receives a 16-bit address called the NWK address. Either of
these addresses, the 64-bit extended address or the NWK address, can be used within the PAN to commu-
nicate with a device. The coordinator of a ZigBee network always has a NWK address of “0.”

ZigBee provides a way to address the individual components on the device of a node through the use of
endpoint addresses. During the process of service discovery the node makes available its endpoint num-
bers and the cluster IDs associated with the endpoint numbers. If a cluster ID has more than one attribute,
the command is used to pass the attribute identifier.

4.3.1 ZigBee Messaging
After a device has joined the ZigBee network, it can send commands to other devices on the same net-
work. There are two ways to address a device within the ZigBee network: direct addressing and indirect
addressing.

Direct addressing requires the sending device to know three kinds of information regarding the receiving
device:

1. Address

2. Endpoint Number

3. Cluster ID

Indirect addressing requires that the above three types of information be committed to a binding table. The
sending device only needs to know its own address, endpoint number and cluster ID. The binding table
entry supplies the destination address(es) based on the information about the source address.

The binding table can specify more than one destination address/endpoint for a given source address/end-
point combination. When an indirect transmission occurs, the entire binding table is searched for any
entries where the source address/endpoint and cluster ID matches the values of the transmission. Once a
matching entry is found, the packet is sent to the destination address/endpoint. This is repeated for each
entry where the source endpoint/address and clusterID match the transmission values.

4.3.2 Broadcast Addressing
There are two distinct levels of broadcast addresses used in a ZigBee network. One is a broadcast packet
with a MAC layer destination address of 0xFFFF. Any transceiver that is awake will receive the packet.
The packet is re-transmitted three times by each device, thus these types of broadcasts should only be used
when necessary.

The other broadcast address is the use of endpoint number 0xFF to send a message to all of the endpoints
on the specified device.

4.3.3 Group Addressing
An application can assign multiple devices and specific endpoints on those devices to a single group
address. The source node would need to provide the cluster ID, profile ID and source endpoint.
An Introduction to ZigBee digi.com 15

http://www.digi.com

4.4 ZigBee Application Profiles
What is a ZigBee profile and why would you want one? Basically a profile is a message-handling agree-
ment between applications on different devices. A profile describes the logical components and their inter-
faces. Typically, no code is associated with a profile.

The main reason for using a profile is to provide interoperability between different manufacturers. For
example, with the use of the Home Lighting profile, a consumer could use a wireless switch from one
manufacturer to control the lighting fixture from another manufacturer.

There are three types of profiles: public (standard), private and published. Public profiles are managed by
the ZigBee Alliance. Private profiles are defined by ZigBee vendors for restricted use. A private profile
can become a published profile if the owner of the profile decides to publish it.

All profiles must have a unique profile identifier. You must contact the ZigBee Alliance if you have cre-
ated a private profile in order to be allocated a unique profile identifier.

A profile uses a common language for data exchange and a defined set of processing actions. An applica-
tion profile will specify the following:

• set of devices required in the application area

• functional description for each device

• set of clusters to implement the functionality

• which clusters are required by which devices

A device description specifies how a device must behave in a given environment. Each piece of data that
can be transferred between devices is called an attribute. Attributes are grouped into clusters. Figure 4.3
illustrates the relative relationships of these entities and the maximum number that can exist theoretically
per application profile.

Figure 4.3 Maximum Profile Implementation

All clusters and attributes are given unique identifiers. Interfaces are specified at the cluster level. There
are input cluster identifiers and output cluster identifiers.

At time of this writing, the following public profiles are available:

• Commercial building automation

• Home automation

• Industrial plant monitoring

• Wireless sensor applications

• Smart energy

�!!����	�����������

9,:,;9�������
���
���!	���

9,:,;9����
	��

9,:,;9��		��4�	�

16 digi.com ZigBee Specification

http://www.digi.com

4.4.1 ZigBee Device Profile
The ZigBee Device Profile is a collection of device descriptions and clusters, just like an application pro-
file. The device profile is run by the ZDP and applies to all ZigBee devices. The ZigBee Device Profile is
defined in the ZigBee Application Level Specification. It serves as an example of how to write an applica-
tion profile.
An Introduction to ZigBee digi.com 17

http://www.digi.com

18 digi.com ZigBee Specification

http://www.digi.com

 5. RABBIT AND ZIGBEE

This chapter describes how to create a ZigBee application using Dynamic C and Rabbit-based ZigBee-
capable boards.

RABBIT AND ZIGBEE
This chapter describes how to create a ZigBee application using Dynamic C and Rabbit-based ZigBee-
capable boards. These libraries may also be used when adding a XBee module to any Rabbit-based design
with some slight additional setup.

5.1 Implementation Overview

This group of libraries is not a full implementation of the ZigBee protocol, but rather an interface to the ZigBee
API on the local XBee module. The XBee module has firmware that handles much of the real-time aspects of the
ZigBee network. The module only delivers network traffic that is specific to the local node hosted by the XBee
module. When the XBee module runs in API mode, it is dependent on the attached processor to handle the traffic
it delivers and to initiate proper responses on to the network. Through the API, requests can also be made to other
nodes on the network. So when using API mode, the tasks of the ZigBee node are split between the XBee module
and the attached processor.

The XBee ZigBee driver is broken up into multiple layers, with well-defined interfaces between each layer. The
layered interface is similar to an Ethernet NIC driver and a TCP/IP networking stack. The lowest layer is the
Hardware Abstraction Layer (HAL) which allows a common interface for the upper layer regardless of the un-
derlying hardware implementation. This layer provides a standard set of functions for working with the serial
port used to communicate with the XBee module.

The next layer is the XBee Driver layer and it handles all serial communication with and configuration of the
attached XBee device. This layer implements functions for working with the XBee module on a low level. It is
comprised of several functional areas that all have their specific uses. These are the Device Interface, AT Com-
mands, AT Mode, XBee ZCL Commissioning, Node Discovery, Firmware Updates, Digi Data Endpoint and the
WPAN Layer Interface. The Device Interface works solely with the HAL and all other functions work through
the Device Interface.

The third layer is the Wireless Personal Area Networking (WPAN) layer which provides generic 802.15.4 net-
working support. This layer introduces the concepts of endpoints and clusters. A single device can have multiple
endpoints and each endpoint can have multiple clusters. A cluster in turn can have multiple attributes to describe
or control specific functionality within the endpoint. Clusters are therefore the lowest level unit of addressability
within the network. This layer also introduces the envelope structure which contains the network addresses of
the sender and destination. Of course, on incoming envelopes the local XBee address is the destination and on
outgoing envelopes the sender.

The top layer is the ZigBee Networking Stack layer which provides support for the ZigBee networking protocols.
This layer is comprised of the ZigBee Device Object / Profile support and the ZigBee Cluster Library. Under-
stand that the ZigBee Device Object (ZDO) and ZigBee Device Profile (ZDP) are in fact the same thing, the name
was changed during the evolution of the ZigBee standard.
An Introduction to ZigBee digi.com 19

http://www.digi.com

In addition to the ZigBee and driver stack layers there is the Simple XBee API that provides a simplified API for
working with Digi XBee modules, either on their own or paired with a Rabbit-based controller. This particular
API is XBee-specific both locally and on the network and is not compatible with ZigBee nodes from other man-
ufacturers. This layer automates several aspects such as node discovery and simplifies access to remote I/O on
other devices.

The diagram in Figure 5.1 shows the complete XBee/ZigBee API and illustrates the access between layers. The
ZigBee Driver Layer and XBee Driver Layer show several of the specific components within the layer. The ar-
rows illustrate that each upper layer can call all lower layers except the Hardware Abstraction Layer. This layer
is typically accessed only through the XBee Driver Layer, with the exception of a few user support functions that
are separate from actual XBee module communications and not involved in the direct operation of the ZigBee
network.

Figure 5.1 XBee/ZigBee Driver Layers

5.1.1 Configuration

The system is designed to simplify the interface to the XBee module. The sample file xbee_config.h in the Sam-
ples/XBee directory creates automatic configuration definitions for a variety of Rabbit-based core modules
and single board computers. This allows a standardized call to the xbee_dev_init function to initialize the XBee
device. All of the supplied samples make use of this header file to automatically configure the development en-
vironment.
20 digi.com Rabbit and ZigBee

http://www.digi.com

When creating a customized core module to XBee interface, there is XBEE_STD_CONFIG which can be set to
create a couple of standard port settings. The table below shows the possible settings available by setting
XBEE_STD_CONFIG. If other port settings are desired, then the xbee_config.h file can be used as a guide to
setup the parameters needed by the xbee_dev_init function.

5.1.2 Simple XBee API Initialization

The Simple XBee API (herein SXA) makes initialization of a XBee-only network very easy. The
sxa_init_or_exit function is an example of an all-in-one initialization sequence for the XBee device This function
will initialize not only the device, but the network and AT command layers. The SXA layer will automatically
explore the device and scan the network to discover each XBee module’s control and I/O settings and save them
to an internal node list used by the SXA layer. The SXA layer has its own dedicated tick function named
sxa_tick which must be regularly called to allow processing of incoming responses or requests. The sample
programs that use the SXA layer all have the sxa prefix at the start of their file name.

5.1.3 ZigBee Initialization

Initializing the system when not using the SXA layer is a bit more involved, but allows interaction with most
ZigBee-compatible devices on the network. After device initialization, the next step is to initialize the WPAN
layer by calling the xbee_wpan_init function. The next step is to initialize the AT command layer by calling the
xbee_cmd_init_device function. This must be followed by repeated calls to the wpan_tick function and status
checks to the xbee_cmd_query_status function.

The wpan_tick function drives both the WPAN layer and XBee Driver layer. Most functions in the system are
non-blocking, which means they return before the XBee device or network devices have actually completed the
requested operations. There are several ‘tick’ functions at different layers of the overall system which drive pro-
cessing, as well as associated status functions to see when operations complete. This allows your embedded sys-
tem to work on other time-sensitive operations while the XBee and network are processing your requests.

5.1.4 Network Overhead Requirements

As mentioned in the prior sections, the calling of ‘tick’ functions and appropriate status functions are fundamen-
tal to the overall ZigBee libraries and driver operation. These functions must be called within certain times to
prevent internal buffers from overflowing. There are several tick functions that invoke processing at different
layers and with different call timing. The lowest level tick is xbee_dev_tick and this drives the XBee Driver Lay-
er. The primary higher-level tick functions are wpan_tick and sxa_tick. The wpan_tick function drives all ZigBee
layers and should be used unless the SXA layer is desired. The sxa_tick function drives SXA and lower layers.

All of the tick functions (xbee_dev_tick, wpan_tick and sxa_tick) have the same timing requirements. These are
based on the speed and packet/buffer size that is setup for the serial port connected to the XBee device. By default
the baudrate is 115.2kbps and the receive buffer size is 255 bytes. Since this buffer size is larger than the typical
largest packet size of 128 bytes, the timing should be based on the packet size. If the buffering of the port is re-
duced then this calculation would need to based on the buffer size.

The formula for minimum calling rate time is time = size / (baud / 10) where size is the lower of either packet
or buffer size. For the default settings this comes out to 11ms. Therefore the tick function should be called at least
every 11 ms to ensure no data loss. This timing requirement holds true for a simple tick function that handles the
return code from a single buffered packet.

XBEE_STD_CONFIG Value Serial Port TX Port Pin RX Port Pin RTS Port Pin CTS Port Pin

1 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ Settings Based on Core / SBC Board In Use ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

2 D PC0 PC1 PC2 PC3

3 F PE2 PE3 PA0 PD0
An Introduction to ZigBee digi.com 21

http://www.digi.com

If longer times are needed between calls to the tick function, then this requires either slowing the baud rate or
increasing the buffer size and creating a more complex tick function that processes all complete received packets
from the buffer in a single tick call. This would guarantee that after the tick call the buffer would have less than
one packet worth of data. So then the formula for minimum calling rate would change to time = (buffer size -
packet size) / (baud / 10). Therefore if the buffer size was increased to 511 bytes and maximum packet size was
128 bytes with the default baud rate the minimum call time would be 33ms. Larger serial buffer sizes can be
used, but note that serial buffer sizes must be of a value equal to 2 to the power of N minus one for any positive
value of N. The callback time should always be kept to less than 200ms to avoid network time out issues.

The final tick function is xbee_cmd_tick which is used to age and expire old AT command requests. This func-
tion should be called at least once every 2 or 3 seconds.

5.1.5 End Device Sleep Mode

This system has functions to check when the local XBee is asleep and will not allow transmissions to be sent to
the device if there are hardware handshake ports included in the interface. If the hardware implementation does
not include hardware handshaking, then it is the program’s responsibility to check if the device is awake before
sending a command to the device. The XBee Driver does not automatically check the awake status, only Clear
To Send (CTS) signals when available.

5.2 Sample Programs

This section describes the Dynamic C sample programs that exercise the XBee and ZigBee network functional-
ity.

Dynamic C sample programs for the XBee are in the folder Samples/XBee relative to the Dynamic C instal-
lation folder. Some of the sample programs can be run with one Rabbit-based board by itself, but can also be run
as part of a network. Others require either a secondary Rabbit-based board, XBee interface board (XBIB) or a
Digi XBee USB device to form an actual network. The Digi XBee USB device is a simple USB dongle. The
XBee interface board includes a USB interface to an XBee module, as well as some switches, LEDs and connec-
tors to allow further exploration or prototyping of a standalone XBee module. Either XBIB or dongle hardware
can aid development by providing a ZigBee coordinator to create a network that the Rabbit-based target can then
join as either a router or end device node.

5.2.1 Sample Program Usage Requirements

All of the samples make use of the “xbee_config.h” header file. This file provides automatic configuration of the
hardware interface between the Rabbit processor and the XBee module on standard XBee enabled Rabbit devic-
es. This includes both core modules and single board computers.

There are samples that use the Simple XBee API as well as samples that use the ZigBee library system directly.
All samples that use the Simple XBee API start with SXA.

5.2.2 Summary of ZigBee Sample Programs

The bulleted lists below are the available sample programs.

5.2.2.1 Sample Programs for One Rabbit-Based Board Alone (No Networking)

The sample programs listed here require just one Rabbit-based board to run the sample. The network is not ini-
tialized in these samples, they only demonstrate direct communications to the XBee module.

• Basic_XBee_Init.c - This sample program illustrates the basic initialization of an XBee device. It does
not go any further into configuration or network establishment. Running this successfully verifies that
the communication link between the RF module and its Rabbit-based board is working properly.
22 digi.com Rabbit and ZigBee

http://www.digi.com

• Basic_XBee_Query.c - This sample program shows how to set up and send a list of AT commands. It
sends local AT commands to the XBee module one at a time. It reads the parameters that are returned
and stores them in a local structure. If the command list processes to the end, it then displays them in
the Stdio window. Otherwise it reports the error. It does not create a network, it is local only.

• serial_bypass.c - This sample program bridges the programming port of the Rabbit (Serial A) with the
serial port connected to the XBee module. This allows the Rabbit programming port to talk directly
with the XBee module. By running this sample code, the PC-based X-CTU program connects to an
XBee module through the Rabbit programming port, allowing the X-CTU program to configure and
update the firmware on the XBee module. To get the latest firmware files, perform a web update in the
X-CTU program. See section 5.8.1 for more information on the X-CTU program.

• xbee_update_ebl.c - This sample program reads XBee firmware from an ximported ‘.ebl’ file and
updates the firmware on the attached XBee module. This demonstrates a method of remote update and
could be expanded to allow the firmware file to be downloaded from a network or retrieved from a FAT
file system file. X-CTU stores ‘.ebl’ files in Program
Files\Digi\XCTU\update\ebl_files. See section 5.8.1 for more information on X-CTU and
a table of firmware files to use.

5.2.2.2 Sample Programs for One Rabbit-Based Board and XBIB or USB Dongle

The sample programs listed here require a minimum of one Rabbit-based board to run the sample and at least one
additional XBee node which could be Rabbit-based, on an XBIB or inside a USB Dongle.

• AT_interactive.c - This sample program illustrates how to set up and send an AT command. It's also
useful for debugging purposes, and to configure some of the registers/commands on the XBee. It dis-
plays a menu of some of the more useful AT commands, then prompts the user to enter one. Running
this program successfully verifies that the communication link between the XBee module and its Rab-
bit-based board is working properly. This sample can communicate with remote nodes if the MAC
address is known and the node has joined the network.

• AT_remote.c - Similar to the AT_interactive sample but with node discovery which will then display a
list of remote nodes to communicate with. This sample makes it much easier to find and work with
remote nodes through interactive AT commands.

• SXA-command.c - This sample program shows the use of the Simple XBee API to discover remote
nodes and issue AT commands to them, both interactively and programmatically.

• SXA-stream.c - This demonstrates using the Simple XBee API library to discover remote nodes and
allows sending simple streams of data between XBee nodes on a network. It uses the Digi Transparent
Serial cluster ; the same cluster used by XBee modules running "AT firmware" instead of "API firm-
ware". This sample will work with stand-alone XBee modules tied to a serial device.

• transparent_client.c - This sample demonstrates the manual setup required for sending simple streams
of data between XBee nodes on a network when not using the Simple XBee API library. It uses the Digi
Transparent Serial cluster; the same cluster used by XBee modules running "AT firmware" instead of
"API firmware". This sample will work with stand-alone XBee modules tied to a serial device.

5.2.2.3 Sample Programs for Two Rabbit-Based Boards
The sample programs listed here require a minimum of two Rabbit-based boards to run the sample. Both
boards must be programmed with sample code to perform the sample functionality.
• SXAsocket.c - This sample program shows the use of the Simple XBee API library to discover remote

XBee noeds and send data streams back and forth, using a reliable TCP socket-like protocol. This sam-
An Introduction to ZigBee digi.com 23

http://www.digi.com

ple uses a custom ZigBee endpoint to implement a protocol similar to TCP/IP. This requires the sample
program to be run on both ends to process the custom protocol.

5.3 Hardware Abstraction Layer (HAL)

This section contains information about the Hardware Abstraction Layer for XBee devices.

5.3.1 General Overview

Much of the Hardware Abstraction Layer is actually designed to be accessed through the serial functions wrap-
pers in the XBee driver layer. This section lists the helper functions that can be directly called.

5.3.2 API Functions and Macros

This section contains some useful helper function descriptions for the Hardware Abstraction Layer. These func-
tions are not network related, but rather assist with stdio, data display, data conversion and timing. To use any of
these functions you must #include either “xbee/serial.h” or the xbee_config.h header file from the Sam-
ples/XBee directory.

xbee_readline

int xbee_readline (char * s)

DESCRIPTION

This function is a non-blocking version of gets().

It waits for a string from stdin terminated by a return. It should be called repeatedly, until it returns
1. The input string, stored at s is null-terminated without the return.

The caller is responsible to make sure the location pointed to by s is big enough for the string.

The user should make sure only one process calls this function at a time.

PARAMETERS

RETURN VALUE

1 User ended the input with a newline.

0 User has not completed a line.

hex_dump

void hex_dump (const void FAR * address, uint16_t length, uint16_t

[in,out]s Buffer to store string from user.
24 digi.com Rabbit and ZigBee

http://www.digi.com

flags)

DESCRIPTION

Helper function for printing a hex dump of memory to stdout. A reference implementation is pro-
vided in as util/hexdump.c. Dumps data in hex/printable format, 16 bytes to a line, to stdout.

PARAMETERS

hexstrtobyte

int hexstrtobyte (const char FAR * p)

DESCRIPTION

Converts two hex characters (0-9A-Fa-f) to an equivalent byte value.

PARAMETERS

 RETURN VALUE

-1 Error (invalid character or string less than 2 bytes).

0-255 The byte represented by the first two characters of p.

Examples

hexstrtobyte("FF") returns 255

hexstrtobyte("0") returns -1 (error because < 2 characters)

hexstrtobyte("ABCDEF") returns 0xAB (ignores additional chars)

xbee_millisecond_timer

[in] address Address of data to dump.

[in] length Number of bytes to dump.

[in] flags One of:

• HEX_DUMP_FLAG_NONE
• HEX_DUMP_FLAG_OFFSET
• HEX_DUMP_FLAG_ADDRESS
• HEX_DUMP_FLAG_TAB

[in] p String of hex characters to convert.
An Introduction to ZigBee digi.com 25

http://www.digi.com

uint32_t xbee_millisecond_timer (void)

DESCRIPTION

Macro which returns the number of elapsed milliseconds.

This counter does rollover and has 1ms resolution.

RETURN VALUE

0 Number of elapsed milliseconds.

xbee_seconds_timer

uint32_t xbee_seconds_timer (void)

DESCRIPTION

Macro which returns the number of elapsed seconds. This counter does rollover and has 1 second
resolution. In addition to determining timeouts, the ZCL Time Cluster makes use of it to report
current time.

RETURN VALUE

Number of elapsed seconds.

5.4.2 XBee Driver Layer API Functions and Macros

This section contains descriptions for the XBee Driver Layer functions and macros separated into layer compo-
nents.

5.4.2.1 XBee Driver Layer General Usage

Most of the functions in this layer are not used directly in applications.

5.4.2.2 Serial API Functions and Macros

This section contains API descriptions for the serial component of the XBee Driver Layer. To use any of these
functions the program must #include either “XBee/serial.h” or the xbee_config.h header file from the
DC_Root/Samples/XBee directory.

xbee_ser_baudrate

int xbee_ser_baudrate (xbee_serial_t * serial, uint32_t baudrate)

DESCRIPTION

Change the baud rate of XBee serial port serial to baudrate bits/second.
26 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Opened serial port within 5% of requested baudrate.

-EINVAL Parameter serial is not a valid XBee serial port.

-EIO Can't open serial port within 5% of requested baudrate.

SEE ALSO

xbee_ser_open(), xbee_ser_close(), xbee_ser_break()

xbee_ser_break

int xbee_ser_break (xbee_serial_t * serial, bool_t enabled)

DESCRIPTION

Disable the serial transmit pin and pull it low to send a break to the XBee serial port.

PARAMETERS

RETURN VALUE

0 Success

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_open(), xbee_ser_close()

Referenced by xbee_fw_install_ebl_tick(), and xbee_fw_install_oem_tick().

xbee_ser_close

[in] serial XBee serial port

[in] baudrate Bits per second of serial data transfer speed.

[in] serial XBee serial port

[in] enabled Set to 1 to start the break or 0 to end the break (and re-
sume transmitting).
An Introduction to ZigBee digi.com 27

http://www.digi.com

int xbee_ser_close (xbee_serial_t * serial)

DESCRIPTION

Close the serial port attached to XBee serial port serial.

PARAMETERS

RETURN VALUE

0 Closed serial port

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_open(), xbee_ser_baudrate(), xbee_ser_break()

xbee_ser_flowcontrol

int xbee_ser_flowcontrol (xbee_serial_t * serial, bool_t enabled)

DESCRIPTION

Enable or disable hardware flow control (CTS/RTS) on the serial port for XBee serial port

serial.

PARAMETERS

RETURN VALUE

0 Success.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_set_rts(), xbee_ser_get_cts()

[in] serial XBee serial port

[in] serial XBee serial port

[in] enabled Set to 0 to disable flow control or non-zero to enable
flow control.
28 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_ser_get_cts

int xbee_ser_get_cts (xbee_serial_t * serial)

DESCRIPTION

Read the status of the /CTS (clear to send) pin on the serial port connected to XBee serial port
serial.

Note: This function doesn't return the value of the pin -- it returns whether it's asserted (i.e., clear
to send to the XBee serial port) or not.

PARAMETER

RETURN VALUE

1 It's clear to send.

0 It's not clear to send.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_flowcontrol(), xbee_ser_set_rts()

xbee_ser_getchar

int xbee_ser_getchar (xbee_serial_t * serial)

DESCRIPTION

Reads a single character from the XBee serial port serial.

PARAMETER

RETURN VALUE

0-255 Character read from XBee serial port.

-ENODATA There aren't any characters in the read buffer.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

[in] serial XBee serial port

[in] serial XBee serial port
An Introduction to ZigBee digi.com 29

http://www.digi.com

xbee_ser_read(), xbee_ser_write(), xbee_ser_getchar()

xbee_ser_invalid

bool_t xbee_ser_invalid (xbee_serial_t * serial)

DESCRIPTION

Helper function used by other xbee_serial functions to validate the serial parameter.

Confirms that it is non-NULL and is set to a valid port.

PARAMETER

 RETURN VALUE

1 serial is not a valid XBee serial port.

0 serial is a valid XBee serial port.

xbee_ser_open

int xbee_ser_open (xbee_serial_t * serial, uint32_t baudrate)

DESCRIPTION

Opens the serial port connected to XBee serial port serial at baudrate bits/second.

PARAMETERS

RETURN VALUE

0 Opened serial port within 5% of requested baudrate.

-EINVAL serial is not a valid XBee serial port.

-EIO Can't open serial port within 5% of requested baudrate.

SEE ALSO

xbee_ser_baudrate(), xbee_ser_close(), xbee_ser_break()

[in] serial XBee serial port

[in] serial XBee serial port

[in] baudrate Bits per second of serial data transfer speed.
30 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_ser_portname

const char* xbee_ser_portname (xbee_serial_t * serial)

DESCRIPTION

Returns a human-readable string describing the serial port attached (‘A’ thru ‘F’). If serial
parameter is invalid or the port is not initialized, it will return the string “(invalid)”.

PARAMETERS

RETURN VALUE

0 Null-terminated string describing the serial port.

“(invalid)” If serial is invalid or not configured.

xbee_ser_putchar

int xbee_ser_putchar (xbee_serial_t * serial, uint8_t ch)

DESCRIPTION

Transmits a single character, ch, to the XBee serial port serial.

PARAMETERS

RETURN VALUE

0 Successfully sent (queued) character.

-ENOSPC The write buffer is full and the character wasn't sent.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_read(), xbee_ser_write(), xbee_ser_getchar()

[in] serial XBee serial port

[in] serial XBee serial port

[in] ch Character to send
An Introduction to ZigBee digi.com 31

http://www.digi.com

xbee_ser_read

int xbee_ser_read (xbee_serial_t * serial,void FAR * buffer, int
bufsize)

DESCRIPTION

Reads up to bufsize bytes from XBee serial port serial and into buffer.

If there is no data available when the function is called, it will return immediately.

PARAMETERS

RETURN VALUE

>=0 The number of bytes read from XBee serial port.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_write(), xbee_ser_putchar(), xbee_ser_getchar()

xbee_ser_rx_flush

int xbee_ser_rx_flush (xbee_serial_t * serial)

DESCRIPTION

Deletes all characters in the serial receive buffer for XBee serial port serial.

PARAMETERS

RETURN VALUE

0 Success.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

[in] serial XBee serial port

[out] buffer Buffer to hold bytes read from XBee serial port

[in] bufsize Maximum number of bytes to read

[in] serial XBee serial port
32 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_ser_tx_free(), xbee_ser_tx_used(), xbee_ser_tx_flush(),
xbee_ser_rx_free(), xbee_ser_rx_used()

xbee_ser_rx_free

int xbee_ser_rx_free (xbee_serial_t * serial)

DESCRIPTION

Returns the number of unused bytes in the serial receive buffer for XBee serial port serial.

PARAMETERS

RETURN VALUE

INT_MAX The buffer size is unlimited (or unknown).

>=0 The number of bytes it would take to fill the XBee serial port's serial receive buffer.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_tx_free(), xbee_ser_tx_used(), xbee_ser_tx_flush(),
xbee_ser_rx_used(), xbee_ser_rx_flush()

xbee_ser_rx_used

int xbee_ser_rx_used (xbee_serial_t * serial)

DESCRIPTION

Returns the number of queued bytes in the serial receive buffer for XBee serial port serial.

PARAMETERS

RETURN VALUE

>=0 The number of bytes queued in the XBee serial port's serial transmit buffer.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

[in] serial XBee serial port

[in] serial XBee serial port
An Introduction to ZigBee digi.com 33

http://www.digi.com

xbee_ser_tx_free(), xbee_ser_tx_used(), xbee_ser_tx_flush(),
xbee_ser_rx_free(), xbee_ser_rx_flush()

NOTE: Unlike xbee_ser_tx_used(), this function MUST return the number of bytes avail-
able. Some layers of the library wait until enough bytes are ready before continuing.

xbee_ser_set_rts

int xbee_ser_set_rts (xbee_serial_t * serial, bool_t asserted)

DESCRIPTION

Disable hardware flow control and manually set the RTS (ready to send) pin on the XBee device's
serial port.

Typically used to enter the XBee device's boot loader and initiate a firmware update.

PARAMETERS

RETURN VALUE

0 Success.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_flowcontrol(), xbee_ser_get_cts()

xbee_ser_tx_flush

int xbee_ser_tx_flush (xbee_serial_t * serial)

DESCRIPTION

Flushes (i.e., deletes and does not transmit) characters in the serial transmit buffer for XBee serial
port serial.

PARAMETERS

[in] serial XBee serial port

[in] asserted Set to 1 to assert RTS (ok for XBee to send to us)
or 0 to deassert RTS (tell XBee not to send to us).

[in] serial XBee serial port
34 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Success

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_rx_free(), xbee_ser_rx_used(), xbee_ser_rx_flush(), xbee_ser_tx_free(),
xbee_ser_tx_used()

xbee_ser_tx_free

int xbee_ser_tx_free (xbee_serial_t * serial)

DESCRIPTION

Returns the number of bytes of unused space in the serial transmit buffer for XBee serial port se-
rial.

PARAMETERS

RETURN VALUE

INT_MAX The buffer size is unlimited (or unknown).

>=0 The number of bytes it would take to fill the XBee serial port's serial transmit
 buffer.
-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_rx_free(), xbee_ser_rx_used(), xbee_ser_rx_flush(), xbee_ser_tx_used(),
xbee_ser_tx_flush()

xbee_ser_tx_used

int xbee_ser_tx_used (xbee_serial_t * serial)

DESCRIPTION

Returns the number of queued bytes in the serial transmit buffer for XBee serial port serial.

[in] serial XBee serial port
An Introduction to ZigBee digi.com 35

http://www.digi.com

PARAMETERS

RETURN VALUE

0 The buffer size is unlimited (or space used is unknown).

>0 The number of bytes queued in the XBee serial port's serial transmit buffer.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_rx_free(), xbee_ser_rx_used(), xbee_ser_rx_flush(), xbee_ser_tx_free(),
xbee_ser_tx_flush()

xbee_ser_write

int xbee_ser_write (xbee_serial_t * serial, const void FAR * buffer,
int length)

DESCRIPTION

Transmits length bytes from buffer to the XBee serial port serial.

PARAMETERS

RETURN VALUE

>=0 The number of bytes successfully written to XBee serial port.

-EINVAL serial is not a valid XBee serial port.

SEE ALSO

xbee_ser_read(), xbee_ser_putchar(), xbee_ser_getchar()

5.4.2.3 Device Interface API Functions and Macros

This section contains function descriptions for the device interface component of the XBee
Driver Layer. To use these functions the program must have #include “XBee/device.h” within
the code.

[in] serial XBee serial port

[in] serial XBee serial port

[in] buffer Source of bytes to send

[in] length Number of bytes to write
36 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_dev_dump

void xbee_dev_dump (xbee_dev_t * xbee, uint16_t flags)

DESCRIPTION

Print information to stdout about the XBee device.

Default behavior is to print the name of the serial port, the XBee module's hardware version
(ATHV), firmware version (ATVR), IEEE address (ATSH/ATSL) and network address (ATMY).

Assumes the user has already called xbee_cmd_init_device() and waited for
xbee_cmd_query_status() to finish.

PARAMETERS

SEE ALSO

xbee_cmd_init_device(), xbee_cmd_query_status(), xbee_ser_portname()

xbee_dev_init

int xbee_dev_init (xbee_dev_t * xbee, const xbee_serial_t * serport,
xbee_is_awake_fn is_awake, xbee_reset_fn reset)

DESCRIPTION

Initialize the XBee device structure and open a serial connection to a local, serially-attached XBee
module.

This function does not actually initiate communications with the XBee module. See
xbee_cmd_init_device() for information on initializing the "AT Command" layer of the driver,
which will read basic information from the XBee module.

PARAMETERS

[in] xbee Device to get information about

[in] flags XBEE_DEV_DUMP_FLAG_NONE: default settings

[in] xbee XBee device to initialize.

[in] serport Pointer to an xbee_serial_t structure used to initialize xbee-
>serport.
An Introduction to ZigBee digi.com 37

http://www.digi.com

RETURN VALUE

0 Success

-EINVAL Invalid parameter (xbee is NULL, serport is not valid, etc.)

-EIO Couldn't set serial port baudrate within 5% of serport->baudrate

xbee_dev_reset

int xbee_dev_reset (xbee_dev_t * xbee, uint16_t flags)

DESCRIPTION

Toggles the reset line of the XBee device.

PARAMETERS

RETURN VALUE

0 Successfully toggled reset.

-EINVAL Invalid xbee_dev_t passed to function.

-EIO This XBee device doesn't have an interface to the module's reset pin.

xbee_dev_tick

int xbee_dev_tick (xbee_dev_t * xbee)

DESCRIPTION

Check for newly received frames on an XBee device and dispatch them to registered frame han-
dlers. See section 5.1.4 for a discussion of how frequently this function needs to be called for a

[in] is_awake Pointer to function that reads the XBee module's "ON" pin. The
function should return 1 if XBee is on and 0 if it is off.

ie:int xbee_is_awake (xbee_dev_t * xbee)

[in] reset Pointer to function that asserts the XBee module's "/RESET"
pin. If asserted is TRUE, puts the XBee into reset. If as-
serted is FALSE, takes it out of reset. No return value.

ie:void xbee_reset (xbee_dev_t * xbee, bool_t asserted)

[in] xbee XBee device to reset.
38 digi.com Rabbit and ZigBee

http://www.digi.com

given configuration.

Execution time depends greatly on how long each frame handler takes to process its frame.

Warning!

This function is NOT re-entrant and will return -EBUSY if it is called when already running.

PARAMETERS

RETURN VALUE

>=0 Number of frames received and dispatched.

-EINVAL If xbee isn't a valid device structure.

-EBUSY If xbee_dev_tick() was called when it's already running for this device.

SEE ALSO

xbee_frame_load()

xbee_frame_dump_modem_status

int xbee_frame_dump_modem_status (xbee_dev_t * xbee, const void FAR
* frame, uint16_t length, void FAR * context)

DESCRIPTION

Frame handler for 0x8A (XBEE_FRAME_MODEM_STATUS) frames -- dumps modem status
to STDOUT for debugging purposes.

PARAMETERS

SEE ALSO

xbee_frame_handler_fn()

[in] xbee XBee device to check for, and then dispatch, new frames.

[in] xbee Dummy parameter, here to match standard frame handler
callback API

[in] frame Pointer to the frame to get the modem status from.

[in] length Dummy parameter, here to match standard frame handler
callback API

[in] context Dummy parameter, here to match standard frame handler
callback API
An Introduction to ZigBee digi.com 39

http://www.digi.com

xbee_frame_write

int xbee_frame_write (xbee_dev_t * xbee, const void FAR * header,
uint16_t headerlen, const void FAR * data, uint16_t datalen,
uint16_t flags)

DESCRIPTION

Copies a frame into the transmit serial buffer to send to an XBee module.

Header should include bytes as they will be sent to the XBee. Function accepts separate header
and data to limit the amount of copying necessary to send requests.

This function should only be called after xbee has been initialized by calling xbee_serial_init().

PARAMETERS

RETURN VALUE

0 Successfully queued frame in transmit serial buffer.

-EINVAL xbee is NULL or invalid flags passed

-ENODATA No data to send (headerlen + datalen == 0).

-EBUSY Transmit serial buffer is full, or XBee is not accepting serial data (deasserting
 /CTS signal).

SEE ALSO

[in] xbee XBee device to send to.

[in] header Pointer to the header to send. Header starts with the
frame type (this function will pre-pend the 0x7E start-
of-frame and 16-bit length). Pass NULL if there isn't a
header and the entire frame is in the payload (data and).

[in] headerlen Number of header bytes to send (starting with address
passed in header).

Ignored if header is NULL.

[in] data Address of frame payload or NULL if the entire frame
content is stored in the header bytes (header and header-
len).

[in] datalen Number of payload bytes to send (starting with address
passed in data).

Ignored if data is NULL.

[in] flags Optional flags

XBEE_WRITE_FLAG_NONE
40 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_serial_init(), xbee_serial_write(), xbee_frame_load()

 5.4.2.4 AT Commands API Functions and Macros
This section contains API descriptions for the AT commands component of the XBee Driver Layer. To
use these functions, the program must have #include “xbee/atcmd.h” within the code.

xbee_cmd_clear_flags

int xbee_cmd_clear_flags (int16_t handle, uint16_t flags)

DESCRIPTION

Clear the flags for a given AT Command request.

PARAMETERS

RETURN VALUE

0 Flags cleared.

-EINVAL Handle is not valid.

SEE ALSO

xbee_cmd_set_flags()

 xbee_cmd_create

int xbee_cmd_create (xbee_dev_t * xbee, const char FAR command[3])

DESCRIPTION

Allocate an AT Command request.

[in] handle Handle to the request, as returned by xbee_cmd_create()

[in] flags Optionally one or more of the following:

•XBEE_CMD_FLAG_QUEUE_CHANGE don't apply changes until
ATAC or another command without this flag is sent.
An Introduction to ZigBee digi.com 41

http://www.digi.com

PARAMETERS

RETURN VALUE

>0 A "handle" to a request that can be built up and sent to a local (serially-attached)
 or remote XBee module.
-ENOSPC The AT command table is full (increase the compile-time macro
 XBEE_CMD_REQUEST_TABLESIZE).

-EINVAL An invalid parameter was passed to the function.

SEE ALSO

xbee_cmd_init_device(), xbee_cmd_query_device(), xbee_cmd_set_command(),
xbee_cmd_set_callback(), xbee_cmd_set_target(), xbee_cmd_set_param(),
xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(), xbee_cmd_send()

xbee_cmd_execute

int xbee_cmd_execute (xbee_dev_t * xbee, const char FAR command[3],
const void FAR * data, uint8_t length)

DESCRIPTION

Simple interface for sending a command with an optional parameter to the local XBee without
checking for a response.

For an asynchronous method of sending AT commands and getting the response, see
xbee_cmd_create, the xbee_cmd_set_* functions and xbee_cmd_send.

PARAMETERS

[in] xbee XBee device to use as the target (local) or to send
through (remote). This
function will automatically call xbee_cmd_init() if it
hasn't already been called for this device.

[in] command Two-letter AT Command to send (e.g., "VR", "NI",
etc.).

[in] xbee XBee device to use as the target.

[in] command Two-letter AT Command to send (e.g., "ID", "CH",
etc.).

[in] data Optional big-endian (MSB-first) value to assign to com-
mand. Use NULL if command doesn't take a parameter.

[in] length Number of bytes in data; ignored if data is NULL.
42 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Command sent

-EINVAL An invalid parameter was passed to the function

-EBUSY Transmit serial buffer is full, or XBee is not accepting serial data (deasserting
 /CTS signal).

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param(), xbee_cmd_set_param_bytes(),
xbee_cmd_set_param_str(), xbee_cmd_simple()

xbee_cmd_init_device

int xbee_cmd_init_device (xbee_dev_t * xbee)

DESCRIPTION

Initialize the AT Command layer for an XBee device. You need to call this function before any of
the other xbee_cmd_* functions.

PARAMETERS

RETURN VALUE

0 The XBee device was successfully configured to send and receive AT commands.

-EINVAL An invalid parameter was passed to the function

SEE ALSO

xbee_cmd_query_device(), xbee_cmd_create(), xbee_cmd_set_command(),
xbee_cmd_set_callback(), xbee_cmd_set_target(), xbee_cmd_set_param(),
xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(), xbee_cmd_send()

xbee_cmd_list_execute

int xbee_cmd_list_execute (xbee_dev_t * xbee,

[in] xbee XBee device on which to enable the AT Command lay-
er. This function will automatically call
xbee_cmd_query_device if it hasn't already been called
for this device.
An Introduction to ZigBee digi.com 43

http://www.digi.com

xbee_command_list_context_t FAR * clc,
 const xbee_atcmd_reg_t FAR * list,
 void FAR * base, const wpan_address_t FAR * address)

DESCRIPTION

Execute a list of AT commands.

PARAMETERS

RETURN VALUE

0 The XBee device was successfully configured to send and receive AT commands

-ENOSPC The AT command table is full (increase the compile-time macro
 XBEE_CMD_REQUEST_TABLESIZE)

-EINVAL An invalid parameter was passed to the function

SEE ALSO

xbee_cmd_list_status()

xbee_command_list_status

enum xbee_command_list_status xbee_cmd_list_status(
xbee_command_list_context_t FAR *clc)

DESCRIPTION

Determine status of command list execution.

[in, out] xbee Device to execute commands

[out] clc List head to set up. This must be static since callback
functions access it asynchronously. Used as handle to
check status of list execution.

[in] list First entry of list of commands to execute. The list must
be terminated by either
 XBEE_ATCMD_REG_END or
XBEE_ATCMD_REG_END_CB. List entries are cre-
ated using XBEE_ATCMD_REG macros etc.

[in] base Base address of a structure to fill in with command re-
sults.

[in] address Remote address, or NULL if local device.
44 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

XBEE_COMMAND_LIST_RUNNING Currently executing commands

XBEE_COMMAND_LIST_DONE Successfully completed.

XBEE_COMMAND_LIST_TIMEOUT Timed out.

XBEE_COMMAND_LIST_ERROR Completed with error(s).

SEE ALSO

xbee_cmd_list_execute()

xbee_cmd_query_device

int xbee_cmd_query_device (xbee_dev_t * xbee, uint_fast8_t refresh)

DESCRIPTION

Learn about the underlying device by sending a series of commands and storing the results in the
xbee_dev_t.

This function will likely get called by the XBee stack at some point in the startup/initialization
phase.

Use xbee_cmd_query_status() to check on the progress of querying the device.

PARAMETERS

RETURN VALUE

0 Started querying device.

-EBUSY Transmit serial buffer is full, or XBee is not accepting serial data
 (deasserting /CTS signal).

SEE ALSO

xbee_cmd_init_device(), xbee_cmd_query_status()

[in] clc List head passed to xbee_cmd_list_execute().

[in,out] xbee XBee device to query.

[in] refresh If non-zero, just refresh the volatile values (e.g., network
settings, as opposed to device serial number)
An Introduction to ZigBee digi.com 45

http://www.digi.com

xbee_cmd_query_status

int xbee_cmd_query_status (xbee_dev_t * xbee)

DESCRIPTION

Check the status of querying an XBee device, as initiated by xbee_cmd_query_device().

PARAMETERS

RETURN VALUE

0 Query completed.

-EINVAL xbee is NULL.

-EBUSY Query underway.

-ETIMEDOUT Query timed out.

-EIO Halted, but query may not have completed (unexpected response).

xbee_cmd_release_handle

int xbee_cmd_release_handle (int16_t handle, uint16_t flags)

DESCRIPTION

Release an entry from the request table by marking it as available.

PARAMETERS

RETURN VALUE

0 Request freed

-EINVAL handle is not valid

SEE ALSO

xbee_cmd_create(), xbee_cmd_release_handle()

[in] xbee Device to check

[in] handle Handle to the request (as returned by xbee_cmd_create)
46 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_cmd_send

int xbee_cmd_send (int16_t handle)

DESCRIPTION

Send an AT Command to a local or remote XBee device.

PARAMETERS

RETURN VALUE

0 Frame sent

-EINVAL handle is not valid

-EBUSY Transmit serial buffer is full, or XBee is not accepting serial data
 (deasserting /CTS signal).

NOTE: If the request does not have a callback set, it will be automatically released if
xbee_cmd_send() returns 0.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param(), xbee_cmd_set_param_bytes(),
xbee_cmd_set_param_str()

xbee_cmd_set_callback

int xbee_cmd_set_callback (int16_t handle,
 xbee_cmd_callback_fn callback, void FAR * context)

DESCRIPTION

Associate a callback with a given AT Command request.

PARAMETERS

[in] handle Handle to the request, as returned by xbee_cmd_create().

[in] handle Handle to the request, as returned by
xbee_cmd_create().
An Introduction to ZigBee digi.com 47

http://www.digi.com

RETURN VALUE

0 Callback set.

-EINVAL handle is not valid.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_target(),
xbee_cmd_set_param(), xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(),
xbee_cmd_send()

xbee_cmd_set_command

int xbee_cmd_set_command (int16_t handle, const char FAR command[3])

DESCRIPTION

Change the command associated with a request.

PARAMETERS

RETURN VALUE

0 Command changed.

-EINVAL handle is not valid.

SEE ALSO

[in] callback Callback function to receive the AT Command re-
sponse. This function should
take a single parameter (pointer to an
xbee_cmd_response_t) and return either

 XBEE_ATCMD_DONE (if done with the request han-
dle)

XBEE_ATCMD_REUSE (if more responses are ex-
pected, or the request handle is going to be reused).

ie: int atcmd_callback(const
xbee_cmd_response_t FAR *response)

[in] context Context (or "userdata") value to pass to the callback
along with the AT Command response when it arrives.
Should be set to NULL if not used.

[in] handle Handle to the request, as returned by xbee_cmd_create()

[in] command Two-letter AT Command to send (e.g., "VR", "NI", etc.)
48 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_cmd_create(), xbee_cmd_set_callback(), xbee_cmd_set_target(), xbee_cmd_set_param(),
xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(), xbee_cmd_send()

xbee_cmd_set_flags

int xbee_cmd_set_flags (int16_t handle, uint16_t flags)

DESCRIPTION

Set the flags for a given AT Command request.

PARAMETERS

RETURN VALUE

0 Flags set.

-EINVAL handle is not valid.

SEE ALSO

xbee_cmd_clear_flags()

xbee_cmd_set_param

int xbee_cmd_set_param (int16_t handle, uint32_t value)

DESCRIPTION

Set the parameter (up to 32-bits) for a given AT Command request.

PARAMETERS

[in] handle Handle to the request, as returned by
xbee_cmd_create().

[in] flags One or more of the following:

XBEE_CMD_FLAG_QUEUE_CHANGE don't apply
changes until ATAC or another command without this
flag is sent

[in] handle Handle to the request, as returned by
xbee_cmd_create().
An Introduction to ZigBee digi.com 49

http://www.digi.com

RETURN VALUE

0 Parameter set.

-EINVAL handle is not valid.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(),
xbee_cmd_send()

xbee_cmd_set_param_bytes

int xbee_cmd_set_param_bytes (int16_t handle, const void FAR * data,
uint8_t length)

DESCRIPTION

Set the parameter for a given AT Command request to a sequence of bytes.

PARAMETERS

RETURN VALUE

0 Parameter set.

-EINVAL handle or length is not valid.

-EMSGSIZE length is greater than XBEE_CMD_MAX_PARAM_LENGTH.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param(), xbee_cmd_set_param_str(), xbee_cmd_send()

[in] value Value to use as the parameter to the AT Command. For
negative values, or values > 0xFFFFFFFF, use
xbee_cmd_set_param_bytes(). For string parameters
(e.g., for the "NI" command), use
xbee_cmd_set_param_str().

[in] handle Handle to the request, as returned by
xbee_cmd_create().

[in] data Pointer to bytes (MSB-first) to copy into request.

[in] length Number of bytes to copy.
0 < length <=
XBEE_CMD_MAX_PARAM_LENGTH
50 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_cmd_set_param_str

int xbee_cmd_set_param_str (int16_t handle, const char FAR * str)

DESCRIPTION

Set a string parameter for a given AT Command request (e.g., the "NI" node identifier command).

PARAMETERS

RETURN VALUE

0 Parameter set.

-EINVAL handle is not valid.

-EMSGSIZE String is more than XBEE_CMD_MAX_PARAM_LENGTH characters.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param(), xbee_cmd_set_param_bytes(),
xbee_cmd_send()

xbee_cmd_set_target

int xbee_cmd_set_target (int16_t handle, const addr64 FAR * ieee,
uint16_t network)

DESCRIPTION

Associate a remote XBee device with a given AT Command request. By default,
xbee_cmd_create() configures the request as a local AT Command for the serially-attached XBee
module. Use this function to send the command to a remote device.

PARAMETERS

[in] handle Handle to the request, as returned by
xbee_cmd_create().

[in] str String to use as the parameter. Must be less than
 XBEE_CMD_MAX_PARAM_LENGTH characters
long.

[in] handle Handle to the request, as returned by
xbee_cmd_create().
An Introduction to ZigBee digi.com 51

http://www.digi.com

RETURN VALUE

0 Target set.

-EINVAL handle is not valid.

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_param(), xbee_cmd_set_param_bytes(), xbee_cmd_set_param_str(),
xbee_cmd_send()

xbee_cmd_simple

int xbee_cmd_simple (xbee_dev_t * xbee, const char FAR command[3],
uint32_t value)

DESCRIPTION

Simple interface for sending a command with a parameter to the local XBee without checking for
a response.

[in] ieee Pointer to 64-bit IEEE hardware address of target, or
NULL to switch back to the
 local XBee device.

WPAN_IEEE_ADDR_BROADCAST for broadcast.

WPAN_IEEE_ADDR_COORDINATOR for the coor-
dinator (use WPAN_NET_ADDR_UNDEFINED for
the network address).

WPAN_IEEE_ADDR_UNDEFINED to use the 16-bit
network address.

 [in] network 16-bit network address of target.

WPAN_NET_ADDR_UNDEFINED if the node's net-
work address isn't known.

WPAN_NET_ADDR_COORDINATOR for the coor-
dinator (use the coordinator’s actual IEEE address for
the ieee parameter).

WPAN_NET_ADDR_BCAST_NOT_ASLEEP to
broadcast to all nodes that aren't sleeping.

WPAN_NET_ADDR_BCAST_ROUTERS to broad-
cast to the coordinator and all routers
52 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Command sent.

-EINVAL An invalid parameter was passed to the function.

-EBUSY Transmit serial buffer is full, or XBee is not accepting serial data
 (deasserting /CTS signal).

SEE ALSO

xbee_cmd_create(), xbee_cmd_set_command(), xbee_cmd_set_callback(),
xbee_cmd_set_target(), xbee_cmd_set_param(), xbee_cmd_set_param_bytes(),
xbee_cmd_set_param_str(), xbee_cmd_execute()

xbee_cmd_tick

int xbee_cmd_tick (void)

DESCRIPTION

This function should be called periodically (at least every few seconds) to expire old entries from
the AT Command Request table.

RETURN VALUE

>0 Number of requests expired.

0 None of the requests in the table expired.

xbee_identify

void xbee_identify (xbee_dev_t * xbee, bool_t identify)

DESCRIPTION

[in] xbee XBee device to use as the target.

[in] command Two-letter AT Command to send (e.g., "ID", "CH",
etc.).

[in] value Value to use as the parameter to the AT Command.
An Introduction to ZigBee digi.com 53

http://www.digi.com

Programs with the ZCL Identify Server Cluster can call this function in their main loop to have
the XBee module's association LED flash fast (100ms cycle) when in Identify Mode.

PARAMETERS

SEE ALSO

xbee_zcl_identify, zcl_identify_isactive, ZCL_CLUST_ENTRY_IDENTIFY_SERVER

5.4.2.5 Node Discovery API Functions and Macros
This section contains API descriptions for the node discovery component of the XBee Driver Layer. To
use these functions the program must have #include “XBee/discovery.h” within the code.

xbee_disc_device_type_str

const char * xbee_disc_device_type_str (uint8_t device_type)

DESCRIPTION

Return a string ("Coord", "Router", "EndDev", or "???") description for the "Device Type" field
of 0x95 frames and ATND responses.

PARAMETERS

RETURN VALUE

0 Pointer to a string describing the device type, or string "???" if device_type is invalid.

xbee_disc_nd_parse

int xbee_disc_nd_parse (xbee_node_id_t FAR * parsed, const void FAR
* source)

DESCRIPTION

Parse a Node Discovery response and store it in an xbee_node_id_t structure.

[in] xbee Device to identify

[in] identify TRUE if XBee should be in identify mode

[in] device_type The device type field from an 0x95 frame or ATND re-
sponse
54 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Response was parsed correctly and stored.

-EINVAL Invalid parameter or parsing error.

xbee_disc_node_id_dump

void xbee_disc_node_id_dump (const xbee_node_id_t FAR * ni)

DESCRIPTION

Debugging function used to dump an xbee_node_id_t structure to stdout.

PARAMETERS

5.4.2.6 Firmware Update API Functions and Macros
This section contains API descriptions for the firmware update component of the XBee Driver Layer. To
use these functions the program must have #include “XBee/firmware.h” within the code.

xbee_fw_buffer_init

int xbee_fw_buffer_init (xbee_fw_buffer_t * fw, uint32_t length,
const char FAR * address)

DESCRIPTION

Helper function for setting up an xbee_fw_buffer_t for use with a source firmware image
held entirely in a buffer.

PARAMETERS

[in,out] parsed Pointer to an xbee_node_id_t structure to store parsed
response into

[in] source Pointer to an xbee_node_id_t structure

[in] ni Pointer to an xbee_node_id_t structure

[out] fw Structure to configure for reading firmware from a buf-
fer

[in] length Number of bytes in firmware image
An Introduction to ZigBee digi.com 55

http://www.digi.com

RETURN VALUE

0 Success

-EINVAL Invalid parameter.

xbee_fw_install_ebl_tick

int xbee_fw_install_ebl_tick (xbee_fw_source_t * source)

DESCRIPTION

Drive the firmware update process for boards that use .EBL files to store their firmware.

PARAMETERS

RETURN VALUE

0 Update is in progress.

1 Update completed successfully.

-EINVAL source is invalid.

-EIO General failure.

-ETIMEDOUT Connection timed out waiting for data from target.

SEE ALSO

xbee_fw_install_init

xbee_fw_install_init

int xbee_fw_install_init (xbee_dev_t * xbee, const wpan_address_t
FAR * target, xbee_fw_source_t * source)

DESCRIPTION

Prepare to install new firmware on an attached XBee module.

The host must be able to control the reset pin of the XBee module.

[in] address Address of buffer containing firmware

[in,out] source Object used to track state of transfer
56 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Success.

-EINVAL NULL parameter passed to function.

-EIO XBee device passed to function doesn't have a callback for controlling the reset

[in] xbee XBee device to install firmware on. Must have been set
up with xbee_dev_init().

[in] target The current version of this library can only update the
local XBee module, so this

parameter should always be NULL. When over-the-air
(OTA) updating is

supported, this paramter will be the address of a remote
module to update.

[in] source Structure with function pointers for seeking and reading
from the new firmware image.

// Function prototypes for functions
that will provide firmware

// bytes when called by
xbee_fw_install_tick().

int my_firmware_seek(uint32_t off-
set);

int my_firmware_read(void FAR *buf-
fer, int16_t bytes);

xbee_fw_source_t fw;

xbee_dev_t xbee;

fw.seek = &my_firmware_seek;

fw.read = &my_firmware_read;

xbee_dev_init(&xbee, ...);

xbee_fw_install_init(&xbee, &fw);
An Introduction to ZigBee digi.com 57

http://www.digi.com

 pin on the XBee module.

xbee_fw_install_oem_tick

int xbee_fw_install_oem_tick (xbee_fw_source_t * source)

DESCRIPTION

Install the firmware image stored in source.

You must call xbee_fw_install_init() on the source before calling this tick function.

If successful, XBee will be running the new firmware at 115,200 baud.

PARAMETERS

RETURN VALUE

1 Successfully installed new firmware.

0 Firmware installation in progress (incomplete).

-EILSEQ Firmware does not contain a valid firmware image.

-EBADMSG Firmware checksum failed, image is bad.

-EIO Couldn't establish communications with XBee module.

-EFTYPE Firmware is not compatible with this hardware.

xbee_fw_status_ebl

char FAR * xbee_fw_status_ebl(xbee_fw_source_t * source, char FAR *
buffer)

DESCRIPTION

Update buffer with the current install status of source.

PARAMETERS

[in] source Firmware source initialized with seek and read func-
tions.

[in] source State variable to generate status string for.
58 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Returns pointer to the buffer given as parameter 2 or a fixed status string.

xbee_fw_status_oem

char FAR * xbee_fw_status_oem(xbee_fw_source_t * source, char FAR *
buffer)

DESCRIPTION

Update buffer with the current install status of source.

PARAMETERS

RETURN VALUE

0 Returns pointer to the buffer given as parameter 2 or a fixed status string.

 5.5 Wireless Personal Area Network Layer (WPAN)

This section contains information about the Wireless Personal Area Network Layer for ZigBee-capable devices.
This layer adds the concepts of endpoints and clusters.

5.5.1 General Overview

The Wireless Personal Area Network Layer handles endpoint processing through an endpoint table and an end-
point dispatcher. In simplistic terms, it could be looked at as a mail delivery system. It introduces the envelope
structure which contains the network addresses of the sender and receiver. The local node address will always be
the receiver address on received envelopes and the sender address on outgoing envelopes.

The endpoint table is a complex data structure that describes all endpoints, clusters, ZCL attributes and manu-
facturer-specific command handlers for a given device. Note that this structure includes storage for ZigBee driver
layer information such as attributes and manufacturer-specific command handlers. Although included in this
structure, the ZigBee driver layer processes this information. The WPAN layer passes endpoint and cluster
frames off to the specified handlers, which are typically in the ZigBee driver layer. The structure of the table is
as follows (note that not all members of each object are listed):

• Each DEVICE (wpan_dev_t) corresponds to a local, serially-connected XBee module. This
DEVICE has multiple ENDPOINTs.

• Each ENDPOINT (wpan_endpoint_table_entry_t) has:

[out] buffer Buffer (at least 80 bytes) to receive dynamic status
string.

[in] source State variable to generate status string for.

[out] buffer Buffer (at least 80 bytes) to receive dynamic status
string.
An Introduction to ZigBee digi.com 59

http://www.digi.com

• An ENDPOINT ID (0 to 254), PROFILE ID, DEVICE ID and DEVICE VERSION.

• Multiple CLUSTERs.

• A HANDLER to process frames for CLUSTERs without their own HANDLER, or
CLUSTERs that aren't in the table.

• Each CLUSTER (wpan_cluster_table_entry_t) has:

• FLAGs indicating whether it is an input or output cluster (or both), and whether
packets sent to/from the cluster require APS-layer encryption.

• A HANDLER to process frames for that cluster.

• A CONTEXT pointer that is passed to the HANDLER. For a ZCL endpoint the
CONTEXT points to an ATTRIBUTE TREE.

• On ZCL endpoints, each entry in the ATTRIBUTE TREE (zcl_attribute_tree_t) has:

• A manufacturer ID with ZCL_MFG_NONE (0) representing the general attributes
for the cluster.

• Pointers to a list of SERVER and CLIENT cluster ATTRIBUTEs.

• Each ATTRIBUTE is either a BASE ATTRIBUTE (zcl_attribute_base_t) with:

• A 16-bit ID.

• FLAGS indicating whether the attribute is read-only, is a full attribute (see below),
has a minimum or maximum limit and is reportable.

• A ZCL TYPE.

• A pointer to the ATTRIBUTE's VALUE.

• ... or a FULL ATTRIBUTE (zcl_attribute_full_t) which has

• A BASE ATTRIBUTE structure (so both BASE and FULL attributes start with the
same structure elements).

• Optional MINIMUM and MAXIMUM (zcl_attribute_minmax_t) values.

• A READ function (zcl_attribute_update_fn) to refresh the ATTRIBUTE's VALUE.

• A WRITE function (zcl_attribute_write_fn) to process a ZCL Write Attributes
request if the attribute requires additional processing over what the standard func-
tion, zcl_decode_attribute, does.

Endpoint Dispatching:

The endpoint dispatcher searches the endpoint table to find a handler for a given frame, based on its destination
endpoint and cluster ID.

5.5.2 API Functions and Macros

This section contains API descriptions for the WPAN Layer functions and macros separated into layer compo-
nents.

5.5.2.1 Cluster/Endpoint API Functions and Macros

This section contains API descriptions for the firmware update component of the XBee Driver Layer. To use
these functions the program must have #include “wpan/aps.h” within the code.
60 digi.com Rabbit and ZigBee

http://www.digi.com

wpan_cluster_match

const wpan_cluster_table_entry_t *wpan_cluster_match (uint16_t
match, uint8_t mask, const wpan_cluster_table_entry_t * entry)

DESCRIPTION

Search a cluster table for a matching cluster ID.

PARAMETERS

RETURN VALUE

NULL entry is invalid or search reached WPAN_CLUSTER_END_OF_LIST with
 out finding a match.

!NULL Pointer to matching entry from table.

SEE ALSO

wpan_endpoint_get_next(), wpan_endpoint_match()

wpan_conversation_delete

void wpan_conversation_delete (wpan_conversation_t FAR *
conversation)

DESCRIPTION

Delete a conversation from an endpoint's conversation table.

PARAMETERS

[in] match ID to match

[in] mask Flags to match against the flags member of the
wpan_cluster_table_entry_t structure. If any flags
match, the entry is returned. Typically one of:

• WPAN_CLUST_FLAG_INPUT (or
WPAN_CLUST_FLAG_SERVER)
• WPAN_CLUST_FLAG_OUTPUT (or
WPAN_CLUST_FLAG_CLIENT)

 [in] entry Pointer to list of entries to search

[in,out] conversation Conversation to delete
An Introduction to ZigBee digi.com 61

http://www.digi.com

wpan_endpoint_get_next

const wpan_endpoint_table_entry_t *wpan_endpoint_get_next (
wpan_dev_t * dev, const wpan_endpoint_table_entry_t * ep)

DESCRIPTION

Function used to walk a device's endpoint table. For most devices, this will just walk the entries
in dev->endpoint_table. For custom applications a function may dynamically return en-
tries.

Use of this function is the only way to walk the endpoint table.

PARAMETERS

RETURN VALUE

NULL dev is invalid or reached end of table.

!NULL Next entry from table.

SEE ALSO

wpan_endpoint_match(), wpan_cluster_match()

wpan_conversation_register

int wpan_conversation_register (wpan_ep_state_t FAR * state,
wpan_response_fn handler, const void FAR * context, uint16_t
timeout)

DESCRIPTION

Add a conversation to the table of tracked conversations.

PARAMETERS

[in] dev device with endpoint table to walk

[in] ep NULL to return first entry in table, or a pointer previous-
ly returned by this function to get the next entry

[in,out] state Endpoint state associated with sending endpoint

 [in] handler Handler to call when responses come back, or NULL to
increment and return the endpoint's transaction ID
62 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0-255 Transaction ID to use in sent frame

-EINVAL State is invalid (NULL)

-ENOSPC Table is full

SEE ALSO

wpan_endpoint_next_trans

wpan_conversation_timeout

void wpan_conversation_timeout (wpan_ep_state_t FAR * state)

DESCRIPTION

Walk an endpoint's conversation table and expire any conversations that have timed out.

PARAMETERS

wpan_endpoint_dispatch

int wpan_endpoint_dispatch (wpan_envelope_t FAR * envelope)

DESCRIPTION

Find the matching endpoint for the provided envelope and have it process the frame. In the case
of the broadcast endpoint (255), dispatches the frame to all endpoints matching the envelope's pro-
file ID.

Looks up the destination endpoint and cluster ID in the device's endpoint table and passes enve-
lope off to the cluster handler (if a matching cluster was found) or the endpoint handler.

[in] context Pointer stored in conversation table and passed to call-
back handler

 [in] timeout Number of seconds before generating timeout, or 0 for
none

[in] state Endpoint state (from endpoint table)
An Introduction to ZigBee digi.com 63

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Successfully dispatched message.

-ENOENT No handler for this endpoint/cluster.

!0 Error dispatching messages.

wpan_endpoint_match

const wpan_endpoint_table_entry_t wpan_endpoint_match (
wpan_dev_t * dev, uint8_t endpoint, uint16_t profile_id)

DESCRIPTION

Walk a device's endpoint table looking for a matching endpoint ID and profile ID.

Used by the endpoint dispatcher and ZDO layer to describe available endpoints on this device.

PARAMETERS

RETURN VALUE

NULL dev is invalid or reached end of table without finding a match.

!NULL Next entry from table.

SEE ALSO

wpan_endpoint_of_cluster(), wpan_endpoint_get_next(), wpan_cluster_match(),
wpan_endpoint_of_envelope()

wpan_endpoint_next_trans

[in] envelope Structure containing all necessary information about
message (endpoints, cluster, profile, etc.)

[in] dev Device with endpoint table to search.

[in] endpoint Endpoint number to search for.

[in] profile_id Profile to match or WPAN_APS_PROFILE_ANY to
search on endpoint number only.
64 digi.com Rabbit and ZigBee

http://www.digi.com

uint8_t wpan_endpoint_next_trans (const wpan_endpoint_table_entry_t
FAR * ep)

DESCRIPTION

Increment and return the endpoint's transaction ID counter.

PARAMETERS

RETURN VALUE

0-255 Current transaction ID for endpoint.

wpan_endpoint_of_cluster

const wpan_endpoint_table_entry_t *wpan_endpoint_of_cluster (
wpan_dev_t * dev, uint16_t profile_id,uint16_t cluster_id, uint8_t
mask)

DESCRIPTION

Walk a device's endpoint table looking for a matching profile ID and cluster ID.

Used to find the correct endpoint to use for sending ZCL client requests.

PARAMETERS

RETURN VALUE

NULL dev is invalid or reached end of table without finding a match.

[in] ep Entry from endpoint table

[in] dev Device with endpoint table to search.

[in] profile_id Profile to match or
WPAN_APS_PROFILE_ANY to search on
cluster ID only.

[in] cluster_id Cluster ID to search for

[in] mask Flags to match against the flags member of the
wpan_cluster_table_entry_t

structure. If any flags match, the entry is re-
turned. Typically one of

• WPAN_CLUST_FLAG_INPUT (or
WPAN_CLUST_FLAG_SERVER)
• WPAN_CLUST_FLAG_OUTPUT
(or WPAN_CLUST_FLAG_CLIENT)
An Introduction to ZigBee digi.com 65

http://www.digi.com

!NULL Matching entry from table.

SEE ALSO

wpan_endpoint_match(), wpan_endpoint_get_next(), wpan_cluster_match()

wpan_endpoint_of_envelope

const wpan_endpoint_table_entry_t *wpan_endpoint_of_envelope (
const wpan_envelope_t * env)

DESCRIPTION

Look up the endpoint table entry for the source endpoint of an envelope.

PARAMETERS

RETURN VALUE

NULL Reached end of table without finding a match.

!NULL Entry from table.

SEE ALSO

wpan_endpoint_of_cluster(), wpan_endpoint_get_next(), wpan_cluster_match(),

 wpan_endpoint_match()

wpan_envelope_create

void wpan_envelope_create (wpan_envelope_t * envelope,
wpan_dev_t * dev, const addr64 * ieee, uint16_t network_addr)

DESCRIPTION

Starting with a blank envelope, fill in the device, 64-bit IEEE address and 16-bit network address
of the destination.

PARAMETERS

[in] env Envelope for lookup. Uses env->source_endpoint and
env->profile_id to find the endpoint table entry for env-
>dev.

[out] envelope Envelope to populate
66 digi.com Rabbit and ZigBee

http://www.digi.com

SEE ALSO

wpan_envelope_reply()

wpan_envelope_dump

void wpan_envelope_dump (const wpan_envelope_t FAR * envelope)

DESCRIPTION

Debugging function to dump the contents of an envelope to stdout. Displays all fields from the
envelope, plus the contents of the payload.

PARAMETERS

[in] dev Device that will send this envelope

[in] ieee 64-bit IEEE/MAC address of recipient or one of:

• WPAN_IEEE_ADDR_COORDINATOR
(send to coordinator)
• WPAN_IEEE_ADDR_BROADCAST
(broadcast packet)
• WPAN_IEEE_ADDR_UNDEFINED (use
network address only)

 [in] network_addr 16-bit network address of recipient or one of:

• WPAN_NET_ADDR_COORDINATOR for
the coordinator (use the coordinator's actual
IEEE address for the ieee parameter).
• WPAN_NET_ADDR_BCAST_ALL_NOD
ES
(broadcast to all nodes)
• WPAN_NET_ADDR_BCAST_NOT_ASL
EEP
(broadcast to awake nodes)
• WPAN_NET_ADDR_BCAST_ROUTERS
(broadcast to routers/coordinator)
• WPAN_NET_ADDR_UNDEFINED (use
64-bit address only)

When sending broadcast packets, use
WPAN_IEEE_ADDR_BROADCAST and
WPAN_NET_ADDR_UNDEFINED. Don't set both
addresses to broadcast.

[in] envelope Envelope to dump
An Introduction to ZigBee digi.com 67

http://www.digi.com

wpan_envelope_reply

int wpan_envelope_reply (wpan_conversation_t FAR * conversation)

DESCRIPTION

Create a reply envelope based on the envelope received from a remote node.

Copies the interface, addresses, profile and cluster from the original envelope, and then swaps the
source and destination endpoints.

Note: It may be necessary for the caller to change the cluster_id as well, after building the reply
envelope. For example, ZDO responses set the high bit of the request's cluster ID.

PARAMETERS

RETURN VALUE

0 Addressed reply envelope.

-EINVAL Either parameter is NULL or they point to the same address.

SEE ALSO

wpan_envelope_create()

wpan_envelope_send

int wpan_envelope_send (const wpan_envelope_t FAR * envelope)

DESCRIPTION

Send a message to an endpoint using address and payload information stored in a
wpan_envelope_t structure.

PARAMETERS

RETURN VALUE

0 Request sent

!0 Error trying to send request

[out] reply Buffer for storing the reply envelope.

[in] original Original envelope, received from a remote node, to base
the reply on.

[in] envelope Envelope of request to send
68 digi.com Rabbit and ZigBee

http://www.digi.com

wpan_tick

int wpan_tick (wpan_dev_t * dev)

DESCRIPTION

Calls the underlying hardware to process received frames and times out expired conversations.
See section 5.1.4 for a discussion of how frequently this function needs to be called for a given
configuration.

PARAMETERS

RETURN VALUE

>=0 Number of frames processed during the tick.

-EINVAL Device does not have a tick function assigned to it.

<0 Some other error encountered during the tick.

xbee_wpan_init

int xbee_wpan_init (xbee_dev_t * xbee, const
wpan_endpoint_table_entry_t * ep_table)

DESCRIPTION

Configure XBee device for APS-layer (endpoint/cluster) networking. If using this layer, be sure
to call wpan_tick (instead of xbee_dev_tick) so it can manage the APS layers of the network
stack.

PARAMETERS

RETURN VALUE

0 Success

!0 Error

5.5.2.2 Datatypes and Support API Functions and Macros

This section contains API descriptions for the firmware update component of the XBee Driver Layer. To use
these functions the program must have #include “wpan/types.h” within the code.

[in] dev WPAN device to tick

[in] xbee Pointer to an XBee device structure

[in] index Pointer to a WPAN endpoint table to use with this device
An Introduction to ZigBee digi.com 69

http://www.digi.com

addr64_equal

bool_t addr64_equal (const addr64 FAR * addr1, const addr64 FAR *
addr2)

DESCRIPTION

Compare two 64-bit addresses for equality.

PARAMETERS

RETURN VALUE

TRUE addr1 and addr2 are not NULL and point to identical addresses.

FALSE NULL parameter passed in, or addresses differ.

addr64_format

char FAR * addr64_format (char FAR * buffer, const addr64 FAR *
address)

DESCRIPTION

Format a 64-bit address as a null-terminated, printable string (e.g., "00-13-A2-01-23-45-67").

To change the default separator ('-'), define ADDR64_FORMAT_SEPARATOR to any character.
For example:

#define ADDR64_FORMAT_SEPARATOR ':'

PARAMETERS

RETURN VALUE

address As a printable string (stored in buffer).

[in] addr1 Address to compare

[in] addr2 Address to compare

[out] buffer Pointer to a buffer of at least
ADDR64_STRING_LENGTH

(8 2-character bytes + 7 separators + 1 null = 24) bytes.

[in] address 64-bit address to format.
70 digi.com Rabbit and ZigBee

http://www.digi.com

addr64_is_zero

bool_t addr64_is_zero (const addr64 FAR * addr)

DESCRIPTION

Test a 64-bit address for zero.

PARAMETERS

RETURN VALUE

TRUE addr is NULL or points to an all-zero address

FALSE addr points to a non-zero address

SEE ALSO

WPAN_IEEE_ADDR_ALL_ZEROS

addr64_parse

int addr64_parse (addr64 * address_be, const char FAR * str)

DESCRIPTION

Parse a text string into a 64-bit IEEE address.

Converts a text string with eight 2-character hex values, with an optional separator between any
two values. For example, the following formats are all valid:

• 01-23-45-67-89-ab-cd-ef
• 01234567-89ABCDEF
• 01:23:45:67:89:aB:Cd:EF
• 0123 4567 89AB cdef

PARAMETERS

RETURN VALUE

0 String converted

-EINVAL Invalid parameters passed to function; if address_be is not NULL,

 [in] addr Address to test

[out] address_be Converted address (stored big-endian)

[in] str String to convert, starting with first hex character
An Introduction to ZigBee digi.com 71

http://www.digi.com

 it will be set to all zeros.

5.6 ZigBee Driver Layer

This section contains information about the ZigBee Driver Layer for ZigBee-capable devices.

5.6.1 General Overview

The ZigBee Driver Layer is comprised of two components, the ZigBee Device Object / Profile component and
the ZigBee Cluster Library component. This layer adds cluster attributes and handles complete endpoint and
cluster discovery. This includes discovering endpoints, clusters and attributes of remote devices, as well as re-
porting this data on for local endpoints and clusters on incoming discovery requests. It also has commands to
allow reading and writing of attribute values.

5.6.2 ZigBee Device Object/ Profile Component (ZDO / ZDP)

This section describes the functionality and usage of the ZigBee Device Object / Profile Library and contains
descriptions for library functions and macros.

5.6.2.1 General Overview

The ZDO endpoint handler (registered to endpoint 0) walks the endpoint table to respond to requests. It needs
to know about all endpoints and their input clusters and output clusters. It walks the endpoint table, but stops at
the context elements. Therefore, all information required by the ZDO layer must exist outside of the context el-
ements of the endpoint table.

5.6.2.2 ZigBee Device Object / Profile API Functions and Macros

This section contains API descriptions for the ZigBee Device Object / Profile Layer functions and macros. To
use these functions the program must have #include “zigbee/zdo.h” within the code.

zdo_ endpoint_state

wpan_ep_state_t FAR * zdo_endpoint_state (wpan_dev_t * dev)

DESCRIPTION

Returns the ZDO endpoint's state if a device has a ZDO endpoint.

PARAMETERS

RETURN VALUE

NULL dev does not have a ZDO endpoint.

!NULL Address of wpan_ep_state_t variable used for state tracking.

 [in] dev Device to query
72 digi.com Rabbit and ZigBee

http://www.digi.com

zdo_handler

int zdo_handler (const wpan_envelope_t FAR * envelope,
wpan_ep_state_t FAR * ep_state)

DESCRIPTION

Process ZDO frames (received on endpoint 0 with Profile ID 0).

PARAMETERS

RETURN VALUE

0 Successfully processed.

!0 Error trying to process frame.

zdo_match_desc_request

int zdo_match_desc_request (void * buffer, int16_t buflen,
uint16_t addr_of_interest, uint16_t profile_id, const uint16_t *
inClust, const uint16_t * outClust)

DESCRIPTION

Generate a Match_Desc (Match Descriptor) request (ZigBee spec 2.4.3.1.7) to send on the

 network.

PARAMETERS

 [in] envelope Envelope of received ZDO frame, contains address,
endpoint, profile, and cluster info.

[in] ep_state Pointer to endpoint's state structure (used for tracking
transactions)

[out] buffer Buffer to hold generated request.

[in] buflen Size of buffer used to hold generated request.

[in] addr_of_interest See ZDO documentation for NWKAddrOfInter-
est.

[in] profile_id Profile ID to match, must be an actual profile ID

(cannot be WPAN_APS_PROFILE_ANY).
An Introduction to ZigBee digi.com 73

http://www.digi.com

RETURN VALUE

-ENOSPC Buffer isn't large enough to hold request; need 7 bytes plus (2 * the number of
 clusters).

>0 Number of bytes written to buffer.

zdo_mgmt_leave_req

int zdo_mgmt_leave_req (wpan_dev_t * dev, const addr16 * address,
uint16_t flags)

DESCRIPTION

Send a ZDO Management Leave Request.

PARAMETERS

RETURN VALUE

0 Successfully sent request.

-EINVAL Bad parameter passed to function.

!0 Error sending request.

[in] inClust List of input clusters, ending with
WPAN_CLUSTER_END_OF_LIST.

Can use NULL if there aren't any input clusters.

[in] outClust List of output clusters, ending with
WPAN_CLUSTER_END_OF_LIST.

Can use NULL if there aren't any output clusters.

[in] dev Device to send request on

[in] address Address to send request to, or NULL for self-addressed

[in] flags One or more of the following flags:

• ZDO_MGMT_LEAVE_REQ_FLAG_NONE
• ZDO_MGMT_LEAVE_REQ_FLAG_REMOV
E_CHILDREN
- sets the Remove Children flag in the ZDO re-
quest
• ZDO_MGMT_LEAVE_REQ_FLAG_REJOIN
- sets the Rejoin flag in the ZDO request
• ZDO_MGMT_LEAVE_REQ_ENCRYPTED
- sends the request with APS encryption
74 digi.com Rabbit and ZigBee

http://www.digi.com

zdo_send_bind_req

int zdo_send_bind_req (wpan_envelope_t * envelope, uint16_t type,
uint16_t flags)

DESCRIPTION

Send a ZDO Bind (or Unbind) Request to the destination address in the envelope.

Binds .dest_endpoint on .ieee_address to .source_endpoint on .dev using
.cluster_id.

Ignores the .options, .payload, and .length members of the envelope.

PARAMETERS

RETURN VALUE

0 Successfully sent request.

-EINVAL Bad parameter passed to function.

!0 Error sending request.

zdo_send_descriptor_req

int zdo_send_descriptor_req (wpan_envelope_t * envelope,
uint16_t cluster, uint16_t addr_of_interest,wpan_response_fn
callback, const void FAR * context)

DESCRIPTION

Send a ZDO Node, Power, Complex or User Descriptor request, or an Active Endpoint request.

[in] envelope Addressing information used for the Bind Request.

[in] type ZDO_BIND_REQ for a Bind Request or
ZDO_UNBIND_REQ for an Unbind Request; all other
values are invalid.

[in] callback Callback to receive Bind/Unbind (or Default) Response;
NULL if you don't care about the response

[in] context Context passed to callback
An Introduction to ZigBee digi.com 75

http://www.digi.com

PARAMETERS

RETURN VALUE

!0 Error sending request.

0 Request sent.

zdo_send_nwk_addr_req

int zdo_send_nwk_addr_req (wpan_dev_t * dev, const addr64 * ieee,
uint16_t FAR * net)

DESCRIPTION

Given a device's IEEE (64-bit) address, get its 16-bit network address by unicasting a ZDO
NWK_addr request to it.

After calling this function, *net is set to WPAN_NET_ADDR_UNDEFINED. When a response
comes back, *net is set to the 16-bit network address in the response. If a timeout occurs waiting
for a response, *net is set to WPAN_NET_ADDR_BCAST_ALL_NODES. (So the caller needs
to wait until (*net != WPAN_NET_ADDR_UNDEFINED)).

PARAMETERS

[in,out] envelope Envelope created by wpan_envelope_create; this
function will fill in the cluster and reset the pay-
load and length.

[in] cluster Any ZDO request with a transaction and 16-bit
network address as its only fields, including:

• ZDO_NODE_DESC_REQ
• ZDO_POWER_DESC_REQ
• ZDO_ACTIVE_EP_REQ
• ZDO_COMPLEX_DESC_REQ
• ZDO_USER_DESC_REQ

[in] addr_of_interest Address to use in ZDO request

[in] callback Function to receive response

[in] context Context to pass to callback with response

[in] dev wpan_dev_t to send request

[in] ieee IEEE address of device we're seeking a network address
for
76 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

-EINVAL Invalid parameter passed to function.

-ENOSPC Conversation table is full, wait and try sending later.

0 Request sent.

!0 Error trying to send request.

zdo_send_response

int zdo_send_response (const wpan_envelope_t * request, const
void FAR * response, uint16_t length)

DESCRIPTION

Send a response to a ZDO request.

Automatically builds the response envelope and sets its cluster ID (to the request's cluster ID with
the high bit set) before sending.

PARAMETERS

RETURN VALUE

0 Sent response.

!0 Error sending response.

5.6.3 ZigBee Cluster Library

This section describes the functionality and usage of the ZigBee Cluster Library and contains descriptions for
library functions and macros.

5.6.3.1 General Overview

The ZigBee Cluster Library can support a cluster with manufacturer-specific attributes and commands for more
than one manufacturer ID. The handler registered to that cluster would check the frame type and manufacturer-
specific bits and hand any GENERAL/PROFILE or MANUFACTURER-SPECIFIC commands off to the ZCL
General Command Handler (zcl_general_command).

[out] net Location to store the 16-bit network address when the
NWD_addr response comes back.

[in] request Envelope of original request

[in] response Frame to send in response

[in] length Length of response
An Introduction to ZigBee digi.com 77

http://www.digi.com

The ZCL General Command Handler will see frames from the endpoint dispatcher for:

• Clusters that aren’t in the cluster table for the endpoint (invalid clusters).

• Clusters that don’t have their own handler (no cluster commands).

It also receives frames from clusters with handlers for cluster-specific commands that are passing on a general
or manufacturer-specific command frame.

The ZCL General Command Handler finds the correct attribute list form the attribute tree (general vs. manufac-
turer-specific, server vs. client cluster), and then:

• If the frame is marked CLUSTER & MANUFACTURER-SPECIFIC, it passes the frame on to
the handler for that MFG ID (stored in the attribute tree).

• If it is marked CLUSTER-SPECIFIC but GENERAL, it generates an error.

• If it is marked PROFILE-SPECIFIC and GENERAL, it processes the frame as a general com-
mand, using the attribute list it retrieved from the tree.

Summary of ZCL Handlers:

• ZCL General Command Handler registered to the endpoints to process frames for invalid clus-
ters or clusters without cluster-specific commands (ie., clusters with a NULL command han-
dler).

• Cluster-specific, general command handler registered to each cluster.

• Cluster-specific, manufacturer-specific command handler(s) listed in the attribute tree (stored in
the cluster structure’s context member) under the appropriate manufacturer ID.

5.6.3.2 ZigBee Cluster Library API Functions and Macros

This section contains API descriptions for the primary ZigBee Cluster Library functions and macros.

To use these functions the program must have #include “zigbee/zcl.h” within the code.

zcl_build_header

int zcl_build_header (zcl_header_response_t * rsp, zcl_command_t *
cmd)

DESCRIPTION

Support function to fill in a ZCL response header.

Set the frame_control, sequence and optional mfg_code fields of the ZCL response
header, and return the offset to the actual start of the header (non-mfg specific skips the first two
bytes).

PARAMETERS

[out] rsp Buffer to store header of response.

[in] cmd Command we're responding to.
78 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Responding to manufacturer-specific command.

2 Responding to non-manufacturer-specific command.

-EINVAL Invalid parameter passed to function.

zcl_check_minmax

int zcl_check_minmax (const zcl_attribute_base_t * entry, const
uint8_t FAR * buffer_le)

DESCRIPTION

Checks whether a new value from a Write Attributes command is within the limits specified for a
given attribute.

PARAMETERS

RETURN VALUE

0 New value is within range (or attribute doesn't have a min/max).

!0 Value is out of range.

-EINVAL Invalid parameter passed to function.

ZCL_CMD_IS_CLUSTER

bool ZCL_CMD_IS_CLUSTER (const void FAR * p)

DESCRIPTION

Macro for checking the frame control field of a ZCL command. Used to identify cluster com-
mands that are not manufacturer specific.

VALUE

(ZCL_FRAME_TYPE_CLUSTER == \

 ((const uint8_t FAR *)(p) & (ZCL_FRAME_TYPE_MASK |
ZCL_FRAME_MFG_SPECIFIC)))

[in] entry Entry to use for min/max check.

[in] buffer_le Buffer with new value (in little-endian byte order), from
write attributes command.
An Introduction to ZigBee digi.com 79

http://www.digi.com

PARAMETERS

RETURN VALUE

TRUE ZCL command is cluster specific but not manufacturer specific.

FALSE ZCL command doesn't have the manufacturer-specific bit set, or is a profile-wide
 command.

ZCL_CMD_IS_MFG_CLUSTER

bool ZCL_CMD_IS_MFG_CLUSTER (const void FAR * p)

DESCRIPTION

Macro for checking the frame control field of a ZCL command. Used to identify cluster com-
mands that are manufacturer specific.

VALUE

((ZCL_FRAME_TYPE_CLUSTER | ZCL_FRAME_MFG_SPECIFIC) == \

((const uint8_t FAR *)(p) & (ZCL_FRAME_TYPE_MASK |
ZCL_FRAME_MFG_SPECIFIC)))

PARAMETERS

RETURN VALUE

TRUE ZCL command is both manufacturer and cluster specific.

FALSE ZCL command doesn't have the manufacturer-specific bit set, or is a profile-wide
 Command.

ZCL_CMD_IS_PROFILE

bool ZCL_CMD_IS_PROFILE (const void FAR * p)

[in] p Pointer to the frame control field of a ZCL command
structure:

(zcl_command_t.frame_control)

[in] p Pointer to the frame control field of a ZCL command
structure:

(zcl_command_t.frame_control)
80 digi.com Rabbit and ZigBee

http://www.digi.com

DESCRIPTION

Macro for checking the frame control field of a ZCL command. Used to identify commands that
act across the entire profile. Ignores the manufacturer-specific bit (which specifies use of manu-
facturer-specific attributes).

VALUE

(ZCL_FRAME_TYPE_PROFILE == \

((const uint8_t FAR *)(p) & ZCL_FRAME_TYPE_MASK))

PARAMETERS

RETURN VALUE

TRUE ZCL command is not cluster-specific (profile command).

FALSE ZCL command is cluster-specific.

ZCL_CMD_MATCH

bool ZCL_CMD_MATCH (const void FAR * p)

DESCRIPTION

Macro for checking the frame control field of a ZCL command. Used to filter out commands that
are (or are not) handled by the current function.

VALUE

((*(const uint8_t FAR *)(p) & (ZCL_FRAME_MFG_SPECIFIC | \
ZCL_FRAME_DIRECTION | ZCL_FRAME_TYPE_MASK)) == \

(ZCL_FRAME_ ## mfg | ZCL_FRAME_ ## dir | ZCL_FRAME_TYPE_ ##
type))

PARAMETERS

[in] p Pointer to the frame control field of a ZCL command
structure:

(zcl_command_t.frame_control)

[in] p Pointer to the frame control field of a ZCL command
structure:

(zcl_command_t.frame_control)

[in] mfg Non-delimited string values of either GENERAL or
MFG_SPECIFIC to filter the manufacturer specific bit
being either clear or set.
An Introduction to ZigBee digi.com 81

http://www.digi.com

RETURN VALUE

TRUE ZCL command matches all three filters.

FALSE ZCL command does not match.

zcl_command_build

int zcl_command_build (zcl_command_t * cmd, const wpan_envelope_t
FAR * envelope, zcl_attribute_tree_t FAR * tree)

DESCRIPTION

Parse a ZCL request and store in a zcl_command_t structure with fields in fixed locations
(therefore easier to use than the variable-length frame header).

Also uses the direction bit and manufacturer ID to search the attribute tree for the correct list of
attributes.

PARAMETERS

RETURN VALUE

0 Parsed payload from envelope into cmd.

-EINVAL Invalid parameter passed to function.

-EBADMSG Frame is too small for ZCL header's frame_control value.

zcl_command_dump

[in] dir Non-delimited string values of either
CLIENT_TO_SERVER or

SERVER_TO_CLIENT to filter on the desired direction

[in] type Non-delimited string values of either PROFILE or
CLUSTER to filter for the desired frame type, profile
wide or cluster specific.

[out] cmd Buffer to store parsed ZCL command

[in] envelope Envelope from received message

[in] tree Pointer to attribute tree for cluster (typically passed in
via endpoint dispatcher)
82 digi.com Rabbit and ZigBee

http://www.digi.com

int zcl_command_dump (zcl_command_t * cmd)

DESCRIPTION

Debugging routine that dumps contents of a parsed ZCL command structure to STDOUT.

PARAMETERS

zcl_convert_24bit

uint32_t zcl_convert_24bit (const void FAR * value_le, bool_t
extend_sign)

DESCRIPTION

Convert a 24-bit (3-byte) little-endian value to a 32-bit value in host byte order.

PARAMETERS

RETURN VALUE

A 32-bit, host-byte-order version of the 24-bit, little-endian value passed in.

zcl_decode_attribute

int zcl_decode_attribute (const zcl_attribute_base_t FAR * entry,
zcl_attribute_write_rec_t * rec)

DESCRIPTION

Decode attribute value from a Write Attribute Request or Read Attribute Response record and op-
tionally write to entry.

PARAMETERS

[in] cmd zcl_command_t structure populated by
zcl_command_build()

[in] value_le Pointer to 3 bytes to convert

[in] extend_sign If TRUE, set high byte of result to 0xFF if top bit of 24-bit
value is set

[in] entry Entry from attribute table

[in,out] rec State information for parsing write request
An Introduction to ZigBee digi.com 83

http://www.digi.com

RETURN VALUE

>=0 Number of bytes consumed from rec->buffer.

-EINVAL Invalid parameter passed to function.

zcl_default_response

int zcl_default_response (zcl_command_t * request, uint8_t status)

DESCRIPTION

Send a Default Response (ZCL_CMD_DEFAULT_RESP) to a given command.

PARAMETERS

RETURN VALUE

0 Successfully sent response, or response not required (message was broadcast,
 sent to the broadcast endpoint, or sender set the disable default response bit).

!0 Error on send.

-EINVAL Invalid parameter passed to function.

zcl_encode_attribute_value

int zcl_encode_attribute_value (uint8_t FAR * buffer,int16_t
bufsize, const zcl_attribute_base_t FAR * entry)

DESCRIPTION

Format a ZCL attribute for a Read Attributes Response.

Copies the value of attribute entry to buffer in little-endian byte order. Will not write more than
bufsize bytes. Used to build ZCL frames.

PARAMETERS

[in] cmd Command we're responding to

[in] status Status to use in the response (see ZCL_STATUS_* macros
under

"ZCL Status Enumerations" in zigbee/zcl.h)

[out] buffer Buffer to store encoded attribute
84 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

-ZCL_STATUS_SOFTWARE_FAILURE Invalid parameter passed in.

-ZCL_STATUS_DEFINED_OUT_OF_BAND Ghost attribute with NULL value.

-ZCL_STATUS_INSUFFICIENT_SPACE Buffer too small to encode value.

-ZCL_STATUS_FAILURE Unknown/unsupported attribute type.

-ZCL_STATUS_HARDWARE_FAILURE Failure updating attribute value.

-ZCL_STATUS_SOFTWARE_FAILURE Failure updating attribute value >=0 number
 of bytes written.

zcl_find_attribute

zcl_attribute_base_t FAR * zcl_find_attribute (const
zcl_attribute_base_t FAR * entry,uint16_t search_id)

DESCRIPTION

Search the attribute table starting at entry, for attribute ID search_id.

PARAMETERS

RETURN VALUE

NULL Attribute id search_id not in list.

!NULL Pointer to attribute record.

zcl_general_command

int zcl_general_command (const wpan_envelope_t FAR * envelope,
void FAR * context)

DESCRIPTION

Handler for ZCL General Commands.

[in] bufsize Number of bytes available in buffer

[in] entry Attribute to encode into buffer

[in] entry Starting entry for search

[in] search_id Attribute ID to look for
An Introduction to ZigBee digi.com 85

http://www.digi.com

Used as the handler for attribute-only clusters (e.g., Basic Cluster), or called from a cluster's han-
dler for commands it doesn't handle.

Will send a Default Response for commands it can't handle.

Currently does not support attribute reporting.

PARAMETERS

RETURN VALUE

0 Command was processed, including sending a possible response.

!0 Error sending response or processing command.

zcl_invalid_cluster

int zcl_invalid_cluster (const wpan_envelope_t FAR * envelope,
wpan_ep_state_t FAR * ep_state)

DESCRIPTION

Called if a request comes in for an invalid endpoint/cluster combination.

Sends a Default Response (ZCL_CMD_DEFAULT_RESP) of ZCL_STATUS_FAILURE unless
the received command was a Default Response or was broadcast.

PARAMETERS

RETURN VALUE

0 command was a default response (and therefore ignored), or a default response
 was successfully sent.
!0 error sending response.

zcl_invalid_command

[in] envelope Envelope from received message

[in] context Pointer to attribute tree for cluster (typically passed in
via endpoint dispatcher)

[in] envelope Envelope from received message

[in] ep_state Pointer to endpoint's wpan_ep_state_t
86 digi.com Rabbit and ZigBee

http://www.digi.com

int zcl_invalid_command (const wpan_envelope_t FAR * envelope)

DESCRIPTION

Called if a request comes in for an invalid command on a valid endpoint/cluster combination.

Sends a Default Response (ZCL_CMD_DEFAULT_RESP) unless the received command was a
Default Response or was broadcast. Depending on the command received, the response will be
one of:

• ZCL_STATUS_UNSUP_CLUSTER_COMMAND
• ZCL_STATUS_UNSUP_GENERAL_COMMAND
• ZCL_STATUS_UNSUP_MANUF_CLUSTER_COMMAND
• ZCL_STATUS_UNSUP_MANUF_GENERAL_COMMAND

PARAMETERS

RETURN VALUE

 0 Default response was successfully sent, or command did not require a default
 response.
!0 Error sending response.

zcl_parse_attribute_record

int zcl_parse_attribute_record (const zcl_attribute_base_t FAR *
entry, zcl_attribute_write_rec_t * write_rec)

DESCRIPTION

Parse an attribute record from a Write Attributes Request or a Read Attributes Response and pos-
sibly store the new attribute value.

If ZCL_ATTR_WRITE_FLAG_READ_RESP is set in write_rec->flags,

write_rec->buffer will be parsed as a Read Attributes Response record. Otherwise, it's
parsed as a Write Attributes Request record.

PARAMETERS

RETURN VALUE

>=0 Number of bytes consumed from buffer.

[in] envelope Envelope from received message

[in] entry Attribute table to search

[in,out] write_rec State information for parsing write request
An Introduction to ZigBee digi.com 87

http://www.digi.com

zcl_send_response

int zcl_send_response (zcl_command_t * request, const void FAR *
response,uint16_t length)

DESCRIPTION

Send a response to a ZCL command.

Uses information from the command received to populate fields in the response.

PARAMETERS

RETURN VALUE

0 Successfully sent response.

!0 Error on send.

zcl_status_text

const char * zcl_status_text (uint_fast8_t status)

DESCRIPTION

Converts a ZCL status byte (one of the ZCL_STATUS_* macros) into a string.

PARAMETERS

RETURN VALUE

pointer to an unmodifiable string with a description of the status

5.6.3.3 Basic Cluster API Functions and Macros

This section contains descriptions for the Basic Cluster library functions and macros. To use these functions the
program must have #include “zigbee/zcl_basic.h” within the code.

[in] request Command to respond to

[in] response Payload to send as response

[in] length Number of bytes in response

[in] status Status byte to convert
88 digi.com Rabbit and ZigBee

http://www.digi.com

zcl_basic_server

int zcl_basic_server (const wpan_envelope_t FAR * envelope, void FAR
* context)

DESCRIPTION

Handles commands for the Basic Server Cluster.

Currently supports the only command ID in the spec, 0x00 - Reset to Factory Defaults.

Note: You must define the macro ZCL_FACTORY_RESET_FN in your program, and have it
point to a function to be called when a factory reset command is sent.

PARAMETERS

RETURN VALUE

0 Command was processed, including sending a possible response

!0 Error sending response or processing command

5.6.3.4 Commissioning Cluster API Functions and Macros

This section contains API descriptions for the Commissioning Cluster library functions and macros. To use these
functions the program must have #include “zigbee/zcl_commissioning.h” within the code.

zcl_comm_reset_parameters

int zcl_comm_reset_parameters (wpan_envelope_t FAR * envelope,
const zcl_comm_reset_startup_param_t * parameters)

DESCRIPTION

Send a "Reset Startup Parameters" command to the ZCL Commissioning Cluster.

App needs to set dev, ieee_address, network_address, profile_id,
source_endpoint, dest_endpoint and (optionally) options in the envelope. This
function will set the cluster ID and erase the payload and length of the envelope

[in] envelope Envelope from received message

[in] context Pointer to attribute tree for cluster
An Introduction to ZigBee digi.com 89

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Request sent.

-EINVAL Couldn't find source endpoint in endpoint table, or some other error in parameter

 passed to function.

!0 Error trying to send request.

zcl_comm_restart_device

int zcl_comm_restart_device (wpan_envelope_t FAR * envelope,
const zcl_comm_restart_device_cmd_t * parameters)

DESCRIPTION

Send a "Restart Device" command to the ZCL Commissioning Cluster.

App needs to set dev, ieee_address, network_address, profile_id,
source_endpoint, dest_endpoint and (optionally) options in the envelope. This
function will set the cluster ID and erase the payload and length of the envelope

[in,out] envelope Partial envelope used to send the request. Caller must set
dev, ieee_address, network_address,
profile_id, source_endpoint,
dest_endpoint and (optionally) options. On re-
turn, payload and length are cleared, and
cluster_id is set to
ZCL_CLUST_COMMISSIONING.

If source_endpoint is 0, function will search the
endpoint table for a Commissioning Client Cluster and
set the envelope's source_endpoint and
profile_id.

[in] parameters Parameters for the Reset Startup Parameters command
or NULL for default settings (reset current parameters
only).
90 digi.com Rabbit and ZigBee

http://www.digi.com

PARAMETERS

RETURN VALUE

0 Request sent.

-EINVAL Couldn't find source endpoint in endpoint table, or some other error in parameter

 passed to function.

!0 Error trying to send request.

5.6.3.5 Identify Cluster API Functions and Macros

This section contains descriptions for the Identify Cluster library functions and macros. To use these functions
the program must have #include “zigbee/zcl_identify.h” within the code.

zcl_identify_command

int zcl_identify_command(const wpan_envelope_t FAR * envelope,
void FAR * context)

DESCRIPTION

Handler for ZCL Identify Server Commands (Identify, IdentifyQuery).

Used in the ZCL_CLUST_IDENTIFY cluster entry for an endpoint.

PARAMETERS

[in,out] envelope Partial envelope used to send the request. Caller must set
dev, ieee_address, network_address,
profile_id, source_endpoint,
dest_endpoint and (optionally) options. On re-
turn, payload and length are cleared, and
cluster_id is set to
ZCL_CLUST_COMMISSIONING.

If source_endpoint is 0, function will search the
endpoint table for a Commissioning Client Cluster and
set the envelope's source_endpoint and
profile_id.

[in] parameters Parameters for the Restart Device command or NULL
for default settings (save changes and restart without de-
lay/jitter).

[in] envelope Envelope from received message

[in] context Pointer to attribute list for cluster (typically passed in via
endpoint dispatcher)
An Introduction to ZigBee digi.com 91

http://www.digi.com

RETURN VALUE

0 Command was processed, including sending a possible Identify Query Response.

!0 Error sending response or processing command.

zcl_identify_isactive

uint16_t zcl_identify_isactive(void)

DESCRIPTION

Used by main program to see if a device is in "Identification mode".

RETURN VALUE

>0 Number of seconds of "Identification mode" left.

0 Device is not in "Identification mode”.

5.6.3.6 Time Cluster API Functions and Macros

This section contains API descriptions for the Cluster Time library functions and macros. To use these functions
the program must have #include “zigbee/zcl_time.h” within the code.

zcl_gmtime

struct tm * zcl_gmtime(struct tm * dest_tm, zcl_utctime_t timestamp)

DESCRIPTION

Converts a ZCL UTCTime value into a "broken-down time" (a struct tm) for directly access-
ing month, day, year, hour, minute and second, or for use with other functions from <time.h>.

PARAMETERS

See time.h for details on that structure.

RETURN VALUE

Returns pointer to the dest_tm parameter.

[in] timestamp Timestamp to convert. Number of seconds since
1/1/2000 UTC.

[out] dest_tm Destination struct tm structure to hold the broken-
down time.
92 digi.com Rabbit and ZigBee

http://www.digi.com

zcl_mktime

zcl_utctime_t zcl_mktime(struct tm * time_rec)

DESCRIPTION

Convert a struct tm (from the Standard C Library's time.h) to a zcl_utctime_t type
(number of seconds since Midnight January 1, 2000 UTC).

Does NOT properly handle DST and Timezones in the struct tm. Assumes the struct is in UTC.
Keep this in mind if passing a struct tm generated by the host's gmtime() to this function.

PARAMETERS

RETURN VALUE

0 Number of seconds since 01/01/2000 00:00:00 UTC or ZCL_UTCTIME_INVALID if
 time_rec is before 1/1/2000.

zcl_time_client

int zcl_time_client(const wpan_envelope_t FAR * envelope, void FAR
* context)

DESCRIPTION

Handle Read Attribute Responses to requests sent as part of the zcl_time_find_servers() process.

This function expects to receive "read attribute response" packets ONLY for reads of Time and
TimeStatus.

If responding device is a master or is synchronized with one, use it's Time value to update a "skew"
global used to track the offset between system time (which may just be "seconds of uptime") and
calendar time.

PARAMETERS

RETURN VALUE

[in] time_rec Broken-down (componentized) calendar representation
of time.

[in] envelope Envelope from received message

[in] context Pointer to attribute list for cluster (typically passed in via
endpoint dispatcher)
An Introduction to ZigBee digi.com 93

http://www.digi.com

0 Command was processed and default response (with either success or error
 status) was sent.
!0 Error sending default response; time may or may not have been set.

zcl_time_find_servers

int zcl_time_find_servers(wpan_dev_t * dev, uint16_t profile_id)

DESCRIPTION

Find Time Servers on the network, query them for the current time and then synchronize this de-
vice's clock to that time.

Note: This function uses a static buffer to hold context information for the ZDO responder that
generates the ZCL Read Attributes request. Wait at least 60 seconds between calls to allow for
earlier requests to time out.

This function will only work correctly if the Time Cluster Client in your endpoint table is using
the zcl_time_client() function as its callback handler. If you use the
ZCL_CLUST_ENTRY_TIME_CLIENT or ZCL_CLUST_ENTRY_TIME_BOTH macro, the
client cluster is set up correctly.

PARAMETERS

RETURN VALUE

0 Successfully issued ZDO Match Descriptor Request to find Time Cluster Servers
 on the network. No guarantee that we'll get a response.
!0 Some sort of error occurred in generating or sending the ZDO Match Descriptor

 Request.
-EINVAL Couldn't find a Time Cluster Client with profile_id in the endpoint table of dev.

zcl_time_now

zcl_utctime_t zcl_time_now(void)

DESCRIPTION

[in] dev Device to send query on

[in] profile_id Profile Id to match in endpoint table or
#WPAN_APS_PROFILE_ANY to use the first
endpoint with a Time Cluster Client
94 digi.com Rabbit and ZigBee

http://www.digi.com

Returns the current date/time, using the ZCL epoch of January 1, 2000.

Assumes that device has connected to a time server and updated its clock accordingly. Returns
ZCL_UTCTIME_INVALID if the device has not synchronized its clock.

Do not use this value for tracking elapsed time -- use xbee_seconds_timer() or
xbee_millisecond_timer() instead. The value may jump forward (or even backward) when the de-
vice decides to synchronize with a time server.

RETURN VALUE

ZCL_UTCTIME_INVALID Clock not synchronized to a time source.

0-0xFFFFFFFE Number of elapsed seconds since midnight UTC on
 January 1, 2000.

SEE ALSO

xbee_seconds_timer, xbee_millisecond_timer

5.6.3.7.1 64-bit Integer Support API Functions and Macros

This section contains descriptions for the 64-bit integer support functions and macros. To use these functions the
program must have #include “zigbee/zcl64.h” within the code.

5.6.3.7.2 Cluster Support Datatypes Functions and Macros

This section contains descriptions for the Cluster Time library functions and macros. To use these functions the
program must have #include “zigbee/zcl_types.h” within the code.

zcl_sizeof_type

int zcl_sizeof_type (uint8_t type)

DESCRIPTION

Return the number of octets used by a given ZCL datatype.

PARAMETERS

RETURN VALUE

ZCL_T_SIZE_INVALID Unknown or invalid type.

-1 1-octet size prefix.

-2 2-octet size prefix.

0 to 8, 16 Number of octets used by type.

[in] type Type to look up. Typically one of the ZCL_TYPE_*
macros, or the type element of an attribute record.
An Introduction to ZigBee digi.com 95

http://www.digi.com

SEE ALSO

zigbee/zcl_types.h

ZCL_TYPE_IS_ANALOG

bool_t ZCL_TYPE_IS_ANALOG (uint8_t type)

DESCRIPTION

Macro which returns a logical true/false if the type given is analog (signed, unsigned, float, etc.).
Basically a numerical value that can be added or subtracted, not a discrete value.

RETURN VALUE

Logical true / false value indicating if type is analog.

ZCL_TYPE_IS_DISCRETE

bool_t ZCL_TYPE_IS_DISCRETE (uint8_t type)

DESCRIPTION

Macro which returns a logical true/false if the type given is discrete (bitmap, enum, etc.). Basi-
cally a value that can be added or subtracted.

RETURN VALUE

Logical true / false value indicating if type is discrete.

ZCL_TYPE_IS_REPORTABLE

bool_t ZCL_TYPE_IS_REPORTABLE (uint8_t type)

DESCRIPTION

Macro which returns a logical true/false if the type is marked as reportable.

RETURN VALUE

Logical true / false value indicating if type is reportable.
96 digi.com Rabbit and ZigBee

http://www.digi.com

ZCL_TYPE_IS_SIGNED

bool_t ZCL_TYPE_IS_SIGNED (uint8_t type)

DESCRIPTION

Macro which returns a logical true/false if the type given is signed or has the ability to be positive
or negative.

RETURN VALUE

Logical true / false value indicating if type is signed.

5.6.3.7.3 ZCL Client Support API Functions and Macros

This section contains descriptions for the ZCL Client support library functions and macros. To use these func-
tions the program must have #include “zigbee/zcl_client.h” within the code.

zcl_find_and_read_attributes

int zcl_find_and_read_attributes (wpan_dev_t * dev, const uint16_t
* clusters, const zcl_client_read_t * cr)

DESCRIPTION

Use ZDO Match Descriptor Requests to find devices with a given profile/cluster and then auto-
matically send a ZCL Read Attributes request for some of that cluster's attributes.

PARAMETERS

RETURN VALUE

0 Request sent.

!0 Error sending request.

[in] dev Device to use for time request

[in] clusters Pointer to list of server clusters to search for, must end
with:

 WPAN_CLUSTER_END_OF_LIST

[in] cr zcl_client_read record containing information on the re-
quest (endpoint, attributes, etc.); must be a static object
(not an auto variable) since the ZDO responder will
need to access it
An Introduction to ZigBee digi.com 97

http://www.digi.com

zdo_send_match_desc

int zdo_send_match_desc (wpan_dev_t * dev, const uint16_t *
clusters,uint16_t profile_id,wpan_response_fn callback, const
void FAR * context)

DESCRIPTION

Send a ZDO Match Descriptor request for a list of cluster IDs. Commonly used with
_zcl_send_read_from_zdo_match as the callback and a zcl_client_read_t structure as the context
to automatically generate a ZCL Read Attributes Request in response to the ZDO Match Descrip-
tor response.

PARAMETERS

RETURN VALUE

0 Request sent.

!0 Error sending request.

SEE ALSO

zcl_find_and_read_attributes()

5.7 Simple XBee API

This section contains information about the Simple XBee API. It is a library designed to simplify the setup and
operation of a ZigBee network. This API works on ZigBee networks comprised of Digi XBee modules. This API
does not work with other manufacturers ZigBee devices as it takes advantage of some XBee functionality not
found on other devices.

5.7.1 General Overview

The Simple XBee API requires just the initialization of the XBee Driver layer before calling the SXA initializa-
tion function to bring up the ZigBee network, including node discovery. The API includes simplified commands

[in] dev Device to use for time request

[in] clusters Pointer to list of server clusters to search for, must end
with WPAN_CLUSTER_END_OF_LIST

[in] profile_id Profile ID associated with the cluster IDs

(cannot be WPAN_APS_PROFILE_ANY)

[in] callback Function that will process the ZDO Match Descriptor
responses; see wpan_response_fn for the callback's API

[in] context Context to pass to callback in the wpan_conversation_t
structure
98 digi.com Rabbit and ZigBee

http://www.digi.com

for configuring inputs and outputs, reading analog and digital input values and output states, and writing new
output states. All samples that use the Simple XBee API start with the letters ‘sxa’.

5.7.2 API Functions and Macros

This section contains descriptions for the Simple XBee API functions and macros separated into layer compo-
nents.

5.7.2.1 XBee I/O API Functions and Macros
This section contains API descriptions for the XBee I/O library functions and macros. To use these
functions the program must have #include “xbee/io.h” within the code.

xbee_io_configure

int xbee_io_configure (xbee_dev_t * xbee, xbee_io_t FAR * io,
uint_fast8_t index, enum xbee_io_type type, const wpan_address_t
FAR * address)

DESCRIPTION

Configure XBee digital and analog I/Os.

This modifies the shadow state in the io parameter, as well as sending the appropriate configura-
tion command to the target device. If the new state is the same as the shadow state, then the func-
tion returns without doing anything, unless XBEE_IO_FORCE is specified in the type
parameter.

PARAMETERS

RETURN VALUE

>=0 The number of bytes queued in the XBee serial port's serial transmit buffer.

[in, out] xbee Local device through which to action the request

[in, out] io Pointer to an xbee_io_t structure as set up by
xbee_io_query(). Shadow state of I/O may be modified.

[in] index Digital or analog I/O number e.g. 0 for DIO0 or AD0.

[in] type Type of I/O to configure. If the XBEE_IO_FORCE flag
is ORed in, force a configuration update to the device.
Otherwise, a configuration change will only be sent to
the device if the shadow (i.e. last known) configuration
is different.

[in] address NULL for local XBee, or destination IEEE (64-bit) or
network (16 bit) address of a remote device.
An Introduction to ZigBee digi.com 99

http://www.digi.com

-EINVAL Serial is not a valid XBee serial port.

0 Success.

-EINVAL Specified I/O index does not exist, or bad parameter.

-EPERM Specified I/O cannot be configured as requested because the hardware or
 firmware does not support it.
<0 Other negative value indicates problem transmitting the
 configuraion request.

SEE ALSO

xbee_ser_tx_free(), xbee_ser_tx_used(), xbee_ser_tx_flush(), xbee_ser_rx_free()

xbee_io_get_analog_input

int xbee_io_get_analog_input (const xbee_io_t FAR * io,
uint_fast8_t index)

DESCRIPTION

Return reading of an analog input.

PARAMETERS

RETURN VALUE

0..32767 Raw single-ended analog reading, normalized to the
 range 0..32767. Current hardware supports 10-bit
 ADCs, hence the 5 LSBs will be zero. Future hardware
 with higher resolution ADCs will add precision
 to the LSBs.
-16384..16383 Raw differential analog reading, normalized to the
 range -16384..16383. This is reserved for
 future hardware.
XBEE_IO_ANALOG_INVALID Output unknown because not configured as an analog
 input, or is a non-existent input index.

[in] io Pointer to an xbee_io_t structure as set up by
xbee_io_response_parse()

[in] index Analog input number e.g. 0 for AD0, 2 for AD2, 7 for
Vcc reading (where available)
100 digi.com Rabbit and ZigBee

http://www.digi.com

xbee_io_get_digital_input

int xbee_io_get_digital_input (const xbee_io_t FAR * io,
uint_fast8_t index)

DESCRIPTION

Return state of a digital input.

PARAMETERS

RETURN VALUE

0 Input low

1 Input high

-EINVAL Input unknown because not configured as a digital input, or is a non-existent
 input index.

xbee_io_get_digital_output

int xbee_io_get_digital_output (const xbee_io_t FAR * io,
uint_fast8_t index)

DESCRIPTION

Return state of a digital output. This is a shadow state i.e. the last known state setting.

PARAMETERS

RETURN VALUE

0 Output low

1 Output high

-EINVAL Output unknown because not configured as a digital output, or is a non-existent

[in] io Pointer to an xbee_io_t structure as set up by
xbee_io_response_parse()

[in] index Digital input number e.g. 0 for DIO0, 12 for DIO12.

[in] io Pointer to an xbee_io_t structure as set up by
xbee_io_query()

[in] index Digital output number e.g. 0 for DIO0, 2 for DIO2
An Introduction to ZigBee digi.com 101

http://www.digi.com

 output index

xbee_io_get_query_status

int xbee_io_get_query_status (xbee_io_t FAR * io)

DESCRIPTION

Check the status of querying an XBee device, as initiated by xbee_io_query().

PARAMETERS

RETURN VALUE

0 Query completed

-EINVAL io is NULL

-EBUSY Query underway

-ETIMEDOUT Query timed out

-EIO Halted, but query may not have completed (unexpected response)

xbee_io_query

int xbee_io_query (xbee_dev_t * xbee, xbee_io_t FAR * io, const
wpan_address_t FAR * address)

DESCRIPTION

Read current configuration of XBee digital and analog I/Os.

This sets the shadow state in the io parameter by querying the device configuration with a se-
quence of AT commands (D0,D0,...P0,...,PR). Unless the application has prior knowledge of the
I/O configuration, this function should be used when a new node is discovered.

Since several commands must be executed, the results are not available immediately on return
from this function. Instead, the application must call xbee_io_query_status() in oprder to poll for
command completion.

PARAMETERS

[in] io I/O query to check (pointer as passed to xbee_io_query()).

[in, out] xbee Local device through which to action the request
102 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Success

-EINVAL Bad parameter.

-EBUSY Device is currently busy with another request for this device. Try again later
 (after calling xbee_cmd_tick()). In general, several get configuration requests
 can run simultaneously, however only one per remote device.
<0 Other negative value indicates problem transmitting the configuration query
 commands.

SEE ALSO

xbee_io_query_status().

xbee_io_response_dump

void xbee_io_get_response_parse (xbee_io_t FAR * parsed, const void
FAR * source)

DESCRIPTION

Debugging function used to dump an xbee_io_t structure to stdout.

PARAMETERS

xbee_io_response_parse

int xbee_io_response_parse (xbee_io_t FAR * parsed, const void FAR *
source)

DESCRIPTION

[in, out] io Pointer to an xbee_io_t structure, which will be modi-
fied by this call. Since the results are returned asynchro-
nously, the data pointed to must be static

[in] address NULL for local XBee, or destination IEEE (64-bit) or
network (16 bit) address of a remote device

[in] io Pointer to an xbee_io_t structure as set up by
xbee_io_response_parse()
An Introduction to ZigBee digi.com 103

http://www.digi.com

Parse an I/O response and store it in an xbee_io_t structure.

PARAMETERS

RETURN VALUE

0 Response parse completed

-EINVAL Invalid parameter (NULL for either pointer or invalid source)

xbee_io_set_digital_output

int xbee_io_set_digital_output (xbee_dev_t * xbee, xbee_io_t FAR *
io, uint_fast8_t index, enum xbee_io_digital_output_state state,
const wpan_address_t FAR * address)

DESCRIPTION

Set state of a digital output.

This modifies the shadow state in the io parameter, as well as sending the appropriate configura-
tion command to the target device. If the new state is the same as the shadow state, then the func-
tion returns without doing anything, unless XBEE_IO_FORCE is specified in the state parameter.

PARAMETERS

[out] parsed Result structure #param

[in] source Pointer to the start of the data i.e. the num_samples field
of the I/O response

[in, out] xbee Local device through which to action the request

[in, out] io Pointer to an xbee_io_t structure as set up by
xbee_io_query(). Shadow state of I/O may be modified.

[in] index Digital output number e.g. 0 for DIO0, 2 for DIO2

[in] state New state of I/O. If the XBEE_IO_FORCE flag is ORed
in, then force a state update to the device, whether or not
configured as an input or with shadow state unchanged.
This can be used to initially configure and set a digital
output. Otherwise, a state change will only be sent to the
device if the shadow (i.e. last known) state is opposite
AND the I/O is configured as a digital output.
104 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

0 Output low

1 Output high

-EINVAL Output unknown because not configured as a digital output (and force was not
 specified), or is a non-existent output index, or bad parameter passed.
<0 Other negative value indicates problem transmitting the configuration request.

xbee_io_set_options

int xbee_io_set_options (xbee_dev_t * xbee, xbee_io_t FAR * io,
uint_16_t sample_rate, uint_16_t change_mask, const
wpan_address_t FAR * address)

DESCRIPTION

Configure XBee automatic I/O sampling options.

This basically controls the ATIR and ATIC settings. IR specifies an automatic sampling interval,
and IC specifies sampling on digital I/O change.

PARAMETERS

[in] address NULL for local XBee, or destination IEEE (64-bit) or
network (16 bit) address of a remote device. See
wpan_envelope_create() for use of IEEE and network

addressing.

[in, out] xbee Local device through which to action the request

[in, out] io Pointer to an xbee_io_t structure as set up by
xbee_io_query().

Shadow state of I/O may be modified

[in] sample_rate Rate sample period in ms. 0 to turn off sampling, other-
wise must be a value greater than
XBEE_IO_MIN_SAMPLE_PERIOD

(50 ms with current hardware).

[in] change_mask Bitmask of I/Os which are to generate samples when
their state changes.

Construct from ORed combination of XBEE_IO_DIO0,
XBEE_IO_DIO1 etc.
An Introduction to ZigBee digi.com 105

http://www.digi.com

RETURN VALUE

0 Success

-EINVAL Bad parameter.

-EPERM Specified sampling rate or I/O bitmask not supported.

<0 Other negative value indicates problem transmitting the configuration request.

5.7.2.2 Simple XBee API Functions and Macros

This section contains API descriptions for the Simple XBee library functions and macros. To use these functions
the program must have #include “xbee/sxa.h” within the code.

sxa_get_analog_input

int sxa_get_analog_input (const sxa_node_t FAR * sxa,uint_fast8_t
index)

DESCRIPTION

Return reading of an analog input.

PARAMETERS

RETURN VALUE

0..32767 Raw single-ended analog reading, normalized to the
 range 0..32767. Current hardware supports 10-bit ADCs,
 hence the 5 LSBs will be zero. Future hardware with
 higher resolution ADCs will add precision to the LSBs.
 -16384..16383 Raw differential analog reading, normalized to the
 range -16384..16383. This is reserved for future hardware.
XBEE_IO_ANALOG_INVALID Output unknown because not configured as an analog in
 put, or is a non-existent input index.

[in] address NULL for local XBee, or destination IEEE (64-bit) or
network (16 bit) address of a remote device.

[in] sxa Pointer to a sxa_node_t structure

 [in] index Analog input number e.g. 0 for AD0, 2 for AD2, 7 for
Vcc reading (where available)
106 digi.com Rabbit and ZigBee

http://www.digi.com

sxa_get_digital_input

int sxa_get_digital_input (const sxa_node_t FAR * sxa,
uint_fast8_t index)

DESCRIPTION

Return state of a digital input.

PARAMETERS

RETURN VALUE

0 Input low.

1 Input high.

-EINVAL Input unknown because not configured as a digital input, or is a non-existent
 input index.

sxa_get_digital_output

int sxa_get_digital_output (const sxa_node_t FAR * sxa,
uint_fast8_t index)

DESCRIPTION

Return state of a digital output. This is a shadow state i.e. the last known state setting.

PARAMETERS

RETURN VALUE

0 Output low

1 Output high

-EINVAL Output unknown because not configured as a digital output, or is a non-existent
 output index.

[in] sxa Pointer to a sxa_node_t structure

[in] index Digital input number e.g. 0 for DIO0, 12 for DIO12

[in] sxa Pointer to a sxa_node_t structure

[in] index Digital output number e.g. 0 for DIO0, 2 for DIO2
An Introduction to ZigBee digi.com 107

http://www.digi.com

sxa_init_or_exit

int sxa_init_or_exit (xbee_dev_t * xbee, const
wpan_endpoint_table_entry_t * ep_table, int verbose)

DESCRIPTION

Initializes the XBee module for use with the Simple XBee API or fails and calls exit().

PARAMETERS

RETURN VALUE

0 Input low

1 Input high

-EINVAL Input unknown because not configured as a digital input, or is a non-existent
 input index.

sxa_io_configure

int sxa_io_configure (sxa_node_t * sxa, uint_fast8_t index, enum
xbee_io_type type)

DESCRIPTION

Configure XBee digital and analog I/Os.

This modifies the shadow state in the io parameter, as well as sending the appropriate configura-
tion command to the target device. If the new state is the same as the shadow state, then the func-
tion returns without doing anything, unless XBEE_IO_FORCE is specified in the type parameter.

PARAMETERS

[in] xbee Pointer to a XBee device structure

[in] index Pointer to a WPAN endpoint table entry structure

[in] verbose Verbose stdio output flag (non-zero value selects ver-
bose)

[in] sxa Pointer to a sxa_node_t structure

[in] index Digital or analog I/O number e.g. 0 for DIO0 or AD0
108 digi.com Rabbit and ZigBee

http://www.digi.com

RETURN VALUE

>=0 The number of bytes queued in the XBee serial port's serial transmit buffer.

-EINVAL Serial is not a valid XBee serial port.

0 Success

-EINVAL Specified I/O index does not exist, or bad parameter.

-EPERM Specified I/O cannot be configured as requested because the hardware or
 firmware does not support it.
<0 Other negative value indicates problem transmitting the configuration request.

SEE ALSO

xbee_ser_tx_free(), xbee_ser_tx_used(), xbee_ser_tx_flush(), xbee_ser_rx_free()

sxa_io_dump

int sxa_io_dump (sxa_node_t FAR * sxa)

DESCRIPTION

Debug function to dump the sxa.io.config[] parameters to stdio.

PARAMETERS

sxa_io_set_options

int sxa_io_set_options (sxa_node_t * sxa, uint_16_t sample_rate,
uint_16_t change_mask)

DESCRIPTION

Configure XBee automatic I/O sampling options.

This basically controls the ATIR and ATIC settings. IR specifies an automatic sampling interval,

[in] type Type of I/O to configure. If the XBEE_IO_FORCE flag
is ORed in, force a configuration update to the device.
Otherwise, a configuration change will only be sent to
the device if the shadow (i.e. last known) configuration
is different.

[in] sxa Pointer to an sxa_node_t structure
An Introduction to ZigBee digi.com 109

http://www.digi.com

and IC specifies sampling on digital I/O change.

PARAMETERS

RETURN VALUE

0 Success

-EINVAL Bad parameter.

-EPERM Specified sampling rate or I/O bitmask not supported.

<0 Other negative value indicates problem transmitting the configuration request.

sxa_io_query

int sxa_io_query (sxa_node_t * sxa)

DESCRIPTION

Read current configuration of XBee digital and analog I/Os.

This sets the shadow state in the sxa parameter by querying the device configuration with a se-
quence of AT commands (D0,D0,...P0,...,PR). Unless the application has prior knowledge of the
I/O configuration, this function should be used when a new node is discovered.

Since several commands must be executed, the results are not available immediately on return
from this function. Instead, the application must call sxa_io_query_status() in order to poll for
command completion.

PARAMETERS

RETURN VALUE

0 Success

[in] sxa Pointer to a sxa_node_t structure

[in] sample_rate Rate sample period in ms. 0 to turn off sampling, other-
wise must be a value greater than
XBEE_IO_MIN_SAMPLE_PERIOD (50 ms with cur-
rent hardware)

[in] change_mask Bitmask of I/Os which are to generate samples when
their state changes.

Construct from ORed combination of XBEE_IO_DIO0,

XBEE_IO_DIO1 etc

[in] sxa Pointer to a sxa_node_t structure
110 digi.com Rabbit and ZigBee

http://www.digi.com

-EINVAL Bad parameter.

-EBUSY Device is currently busy with another request for this device. Try again later

 (after calling xbee_cmd_tick()). In general, several get configuration requests can

 run simultaneously, however only one per remote device.

<0 Other negative value indicates problem transmitting the configuration query
 commands.

SEE ALSO

sxa_io_query_status().

sxa_io_query_status

int sxa_io_query_status (sxa_node_t FAR * sxa)

DESCRIPTION

Check the status of querying an XBee device, as initiated by xbee_io_query().

PARAMETERS

RETURN VALUE

0 Query completed

-EINVAL io is NULL

-EBUSY Query underway

-ETIMEDOUT Query timed out

-EIO Halted, but query may not have completed (unexpected response)

sxa_set_digital_output

int sxa_set_digital_output (sxa_node_t * sxa, uint_fast8_t index,
enum xbee_io_digital_output_state state)

DESCRIPTION

Set state of a digital output.

This modifies the shadow state in the sxa parameter, as well as sending the appropriate configu-

[in] sxa Pointer to a sxa_node_t structure
An Introduction to ZigBee digi.com 111

http://www.digi.com

ration command to the target device. If the new state is the same as the shadow state, then the func-
tion returns without doing anything, unless XBEE_IO_FORCE is specified in the state parameter.

PARAMETERS

RETURN VALUE

0 Output low.

1 Output high.

-EINVAL Output unknown because not configured as a digital output (and force was not

 specified), or is a non-existent output index, or bad parameter passed.

<0 Other negative value indicates problem transmitting the configuration request.

sxa_tick

void sxa_tick (void)

DESCRIPTION

Tick function to be called periodically to drive the Simple XBee API library and all lower layers
in the ZigBee stack and drivers. See section 5.1.4 for a discussion of how frequently this function
needs to be called for a given configuration.

**

5.8 Protocol Firmware

ZigBee-capable Rabbit-based boards must be programmed with the appropriate RF module firmware. This firm-
ware determines the role the module plays within the network: Coordinator, Router or End Device.

5.8.1 Updating RF Module FW on a Rabbit-Based Target

To update the protocol firmware on the XBee RF module housed on the Rabbit-based target board, use the Dy-
namic C sample program \Samples\XBee\xbee_update_ebl.c, relative to the Dynamic C installation

[in] sxa Pointer to a sxa_node_t structure

 [in] index Digital output number e.g. 0 for DIO0, 2 for DIO2

[in] state New state of I/O. If the XBEE_IO_FORCE flag is ORed
in, then force a state update to the device, whether or not
configured as an input or with shadow state unchanged.
This can be used to initially configure and set a digital
output. Otherwise, a state change will only be sent to the
device if the shadow (i.e. last known) state is opposite
AND the I/O is configured as a digital output.
112 digi.com Rabbit and ZigBee

http://www.digi.com

folder. The sample uses .ebl firmware files which cover several network protocols and node types. See the table
below to find the file that should be ximported into the sample for the desired XBee functionality. The firmware
files require the installation of X-CTU utility, as well as a web update of available firmware files. The files can
then be found in the \Digi\XCTU\update\ebl_files directory. See section 5.8.2 for more information
on the X-CTU utility.

5.8.2 X-CTU: Updating RF Module Settings on a DIGI XBee USB Device

A utility program, X-CTU, is provided for reading and writing module settings and firmware on the Digi XBee
devices. This utility is not able to update firmware on XBee devices that are connected to a Rabbit module or
board as firmware updates require hardware handshaking and this is not available through the serial bypass utility
on Rabbit/XBee modules or boards. It may still be used for viewing or changing the module settings on these
designs. On Digi XBee USB dongles or XBee modules mounted to the XBIB board, the X-CTU program can
update firmware provided the hardware handshake is enabled within the X-CTU program. The X-CTU utility is
described in the “Users Guide: XCTU Configuration & Test Utility Software” document available at
http://www.digi.com/support/ under the XCTU keyword.

5.9 Summary

This is the ground floor of a very useful low power wireless standard. Dynamic C offers an easy-to-use imple-
mentation of ZigBee that works seamlessly with the Rabbit hardware as a solid foundation for a variety of em-
bedded system projects that include wireless networking in their design.

Node Type Firmware File Name

Coordinator XB24‐ZB_21xx.ebl

Router XB24‐ZB_23xx.ebl

End Device XB24‐ZB_29xx.ebl

On Firmware File Names, 'xx' is the version designator and the
highest value should be used. It is preferrable that all nodes in the
system be at the same version level, but not required.
An Introduction to ZigBee digi.com 113

http://www.digi.com
http://www.digi.com/support/

114 digi.com Rabbit and ZigBee

http://www.digi.com

APPENDIX A. GLOSSARY OF TERMS

This chapter defines a collection of terms that are commonly used when talking about networks in general
or ZigBee in particular.

ad-hoc network

This term describes the mutable formation of small wireless networks. The peer-to-peer nature of mesh
and cluster tree networks allows for this dynamic attribute by distributing the ability to join the network
across the network.

application object

Code that implements the application. Each application object maps to one endpoint.

attribute

This term refers to a piece of data that can be passed between devices. A set of attributes is a cluster.

Bluetooth

Bluetooth is a set of standards that describes a short range (10 meter) frequency-hopping radio link
between devices.

BPSK

This acronym stands for Binary Phase-Shift Keying. It is the keying of binary data by phase deviations of
the carrier.

cluster

This is a ZigBee term that is defined as a container for attributes or as a command/response association. In
the Dynamic C implementation of ZigBee, clusters are a collection of functions related to an endpoint.

cluster ID

This term refers to a unique 16-bit number that identifies a specific cluster within an application profile.

cluster tree

This term describes the physical topology of a network, its geometrical shape. For our purposes, a cluster
tree network has as its root the coordinator for the WPAN. All routers that subsequently join the network
form their own logical cluster.

coordinator

A ZigBee logical device type. There is one and only one coordinator per ZigBee network. This device has
the unique responsibility of creating the WPAN.
An Introduction to ZigBee digi.com 115

http://www.digi.com

CSMA-CA

This acronym stands for Carrier Sense Multiple Access/Collision Avoidance. It is a protocol used by a
device that wants transmit on a network. The protocol seeks to avoid collisions by checking to see if the
channel is clear before transmitting. If it is not clear, the device waits a radom amount of time and checks
again.

device description

A device description is a document in a ZigBee profile. It describes the characteristics of a device that is
required in the application area of the profile.

end device

This is a ZigBee term that indicates the device in question has no routing capability. It can only send and
receive information for its own use. An end device functions as a leaf node in a cluster tree network. The
nodes in a star network are all end devices except for the coordinator. A complete mesh network would not
contain any end devices, but in practice a design may call for one or more of them.

endpoint

This is a ZigBee term that refers to an addressable unit on a device. For example, an LED or a digital input
could be an endpoint on a Rabbit-based board.

FFD

This is an IEEE term that stands for full-function device. An FFD has routing capabilities, as opposed to
an RFD (reduced-function device), which does not.

IEEE

Institute of Electrical and Electronics Engineers.

EUI-64

This acronym stands for Extended Unique Identifier 64 bits. It is an IEEE term used to describe the result
of the concatenation of the 24-bit value assigned to an organization by the IEEE Registration Authority
and a 40-bit extension assigned by that organization.

IrDA

This term stands for Infrared Data Association. It is a standard for transmitting data via infrared light
waves. Look Ma! No cables!

LAN

This term stands for local area network. A LAN covers a relatively small area, though a larger area than a
PAN. Corporations and academic institutions typically have their own LANs.

mesh

This term describes the physical topology of a network, its geometrical shape. A mesh network, with its
dynamic arrangement of nodes, is ideally suited for the nimble world of wireless communication.
116 digi.com

http://www.digii.com

multi-hop

This term describes the ability of a message to be handled by intermediary nodes on its way to its destina-
tion node. Both mesh and cluster tree topologies are also known as multi-hop networks.

node

Generally, this term describes any device that is part of a network. For a ZigBee wireless network, the term
applies to a device containing a single radio that has joined the network and therefore has a network ID.

O-QPSK

This acronym stands for Offset Quadrature Phase-Shift Keying. It is the keying of data by phase deviations
of the carrier.

peer-to-peer

The term peer-to-peer refers to the relationship between two separate devices.

On a physical level it can mean the cables or the radio channel connecting the devices. In the physical
sense of the term, peer-to-peer is the opposite of star where all devices in the network connect to one cen-
tral device.

On a logical level, it means that the entities are equal in that they perform the same routing functions as
their neighbor. In the logical sense, peer-to-peer is the opposite of the client/server model.

point-to-multipoint

This term refers to the communication path from a single location to multiple locations. Unlike a star
topology which only has nodes one hop away from the coordinator node, in a point-to-multipoint ZigBee
topology nodes can be several hops away from the coordinator node.

point-to-point

A circuit connecting two nodes only, creating a communication path from a single location to another sin-
gle location.

profile

A profile (also known as an application profile) is a description of devices required in an application area
and their interfaces.

router

A ZigBee logical device type that can route messages from one node to another.

RF

This term stand for radio frequency. The electromagnetic frequencies from 10 kHz to 300 GHz define the
RF range. This is above audio range and below infrared light.

RFD

This is an IEEE term that stands for reduced-function device. An RFD does not have the routing capabili-
ties of an FFD. A ZigBee end device and the IEEE reduced-function device both lack routing functions.
An Introduction to ZigBee digi.com 117

http://www.digi.com

RSSI

Received Signal Strength Indicator.

self-healing network

This term describes the process of recovery in a mesh network. For example, if a node fails, the remaining
nodes would find alternate routing paths to accomplish their tasks.

star

This term describes the physical topology of a network, its geometrical shape. For our purposes, a star net-
work has as its root the coordinator for the WPAN. All devices that subsequently join the network can only
communicate with the coordinator.

UWB

This terms stands for ultra-wideband. It refers to any radio technology that transmits information spread
over a bandwidth larger than 500 MHz.

WPAN

This term stands for wireless personal area network. At bare minimum, it takes two devices operating a
short distance from one another and communicating on the same physical channel to constitute a WPAN.

ZDP

This is a specialized application object called the ZigBee Device Profile. It is addressed as endpoint 0.ZDP
was referred to as ZigBee Device Object (ZDO) in the earlier releases.
118 digi.com

http://www.digii.com

Index
A

addressing ... 15
ad-hoc network ... 3
application domains .. 3
application objects .. 14
application profiles ... 16

B

binding .. 13, 15
broadcast addressing ... 15

C

channels .. 5
cluster ID .. 13, 16
communication systems .. 3
coordinator .. 11, 12
current consumption ... 5

D

data rate ... 5
device description ... 16
device discovery ... 14
direct addressing ... 15
discovery ... 14

E

end device ... 11, 12
endpoints ... 14, 15
EUI-64 .. 10
extended address ... 10, 15

F

FFD ... 9
frequency band .. 5

G

group addressing ... 15

I

indirect addressing .. 15
interference avoidance .. 5
interoperability .. 16

L

LR-WPAN .. 7

M

multi-hop .. 11

N

network join time .. 5
network types ... 3
NWK address ... 15

O

OUIs ... 15

P

PAN coordinator ... 9
PAN ID ... 10

R

RFD .. 9
router .. 11, 12
routing .. 9, 11

S

security ... 6
service discovery .. 14
stack .. 11
stack size ... 5

T

topologies ... 4

W

wireless network types ... 3
WLAN .. 4
WPAN .. 3
WWAN ... 4

Z

ZigBee Alliance .. 11
An Introduction to ZigBee digi.com 119

http://www.digi.com

120 digi.com Index

http://www.rabbit.com

	1. Introduction
	2. Wireless Communication
	2.1 Communication Systems
	2.2 Wireless Network Types
	2.2.1 WPAN
	2.2.2 WLAN
	2.2.3 WWAN

	2.3 Wireless Network Topologies
	2.4 Wireless Standards
	2.5 Security in a Wireless Network
	2.5.1 Security Risks

	3. IEEE 802.15.4 Specification
	3.1 Scope of 802.15.4
	3.1.1 PHY Layers
	3.1.2 MAC Layer

	3.2 Properties of 802.15.4
	3.2.1 Transmitter and Receiver
	3.2.2 Channels

	3.3 Network Topologies
	3.4 Network Devices and their Operating Modes
	3.5 Addressing Modes Supported by 802.15.4
	3.5.1 PAN ID

	4. ZigBee Specification
	4.1 Logical Device Types
	4.2 ZigBee Stack Layers
	4.2.1 Network (NWK) Layer
	4.2.2 Application (APL) Layer
	4.2.2.1 Application Support Sublayer (APS)
	4.2.2.2 Application Framework
	4.2.2.3 ZigBee Device Profile (ZDP)

	4.3 ZigBee Addressing
	4.3.1 ZigBee Messaging
	4.3.2 Broadcast Addressing
	4.3.3 Group Addressing

	4.4 ZigBee Application Profiles
	4.4.1 ZigBee Device Profile

	5. Rabbit and ZigBee
	xbee_readline
	hex_dump
	hexstrtobyte
	xbee_millisecond_timer
	xbee_seconds_timer
	xbee_ser_baudrate
	xbee_ser_break
	xbee_ser_close
	xbee_ser_flowcontrol
	xbee_ser_get_cts
	xbee_ser_getchar
	xbee_ser_invalid
	xbee_ser_open
	xbee_ser_portname
	xbee_ser_putchar
	xbee_ser_read
	xbee_ser_rx_flush
	xbee_ser_rx_free
	xbee_ser_rx_used
	xbee_ser_set_rts
	xbee_ser_tx_flush
	xbee_ser_tx_free
	xbee_ser_tx_used
	xbee_ser_write
	xbee_dev_dump
	xbee_dev_init
	xbee_dev_reset
	xbee_dev_tick
	xbee_frame_dump_modem_status
	xbee_frame_write
	xbee_cmd_clear_flags
	xbee_cmd_create
	xbee_cmd_execute
	xbee_cmd_init_device
	xbee_cmd_list_execute
	xbee_command_list_status
	xbee_cmd_query_device
	xbee_cmd_query_status
	xbee_cmd_release_handle
	xbee_cmd_send
	xbee_cmd_set_callback
	xbee_cmd_set_command
	xbee_cmd_set_flags
	xbee_cmd_set_param
	xbee_cmd_set_param_bytes
	xbee_cmd_set_param_str
	xbee_cmd_set_target
	xbee_cmd_simple
	xbee_cmd_tick
	xbee_identify
	xbee_disc_device_type_str
	xbee_disc_nd_parse
	xbee_disc_node_id_dump
	xbee_fw_buffer_init
	xbee_fw_install_ebl_tick
	xbee_fw_install_init
	xbee_fw_install_oem_tick
	xbee_fw_status_ebl
	xbee_fw_status_oem
	wpan_cluster_match
	wpan_endpoint_get_next
	wpan_conversation_register
	wpan_conversation_timeout
	wpan_endpoint_dispatch
	wpan_endpoint_match
	wpan_endpoint_next_trans
	wpan_endpoint_of_cluster
	wpan_endpoint_of_envelope
	wpan_envelope_create
	wpan_envelope_dump
	wpan_envelope_reply
	wpan_envelope_send
	wpan_tick
	xbee_wpan_init
	addr64_equal
	addr64_format
	addr64_is_zero
	addr64_parse
	zdo_ endpoint_state
	zdo_handler
	zdo_match_desc_request
	zdo_mgmt_leave_req
	zdo_send_bind_req
	zdo_send_descriptor_req
	zdo_send_nwk_addr_req
	zdo_send_response
	zcl_build_header
	zcl_check_minmax
	ZCL_CMD_IS_CLUSTER
	ZCL_CMD_IS_MFG_CLUSTER
	ZCL_CMD_IS_PROFILE
	ZCL_CMD_MATCH
	zcl_command_build
	zcl_command_dump
	zcl_convert_24bit
	zcl_decode_attribute
	zcl_default_response
	zcl_encode_attribute_value
	zcl_find_attribute
	zcl_general_command
	zcl_invalid_cluster
	zcl_invalid_command
	zcl_parse_attribute_record
	zcl_send_response
	zcl_status_text
	zcl_basic_server
	zcl_comm_reset_parameters
	zcl_comm_restart_device
	zcl_identify_command
	zcl_identify_isactive
	zcl_gmtime
	zcl_mktime
	zcl_time_client
	zcl_time_find_servers
	zcl_time_now
	zcl_sizeof_type
	ZCL_TYPE_IS_ANALOG
	ZCL_TYPE_IS_DISCRETE
	ZCL_TYPE_IS_REPORTABLE
	ZCL_TYPE_IS_SIGNED
	zcl_find_and_read_attributes
	zdo_send_match_desc
	xbee_io_configure
	xbee_io_get_analog_input
	xbee_io_get_digital_input
	xbee_io_get_digital_output
	xbee_io_get_query_status
	xbee_io_query
	xbee_io_response_dump
	xbee_io_response_parse
	xbee_io_set_digital_output
	xbee_io_set_options
	sxa_get_analog_input
	sxa_get_digital_input
	sxa_get_digital_output
	sxa_init_or_exit
	sxa_io_configure
	sxa_io_dump
	sxa_io_set_options
	sxa_io_query
	sxa_io_query_status
	sxa_set_digital_output
	sxa_tick

	Appendix A. Glossary of Terms
	ad-hoc network
	application object
	attribute
	Bluetooth
	BPSK
	cluster
	cluster ID
	cluster tree
	coordinator
	CSMA-CA
	device description
	end device
	endpoint
	FFD
	IEEE
	EUI-64
	IrDA
	LAN
	mesh
	multi-hop
	node
	O-QPSK
	peer-to-peer
	point-to-multipoint
	point-to-point
	profile
	router
	RF
	RFD
	RSSI
	self-healing network
	star
	UWB
	WPAN
	ZDP

	Index

