
BL4S200
C-Programmable Single-Board Computer with Networking

User’s Manual
019–0171_F

Digi International Inc.

www.digi.com

BL4S200 User’s Manual

Part Number 019-0171_F • Printed in U.S.A.

©2008–2013 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc.

RabbitNet is a trademark of Digi International Inc.

The latest revision of this manual is available on the Rabbit Web site, www.digi.com,
for free, unregistered download.

http://www.digi.com/
http://www.digi.com/
http://www.rabbit.com/

TABLE OF CONTENTS

Chapter 1. Introduction 6
1.1 BL4S200 Description ...6
1.2 BL4S200 Features...6
1.3 Development and Evaluation Tools..8

1.3.1 Tool Kit ...8
1.3.2 Software ..9
1.3.3 Optional Add-Ons ...9

1.4 RabbitNet Peripheral Cards ..10
1.5 CE Compliance ...11

1.5.1 Design Guidelines ...12
1.5.2 Interfacing the BL4S200 to Other Devices...12

1.6 Wi-Fi Certifications (BL5S220 Model only)..13
1.6.1 FCC Part 15 Class B ...13
1.6.2 Industry Canada Labeling ...14
1.6.3 Europe ...15

Chapter 2. Getting Started 16
2.1 Preparing the BL4S200 for Development ..16
2.2 BL4S200 Connections ..17

2.2.1 Hardware Reset ...18
2.3 Installing Dynamic C ..19
2.4 Starting Dynamic C ..20
2.5 Run a Sample Program ...20

2.5.1 Troubleshooting ..20
2.6 Run a Wi-Fi Sample Program (BL5S220 only)..21
2.7 Run a ZigBee Sample Program (BL4S230 only) ...22
2.8 Where Do I Go From Here? ...23

Chapter 3. Subsystems 24
3.1 BL4S200 Pinouts ..25

3.1.1 Connectors ..26
3.2 Digital I/O ...27

3.2.1 Configurable I/O ...27
3.2.2 High-Current Digital Outputs ...34

3.3 Serial Communication ..36
3.3.1 RS-232 ..36
3.3.2 RS-485 ..36
3.3.3 Programming Port ...38
3.3.4 Ethernet Port ...39

3.4 A/D Converter Inputs..40
3.4.1 A/D Converter Calibration..42

3.5 D/A Converter Outputs ...43
3.5.1 D/A Converter Calibration..44

3.6 Analog Reference Voltages Circuit ..45
3.7 USB Programming Cable ...46

3.7.1 Changing Between Program Mode and Run Mode ..46
BL4S200 User’s Manual 3

3.8 Other Hardware...47
3.8.1 Clock Doubler ...47
3.8.2 Spectrum Spreader ..48

3.9 Memory...49
3.9.1 SRAM ...49
3.9.2 Flash Memory ...49
3.9.3 VBAT RAM Memory...49
3.9.4 microSD™ Cards ..49

Chapter 4. Software 51
4.1 Running Dynamic C ...51

4.1.1 Upgrading Dynamic C ..53
4.1.2 Add-On Modules...53

4.2 Sample Programs ..54
4.2.1 Digital I/O ...55
4.2.2 Serial Communication...60
4.2.3 A/D Converter Inputs..62
4.2.4 D/A Converter Outputs ...64
4.2.5 Use of microSD™ Cards with BL4S200 Model ...66
4.2.6 Real-Time Clock ...66
4.2.7 TCP/IP Sample Programs ...66

4.3 BL4S200 Libraries..67
4.4 BL4S200 Function Calls...68

4.4.1 Board Initialization ...68
4.4.2 Digital I/O ...69
4.4.3 High-Current Outputs ...92
4.4.4 Rabbit RIO Interrupt Handlers..104
4.4.5 Serial Communication...108
4.4.6 A/D Converter Inputs..110
4.4.7 D/A Converter Outputs ...123
4.4.8 SRAM Use ..131

Chapter 5. Using the Ethernet TCP/IP Features 132
5.1 TCP/IP Connections ...132
5.2 TCP/IP Sample Programs ...134

5.2.1 How to Set IP Addresses in the Sample Programs ...134
5.2.2 How to Set Up your Computer for Direct Connect ..135
5.2.3 Run the PINGME.C Demo ..136
5.2.4 Running More Demo Programs With a Direct Connection..137

5.3 Where Do I Go From Here? ...137

Chapter 6. Using the Wi-Fi Features 138
6.1 Introduction to Wi-Fi ..138

6.1.1 Infrastructure Mode...138
6.1.2 Ad-Hoc Mode ...139
6.1.3 Additional Information ...139

6.2 Running Wi-Fi Sample Programs...140
6.2.1 Wi-Fi Setup ...141
6.2.2 What Else You Will Need...142
6.2.3 Configuration Information ..143
6.2.4 Wi-Fi Sample Programs..146
6.2.5 RCM5400W Sample Programs...151

6.3 Dynamic C Wi-Fi Configurations...154
6.3.1 Configuring TCP/IP at Compile Time ..154
6.3.2 Configuring TCP/IP at Run Time ...158
6.3.3 Other Key Function Calls ...158

6.4 Where Do I Go From Here? ...159
BL4S200 User’s Manual 4

Chapter 7. Using the ZigBee Features 160
7.1 Introduction to the ZigBee Protocol ...160
7.2 ZigBee Sample Programs ...161

7.2.1 Setting Up the Digi XBee USB Coordinator ..162
7.2.2 Setting up Sample Programs ...164

7.3 Dynamic C Function Calls..167
7.4 Where Do I Go From Here? ...167

Appendix A. Specifications 168
A.1 Electrical and Mechanical Specifications ..169

A.1.1 Exclusion Zone...173
A.1.2 Headers...173

A.2 Conformal Coating...174
A.3 Jumper Configurations...175
A.4 Use of Rabbit Microprocessor Parallel Ports...177

Appendix B. Power Supply 178
B.1 Power Supplies...178

B.1.1 Power for Analog Circuits..179
B.2 Batteries and External Battery Connections ..179

B.2.1 Replacing the Backup Battery ..180
B.3 Power to Peripheral Cards..181

Appendix C. Demonstration Board 182
C.1 Connecting Demonstration Board..183
C.2 Demonstration Board Features...184

C.2.1 Pinout..184
C.2.2 Configuration..184

Appendix D. Rabbit RIO Resource Allocation 186
D.1 Configurable I/O Pin Associations ..187
D.2 High-Current Output Pin Associations ..188
D.3 Interpreting Error Codes ..188

Appendix E. RabbitNet 190
E.1 General RabbitNet Description ..190

E.1.1 RabbitNet Connections...190
E.1.2 RabbitNet Peripheral Cards ..191

E.2 Physical Implementation ..192
E.2.1 Control and Routing ...192

E.3 Function Calls...193
E.3.1 Status Byte ..203

Appendix F. Additional Configuration Instructions 204
F.1 XBee Module Firmware Downloads ..204

F.1.1 Dynamic C v. 10.44 and Later ..204
F.2 Digi® XBee USB Configuration ..205

F.2.1 Additional Reference Information ..206
F.2.2 Update Digi® XBee USB Firmware ...208

Index 209

Schematics 213
BL4S200 User’s Manual 5

1. INTRODUCTION

The BL4S200 series of high-performance, C-programmable single-board computers offers
built-in digital and analog I/O combined with Ethernet, Wi-Fi, or ZigBee network connec-
tivity in a compact form factor. The BL4S200 single-board computers are ideal for both
discrete manufacturing and process-control applications.

A Rabbit® 4000 or Rabbit® 5000 microprocessor provides fast data processing. A remov-
able flash memory option supports a full directory file structures to maximize remote
access control and programmability. The I/O can be expanded with RabbitNet peripheral
cards.

1.1 BL4S200 Description

Throughout this manual, the term BL4S200 refers to the complete series of BL4S200 single-
board computers unless other production models are referred to specifically.

The BL4S200 is an advanced single-board computer that incorporates the powerful Rabbit
4000 or Rabbit 5000 microprocessor, flash memory options, static RAM, digital I/O ports,
A/D converter inputs, D/A converter outputs, RS-232/RS-485 serial ports, and Ethernet,
Wi-Fi, or ZigBee network connectivity.

1.2 BL4S200 Features

• Rabbit® 4000 or Rabbit® 5000 microprocessor operating at up to 73.73 MHz.

• Industry-standard Micro-Fit® polarized positive-locking connectors.

• 512KB SRAM and 512KB/1MB flash memory options.

• 40 digital I/O: 32 protected digital I/O individually software-configurable as inputs or
sinking outputs, and 8 high-current digital outputs software-configurable as sinking or
sourcing.

• Advanced input capabilities including event counting, event capture, and quadrature
decoders that may be set up on most I/O pins.

• Independent PWM and PPM capability on most I/O pins and all high-current outputs.

• 10 analog channels: eight 11-bit A/D converter inputs, two 12-bit D/A converter 0–10 V
or ±10 V buffered outputs.

• Ethernet, Wi-Fi, or ZigBee network connectivity.

• Up to 5 serial ports:

 Up to three serial ports (one 5-wire RS-232 or two 3-wire RS-232, one RS-485).
BL4S200 User’s Manual 6

 Two RabbitNet™ expansion ports multiplexed from one serial port.

 One serial port dedicated to programming/debugging.

• Battery-backed real-time clock.

• Watchdog supervisor.

Four BL4S200 models are available. Their standard features are summarized in Table 1.

Note that the BL5S220 model is named as such to reflect that it uses a Rabbit 5000 micro-
processor.

BL4S200 single-board computers consist of a main board with a RabbitCore module.
Refer to the RabbitCore module manuals, available on the Web site, for more information
on the RabbitCore modules, including their schematics.

BL4S200 single-board computers are programmed over a standard PC USB port through a
programming cable supplied with the Tool Kit. The BL4S200 and BL5S220 models may
also be programmed remotely using the Remote Program Update library with Dynamic C
v. 10.54 or later. See Application Note AN421, Remote Program Update, for more
information.

NOTE: BL4S200 Series single-board computers cannot be programmed via the RabbitLink.

Appendix A provides detailed specifications.

Table 1. BL4S200 Models

Feature BL4S200 BL4S210 BL5S220 BL4S230

Microprocessor Rabbit® 4000 running
at 58.98 MHz

Rabbit® 5000 running
at 73.73 MHz

Rabbit® 4000 running
at 29.49 MHz

Program Execution
SRAM

512KB — 512KB —

Data SRAM 512KB 512KB 512KB 512KB

Flash Memory (program)
512KB

(serial flash)
512KB

(parallel flash)
512KB

(parallel flash)
512KB

(parallel flash)

Flash Memory
(data storage)

supports
microSD™

Card
128MB–1GB

—
1MB

(serial flash)

Network Interface
10/100Base-T,

3 LEDs
10Base-T,
2 LEDs

Wi-Fi (802.11b/g)
ZigBee 2007

(802.15.4)

RabbitCore Module Used RCM4310 RCM4010 RCM5400W RCM4510W (ZB)

Visit the Web site for up-to-date information about additional add-ons and features as
they become available. The Web site also has the latest revision of this user’s manual.
BL4S200 User’s Manual 7

http://www.rabbit.com/products/CoreModules/
http://www.rabbit.com/

1.3 Development and Evaluation Tools

1.3.1 Tool Kit

A Tool Kit contains the hardware essentials you will need to use your own BL4S200 single-
board computer. These items are supplied in the Tool Kit.

• Getting Started instructions.

• Dynamic C CD-ROM, with complete product documentation on disk.

• USB programming cable, used to connect your PC USB port to the BL4S200.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z.,
U.K., and European style plugs).

• Stand-offs to serve as legs for the BL4S200 board during development.

• Demonstration Board with pushbutton switches and LEDs. The Demonstration Board
can be hooked up to the BL4S200 to demonstrate the I/O and capabilities of the
BL4S200.

• CAT 5/6 Ethernet crossover cable.

• Cable assemblies with Micro-Fit® connectors.

• Rabbit 4000 Processor Easy Reference and Rabbit 5000 Processor Easy Reference
posters.

• Screwdriver.

• Registration card.

Figure 1. BL4S200 Tool Kit

Rabbit, Dynamic C, and Digi are registered trademarks of Digi International Inc.
SD is a trademark of the SD Card Association.

BL4S200
The BL4S200 is a fully loaded series of single-board computers that feature built-in Ethernet, Wi-Fi, or
ZigBee network connectivity, configurable I/O, high-current outputs, RS-232 and RS-485 serial I/O, and
an A/D converter. These Getting Started instructions included with the Tool Kit will help you get your
BL4S200 up and running so that you can run the sample programs to explore its capabilities and develop
your own applications.

Tool Kit Contents
Getting Started instructions.

Dynamic C CD-ROM, with complete product documentation on disk.

USB programming cable, used to connect your PC USB port to the BL4S200.

Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and
European style plugs).

Digi® XBee USB (used as ZigBee coordinator for BL4S230 model).

Stand-offs to serve as legs for the BL4S200 board during development.

Demonstration Board with pushbutton switches and LEDs. The Demonstration Board can be
hooked up to the BL4S200 to demonstrate the I/O
and capabilities of the BL4S200.

Cable assemblies with Micro-Fit® connectors.

Screwdriver.

Rabbit 4000 Processor Easy Reference and Rabbit
5000 Processor Easy Reference posters.

Registration card.

Installing Dynamic C®

Insert the CD from the Development Kit in
your PC’s CD-ROM drive. If the installation
does not auto-start, run the set up.exe pro-
gram in the root directory of the Dynamic C
CD. Install any Dynamic C modules after you
install Dynamic C.
BL4S200 User’s Manual 8

1.3.2 Software

The BL4S200 is programmed using version 10.42 or later of Rabbit’s Dynamic C. A com-
patible version is included on the Tool Kit CD-ROM. This version of Dynamic C includes the
popular µC/OS-II real-time operating system, point-to-point protocol (PPP), FAT file
system, RabbitWeb, and the Rabbit Embedded Security Pack featuring the Secure Sockets
Layer (SSL) and a specific Advanced Encryption Standard (AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase. Visit our
Web site at www.digi.com for further information and complete documentation, or contact
your Rabbit sales representative or authorized distributor

1.3.3 Optional Add-Ons

Rabbit has available a Mesh Network Add-On Kit and additional tools and parts to help
you to make your own wiring assemblies with the friction-lock connectors.

• Mesh Network Add-On Kit (Part No. 101-1272)
 Digi® XBee USB (used as ZigBee coordinator)

 XBee Series 2 RF module

 RF Interface module

The XBee Series 2 RF module is installed on the RF Interface module, which can be
connected via an RS-232 serial connection to a Windows PC for setup. The Mesh
Network Add-On Kit enables you to explore the wireless capabilities of the BL4S230
model that offers a ZigBee network interface.

• Connector Cable Assemblies (Part No. 151-0153)—Two 2 × 5 friction-lock connectors
(3 mm pitch) assembled with wiring harness.

• Crimp tool (Part No. 998-0013) to secure wire in crimp terminals.

Visit our Web site at www.digi.com or contact your Rabbit sales representative or autho-
rized distributor for further information.
BL4S200 User’s Manual 9

http://www.digi.com/products/
http://www.digi.com/products/

1.4 RabbitNet Peripheral Cards

RabbitNet™ is an SPI serial protocol that uses a robust RS-422 differential signalling
interface (twisted-pair differential signaling) to run at a fast 1 Megabit per second serial
rate. BL4S200 single-board computers have two RabbitNet ports, each of which can sup-
port one peripheral card. Distances between a master processor unit and peripheral cards
can be up to 10 m or 33 ft.

The following low-cost peripheral cards are currently available.

• Digital I/O

• A/D converter

• D/A converter

• Relay card

• Display/Keypad interface

Appendix E provides additional information on RabbitNet peripheral cards and the Rab-
bitNet protocol. Visit our Web site for up-to-date information about additional add-ons and
features as they become available.
BL4S200 User’s Manual 10

http://www.rabbit.com/

1.5 CE Compliance

Equipment is generally divided into two classes.

These limits apply over the range of 30–230 MHz. The limits are 7 dB higher for frequen-
cies above 230 MHz. Although the test range goes to 1 GHz, the emissions from Rabbit-
based systems at frequencies above 300 MHz are generally well below background noise
levels.

The BL4S200 single-board computer has been tested and was found to
be in conformity with the following applicable immunity and emission
standards. The BL4S210, BL5S220, and BL4S230 single-board
computers are also CE qualified as they are sub-versions of the BL4S200
single-board computer. Boards that are CE-compliant have the CE mark.

Immunity

The BL4S200 series of single-board computers meets the following EN55024/1998
immunity standards.

• EN61000-4-3 (Radiated Immunity)

• EN61000-4-4 (EFT)

• EN61000-4-6 (Conducted Immunity)

Additional shielding or filtering may be required for a heavy industrial environment.

Emissions

The BL4S200 series of single-board computers meets the following emission standards.

• EN55022:1998 Class B

• FCC Part 15 Class B

Your results may vary, depending on your application, so additional shielding or filtering
may be needed to maintain the Class B emission qualification.

CLASS A CLASS B

Digital equipment meant for light industrial use Digital equipment meant for home use

Less restrictive emissions requirement:
less than 40 dB µV/m at 10 m
(40 dB relative to 1 µV/m) or 300 µV/m

More restrictive emissions requirement:
30 dB µV/m at 10 m or 100 µV/m
BL4S200 User’s Manual 11

1.5.1 Design Guidelines

Note the following requirements for incorporating the BL4S200 series of single-board
computers into your application to comply with CE requirements.

General

• The power supply provided with the Tool Kit is for development purposes only. It is the
customer’s responsibility to provide a CE-compliant power supply for the end-product
application.

• When connecting the BL4S200 single-board computer to outdoor cables, the customer
is responsible for providing CE-approved surge/lighting protection.

• Rabbit recommends placing digital I/O or analog cables that are 3 m or longer in a
metal conduit to assist in maintaining CE compliance and to conform to good cable
design practices.

• When installing or servicing the BL4S200, it is the responsibility of the end-user to use
proper ESD precautions to prevent ESD damage to the BL4S200.

Safety

• All inputs and outputs to and from the BL4S200 series of single-board computers must
not be connected to voltages exceeding SELV levels (42.4 V AC peak, or 60 V DC).

• The lithium backup battery circuit on the BL4S200 single-board computer has been
designed to protect the battery from hazardous conditions such as reverse charging and
excessive current flows. Do not disable the safety features of the design.

1.5.2 Interfacing the BL4S200 to Other Devices

Since the BL4S200 series of single-board computers is designed to be connected to other
devices, good EMC practices should be followed to ensure compliance. CE compliance is
ultimately the responsibility of the integrator. Additional information, tips, and technical
assistance are available from your authorized Rabbit distributor, and are also available on
our Web site at www.digi.com.
BL4S200 User’s Manual 12

http://www.digi.com/products/

1.6 Wi-Fi Certifications (BL5S220 Model only)

The systems integrator and the end-user are ultimately responsible for the channel range
and power limits complying with the regulatory requirements of the country where the end
device will be used. Dynamic C function calls and sample programs illustrate how this is
achieved by selecting the country or region, which sets the channel range and power limits
automatically. See Section 6.2.4.1 for additional information and sample programs dem-
onstrating how to configure an end device to meet the regulatory channel range and power
limit requirements.

Only RCM5400W modules bearing the FCC certification are certified for use in Wi-Fi
enabled end devices associated with the BL5S220 model, and any applications must have
been compiled using Dynamic C v. 10.40 or later. The certification is valid only for
RCM5400W modules equipped with the dipole antenna that is included with the modules,
or a detachable antenna with a 60 cm coaxial cable (Digi International part number
29000105). Changes or modifications to this equipment not expressly approved by Digi
International may void the user's authority to operate this equipment.

In the event that these conditions cannot be met, then the FCC certification is no longer
considered valid and the FCC ID can not be used on the final product. In these circum-
stances, the systems integrator or end-user will be responsible for re-evaluating the end
device (including the transmitter) and obtaining a separate FCC certification.

NOTE: Any regulatory certification is voided if the RF shield on the RCM5400W
module is removed.

1.6.1 FCC Part 15 Class B

The RCM5400W RabbitCore module has been tested and found to comply with the limits
for Class B digital devices pursuant to Part 15 Subpart B, of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interference in a residential
environment. This equipment generates, uses, and can radiate radio frequency energy, and
if not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If this equipment does cause harmful interfer-
ence to radio or television reception, which can be determined by turning the equipment
off and on, the user is encouraged to try and correct the interference by one or more of the
following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and the receiver.

• Connect the equipment into an outlet on a circuit different from that to which the
receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.
BL4S200 User’s Manual 13

Labeling Requirements (FCC 15.19)

If the FCC identification number is not visible when the module is installed inside another
device, then the outside of the device into which the module is installed must also display
a label referring to the enclosed module or the device must be capable of displaying the
FCC identification number electronically. This exterior label can use wording such as the
following: “Contains Transmitter Module FCC ID: VCB-E59C4472” or “Contains FCC
ID: VCB-E59C4472.” Any similar wording that expresses the same meaning may be used.

The following caption must be included with documentation for any device incorporating
the RCM5400W RabbitCore module.

1.6.2 Industry Canada Labeling

FCC ID: VCB-E59C4472

This device complies with Part 15 of FCC rules. Operation is
subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including
interference that may cause undesired operation.

Caution — Exposure to Radio-Frequency Radiation.

To comply with FCC RF exposure compliance requirements, for mobile
configurations, a separation distance of at least 20 cm must be maintained
between the antenna of this device and all persons.

This device must not be co-located or operating in conjunction with any
other antenna or transmitter.

7143A-E59C4472

This Class B digital apparatus complies with Canadian standard
ICES-003.

Cet appareil numérique de la classe B est conforme à la norme
NMB-003 du Canada.
BL4S200 User’s Manual 14

1.6.3 Europe

The marking shall include as a minimum:

• the name of the manufacturer or his trademark;

• the type designation;

• equipment classification, (see below).

NOTE: Manufacturers are recommended to declare the classification of their devices in
accordance with Table 2 and EN 300 440-2 [5] clause 4.2, as relevant. In particular,
where an SRD that may have inherent safety of human life implications, manufacturers
and users should pay particular attention to the potential for interference from other
systems operating in the same or adjacent bands.

Regulatory Marking

The equipment shall be marked, where applicable, in accordance with CEPT/ERC Rec-
ommendation 70-03 or Directive 1999/5/EC, whichever is applicable. Where this is not
applicable, the equipment shall be marked in accordance with the National Regulatory
requirements.

Receiver
Class

Risk Assessment of Receiver Performance

1
Highly reliable SRD communication media, e.g., serving human life
inherent systems (may result in a physical risk to a person).

2
Medium reliable SRD communication media, e.g., causing
inconvenience to persons that cannot be overcome by other means.

3
Standard reliable SRD communication media,e.g., inconvenience to
persons that can simply be overcome by other means.
BL4S200 User’s Manual 15

2. GETTING STARTED

Chapter 2 explains how to connect the programming cable and power supply to the
BL4S200.

2.1 Preparing the BL4S200 for Development

Position the BL4S200 as shown below in Figure 2. Attach the four stand-offs supplied
with the Tool Kit in the holes at the corners as shown.

Figure 2. Attach Stand-Offs to BL4S200 Board

The stand-offs facilitate handling the BL4S200 during development, and protect the bot-
tom of the printed circuit board against scratches or short circuits while you are working
with the BL4S200.

NOTE: If you ever need to remove the RabbitCore module, take care to keep the BL4S200
main boards and their corresponding RabbitCore modules paired since the RabbitCore
modules store calibration constants specific to the BL4S200 main board to which they
are plugged in. If you use a RabbitCore module from a different model in the BL4S200
series, your specific BL4S200 model may no longer operate as designed.

�������

��

��
�	
��

��
�

�

���
���

�� ��� ���
���

��

��

��

��
������

��

����

��
��
��

���

���

��� ���

���

���

���
���

���
��������

���

�� ��

�

��
�

��
�

�

�� ��

�

��
�

��
�

�

���
������

���
���
���

��
�

��
�

���
���
���

���
���
���

 �

��
�

��
�

��
�

���
���
���

���
���
���

��
�

��

��

��
�

��� � �

���

��
�

��
�

��
�

���
���

���

���
���
���

 �

��
�

��
�

��
�

���
���
���

����
���

 �

���

���

��

��
��

!� !�

���

��
�

��
�

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���
��

��

!�

��

��
��
��
��

��

��
��

��
��

�� ��

�

��
�

��
�

� �� ��

�

��
�

��
�

�

��
 �
"	
�#

$
	�
#

��
 �
"	
�#

$	
�#

�� �� �� ��

�� ��

��

���

���
���

��

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

��� ��� ���

���

��������	

����

��

��
��

���

��

����
!�

��
��

,��

�

�

������
��

��

��

��
��

��� �

���
���

���

���

���
!�

���

����

��� ����

��

���

���

���

��� !"��

�����

-�.

���

���

������

���

���

���
���

 �

���
���

���

��

���

���

���

�� ��

��

��� ���

��

 ��
���

���

���

������
���

���

���

����������	���
����

���

���
 �

����
����
����

������

����� ���

���

���

���
���

���

���
���

���

����

����

 � ��

��
/�

/�

���
���

 �

���
���
���
���
���
���
���
���
���

���
���
BL4S200 User’s Manual 16

2.2 BL4S200 Connections

1. Connect the programming cable to download programs from your PC and to program
and debug the BL4S200.

Connect the 10-pin PROG connector of the programming cable to header J1 on the
BL4S200’s RabbitCore module (the programming header is labeled J2 on the BL5S220
and BL4S230 models). Ensure that the colored edge lines up with pin 1 as shown. (Do not
use the DIAG connector, which is used for monitoring only.) Connect the other end of the
programming cable to an available USB port on your PC or workstation.

Figure 3. Programming Cable Connections

NOTE: Never disconnect the programming cable by pulling on the ribbon cable.
Carefully pull on the connector to remove it from the header.

Connect the other end of the programming cable to an available USB port on your PC or
workstation.

Your PC should recognize the new USB hardware, and the LEDs in the shrink-wrapped
area of the USB programming cable will flash — if you get an error message, you will
have to install USB drivers. Drivers for Windows XP are available in the Dynamic C
Drivers\Rabbit USB Programming Cable\WinXP_2K folder — double-click
DPInst.exe to install the USB drivers. Drivers for other operating systems are available
online at www.ftdichip.com/Drivers/VCP.htm.

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��
�
��

���
���
���

���
���
���

 �

�
��
�
��
�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��
�
��
�
��

���
���

���

���
���
���

 �

�
��
�
��
�
��

���
���
���

����
���

 �

���

���

��

�
��
�

!� !�

���

�
��
�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���
��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�"
	
�
#
$
	
�#

�
�

�"
	
�
#
$
	
�#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�
���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

�010*)2
)23)

�0
�
�

�
�
�

4
0*
(

�
�
	
�

�
"�
�

�	��	������
����

�
�
	
�

��
BL4S200 User’s Manual 17

http://www.ftdichip.com/Drivers/VCP.htm

2. Connect the power supply to header J5 on the BL4S200 as shown in Figure 4. Be sure
to match the latch mechanism with the top of the connector to header J5 on the
BL4S200 as shown. The Micro-Fit® connector will only fit one way.

Figure 4. Power Supply Connections

3. Apply power.

Once all the other connections have been made, you may connect power to the BL4S200.

First, prepare the AC adapter for the country where it will be used by selecting the plug.
The Tool Kit presently includes Canada/Japan/U.S., Australia/N.Z., U.K., and European
style plugs. Snap in the top of the plug assembly into the slot at the top of the AC adapter
as shown in Figure 4, then press down on the spring-loaded clip below the plug assembly
to allow the plug assembly to click into place. Release the clip to secure the plug assembly
in the AC adapter.

Plug in the AC adapter. The red LED next to the power connector at J5 should light up.
The BL4S200 is now ready to be used.

CAUTION: Unplug the power supply while you make or otherwise work with the connections
to the headers. This will protect your BL4S200 from inadvertent shorts or power spikes.

2.2.1 Hardware Reset

A hardware reset is done by unplugging the power supply, then plugging it back in, or by
pressing the RESET button located just below the RabbitCore module.
BL4S200 User’s Manual 18

2.3 Installing Dynamic C

If you have not yet installed Dynamic C version 10.42 (or a later version), do so now by
inserting the Dynamic C CD from the BL4S200 Tool Kit in your PC’s CD-ROM drive. If
autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation does not start, use the Windows Start | Run menu
or Windows Disk Explorer to launch setup.exe from the root folder of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

NOTE: If you have an earlier version of Dynamic C already installed, the default instal-
lation of the later version will be in a different folder, and a separate icon will appear on
your desktop.

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, create a new desktop icon that points to default.htm in the
docs folder, found in the Dynamic C installation folder. The latest versions of all docu-
ments are always available for free, unregistered download from our Web sites as well.

The Dynamic C User’s Manual provides detailed instructions for the installation of
Dynamic C and any future upgrades.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased any of the optional Dynamic C modules, install them after installing
Dynamic C. The modules may be installed in any order. You must install the modules in
the same directory where Dynamic C was installed.
BL4S200 User’s Manual 19

2.4 Starting Dynamic C

Once the BL4S200 is connected to your PC and to a power source, start Dynamic C by
double-clicking on the Dynamic C icon on your desktop or in your Start menu. Select
Store Program in Flash on the “Compiler” tab in the Dynamic C Options > Project
Options menu. Then click on the “Communications” tab and verify that Use USB to
Serial Converter is selected to support the USB programming cable. Click OK.

You may have to select the COM port assigned to the USB programming cable on your
PC. In Dynamic C, select Options > Project Options, then select this COM port on the
“Communications” tab, then click OK. You may type the COM port number followed by
Enter on your computer keyboard if the COM port number is outside the range on the
dropdown menu.

2.5 Run a Sample Program

You are now ready to test your set-up by running a sample program.

Use the File menu to open the sample program PONG.C, which is in the Dynamic C
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO
window will open on your PC and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 5.2.3, “Run the PINGME.C Demo,” tests the TCP/IP portion of the board.

2.5.1 Troubleshooting

If you receive the message No Rabbit Processor Detected, the programming cable
may be connected to the wrong COM port, a connection may be faulty, or the target sys-
tem may not be powered up. First, check to see that the red power LED next to header J5
is lit. If the LED is lit, check both ends of the programming cable to ensure that it is firmly
plugged into the PC and the programming header on the BL4S200 with the marked (col-
ored) edge of the programming cable towards pin 1 of the programming header. Ensure
that the module is firmly and correctly installed in its connectors on the BL4S200 board.

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load a sample program, it is possible that your
PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

• Locate the Serial Options dialog on the “Communications” tab in the Dynamic C
Options > Project Options menu. Select a slower Max download baud rate. Click OK
to save.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog on the “Communications” tab in the Dynamic C
Options > Project Options menu. Choose a lower debug baud rate. Click OK to save.

Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. You should receive a Bios
compiled successfully message once this step is completed successfully.
BL4S200 User’s Manual 20

2.6 Run a Wi-Fi Sample Program (BL5S220 only)

Find the WIFISCAN.C sample program in the Dynamic C Samples\WiFi folder, open it
with the File menu, then compile and run the sample program by pressing F9.

The Dynamic C STDIO window will display Starting scan...., and will display a list
of access points/ad-hoc hosts as shown here.

The following fields are shown in the Dynamic C STDIO window.

• Channel—the channel the access point is on (1–11).

• Signal—the signal strength of the access point.

• MAC—the hardware (MAC) address of access point.

• Access Point SSID—the SSID the access point is using.
BL4S200 User’s Manual 21

2.7 Run a ZigBee Sample Program (BL4S230 only)

This section explains how to run a sample program in which the BL4S230 is used in its
default setup as a router and the Digi® XBee USB is used as the ZigBee coordinator.

1. Connect the Digi® XBee USB acting as a ZigBee coordinator to an available USB port
on your PC or workstation. Your PC should recognize the new USB hardware.

2. Find the file AT_INTERACTIVE.C, which is in the Dynamic C SAMPLES\XBee folder.
To run the program, open it with the File menu, then compile and run it by pressing F9.
The Dynamic C STDIO window will open to display a list of AT commands. Type
MENU to redisplay the menu of commands.

Appendix F provides additional configuration information if you experience conflicts
while doing development simultaneously with more than one ZigBee coordinator, or if you
wish to upload new firmware.

���������	�
	�������	����
�	��
���������������	�
���������������������
������������������������������������ ��!�	��"���
�����������	�����	������������������	��
��#����$���	���������������%�&�#���#"�'	�����������#��'	�
���������������������	��	��(����������	'�)*��*+����
�������������������������	���	"�����)*&�*+�
��,%������������	��������%�&�#��
��-.����������������������	��������������� ��/01112
��������"��������	�����	������������������	��
��$������������������"	�� '����	"��������	�#222��������
��$3�������������	���"	�� '����	"��������	�#222��������
��&#���$���	���������&	���#�����"���
��4����$���	�����������0�������� ��	"�4	��������	���
��&����$���	���������&	�������	(�'�����	���(�����)���/�5�+�
��$����$���	��������������	"�����������	�����������
�������(���������� ���"����������
��$����$���	���������������������������	��(�����
��&6���$���	���������&	���6	�����������(�����
���#���������������	�����	��#������	����!�	�(����
����������������������	������������������	��
��%3���$���	������������������	���	�����(���
��7����������������	��	"�����(���	����� ��
���7���������������	��������(���	����� ��

-2&8���������'�����������)�	���������	������+

7������	������"	�����)�����"�0����	���	���9��������	�����+:

;��<���/0======�)�����======��������(������ ��	"���0�����������������+
;��<���....�)�����....�������������9�����	�>?� ���+
;��<&#�*&	���#��$����*�)�����@�	�����	����������������+

2��������	�����:
BL4S200 User’s Manual 22

2.8 Where Do I Go From Here?

NOTE: If you purchased your BL4S200 through a distributor or Rabbit partner, contact
the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.digi.com/support/ and
at www.digi.com/support/forums/.

• Use the Technical Support e-mail form at www.digi.com/support/.

If the sample program ran fine, you are now ready to go on to explore other BL4S200
features and develop your own applications.

When you start to develop your application, run USERBLOCK_READ_WRITE.C in the
SAMPLES\UserBlock folder to save the factory calibration constants before you run any
other sample programs in case you inadvertently write over them while running another
sample program.

Chapter 3, “Subsystems,” provides a description of the BL4S200’s features, Chapter 4,
“Software,” describes the Dynamic C software libraries and introduces some sample
programs, and Chapter 5, “Using the Ethernet TCP/IP Features,” explains the TCP/IP fea-
tures.
BL4S200 User’s Manual 23

http://www.digi.com/support/
http://www.digi.com/support/forum/
http://www.digi.com/support/

3. SUBSYSTEMS

Chapter 3 describes the principal subsystems for the BL4S200.

• Digital I/O

• Serial Communication

• A/D Converter Inputs

• D/A Converter Outputs

• Analog Reference Voltages Circuit

• Memory

Figure 5 shows these Rabbit-based subsystems designed into the BL4S200.

Figure 5. BL4S200 Subsystems

SRAM

microSD

Card

Program

Flash

SRAM

Network 32 kHz

osc

58.98 MHz

osc

optional

RabbitCore Module

Battery-Backup

Circuit

RABBIT
4000/5000

D/A

Converter

A/D

Converter

RabbitNet

RS-485

RS-232

Data

Register

High-Current

Outputs

Data

Register

Configurable

I/O

RABBIT

RIO
x3
BL4S200 User’s Manual 24

3.1 BL4S200 Pinouts

The BL4S200 pinouts are shown in Figure 6.

Figure 6. BL4S200 Pinouts

��

���

���

���

��

��

��

��

��

��

��

���

�'(()*+

�
��

�
�
�

��

�

�
�
�

�
�
�

��

�

��
�
%

��
�
%�������
�

�
�������
�

�

�
����

�
��
�

�
�
�
�

�
	

�
�

�
"�
�

�
"�
�

�
�
�
�

�
"�
�

�
"�
�

�
	

�
�

�
�
�
�

�
"�
�

�
"�
�

�
"�
�

�
"�
�

�
�
�
�

�
��

�
��
��

�� ������
� !

�
��

�
�
�

5
6

��
��

�
�
�

�
�
�7
�
.
-

8

�
�
�7
�
.
�

8

�
�
�

��
�&

�
�
�

��
�

��
��

�

��
�

��
��

�

�
��

�� �"#��$
�"#���

�
��

�
�
�

�
��

��

�
�
�

�
"	
�

�
"	
�

�
"	
�

�
"	
�

��
�

�
"	
�

�
"	
�

�
"	
�

�
"	
�

%
�
	��#
�	&�'

� !

�
��

�
�
�

��
�

�
"	
�

�
"	
��

�
"	
��

�
"	
��

�
�
�

�
"	
�

�
"	
��

�
"	
��

�
"	
��

�
��

��
%
�
	��#
�	&�'

� !

�$

��
�

$
	

�
�

5
6

��
�

$
	

�
�

�
�
�

$
	

�
�

5
6

�
�
�

$
	

�
�

�
��

�
�
�

�
��

��
(��)#

�		
��
!�&�'

��
�

$
	

�
�

5
6

��
�

$
	

�
�

�
�
�

$
	

�
�

5
6

�
�
�

$
	

�
�

�
��

�
�
�

�
��

��
(��)#

�		
��
!�&�'

��
�

�
"	
��

�
"	
��

�
"	
��

�
"	
��

�
�
�

�
"	
��

�
"	
��

�
"	
��

�
"	
��

�
��

�
�
�

�
��

��
%
�
	��#
�	&�'

� !

��
�

�
"	
��

�
"	
��

�
"	
��

�
"	
��

�
�
�

�
"	
��

�
"	
��

�
"	
��

�
"	
��

�
��

�
�
�

�
��

��
%
�
	��#
�	&�'

� !

�
��

�

5
6

�
�
�

5
6

��
�
%

�
��

�
�
�

5
6

��
��

�
�
�

�
�
�7
�
.
�

�
�
�

��
�&

�
�
�

��
�

��
�

�
��

��

�)*9'1
�0*(:
�
'52
-
'*)
50(
'�'91';1)
05
�!�����

8

*+�"���

�������
�
��,
	
"&&�-

��,
	
"&&�-

�� �
�

�
�

�
��

�
�

�
�

��

!�

��
��

,�
�

�

�

�
��

�
��

�� ��
��

�� ��

���

 �

���

�
��

�
��

���

��� !��
��

����

�
��

 �
���

��

���

�
��

���

���

!"
�
�

�
�
�
�
�

-�.

���

�
�
�

������ �
��

���
��� ���

 �

�
��

�
��

�
��

�� ���

���

�
��

��
��

��

�
�
�

�
��

��

 ��
���

������

���
���
��� �

��

���

��
���

��
��

�	
��

�

��

��

���

��� �

��
��

��
��

��
��

�
��

�
��

��

��
�

���

���
���

��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

 �
�� �� /� /�

�
��
�
��

 � ���
���
���
���
���
���
���
���
���

�
��
�
��
BL4S200 User’s Manual 25

3.1.1 Connectors

Standard BL4S200 models are equipped with seven polarized 2 × 5 Micro-Fit® connectors
(J1–J4 and J9–J11), one polarized 2 × 7 Micro-Fit® connector (J12), and one polarized
2 × 3 connector at J7 to supply power (DCIN and +5 V) to up to two RabbitNet periph-
eral expansion boards. The polarized 2 × 2 Micro-Fit® connector at J5 is for the main
power supply connections.

The RJ-45 jacks at J6 and J8 labeled RabbitNet are serial I/O expansion ports for use with
RabbitNet peripheral expansion boards. The RabbitNet jacks do not support Ethernet con-
nections. Be careful to make your Ethernet connection to the Ethernet jack on the Rab-
bitCore module (note that the wireless BL5S220 and BL4S230 models do not have an
Ethernet port).

Table 2 lists Molex connector part numbers for the crimp terminals, and housings needed to
assemble male Micro-Fit® connector assemblies for use with their female counterparts on
the BL4S200.

Table 2. Male Micro-Fit® Connector Parts

Micro-Fit®
Connector

Used with
BL4S200

connectors

Molex Housing
Part Number

Molex
Crimp Terminals

3 mm 2 × 2 J5 0430250400

0430300001 (bronze contacts)

0430300007 (tin/brass contacts)

3 mm 2 × 3 J7 0430250600

3 mm 2 × 5 J1–J4, J9–J11 0430251000

3 mm 2 × 7 J12 0430251400
BL4S200 User’s Manual 26

3.2 Digital I/O

3.2.1 Configurable I/O

3.2.1.1 Digital Inputs

The BL4S200 has 32 configurable I/O, DIO0–DIO31, each of which may be configured
individually in software as either digital inputs or as sinking digital outputs. By default, a
configurable I/O channel is a digital input, but may be set as a sinking digital output by
using the setDigOut() function call. The inputs are factory-configured to be pulled up
to +5 V, but they can also be pulled up to +K or DCIN, or pulled down to 0 V in banks by
changing a jumper as shown in Figure 7.

Figure 7. BL4S200 Configurable I/O DIO0–DIO31

CAUTION: Do not simultaneously jumper more than one setting on a particular
jumper header (JP9, JP8, JP1, and JP2) when configuring a bank of configurable I/O.

���
<�

��
<�

��
� ���

"��.��%
!/0�/0

��
<�

���
�

1�%�0�+
���/0

�"	�&�"	��

2�3��	-
1
4���
'
�����

���

���

���
�

"��5���6!�&�
'
�����

��
� ���

����	
����
BL4S200 User’s Manual 27

Table 3 lists the banks of configurable I/O and summarizes the jumper settings.

Table 3. Banks of BL4S200 Digital Inputs

Digital Inputs
Configuration

Header
Pins Jumpered Pulled Up/Pulled Down

DIO0–DIO7 JP9 1–2 Inputs pulled up to +Kx

DIO8–DIO15 JP8 3–4 Inputs pulled up to +5 V

DIO16–DIO23 JP1 5–6 Inputs pulled down to GND

DIO24–DIO31 JP2 7–8 Inputs pulled up to + 3.3 V

The actual switching threshold is approximately
1.40 V. Anything below this value is a logic 0,
and anything above 1.90 V is a logic 1. The con-
figurable I/O are each fully protected over a
range of 0 V to +36 V, and can handle short
spikes from -5 V to +40 V.

NOTE: If the inputs are pulled up to +Kx, the
voltage range over which the digital inputs
are protected changes to 5 V - Kx to +36 V.

Figure 8. BL4S200 Digital Input
Protected Range

CAUTION: Do not allow the voltage on a configurable I/O pin to exceed +Kx to
avoid damaging the input.

���
�

���
�

���
�

&�
�

��	���6",��3)���
+
7
�'

"&�5
'

1
��

��
��

6��
&

�6

8
�

��
��

"&�5
'

"&�5
'
BL4S200 User’s Manual 28

3.2.1.2 Sinking Digital Outputs

When you configure a configurable I/O
pin as a sinking output, be sure to con-
nect an external voltage source up to
36 V DC across the corresponding
+Kx and GND on connector J1, J2, J9,
or J10, and set the pullup jumper on
the corresponding JP1/JP2/JP8/JP9
header to +Kx.

Table 4 lists the banks of configurable
I/O and the corresponding +Kx.

Figure 9. Load and +K Power Supply
Connections for Sinking Digital Output

Table 4. BL4S200 Sinking Outputs

Digital Inputs +Kx
Configuration

Header
Pins

Jumpered
Pulled Up/Pulled Down

DIO0–DIO7 KA on J10 JP9 1–2 I/O pulled up to +Kx

DIO8–DIO15 KB on J9 JP8 3–4
Do not use these options for a

sinking output.
DIO16–DIO23 KC on J1 JP1 5–6

DIO24–DIO31 KD on J2 JP2 7–8

CAUTION: Do not simultaneously jumper more than one setting on a particular
jumper header (JP9, JP8, JP1, and JP2) when configuring a bank of configurable I/O.

CAUTION: Do not allow the voltage on a configurable I/O pin to exceed +Kx to
avoid damaging the input.

"��5���6!�&�
'
�����

��
� ���

��������

����
=���
>�
>'?@

��9

���
BL4S200 User’s Manual 29

3.2.1.3 Configurable I/O Special Uses

Individual configurable I/O pins may be used for interrupts, input capture, as quadrature
decoders, or as PWM outputs. The use of these channels for PWM, interrupts, input cap-
ture, and as quadrature decoders is described in the Rabbit RIO User’s Manual.

Blocks of configurable I/O pins are associated with counters/timers on the three Rabbit RIO
chips that support them. Table 5 provides complete details for these associations.

Configurable I/O pins DIO30 and DIO31 fully support all input-associated special uses
such as interrupts and input captures, but otherwise they are limited to function only as
regular digital I/O pins because their outputs are latch-driven since sufficient Rabbit RIO
resources are not available to support their use for specialized outputs.

Appendix D provides further details on the blocks and pins associated with each Rabbit
RIO chip to facilitate configuring each block consistently and to identify misconfigured
pins when a software function call returns a Mode Conflict error code.

Table 5. Counter/Timer Associations for BL4S200 Configurable I/O Pins

Configurable I/O
Pin(s)

Counter/Timer
Blocks

RIO Chip Index

DIO0–DIO3
4 (outputs)
5 (inputs)

0 (U8)

DIO4–DIO7
0 (outputs)
1 (inputs)

1 (U7)

DIO8–DIO11
2 (outputs)
3 (inputs)

1 (U7)

DIO12–DIO15
4 (outputs)
5 (inputs)

1 (U7)

DIO16–DIO17 0 (I/O) 2 (U9)

DIO18–DIO19 1 (I/O) 2 (U9)

DIO20–DIO21 2 (I/O) 2 (U9)

DIO22–DIO23 3 (I/O) 2 (U9)

DIO24–DIO25 4 (I/O) 2 (U9)

DIO26–DIO27 5 (I/O) 2 (U9)

DIO28
6 (output)
7 (input)

0 (U8)

DIO29
6 (output)
7 (input)

1 (U7)

DIO30 6 (input only) 2 (U9)

DIO31 7 (input only) 2 (U9)
BL4S200 User’s Manual 30

Keep the following guidelines in mind when selecting special uses for the remaining con-
figurable I/O pins.

• Interrupts, event counters, and input capture are available on any configurable I/O pin.

• Each Quadrature Decoder channel requires at least two configurable I/O pins associ-
ated with the same counter/timer block; three configurable I/O pins associated with the
same counter/timer block are needed if you need indexing.

• When using configurable I/O pins for PWM outputs, they can only share the same RIO
block if they are using the same period or frequency. Depending on the pin(s) selected,
from one to four PWM outputs could operate based on the same counter block.
Remember to set the corresponding jumper (Table 4) so that the I/O for that bank are
pulled up to the selected voltage. The output voltage swing will be from 0 to the voltage
you selected\.

The sample program PWM.C in the DIO subdirectory in SAMPLES\BLxS2xx shows
how to set up and use the PWM outputs.

• Configurable I/O have their own set of function calls. These function calls will only
work with configurable I/O. High-current outputs have their own function calls that end
with _H.

See Appendix D for additional information about the Rabbit RIO pin associations and
how to select which special functionality to best apply to a particular pin.
BL4S200 User’s Manual 31

Interrupt, Counter, and Event Capture Setup

External interrupts on the BL4S200 configurable I/O pins are configured using the
setExtInterrupt() function call. The interrupt can be set up to occur on a rising edge,
a falling edge, or either edge.

The counter readings can be obtained via the getBegin() or getEnd() function calls.

An input channel may be set up to count
events, with the count incrementing or
decrementing, using the rising edge, fall-
ing edge, or either edge as triggers to start/
end the count. This feature is configured
using the setCounter() function call.

A more extensive use of the timing abilities
of the BL4S200 configurable I/O can be
realized through the event capture function
call, setCapture(). Here the count of a
particular clock cycle is noted at the start of
the event and at the end of the event so that
the time between them can be determined.
This can be set up on one or two configu-
rable I/O channels. The event counter can
be reset with the resetCounter() func-
tion call.

���		
��

�)395
�0A5(

�52
�0A5(

���		
���

�('*(
��)5(

�52
��)5(
BL4S200 User’s Manual 32

PWM/PPM Outputs Setup

PWM and PPM outputs on the BL4S200 configurable I/O are configured using the set-

PWM() and setPPM() function calls. PWM and PPM outputs on the BL4S200 high-cur-

rent outputs are configured using the setPWM_H() and setPPM_H() function calls.

A PWM output is described as noninverted
when it starts high, remains high for a duty
cycle that is a fraction of the period, then
goes low for the remainder of the period.

Similarly, an inverted PWM output starts
low, remains low for a duty cycle that is a
fraction of the period, then goes high for
the remainder of the period.

A PWM output is normally set up to start
when triggered by an event, and may be
set up so that the leading and trailing edges
of several PWM outputs are aligned as
long as the all the PWM outputs are on the
same block of a particular Rabbit RIO
chip.

A PPM ouput is similar to a PWM output,
except it is shifted by an offset relative to
the event that triggered the start of the
PPM output.

A PPM output is either inverted or nonin-
verted, based on whether it starts high or
low, and may be set up so that their lead-
ing and trailing edges of several PPM out-
puts are aligned as long as the all the PPM
outputs are on the same block of a particu-
lar Rabbit RIO chip

�)*902

�A(+
�+61)

�	�
��
�

��	�	�
��
�

�:�
!/0�/0

�)*902

�A(+
�+61)

�����
�

���
!/0�/0

	BB:)(
BL4S200 User’s Manual 33

3.2.2 High-Current Digital Outputs

The BL4S200 has eight high-current digital outputs, HOUT0–HOUT7, which can each
sink or source up to 2 A. Figure 10 shows a wiring diagram for using the digital outputs in
either a sinking or a sourcing configuration.

Figure 10. BL4S200 High-Current Outputs

All the digital outputs sink and source actively. They can be used as high-side drivers, low-
side drivers, or as an H-bridge driver. When the BL4S200 is first powered up or reset, all
the outputs are disabled, that is, at a high-impedance tristate.

Each bank of four high-current output has its own +K supply, as shown in Table 6. When
wiring the high-current outputs, keep the distance to the power supply as short as possible.

Table 6. BL4S200 High-Current Outputs

High-Current Outputs +Kx Connector

HOUT0–HOUT3 K1 J3

HOUT4–HOUT7 K2 J4

For the H bridge, which is shown in Figure 11,
Ka and Kb should be the same. This is most
easily accomplished by using outputs from the
same bank on one connector.

Figure 11. H Bridge

��' ��;

!	��

�

�

�

�

BL4S200 User’s Manual 34

High-current outputs have their own function calls for control (digOut_H() and
digOutTriState_H()) and to set up the PWM and PPM outputs. All function calls that
work with high-current outputs end with _H — do not confuse these function calls with
their configurable I/O counterparts. The digOutConfig_H() function call configures the
high-current outputs as two state outputs with either sinking or sourcing drivers. The
digOutTriStateConfig_H() function call configures the high-current outputs as
tristate drivers with both sinking and sourcing capability.
BL4S200 User’s Manual 35

3.3 Serial Communication

The BL4S200 has up to three serial communication ports, one RS-485 channel, and either
one RS-232 serial channel (with RTS/CTS) or two RS-232 (3-wire) channels. Table 7
summarizes the serial ports.

Two RabbitNet™ expansion ports are multiplexed from Serial Port D. The BL4S200 also
has one CMOS serial channel that serves as the programming port.

All three serial ports operate in an asynchronous mode. An asynchronous port can handle
7 or 8 data bits. A 9th bit address scheme, where an additional bit is sent to mark the first
byte of a message, is also supported. Serial Port A, the programming port, can be operated
alternately in the clocked serial mode. In this mode, a clock line synchronously clocks the
data in or out. Either of the two communicating devices can supply the clock. The BL4S200
boards supports standard asynchronous baud rates from 3.7 Mbps to 9.2 Mbps, depending
on the frequency the Rabbit microprocessor on a particular model is operating at.

3.3.1 RS-232

The BL4S200 RS-232 serial communication is supported by an RS-232 transceiver. This
transceiver provides the voltage output, slew rate, and input voltage immunity required to
meet the RS-232 serial communication protocol. Basically, the chip translates the Rabbit
microprocessor’s CMOS signals to RS-232 signal levels. Note that the polarity is reversed
in an RS-232 circuit so that a +3.3 V output becomes approximately -10 V and 0 V is out-
put as +10 V. The RS-232 transceiver also provides the proper line loading for reliable
communication.

RS-232 can be used effectively at the BL4S200’s maximum baud rate for distances of up
to 15 m.

3.3.2 RS-485

The BL4S200 has one two-wire RS-485 serial channel, which is connected to Serial Port C
through an RS-485 transceiver. This port operates in a half-duplex communication mode,
which requires directional control on the communication line.

Table 7. Serial Communication Configurations

BL4S200
Model

Serial Port

B C E F

BL4S200 — RS-485
RS-232

(PD6/PD7)
RS-232

(PD2/PD3)

BL4S210 RS-232 RS-485 — —

BL5S220 — RS-485
RS-232

(PD6/PD7)
RS-232

(PD2/PD3)

BL4S230 — RS-485
RS-232

(PD6/PD7)
RS-232

(PD2/PD3)
BL4S200 User’s Manual 36

The BL4S200 can be used in an RS-485 multidrop network. Connect the 485+ to 485+
and 485– to 485– using single twisted-pair wires (nonstranded, tinned) as shown in
Figure 12. Note that a common ground is recommended.

Figure 12. BL4S200 Multidrop Network

The BL4S200 comes with a 220 termination resistor and two 681 bias resistors
installed and enabled with jumpers across pins 1–2 and 5–6 on header JP7, as shown in
Figure 13.

Figure 13. RS-485 Termination and Bias Resistors

�
�
C�
��
&

�
�
��
��

�
�
�

�
�
C�
��
&

�
�
��
��

�
�
�

�
�
C�
��
&

�
�
��
��

�
�
�

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��
�
��

���
���
���

���
���
���

 �

�
��
�
��
�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���

�

�

�

�

���
���
�

���
���
�

���
���
�

����

���&

�

�

������
�	��
�

��	�

��	�

 �� ���
��

��

�

�

2�3��	-
1
4���
BL4S200 User’s Manual 37

For best performance, the bias and termination resistors in a multidrop network should
only be enabled on both end nodes of the network. Disable the termination and bias resis-
tors on any intervening BL4S200 units in the network by removing both jumpers from
header JP6.

TIP: Save the jumpers for possible future use by “parking” them across pins 1–3 and 4–6
of header JP7. Pins 3 and 4 are not otherwise connected to the BL4S200.

3.3.3 Programming Port

The RabbitCore module on the BL4S200 has a 10-pin programming header. The program-
ming port uses the Rabbit 4000 or Rabbit 5000 Serial Port A for communication, and is
used for the following operations.

• Programming/debugging

• Cloning

The programming port is used to start the BL4S200 in a mode where the BL4S200 will
download a program from the port and then execute the program. The programming port
transmits information to and from a PC while a program is being debugged.

The Rabbit 4000 or Rabbit 5000 startup-mode pins (SMODE0, SMODE1) are presented
to the programming port so that an externally connected device can force the BL4S200 to
start up in an external bootstrap mode. The BL4S200 can be reset from the programming
port via the /EXT_RSTIN line.

The Rabbit microprocessor status pin is also presented to the programming port. The status
pin is an output that can be used to send a general digital signal.

NOTE: Refer to the Rabbit 4000 Microprocessor User’s Manual and the Rabbit 5000
Microprocessor User’s Manual for more information related to the bootstrap mode.
BL4S200 User’s Manual 38

3.3.4 Ethernet Port

Figure 14 shows the pinout for the Ethernet port (J2 on the BL4S200 modules that support
Ethernet networking). Note that there are two standards for numbering the pins on this con-
nector—the convention used here, and numbering in reverse to that shown. Regardless of
the numbering convention followed, the pin positions relative to the spring tab position
(located at the bottom of the RJ-45 jack in Figure 14) are always absolute, and the RJ-45
connector will work properly with off-the-shelf Ethernet cables.

Figure 14. RJ-45 Ethernet Port Pinout

Three LEDs are placed next to the RJ-45 Ethernet jack on the BL4S200 model, one to
indicate Ethernet link/activity (LINK/ACT), one to indicate when the BL4S200 is con-
nected to a functioning 100Base-T network (SPEED), and one (FDX/COL) to indicate that
the current connection is in full-duplex mode (steady on) or that a half-duplex connection
is experiencing collisions (blinks).

Two LEDs are placed next to the RJ-45 Ethernet jack on the BL4S210 model, one to indi-
cate an Ethernet link (LNK) and one to indicate Ethernet activity (ACT).

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

��������

��#�$6���

�

�7�?�
�

�7�?&
�

�7�?�
�

�7�?&

� �

��#�$6��35
BL4S200 User’s Manual 39

3.4 A/D Converter Inputs

The single A/D converter chip used in the BL4S200 has a resolution of 12 bits (11 bits for
the value and one bit for the polarity). The A/D converter chip has a programmable ampli-
fier. Each external input has circuitry that provides scaling and filtering. All 8 external
inputs are scaled and filtered to provide the user with an input impedance of 1 M and a
variety of single-ended unipolar, single-ended bipolar, and differential bipolar ranges as
shown in Table 8.

Figure 15 shows a pair of A/D converter input circuits. The resistors form an approx. 10:1
attenuator, and the capacitors filter noise pulses from the A/D converter inputs.

Figure 15. Buffered A/D Converter Inputs

The A/D converter chip can only accept positive voltages. By pairing the analog inputs and
setting the reference voltage from the D/A converter, single-ended unipolar, single-ended
bipolar, differential bipolar, or current (4–20 mA on channels 0–3 only) measurements are
possible, and can be configured for each channel or channel pair with the opmode parame-
ter in the anaInConfig() software function call. Adjacent A/D converter inputs AIN4–
AIN7are paired to make bipolar measurements. The available voltage ranges are listed in
Table 8.

�1�
������

��
4-

�"��

����

�"��

��
4-

�)B
�01('3)
B*0>
�D�
�05�)*()*

������

������

������
BL4S200 User’s Manual 40

In the differential mode, each individual channel is limited to half the total voltage—for
example, the range for a gain code of 1 is ±20 V, but each channel is limited to ±10 V.

The A/D converter inputs are factory-calibrated, and the calibration constants are stored in
the user block.

When you start to develop your application, run USERBLOCK_READ_WRITE.C in the
SAMPLES\UserBlock folder to save the factory calibration constants in case you inad-
vertently write over them while running the sample programs.

Table 8. A/D Converter Input Voltage Ranges

Amplifier

Gain

Voltage Range

Single-Ended
Unipolar

Single-Ended
Bipolar

Differential
Bipolar

1 0–20 V ±10 V ± 20 V

2 0–10 V ±5 V ± 10 V

4 0–5 V ±2.5 V ± 5 V

5 0–4 V ±2 V ± 4 V

8* 0–2.5 V ±1.25 V ± 2.5 V

10 0–2 V ±1 V ± 2 V

16 0–1.25 V ±0.625 V ± 1.25 V

20 0–1 V ±0.5 V ± 1 V

* 4–20 mA operation is available with an amplifier gain of 8

When using channels AIN0–AIN3 for current
measurements, remember to set the corre-
sponding jumper(s) on header JP4. The current
measurements are realized by actually measur-
ing the voltage drop across a 100 resistor.
You may substitute a different resistor value as
shown in Figure 16.

Figure 16. Analog Current Measurements

CAUTION: If you are using a supply voltage of +10 V DC for the 4–20 mA current
measurements, do not exceed 500 for these resistors.

���
�

���
�"��
�"��
�"��
�"��

�?'>41)
0B
'22953
+0A*
0E5
):9:(0

1�6���6;�&
	
���6��6�)�'63�'

�&&�-6;�&
	'
4�	64�3��	-#�
4���
3		
��6�
�'	
�
��'
BL4S200 User’s Manual 41

3.4.1 A/D Converter Calibration

To get the best results form the A/D converter, it is necessary to calibrate each mode
(single-ended, differential, and current) for each of its gains. It is imperative that you cali-
brate each of the A/D converter inputs in the same manner as they are to be used in the
application. For example, if you will be performing floating differential measurements or
differential measurements using a common analog ground, then calibrate the A/D con-
verter in the corresponding manner. The calibration table in software only holds calibra-
tion constants based on mode, channel, and gain. Other factors affecting the calibration must
be taken into account by calibrating using the same mode and gain setup as in the intended use.

Sample programs are provided to illustrate how to read and calibrate the various A/D
inputs for the three operating modes.

These sample programs are found in the ADC subdirectory in SAMPLES\BLxS2xx. See
Section 4.2.3 for more information on these sample programs and how to use them.

Mode Read Calibrate

Single-Ended, unipolar AD_RD_SE_UNIPOLAR.C ADC_CAL_SE_UNIPOLAR.C

Single-Ended, bipolar AD_RD_SE_BIPOLAR.C ADC_CAL_SE_BIPOLAR.C

Differential, bipolar AD_RD_DIFF.C ADC_CAL_DIFF.C

Milli-Amp AD_RD_MA.C ADC_CAL_MA.C
BL4S200 User’s Manual 42

3.5 D/A Converter Outputs

The two D/A converter outputs are buffered and scaled to provide an output from 0 V to
+10 V (12-bit resolution) or ±10 V (11-bit resolution, one bit used for polarity). The selec-
tion is made via jumpers on header JP3 for AOUT0 and via JP6 for AOUT1. There is also
the option to select either D/A converter output as a 4–20 mA current output via jumpers
on header JP5. Figure 17 shows the D/A converter outputs.

Figure 17. D/A Converter Outputs

Table 9 summarizes the jumper settings to configure each D/A converter output. Note that
the software configuration requires both channels to be configured the same way.

Table 9. D/A Converter Jumper Configurations

D/A Converter Output JP3 JP5 JP6

AOUT0

0 to +10 V (default)
1–2
3–4

1–3 —

±10 V 5–6 1–3 —

4–20 mA — 3–5 —

AOUT1

0 to +10 V (default) — 2–4
1–2
3–4

±10 V — 2–4 5–6

4–20 mA — 4–6 —

���
<�

��
<�

�	 ��

����

���
�
*)B

����
�
*)B
��
<�

�	 ��

���
�
*)B

���
<�

���
<�

��
<�

��
<�

�	 ��

�	 ��

1��

������

�������

����
	�
�������

���
F-

��
�

C��
���
4-

���
<�

���

��
�

��
�
BL4S200 User’s Manual 43

To stay within the maximum power dissipation of the D/A converter circuit, the maximum
D/A converter output current is 10 mA per channel for the voltage outputs. If you are
using the current outputs, keep the resistance driven by a current output channel above
1 k to stay within the voltage compliance capability of the op-amp output circuit.

As Figure 17 shows, both the voltage and the current outputs for a particular channel are
driven by the same output on the D/A converter chip. As a result, either the anaOut-
Volts() or the anaOutmAmps() function calls will set both the voltage and the current
outputs corresponding to a particular channel. Pay attention to which function call you use
to set the D/A converter output — setting a current level using voltage function calls will
not produce a correctly calibrated output.

The D/A converter outputs are factory-calibrated and the calibration constants are stored in
the user block.

3.5.1 D/A Converter Calibration

To get the best results form the D/A converter, it is necessary to calibrate each mode (uni-
polar, bipolar, and current) that you intend to use. It is imperative that you calibrate each
of the D/A converter outputs in the same manner as they are to be used in the application.
The calibration table in software only holds calibration constants based on unipolar, bipo-
lar, and voltage or current operation. Other factors affecting the calibration must be taken into
account by calibrating using the same mode and voltage/current setup as in the intended use.

Sample programs are provided to illustrate how to calibrate the various D/A outputs for
the three operating modes.

These sample programs are found in the DAC subdirectory in SAMPLES\BLxS2xx. See
Section 4.2.4 for more information on these sample programs and how to use them.

Mode Calibrate

Voltage DAC_CAL_VOLTS.C

Current DAC_CAL_MA.C
BL4S200 User’s Manual 44

3.6 Analog Reference Voltages Circuit

Figure 18 shows the analog voltage reference circuit.

Figure 18. Analog Reference Voltages

The A/D converter chip supplies the 2.5 V reference voltage, which is then amplified and
buffered to provide the 3.00 V, 1.95 V, and 1.116 V reference voltages used by the digital
output circuits.

The D/A converter chip provides the reference voltages for the digital inputs to provide
single-ended unipolar or differential measurements [0 V], or to provide single-ended bipolar
measurements [V = (voltage range) ÷ 9]. Because the D/A converter chip operation is con-
figured by the anaOutConfig() function, it is important to run the anaOutConfig()
function before running anaInConfig() if you plan to use the analog outputs to ensure
that the reference voltages are established first before the analog inputs are configured.

���
<�

���
�

���
�

���
�

�

�

��
<�

���
<�

���
<� ��
F-

���
<�

����
�

��
<� ��
F-

��

��

��

�

 ��

 ��

 ��
BL4S200 User’s Manual 45

3.7 USB Programming Cable

The USB programming cable is used to connect the serial programming port of the
BL4S200 to a PC USB port. The programming cable converts the voltage levels used by
the PC USB port to the CMOS voltage levels used by the Rabbit microprocessor.

When the PROG connector on the programming cable is connected to the programming
header on the BL4S200’s RabbitCore module, programs can be downloaded and
debugged over the serial interface.

The DIAG connector of the programming cable may be used on the programming header on
the BL4S200’s RabbitCore module with the BL4S200 operating in the Run Mode. This
allows the programming port to be used as a regular serial port.

3.7.1 Changing Between Program Mode and Run Mode

The BL4S200 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming cable
is attached. When the Rabbit microprocessor is reset, the operating mode is determined by
the status of the SMODE pins. When the programming cable’s PROG connector is attached,
the SMODE pins are pulled high, placing the Rabbit microprocessor in the Program Mode.
When the programming cable’s PROG connector is not attached, the SMODE pins are
pulled low, causing the Rabbit microprocessor to operate in the Run Mode.

Figure 19. BL4S200 Program Mode and Run Mode Setup

A program “runs” in either mode, but can only be downloaded and debugged when the
BL4S200 is in the Program Mode.

Refer to the Rabbit 4000 Microprocessor User’s Manual and the Rabbit 5000 Microprocessor
User’s Manual for more information on the programming port and the programming cable.

�����

� � !�����"����#�$�%#�$&	$&�'�(�)
�����
���
�����!�	������
����<"<0
�*
�����'�+	$&�����

�%#	$&�,��&��''	$&�%��-�.

�	��	��6���

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

��6���

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

�<"<0

�010*)2
)23)

�0
�
�

�
�
�

4
0*
(

�
�
	
�

�
"�
�

�	��	������
����

�
�
	
�

�
"�
�

BL4S200 User’s Manual 46

3.8 Other Hardware

3.8.1 Clock Doubler

The BL4S200 Ethernet models and the Wi-Fi model (BL4S200, BL4S210, and BL5S220)
take advantage of the Rabbit microprocessor’s internal clock doubler. A built-in clock
doubler allows half-frequency crystals to be used to reduce radiated emissions. The clock
doubler on the BL4S230 is disabled by default.

The clock doubler may be disabled on the BL4S200 Ethernet models (BL4S200 and
BL4S210)if the higher clock speeds are not required. Disabling the clock doubler will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

NOTE: Do not disable the clock doubler on the Wi-Fi model (BL5S220) since Wi-Fi
operations depend highly on the CPU resources.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.
BL4S200 User’s Manual 47

3.8.2 Spectrum Spreader

The Rabbit microprocessors features a spectrum spreader, which help to mitigate EMI
problems. By default, the spectrum spreader is on automatically, but it may also be turned
off or set to a stronger setting. The means for doing so is through a simple configuration
macro as shown below.

NOTE: The Rabbit RIO is driven by a 16Mhz Spread Spectrum Clock

Refer to the Rabbit 4000 Microprocessor User’s Manual and the Rabbit 5000 Micropro-
cessor User’s Manual for more information on the spectrum-spreading settings and the
maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Normal spreading is the default, and usually no entry is needed. If you need to specify nor-
mal spreading, add the line

ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is not recommended since it may limit
the maximum clock speed or the maximum baud rate. It is unlikely that the strong set-
ting will be used in a real application.

3. Click OK to save the macro. The spectrum spreader will be set according to the macro
value whenever a program is compiled using this project file.
BL4S200 User’s Manual 48

3.9 Memory

3.9.1 SRAM

The RabbitCore modules used with the BL4S200 boards all have 512 KB of data SRAM.
The RabbitCore modules on the BL4S200 and BL5S220 boards also have 512 KB and
1 MB of fast program execution SRAM.

3.9.2 Flash Memory

The RabbitCore modules used with the BL4S200 boards have 512 KB or 1 MB of flash
memory.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash memory since it may be necessary to change the sector size
in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead,
define a “user block” area to store persistent data. The functions writeUserBlock()
and readUserBlock() are provided for this.

3.9.3 VBAT RAM Memory

The tamper detection feature of the Rabbit microprocessor can be used to detect any
attempt to enter the bootstrap mode. When such an attempt is detected, the VBAT RAM
memory in the Rabbit microprocessor is erased. The serial bootloader on the RabbitCore
module on the BL4S200 model uses the bootstrap mode to load the SRAM, which erases
the VBAT RAM memory on any reset, and so it cannot be used on this model for tamper
detection.

3.9.4 microSD™ Cards

The RabbitCore module on the BL4S200 model supports a removable microSD™ Card up
to 1 GB to store data and Web pages. The microSD™ Card is particularly suitable for
mass-storage applications, but is generally unsuitable for direct program execution.

Unlike other flash devices, the microSD™ Card has some intelligence, which facilitates
working with it. You do not have to worry about erased pages. All microSD™ Cards sup-
port 512-byte reads and writes, and handle any necessary pre-erasing internally.

Figure 20 shows how to insert or remove the microSD™ Card. The card is designed to fit
easily only one way — do not bend the card or force it into the slot. While you remove or
insert the card, take care to avoid touching the electrical contacts on the bottom of the card
to prevent electrostatic discharge damage to the card and to keep any moisture or other
contaminants off the contacts. You will sense a soft click once the card is completely
inserted. To remove it, gently press the card towards the middle of the RabbitCore module
on the BL4S200 model — you will sense a soft click and the card will be ready to be
removed. Do not attempt to pull the card from the socket before pressing it in — otherwise
the ejection mechanism will get damaged. The ejection mechanism is spring-loaded, and
will partially eject the card when used correctly.
BL4S200 User’s Manual 49

Figure 20. Insertion/Removal of microSD Card

NOTE: When using the Dynamic C FAT file system, do not remove or insert the
microSD™ Card while LED DS4 above the microSD™ Card is on to indicate that the
microSD™ Card is mounted. The LED will go off when the microSD™ Card is
unmounted, indicating that it is safe to remove it.

Rabbit recommends that you use the microSD™ Card holder at connector J3 on the Rab-
bitCore module only for the microSD™ Card since other devices are not supported. Be
careful to remove and insert the card as shown, and be careful not to insert any foreign
objects, which may short out the contacts and lead to the destruction of your card.

It is possible to hot-swap microSD™ Cards without removing power from the BL4S200.
The file system must be closed before the cards can be hot-swapped. The chip selects
associated with the card must be set to their inactive state, and read/write operations
addressed to the microSD™ Card port cannot be allowed to occur. These operations can
be initiated in software by sensing an external switch actuated by the user, and the card
can then be removed and replaced with a different one. Once the application program
detects a new card, the file system can be opened. These steps allow the microSD™ Card
to be installed or removed without affecting either the program, which continues to run on
the RCM4300 module, or the data stored on the card. The Dynamic C FAT file system will
handle this overhead automatically when you unmount the microSD™ Card. LED DS4
above the microSD™ Card is used by the FAT file system to show when the media is
mounted.

Standard Windows SD Card readers may be used to read the microSD™ Card formatted
by the Dynamic C FAT file system with the BL4S200 as long as it has not been parti-
tioned. SD Card adapters have a sliding switch along the left side that may be moved
down to write-protect the microSD™ Card while it is being used with an SD Card reader.

Sample programs in the SAMPLES\BLxS2xx\SD_Flash folder illustrate the use of the
microSD™ Cards.

��

��
��

���

��

�� �
�

!�

�
�

�
�

,
� �

�

�

��� ���

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
�!"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
��
�

�
�

������

��

��

�
��

�
��

�
��

�
��
�
��

�
��

���

�
��

����������	���
����

��
�

�
��

�

����

����

����

��� ���

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

��
�

�
�

/
�
/
�

���
���

�

�
��

�
��

�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���
BL4S200 User’s Manual 50

4. SOFTWARE

Dynamic C is an integrated development system for writing embedded software. It runs on
an IBM-compatible PC and is designed for use with single-board computers and other
devices based on the Rabbit microprocessor.

Chapter 4 provides the libraries, function calls, and sample programs related to the
BL4S200.

4.1 Running Dynamic C

You have a choice of doing your software development in the flash memory or in the static
RAM included on the BL4S200. The flash memory and SRAM options are selected with
the Options > Project Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: On the BL4S210, an application can be developed in RAM, but cannot run stand-
alone from RAM after the programming cable is disconnected. Standalone applications
can only run from flash memory.

NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of
the flash memory market, the BL4S200 and Dynamic C were designed to accommodate
flash devices with various sector sizes.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows NT and later—
see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®, for
additional information if you are using a Dynamic C under Windows Vista. Programs can
be downloaded at baud rates of up to 460,800 bps after the program compiles.
BL4S200 User’s Manual 51

Dynamic C has a number of standard features:

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:

 Exceptionally fast support for floating-point arithmetic and transcendental functions.

 RS-232 and RS-485 serial communication.

 Analog and digital I/O drivers.

 I2C, SPI, GPS, file system.

 LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:

 Breakpoints—Set breakpoints that can disable interrupts.

 Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

 Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

 Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

 Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

 Stack window—shows the contents of the top of the stack.

 Hex memory dump—displays the contents of memory at any address.

 STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
BL4S200 User’s Manual 52

4.1.1 Upgrading Dynamic C

4.1.1.1 Patches and Updates

Dynamic C patches that focus on bug fixes and updates are available from time to time.
Check the Web site at www.digi.com/support/ for the latest patches, workarounds, and
updates.

The default installation of a patch or update is to install the file in a directory (folder)
different from that of the original Dynamic C installation. Rabbit recommends using a
different directory so that you can verify the operation of the patch or update without over-
writing the existing Dynamic C installation. If you have made any changes to the BIOS or
to libraries, or if you have programs in the old directory (folder), make these same changes
to the BIOS or libraries in the new directory containing the patch. Do not simply copy
over an entire file since you may overwrite an update; of course, you may copy over any
programs you have written. Once you are sure the new patch or update works entirely to
your satisfaction, you may retire the existing installation, but keep it available to handle
legacy applications.

4.1.2 Add-On Modules

Starting with Dynamic C version 10.40, Dynamic C includes the popular µC/OS-II real-
time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and
other select libraries. Starting with Dynamic C version 10.56, Dynamic C includes the
Rabbit Embedded Security Pack featuring the Secure Sockets Layer (SSL) and a specific
Advanced Encryption Standard (AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase.

Visit our Web site at www.digi.com for further information and complete documentation.
BL4S200 User’s Manual 53

http://www.digi.com/support/
http://www.digi.com/products/

4.2 Sample Programs

Sample programs are provided in the Dynamic C Samples folder. The sample program
PONG.C demonstrates the output to the STDIO window.

The various directories in the Samples folder contain specific sample programs that illus-
trate the use of the corresponding Dynamic C libraries.

The SAMPLES\BLxS2xx folder provides sample programs specific to the BL4S200. Each
sample program has comments that describe the purpose and function of the program. Fol-
low the instructions at the beginning of the sample program.

To run a sample program, open it with the File menu (if it is not still open), then compile
and run it by pressing F9. The BL4S200 must be in Program mode (see Section 3.7,
“USB Programming Cable,”) and must be connected to a PC using the programming cable
as described in Section 2.2, “BL4S200 Connections.” See Appendix C for information on
the power-supply connections to the Demonstration Board.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual. TCP/
IP specific functions are described in the Dynamic C TCP/IP User’s Manual. Information
on using the TCP/IP features and sample programs is provided in Section 5, “Using the
Ethernet TCP/IP Features.”
BL4S200 User’s Manual 54

4.2.1 Digital I/O

The following sample programs are found in the SAMPLES\BLxS2xx\DIO subdirectory.

Figure 21 shows the signal connections for the sample programs that illustrate the use of
the digital inputs.

Figure 21. Digital Inputs Signal Connections

• DIGIN.C—Demonstrates the use of the digital inputs. Using the Demonstration Board,
you can see an input channel toggle from HIGH to LOW in the Dynamic C STDIO
window when you press a pushbutton on the Demonstration Board.

• DIGIN_BANK.C—Demonstrates the use of digInBank() to read digital inputs. Using
the Demonstration Board, you can see an input channel toggle from HIGH to LOW in
the Dynamic C STDIO window when you press a pushbutton on the Demonstration
Board.

1�%�0�+6� !6��������
����"�#�$�%&�'�%�

�()�*

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��
�
��
�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��
�
��
�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�=�<06�:�
����"�#�$�%+

�()�*

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���
(0
495
�
05
�055)6(0*
��
0*
���

�� ���
*+�"���6�!��<�0!�"

���$

��� ���
BL4S200 User’s Manual 55

Figure 22 shows the signal connections for the sample programs that illustrate the use of
the digital outputs.

Figure 22. Digital Outputs Signal Connections

• DIGOUT.C—Demonstrates the use of the configurable I/O sinking outputs. Using the
Demonstration Board, you can see an LED toggle on/off via a sinking output.

• DIGOUT_BANK.C—Demonstrates the use of digOutBank() to control the configurable
I/O sinking outputs. Using the Demonstration Board, you can see an LED toggle on/off
via a sinking output.

1�%�0�+6� !6�������
����"�#�$�%�

�()�*

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�=�<06�:�
6055)6(905:
'*)
(G)
:'>)
':
B0*
2939('1
954A(:

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������
�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���
(0
495
�
05

�055)6(0*
���

���
*+�"���6�!��<�0!�

���$

�"	�
�"	�
�"	�
�"	�

��� ���
BL4S200 User’s Manual 56

Figure 23 shows the signal connections for the sample program that illustrates the use of
the high-current outputs. Note that the regular power-supply connection is substituted by
HOUT0, which operates in the sourcing mode to supply power for this sample program.

Figure 23. High-Current Outputs Signal Connections

• HIGH_CURRENT_IO.C—Demonstrates the use of the high-current outputs configured
as either sinking or sourcing outputs. High-current output HOUT0 is configured for
sourcing to provide power to the Demonstration Board. Outputs HOUT1 and HOUT2
are configured to demonstrate tristate operation to toggle the LEDs on the Demonstra-
tion Board. Output HOUT3 is configured as a sinking output to toggle an LED on the
Demonstration Board.

• INTERRUPTS.C—Demonstrates the use of the Rabbit RIO interrupt service capabilities.
Set up the Demonstration Board as shown in Figure 21 with DIO0 connected to SW1.

The sample program sets up two interrupt sources, an external interrupt tied to pushbutton
switch SW1, and a rollover interrupt tied to a timer that is producing a PWM output.
The Dynamic C STDIO window will show a count of rollovers that have occurred since
the PWM signal was started. The window will also display Button Pressed each time
the pushbutton switch is pressed. Each time the button is pressed, the timeout timer that
removes the message is reset, so you can keep the message on the screen indefinitely by
pressing the button repeatedly.

(�%(#�/��<�06!/�/0"

/�0!��/�0!�
����"�#�$�%,

�()�*

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

���
(0
�055)6(0*
��
05
�!�����

�=�<06�:�
����"�#�$�%+

�()�*
��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���
(0
495
�
05

�055)6(0*
��

��*+�"���6�!��<�0!�

���$

$	 ��
$	 ��
$	 ��
$	 ��

��� ���

��
�

$
	

�
�

5
6

��
�

$
	

�
�

�
�
�

$
	

�
�

5
6

�
�
�

$
	

�
�

�
��

�
�
�

�
��

��
BL4S200 User’s Manual 57

• PPM.C—Demonstrates the use of four PPM channels on the configurable I/O pins
DIO0, DIO2, DIO4, and DIO6 on connector J10. The PPM signals are set for a
frequency of 200 Hz, with the duty cycle adjustable from 0 to 100% and an offset
adjustable from 0 to 100% by the user. These pins can be connected to an oscilloscope
to view the waveform being generated. The overall frequency can be adjusted in the
#define PPM_FREQ line. Follow these instructions when running this sample program.

1. Verify that the jumper on header JP9 is in the default position across pins 3–4 for +5 V pullup.

2. Connect the oscilloscope probe to the configurable I/O pins on connector J10. Remember to
connect the oscilloscope ground to GND on connector J10.

Change the duty cycle and offsets for a given PPM channel via the Dynamic C STDIO
window and watch the change in waveforms on the oscilloscope. Signals on DIO0
(PPM00) and DIO2 (PPM01) will all be synchronized with each other as they share the
same overall counter block that sets the cycle frequency. The same is true for PPM sig-
nals on DIO4 (PPM02) and DIO6 (PPM03). The two blocks may have a phase shift
from each other, but will run at the same frequency.

• PULSE_CAPTURE.C—Demonstrates the use of two input capture inputs tied to PPM
channels on the configurable digital I/O pins on connector J10. The input capture feature
allows the begin and end positions of a pulse to be measured in a given time window.
We take advantage of the counter synchronization feature of the underlying Rabbit RIO
chip to create capture windows and pulse modulation windows that are synchronized.
This guarantees that we always catch the begin edge first on a quickly repeating wave-
form. This was done to create an interactive element to this sample program, but cap-
turing real-world repetitive signals will usually not have this advantage. Refer to
Section 3.2.1.3 for more information on how to use the input capture.feature. Follow
these instructions when running this sample program.

Once the connections have been made, compile and run this sample program. Change
the offset and duty cycle for a given PPM channel via the Dynamic C STDIO window
and watch the change to the begin and end counts measured on the input capture inputs.
The PPM frequency can be changed in the #define PPM_FREQ line.

• PWM.C—Demonstrates the use of the eight PWM channels on configurable I/O pins
DIO0–DIO7. The PWM signals are set for a frequency of 200 Hz with the duty cycle
adjustable from 0 to 100% by the user. These pins can be connected to an oscilloscope
to view the waveform being generated. The overall frequency can be adjusted in the
#define PWM_FREQ line. Follow these instructions when running this sample program.

1. Verify that the jumper on header JP9 is in the default position across pins 3–4 for +5 V pullup.

2. Connect the oscilloscope probe to the configurable I/O pins on connector J10. Remember to
connect the oscilloscope ground to GND on connector J10.

1. Connect digital I/O pins DIO0 and DIO1 together.

2. Connect digital I/O pins DIO4 and DIO5 together.

3. Connect the oscilloscope ground to GND on connector
J10.

4. Use the oscilloscope probes on the DIO0 and the DIO1
pair or the DIO4 and DIO5 pair to view the PPM signals.

�
��

�
�
�

�
��

��

�
�
�

�
"	
�

�
"	
�

�
"	
�

�
"	
�

���

	:69110:604)
���
BL4S200 User’s Manual 58

• QUADRATURE_DECODER.C—Demonstrates the use of quadrature decoders on the
BL4S200. See Figure 24 for hookup instructions of configurable I/O pins DIO0–DIO6
on connector J10 with the Demonstration Board.

Figure 24. Quadrature Decoder Signal Connections

Once the connections have been made, compile and run this sample program. Press
button SW1 on the Demonstration Board to decrement the quadrature counter, or press
button SW2 on the Demonstration Board to increment the quadrature counter. Press
button SW3 on the Demonstration Board to reset the quadrature counter.

1�%�0�+6� !6�������
����"�#�$�%�

�()�*

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���
*+�"���6�!��<�0!�

���$

�"	�
�"	�
�"	�
�"	�

��� ���

�"	�
�"	�
�"	�

���
(0
495
�
05
�055)6(0*
���
BL4S200 User’s Manual 59

4.2.2 Serial Communication

The following sample programs are found in the SAMPLES\BLxS2xx\RS232 subdirectory.

• PARITY.C—This sample program repeatedly sends byte values 0–127 from Serial Port F
to Serial Port E. The program switches between generating parity and not generating
parity on Serial Port F. Serial Port E will always be checking parity, so parity errors
should occur during every other sequence. The results are displayed in the Dynamic C
STDIO window.

Connect TxF (pin 2 on connector J11) to RxE (pin 6 on con-
nector J11) before compiling and running this sample pro-
gram.

The BL4S210 model only has one RS-232 serial port avail-
able, and so this sample program cannot be run on the
BL4S210 model.

NOTE: For the sequence that does yield parity errors, the errors won't occur for each
byte received. This is because certain byte patterns along with the stop bit will appear to
generate the correct parity for the UART.

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial communication
using the Dynamic C STDIO window. Follow these instructions before running this
sample program.

BL4S200, BL5S220, BL4S230 models—Connect TxE (pin
1 on connector J11) to RxF (pin 7 on connector J11), then
connect TxF (pin 2 on connector J11) to RxE (pin 6 on
connector J11) before compiling and running this sample
program.

BL4S210—Connect TxB (pin 1 on connector J11) to RxB
(pin 6 on connector J11) before compiling and running this
sample program.

�
��

�
�
�

�
.
-

�
.
�

�
.
-

�
.
�

�
��

�����

�
��

�
�
�

�
.
-

�
.
�

�
.
-

�
.
�

�
��

�����

�
��

�
�
�

�
.
�

�
.
�

�
��

�����

�()�*�
BL4S200 User’s Manual 60

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
using the Dynamic C STDIO window. Follow these instructions before running this
sample program.

The BL4S210 model only has one RS-232 serial port available, and so this sample
program cannot be run on the BL4S210 model.

Before you compile and run this sample program on any of
the other BL4S200 models, connect TxE (pin 1 on connector
J11) to RxE (pin 6 on connector J11), then connect TxF (pin
2 on connector J11) to RxF (pin 7 on connector J11).

TxF and RxF become the flow control RTS and CTS. To test
flow control, disconnect RTS from CTS while running this
program. Characters should stop printing in the Dynamic C
STDIO window and should resume when RTS and CTS are connected again

The following sample programs are found in the SAMPLES\BLxS2xx\RS485 subdirectory.

• MASTER.C—This program demonstrates a simple RS-485 transmission of lower case
letters to a slave. The slave will send back converted upper case letters back to the
master BL4S200 and display them in the STDIO window. Use SLAVE.C to program the
slave. Make the following connections between the master and slave:

• SLAVE.C—This program demonstrates a simple RS-485 transmission of lower case
letters to a slave. The slave will send back converted upper case letters back to the
master BL4S200 and display them in the STDIO window. Use MASTER.C to program
the master BL4S200. Make the following connections between the master and slave:

485+ to 485+ (pin 9 on connector J11)
485- to 485- (pin 4 on connector J11)
GND to GND (pin 5 on connector J11)

485+ to 485+ (pin 9 on connector J11)
485- to 485- (pin 4 on connector J11)
GND to GND (pin 5 on connector J11)

�
��

�
�
�

�
.
-

�
.
�

�
.
-

�
.
�

�
��

�����

1��! � ���2

�
��

�
�
�

��
��

�
�
�

��
�&

�
��

��
�
��

�
�
�

��
��

�
�
�

��
�&

�
��

����� ���

1��! � ���2

�
��

�
�
�

��
��

�
�
�

��
�&

�
��

��
�
��

�
�
�

��
��

�
�
�

��
�&

�
��

����� ���
BL4S200 User’s Manual 61

4.2.3 A/D Converter Inputs

The following sample programs are found in the SAMPLES\BLxS2xx\ADC subdirectory.
You will need a separate power supply and a multimeter to use with these sample programs.

NOTE: The calibration sample programs will overwrite the calibration constants set at
the factory. Before you run these sample programs, run USERBLOCK_READ_
WRITE.C in the SAMPLES\UserBlock folder to save the factory calibration con-
stants in case you inadvertently write over them while running other sample programs.

• ADC_CAL_DIFF.C—Demonstrates how to recalibrate a differential A/D converter
channel using two measured voltages to generate two coefficients, gain and offset,
which are rewritten into the user block. The voltage that is being monitored is displayed
continuously.

Once you compile and run this sample program, connect the power supply across a dif-
ferential channel pair, then follow the instructions in the Dynamic C STDIO window.

• ADC_CAL_MA.C—Demonstrates how to recalibrate a milli-amp A/D converter channel
using two measured currents to generate two coefficients, gain and offset, which are
rewritten into the reserved user block. The current that is being monitored is displayed
continuously.

Before you compile and run this sample program, jumper pins 1–2, 3–4, 5–6, and 7–8
on header JP4. Then connect a current meter in series with the power supply connected
to one of pins AIN0–AIN3 and AGND, then compile and run the sample program, and
follow the instructions in the Dynamic C STDIO window.

• ADC_CAL_SE_BIPOLAR.C—Demonstrates how to recalibrate a single-ended bipolar
A/D converter channel using two measured voltages to generate two coefficients, gain
and offset, which are rewritten into the reserved user block. The voltage that is being
monitored is displayed continuously.

Before you compile and run this sample program, connect the power supply (which
should be OFF) to one of pins AIN0–AIN3 and AGND, then compile and run the
sample program, and follow the instructions in the Dynamic C STDIO window.

• ADC_CAL_SE_UNIPOLAR.C—Demonstrates how to recalibrate a single-ended unipolar
A/D converter channel using two measured voltages to generate two coefficients, gain
and offset, which are rewritten into the reserved user block. The voltage that is being
monitored is displayed continuously.

Before you compile and run this sample program, connect the power supply (which
should be OFF) between the pin (AIN0–AIN7) of the channel you are calibrating and
AGND, then compile and run the sample program, and follow the instructions in the
Dynamic C STDIO window.

• ADC_RD_CALDATA.C—Demonstrates how to display the two calibration coefficients,
gain and offset, in the Dynamic C STDIO window for each channel and mode of
operation.
BL4S200 User’s Manual 62

• AD_RD_DIFF.C—Demonstrates how to read and display voltage and equivalent values
for a differential A/D converter channel using calibration coefficients previously stored
in the user block. The user selects to display either the raw data or the voltage equivalent.

Once you compile and run this sample program, connect the power supply across a dif-
ferential channel pair, then follow the instructions in the Dynamic C STDIO window.

• AD_RD_MA.C—Demonstrates how to read and display voltage and equivalent values for
a milli-amp A/D converter channel using calibration coefficients previously stored in
the user block. The user selects to display either the raw data or the current equivalent.

Before you compile and run this sample program, jumper pins 1–2, 3–4, 5–6, and 7–8
on header JP4. Then connect a current meter in series with the power supply connected
to one of pins AIN0–AIN3 and AGND, then compile and run the sample program, and
follow the instructions in the Dynamic C STDIO window as you vary the output from
the power supply.

• AD_RD_SE_AVERAGING.C—Demonstrates how to read and display the voltage of all
single-ended analog input channels using a sliding window. The voltage is calculated
from coefficients read from the reserved user block.

Before you compile and run this sample program, connect the power supply (which
should be OFF) between a pin (AIN0–AIN7) and AGND, then compile and run the
sample program, and follow the instructions in the Dynamic C STDIO window. The
voltage readings will be displayed for all the channels measured to that point.

• AD_RD_SE_BIPOLAR.C—Demonstrates how to read and display the voltage of all
single-ended A/D converter channels using calibration coefficients previously stored in
the user block.

Before you compile and run this sample program, connect the power supply (which
should be OFF) between a pin (AIN0–AIN7) and AGND, then compile and run the
sample program, and follow the instructions in the Dynamic C STDIO window. Reverse
the power supply connections to get a negative voltage reading.

• AD_RD_SE_UNIPOLAR.C—Demonstrates how to read and display the voltage of all
single-ended A/D converter channels using calibration coefficients previously stored in
the user block.

Before you compile and run this sample program, connect the power supply (which
should be OFF) between a pin (AIN0–AIN7) and AGND, then compile and run the
sample program, and follow the instructions in the Dynamic C STDIO window.
BL4S200 User’s Manual 63

4.2.4 D/A Converter Outputs

The following sample programs are found in the SAMPLES\BLxS2xx\DAC subdirectory.

NOTE: The calibration sample programs will overwrite the calibration constants set at
the factory.

• DAC_CAL_MA.C—Demonstrates how to recalibrate a D/A converter channel using a
measured current to generate calibration constants, which are written into the reserved
user block.

Before you compile and run this sample program, connect pins 3–5 and 4–6 on header
JP5, and verify that jumpers are in place across pins 1–2 and 3–4 on both headers JP3
(AOUT0) and JP6 (AOUT1). Now compile and run the sample program, and follow the
instructions in the Dynamic C STDIO window.

• DAC_CAL_VOLTS.C—Demonstrates how to recalibrate a D/A converter channel using
a measured voltage to generate calibration constants, which are written into the
reserved user block.

Before you compile and run this sample program, connect pins 1–3 and 2–4 on header
JP5, then connect pins 1–2 and 3–4 on both headers JP3 and JP6 (unipolar), or connect
pins 5–6 on both headers JP3 and JP6 (bipolar). Now connect a voltmeter across one of
the D/A converter outputs, then compile and run the sample program, and follow the
instructions in the Dynamic C STDIO window.

• DAC_MA_ASYNC.C—Demonstrates how to output a current that can be read with an
ammeter. The output current is computed with using the calibration constants that are
stored in the reserved user block.

The D/A converter circuit is set up for asynchronous operation, which updates the D/A
converter output at the time it's being written via the anaOut() or anaOutmAmps()
function calls.

Before you compile and run this sample program, connect pins 3–5 and 4–6 on header
JP5, and verify that jumpers are in place across pins 1–2 and 3–4 on both headers JP3
(AOUT0) and JP6 (AOUT1). Now set up an ammeter in series with the D/A converter
output and a resistor from 50 to 400 , then compile and run the sample program, and
follow the instructions in the Dynamic C STDIO window.

• DAC_MA_SYNC.C—Demonstrates how to output a current that can be read with an
ammeter. The output current is computed using the calibration constants that are stored
in the reserved user block.

The D/A converter circuit is set up for synchronous operation, which updates the D/A
converter output when the anaOutStrobe() function call executes. The outputs will be
updated with values previously written via the anaOut() or anaOutmAmps() function
calls.

Before you compile and run this sample program, connect pins 3–5 and 4–6 on header
JP5, and verify that jumpers are in place across pins 1–2 and 3–4 on both headers JP3
(AOUT0) and JP6 (AOUT1). Now set up an ammeter in series with the D/A converter
BL4S200 User’s Manual 64

output and a resistor from 50 to 400 , then compile and run the sample program, and
follow the instructions in the Dynamic C STDIO window.

• DAC_RD_CALDATA.C—Demonstrates how to display the calibration coefficients, gain
and offset, in the Dynamic C STDIO window for each channel and mode of operation.

• DAC_VOLT_ASYNC.C—Demonstrates how to output a voltage that can be read with a
voltmeter. The output voltage is computed with using the calibration constants that are
stored in the reserved user block.

The D/A converter circuit is set up for asynchronous operation, which updates the D/A
converter output at the time it's being written via the anaOut() or anaOutVolts()
function calls.

Before you compile and run this sample program, connect pins 1–3 and 2–4 on header
JP5, then connect pins 1–2 and 3–4 on both headers JP3 and JP6 (unipolar), or connect
pins 5–6 on both headers JP3 and JP6 (bipolar). Now connect a voltmeter across one of
the D/A converter outputs, then compile and run the sample program, and follow the
instructions in the Dynamic C STDIO window.

• DAC_VOLT_SYNC.C—Demonstrates how to output a voltage that can be read with a
voltmeter. The output voltage is computed using the calibration constants that are
stored in the reserved user block.

The D/A converter circuit is set up for synchronous operation, which updates the D/A
converter output when the anaOutStrobe() function call executes. The outputs will be
updated with values previously written via the anaOut() or anaOutVolts() function
calls.

Before you compile and run this sample program, connect pins 1–3 and 2–4 on header
JP5, then connect pins 1–2 and 3–4 on both headers JP3 and JP6 (unipolar), or connect
pins 5–6 on both headers JP3 and JP6 (bipolar). Now connect a voltmeter across one of
the D/A converter outputs, then compile and run the sample program, and follow the
instructions in the Dynamic C STDIO window.
BL4S200 User’s Manual 65

4.2.5 Use of microSD™ Cards with BL4S200 Model

The following sample program can be found in the SAMPLES\BLxS2xx\SD_Flash folder.

• SDFLASH_INSPECT.c—This program is a utility for inspecting the contents of a
microSD™ Card. It provides examples of both reading and writing pages or sectors to
the a microSD™ Card. When the sample program starts running, it attempts to initial-
ize the microSD™ Card on Serial Port B. The following five commands are displayed
in the Dynamic C STDIO window if a microSD™ Card is found:

p — print out the contents of a specified page on the microSD™ Card

r — print out the contents of a range of pages on the microSD™ Card

c — clear (set to zero) all of the bytes in a specified page

f — sets all bytes on the specified page to the given value

t — write user-specified text to a selected page

The sample program prints out a single line for a page if all bytes in the page are set to
the same value. Otherwise it prints a hex/ASCII dump of the page.

This utility works with the microSD™ Card at its lowest level, and writing to pages
will likely make the microSD™ Card unreadable by a PC. For PC compatibility, you
must use the Dynamic C FAT file system module, which allows you to work with files
on the microSD™ Card in a way that they will be PC-compatible.

4.2.6 Real-Time Clock

If you plan to use the real-time clock functionality in your application, you will need to set
the real-time clock. You may set the real-time clock using the SETRTCKB.C sample pro-
gram from the Dynamic C SAMPLES\RTCLOCK folder. The RTC_TEST.C sample pro-
gram in the Dynamic C SAMPLES\RTCLOCK folder provides additional examples of how
to read and set the real-time clock

4.2.7 TCP/IP Sample Programs

TCP/IP sample programs are described in Chapter 5.
BL4S200 User’s Manual 66

4.3 BL4S200 Libraries

Two library directories provide libraries of function calls that are used to develop applica-
tions for the BL4S200.
• BLxS2xx—libraries associated with features specific to the BL4S200. The functions in

the BLxS2xx.LIB library are described in Section 4.4, “BL4S200 Function Calls.”

• RN_CFG_BLS2xx.LIB—used to configure the BL4S200 for use with RabbitNet
peripheral boards.

• TCPIP—libraries specific to using TCP/IP functions on the BL4S200. Further informa-
tion about TCP/IP is provided in Chapter 5, “Using the Ethernet TCP/IP Features.”
BL4S200 User’s Manual 67

4.4 BL4S200 Function Calls

4.4.1 Board Initialization

brdInit

void brdInit (void);

FUNCTION DESCRIPTION

Call this function at the beginning of your program. This function initializes the system
I/O ports.

The ports are initialized according to Table A-3 in Appendix A.
BL4S200 User’s Manual 68

4.4.2 Digital I/O

setDigIn

int setDigIn(int channel);

FUNCTION DESCRIPTION

Sets a configurable I/O channel to be a general digital input.

PARAMETERS

channel configurable I/O channel to be set as an input,
0–31 (pins DIO0–DIO31)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, digIn, digInBank

digIn

int digIn(int channel);

FUNCTION DESCRIPTION

Reads the state of a channel set to any form of digital input functionality.

PARAMETERS

channel configurable I/O channel set as an input, 0–31 (pins DIO0–DIO31)

RETURN VALUE

The logic state of the specified channel.

0 — logic low
1 — logic high

-EINVAL — channel value is out of range.

-EPERM:— pin functionality does not permit this operation.

SEE ALSO

brdInit, setDigIn, digInBank
BL4S200 User’s Manual 69

digInBank

int digInBank(int bank);

FUNCTION DESCRIPTION

Reads the state of the 32 configurable I/O channels.

PARAMETER

bank digital input bank pins:

0 — DIO0–DIO7
1 — DIO8–DIO15
2 — DIO16–DIO23
3 — DIO24–DIO31

RETURN VALUE

Data read from the bank of digital inputs.

-EINVAL — invalid parameter value.

-EPERM — pin functionality does not permit this operation.

SEE ALSO

brdInit, digIn, setDigIn

Data Bits Bank 0 Bank 1 Bank 2 Bank 3

LSB D0 DIO0 DIO8 DIO16 DIO24

D1 DIO1 DIO9 DIO17 DIO25

D2 DIO2 DIO10 DIO18 DIO26

D3 DIO3 DIO11 DIO19 DIO27

D4 DIO4 DIO12 DIO20 DIO28

D5 DIO5 DIO13 DIO21 DIO29

D6 DIO6 DIO14 DIO22 DIO30

MSB D7 DIO7 DIO15 DIO23 DIO31
BL4S200 User’s Manual 70

setExtInterrupt

int setExtInterrupt(int channel, char edge, int handle);

FUNCTION DESCRIPTION

Sets the specified channel to be an interrupt. The interrupt can be configured as a rising
edge, falling edge, or either edge.

PARAMETERS

channel input channel to be configured as an interrupt channel

edge macro to set edge of the interrupt:

BL_IRQ_RISE — interrupt event on rising edge

BL_IRQ_FALL — interrupt event on falling edge

BL_IRQ_BOTH — interrupt events on both edges

handle handle for the ISR handler to service this interrupt

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, digIn, setDigIn
BL4S200 User’s Manual 71

setDecoder

int setDecoder(int channel_a, int channel_b, int channel_index,
char index_polarity);

FUNCTION DESCRIPTION

Sets up Quadrature Decoder functionality on the specified channels. The Quadrature
Decoder may optionally use an index channel.

PARAMETERS

channel_a channel to use as Input A (also known as in-phase or I)

channel_b channel to use as Input B (also known as quadrature or Q)

channel_index channel to use as index input (-1 if not used)

NOTE: The Quadrature Decoder count may still be reset by existing or new synch signals
set up on the same block of a particular RIO chip.

index_polarity polarity of the index channel
(not used when channel_index set to -1)l.

0 — index on low level
non-zero — index on high level

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EACCESS— resource needed by this function is not available.

SEE ALSO

brdInit, getCounter, resetCounter
BL4S200 User’s Manual 72

setCounter

int setCounter(int channel, int mode, int edge, word options);

FUNCTION DESCRIPTION

Sets up the channel as a counter input, with selectable modes and edge settings. The
counter will increment or decrement on each selected edge event. Use getCounter()
to read the current count and use resetCounter() to force a reset of the counter.

PARAMETERS

channel channel to use for the up count input

mode macro to set the mode of the counter:

BL_UP_COUNT — continuous up count mode

BL_DOWN_COUNT — up/down count mode (uses 2 pins)

BL_MATCH_ENABLE — continuous up count mode with count
stopping on any match event

edge edge setting macro for the up count event:

BL_EDGE_RISE — up count on rising edge

BL_EDGE_FALL — up count on falling edge

BL_EDGE_BOTH — up count on either edge

options options based on mode (N/A if the continuous up mode is selected):

BL_EDGE_RISE — down count on rising edge

BL_EDGE_FALL — down count on falling edge

BL_EDGE_BOTH — down count on either edge

If the up/down mode is selected, options has down count pin event
edge settings (these settings cannot be on be same pin as the up
count). The low 5 bits are the channel number for the down count
input

If the stop on match mode is selected, options has the match
count to stop at (other match registers on the block are set to max.).
BL4S200 User’s Manual 73

setCounter (continued)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value or pin use.

-EPERM — pin type does not permit this function.

-EACCESS— resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, getCounter, resetCounter
BL4S200 User’s Manual 74

setCapture

int setCapture(int channel, int mode, int edge, word options);

FUNCTION DESCRIPTION

Sets up the channel as an event capture input, with selectable modes and edge settings.
The counter will run from a gated main or prescaled clock signal based on the run cri-
teria of the selected mode, and begin/end events can be set to capture the count at the
time of these events. Optionally, a second channel can be set (which shares the same
RIO channel input block as channel) for two-signal begin/end event detection. Use
getBegin() and getEnd() to read the captured count values and use reset-
Counter() to force a reset of the counter.

PARAMETERS

channel channel to use for the begin event input for all modes except BL_
CNT_TIL_END, then it specifies the end event input.

mode mode macro for the counter/timer:

BL_CNT_RUN — continuous count mode

BL_CNT_BEGIN_END — start count on begin event, continue to
count until end event detected

BL_CNT_TIL_END — count until end event detected

BL_CNT_ON_BEGIN — count while begin signal is active

NOTE: If an end event occurs before the begin event, the count will begin then end
immediately on the begin event, and the end count will be 1. The begin count will be 0
or 1 based on the edge that triggered the event (0 = rising, 1 = falling).

edge edge/state macro setting for the begin event for all modes except
BL_CNT_TIL_END, then it specifies the end event:

BL_EVENT_RISE — begin event on rising edge
BL_EVENT_FALL — begin event on falling edge
BL_EVENT_BOTH — begin event on any edge

The following two settings are only for the ON_BEGIN mode:

BL_BEGIN_HIGH — begin active while signal is high
BL_BEGIN_LOW — begin active while signal is low
BL4S200 User’s Manual 75

setCapture (continued)

options options based on mode:

BL_CNT_TIL_END — begin input and edge can be selected
all others modes — end input and edge can be selected.

For all modes, the prescale clock and save limit flags can be used
(OR in).

For input and edge selection, use:

low 5 bits for channel to use for begin/end input
BL_SAME_CHANNEL — begin and end both from same channel
BL_EVENT_RISE — begin/end event on rising edge
BL_EVENT_FALL — begin/end event on falling edge
BL_EVENT_BOTH — begin/end event on any edge

For clock and limit options use:

BL_PRESCALE — use prescaled clock
BL_SAVE_LIMIT — save current limit register value (other-

wise limit set to 0xFFFF)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCESS— resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, getBegin, getEnd, getCounter, resetCounter, setLimit
BL4S200 User’s Manual 76

getCounter

int getCounter(int channel, word *count);

FUNCTION DESCRIPTION

Reads the current count of the counter register within the counter block hosting the
given channel.

PARAMETERS

channel a channel that uses the desired counter block

count pointer to word variable to place count register reading

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setCounter, setDecoder, setCapture, resetCounter

getBegin

int getBegin(int channel, word *begin);

FUNCTION DESCRIPTION

Reads the current value of the begin register within the counter block hosting the given
channel.

PARAMETERS

channel a channel that uses the desired counter block

begin pointer to word variable to place begin register reading

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setCapture, resetCounter
BL4S200 User’s Manual 77

getEnd

int getEnd(int channel, word *end);

FUNCTION DESCRIPTION

Reads the current value of the end register within the counter block hosting the given
channel.

PARAMETERS

channel a channel that uses the desired counter block

begin pointer to word variable to place end register reading

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setCapture, resetCounter

resetCounter

int resetCounter(int channel);

FUNCTION DESCRIPTION

Resets the current count of the counter register within the counter block hosting the
given channel. The active block is determined by the function the configurable I/O
channel is set up to perform.

PARAMETER

channel a channel that uses the desired counter block

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, getCounter, setDecoder
BL4S200 User’s Manual 78

setLimit

int setLimit(int channel, word limit);

FUNCTION DESCRIPTION

Sets the value of the limit register within the counter block hosting the given channel.
This new value will take effect on the next counter overflow or by resetting the counter
via the resetCounter() function call.

PARAMETERS

channel a channel that uses the desired counter block

limit new value for the limit register

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setCapture, resetCounter
BL4S200 User’s Manual 79

setSync

int setSync(int channel, int source, int edge);

FUNCTION DESCRIPTION

Sets the synch for the block the channel is associated with.

Note that when more than one block is synchronized to the same synch signal (global
or external), each block has its own independent edge-detection circuit. These circuits
will synch to the edge within plus or minus one count of the block’s current clock
source (main or prescale). This means synchronized blocks may have a small offset
when compared to each other.

PARAMETERS

channel channel that is on the block that will have its synch set

source source of the synch signal.

-1 to use the RIO chip's Global Synch signal or
input-capable channel to use as an external synch signal

edge edge of the synch signal.

BL_EDGE_RISE — synchronize event on rising edge
BL_EDGE_FALL — synchronize event on falling edge
BL_EDGE_BOTH — synchronize events on both edges
0 — disable the synch on this block (if the source of the external

synch is given, it will be set to a digital input)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

SEE ALSO

brdInit
BL4S200 User’s Manual 80

globalSync

int globalSync(void);

FUNCTION DESCRIPTION

Sends a single pulse to the global synch inputs of all RIO chips.

+Note that when more than one block is synchronized to the same synch signal (global
or external), each block has its own independent edge-detection circuit. These circuits
will synch to the edge within plus or minus one count of the block’s current clock
source (main or prescale). This means synchronized blocks may have a small offset
when compared to each other.

RETURN VALUE

0 — success.

-EPERM — brdInit() was not run before calling this function.

SEE ALSO

brdInit

setDigOut

int setDigOut(int channel, int state);

FUNCTION DESCRIPTION

Configures the output channel as a simple digital output. The output state of the chan-
nel is also initialized to logic 0 or logic 1 based on the state parameter. The digOut
function should be used to control the output state after configuration as it is more effi-
cient. This function is non-reentrant.

PARAMETERS

channel digital output channel, 0–31 (DIO0–DIO31)

state set output to one of the following states:

0 — connects the load to GND
1 — puts the output in a high-impedance tristate

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, digOut, digOutBank
BL4S200 User’s Manual 81

digOut

void digOut(int channel, int state);

FUNCTION DESCRIPTION

Sets the state of a configurable I/O channel configured as a sinking digital output
to a logic 0 or a logic 1. This function will only allow control of pins that are configured
by the setDigOut() function call to be a sinking digital output.

PARAMETERS

channel digital output channel, 0–31 (DIO0–DIO31).

state set output to one of the following states:

0 — connects the load to GND
1 — puts the output in a high-impedance tristate.

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin function was not set up as a digital output

SEE ALSO

brdInit, setDigOut, digOutBank
BL4S200 User’s Manual 82

digOutBank

int digOutBank(char bank, char data);

FUNCTION DESCRIPTION

Sets the state (logic 0 or logic 1) of a bank of 8 digital output pins within one of 4 banks
to the states contained in the data parameter. This function only updates the channels
that are configured to be sinking digital outputs by the setDigOut() function call.
Channels configured for other functionality will not be affected.

PARAMETERS

bank digital output bank pins:

0 — DIO0–DIO7
1 — DIO8–DIO15
2 — DIO16–DIO23
3 — DIO24–DIO31

data data value to be written to the specified digital output bank; the
data format and bitwise value are as follows:

Bitwise value:

0 — connects the load to GND
1 — puts the output in a high-impedance tristate.

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value or board not initialized.

SEE ALSO

brdInit, digOut, setDigOut

Data Bits Bank 0 Bank 1 Bank 2 Bank 3

LSB D0 DIO0 DIO8 DIO16 DIO24

D1 DIO1 DIO9 DIO17 DIO25

D2 DIO2 DIO10 DIO18 DIO26

D3 DIO3 DIO11 DIO19 DIO27

D4 DIO4 DIO12 DIO20 DIO28

D5 DIO5 DIO13 DIO21 DIO29

D6 DIO6 DIO14 DIO22 DIO30

MSB D7 DIO7 DIO15 DIO23 DIO31
BL4S200 User’s Manual 83

setPWM

int setPWM(int channel, float frequency, float duty,
char invert, char bind);

FUNCTION DESCRIPTION

Sets up a PWM output on the selected configurable I/O channel with the specified fre-
quency and duty cycle. The PWM output can be inverted. The PWM channel duty cycle
can be bound to a PWM/PPM on another channel on the same RIO block so that they
share an edge.

NOTE: Configurable I/O channels DIO30 and DIO31 do not support PWM/PPM
functionality, and cannot be used with this function call.

PARAMETERS

channel configurable I/O channel being set up for PWM, 0–29
(DIO0–DIO29)

frequency PWM frequency in Hz (should be from 2 Hz to 50 kHz); use -1 to
preserve the existing frequency on the RIO block

duty PWM duty cycle (should be from 0 to 100%); use -1 and bind
parameter to use bound edge to set the duty cycle (a duty cycle
above 100.0% will be set to 100.0%)

invert whether the PWM output is inverted; the PWM output normally
starts with the output high and inverted starts with the output low.

 0 — noninverted
1 — inverted

bind use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
leading edge of the PWM output on this channel to another PWM
or PPM output on a channel hosted by same RIO chip and block.
Bindings allow PWM and PPM outputs to align their leading and
trailing edges.
BL4S200 User’s Manual 84

setPWM (continued)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, setFreq, setDuty, setToggle, setSync, pulseDisable
BL4S200 User’s Manual 85

setPPM

int setPPM(int channel, float frequency, float offset,
float duty, char invert, char bind_offset, char bind_duty);

FUNCTION DESCRIPTION

Sets up a PPM output on the selected configurable I/O channel with the specified
frequency and duty cycle. The PPM output of the PPM can be inverted. The offset and
duty of the PPM can be bound to a PWM/PPM on another channel on the same RIO
block so that they share an edge.

NOTE: Configurable I/O channels DIO30 and DIO31 do not support PWM/PPM
functionality, and cannot be used with this function call.

PARAMETERS

channel configurable I/O channel being set up for PPM, 0–29
(DIO0–DIO29)

frequency PPM frequency in Hz (should be from 2 Hz to 50 kHz); use -1 to
preserve the existing frequency on the RIO block

offset PPM offset (should be from 0 to 100%); use -1 and bind_offset
parameter to use bound edge to set the offset (an offset above
100.0% will be set to 100.0%)

NOTE: A zero offset will produce the smallest offset possible, which is one count. If you
must have a zero offset, use setPWM() instead of setPPM().

duty PPM duty cycle (should be from 0 to 100%); use -1 and bind_
duty parameter to use bound edge to set the duty cycle (a PPM
duty cycle above 100.0% will be set to 100.0%)

NOTE: PPM will not wrap around the PPM period. If offset is set to 25%, the 75 to
100% duty cycle will have the same effect as offset = 25%, duty = 75%. The same
waveform as a wrapped PPM can be created using an inverted PPM

invert whether the PPM output is inverted; the PPM output normally
starts with the output low, goes high at the offset, and stays high
for the remainder of the duty cycle; inverted will start with the out-
put high, goes low at the offset, and stays low for the duration of
the duty cycle.

0 — noninverted
1 — inverted

bind_offset use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
leading edge of the PPM signal to another PWM or PPM output on
a channel hosted by same RIO chip and block. Bindings allow
PWM and PPM outputs to align their leading and trailing edges.
BL4S200 User’s Manual 86

setPPM (continued)

bind_duty use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
trailing edge of the PPM signal to another PWM or PPM output on
a channel hosted by same RIO chip and block

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, setFreq, setOffset, setDuty, setToggle, setSync, pulseDisable
BL4S200 User’s Manual 87

setFreq

int setFreq(int channel, float frequency);

FUNCTION DESCRIPTION

Sets the frequency of all the PWM or PPM outputs on the same block as the channel.
Will preserve the duty cycle and offset percentages for all of the channels on the same
block.

This function call is for the configurable I/O channels only.

Repeated calls to this function by itself may cause the duty cycle and offset values to
drift. If this drift is of concern, call setOffset() and setDuty() to reset the duty
cycle and offset to the desired value.

NOTE: Configurable I/O channels DIO30 and DIO31 do not support PWM/PPM
functionality, and cannot be used with this function call.

PARAMETERS

channel all channels on the same RIO chip and block as this channel (0–29,
DIO0–DIO29) will have their frequency set. Duty cycle and offset
percentages will be maintained.

frequency frequency of the PWM and PPM outputs
(should be from 2 Hz to 50 kHz)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setPWM, setPPM, setOffset, setDuty, setToggle, setSync
BL4S200 User’s Manual 88

setDuty

int setDuty(int channel, float duty);

FUNCTION DESCRIPTION

Sets the duty cycle of the PWM or PPM output on a configurable I/O channel. Will
affect any PWM/PPM that has been bound to this channel’s PWM/PPM.

NOTE: Configurable I/O channels DIO30 and DIO31 do not support PWM/PPM
functionality, and cannot be used with this function call.

PARAMETERS

channel channel that is getting its duty cycle set, 0–29 (DIO0–DIO29)

duty duty cycle of the PWM/PPM output (should be from 0 to 100%, a
duty cycle above 100.0% will be set to 100.0%)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM, setPPM, setOffset, setFreq, setToggle, setSync
BL4S200 User’s Manual 89

setOffset

int setOffset(int channel, float offset);

FUNCTION DESCRIPTION

Sets the offset of a PPM output on a configurable I/O channel. Will affect any PWM/
PPM output that has been bound to this channel’s PPM signal.

NOTE: Configurable I/O channels DIO30 and DIO31 do not support PWM/PPM
functionality, and cannot be used with this function call.

PARAMETERS

channel channel that is getting its offset set, 0–29 (DIO0–DIO29)

duty PPM offset (should be from 0 to 100%, an offset above 100.0%
will be set to 100.0%)

NOTE: A zero offset will produce the smallest offset possible, which is one count. If you
must have a zero offset, use setPWM() instead of setOffset().

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM, setPPM, setFreq, setDuty, setToggle, setSync
BL4S200 User’s Manual 90

pulseDisable

int pulseDisable(int channel, int state);

FUNCTION DESCRIPTION

Disables a PWM/PPM output and sets the output to state. The pin can be restored to
the same PWM/PPM operation as before by calling pulseEnable().

PARAMETERS

channel channel that is getting its PWM/PPM disabled,
0–29 (DIO0–DIO29)

state state that the digital output will be set to (0 or 1)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM, setPPM, pulseEnable

pulseEnable

int pulseEnable(int channel);

FUNCTION DESCRIPTION

Enables a disabled PWM/PPM output. The pin is restored to the same PWM/PPM
operation it had before being disabled.

PARAMETER

channel channel that is getting its PWM/PPM enabled,
0–29 (DIO0–DIO29)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM, setPPM, pulseDisable
BL4S200 User’s Manual 91

4.4.3 High-Current Outputs

digOutConfig_H

int digOutConfig_H(char configuration);

FUNCTION DESCRIPTION

Sets the configuration of a high-current output to be a sinking or sourcing type output.
Upon configuration, the output will be set initially to a high-impedance tristate.

NOTE: Configuring a given output channel for tristate operation using the digOut-
TriStateConfig() function call will temporarily override the configuration set by
the digOutConfig_H() function call as long as it is kept a tristate channel. This
configuration can also be overridden by setting the channel as a PWM or PPM output.

PARAMETER

configuration configuration byte to configure output channels HOUT0–
HOUT7 as sinking or sourcing outputs.

Each bit corresponds to one of the following high-current outputs.

Bit 7 = high-current output channel HOUT7
Bit 6 = high-current output channel HOUT6
Bit 5 = high-current output channel HOUT5
Bit 4 = high-current output channel HOUT4
Bit 3 = high-current output channel HOUT3
Bit 2 = high-current output channel HOUT2
Bit 1 = high-current output channel HOUT1
Bit 0 = high-current output channel HOUT0

The high-current outputs are configured to be sinking or sourcing
outputs by setting the corresponding bit to 0 or 1: 0 = sinking,
1 = sourcing.

EXAMPLE

RETURN VALUE

0 — success.

-EINVAL — board initialization not performed.

SEE ALSO

brdInit, digOut_H, digOutTriStateConfig_H

configuration = 0x26; // 0 0 1 0 0 1 1 0
 // HOUT7–HOUT6 = Sinking
 // HOUT5 = Sourcing
 // HOUT4–HOUT3 = Sinking
 // HOUT2–HOUT1 = Sourcing
 // HOUT0 = Sinking
BL4S200 User’s Manual 92

digOut_H

int digOut_H(int channel, int state);

FUNCTION DESCRIPTION

Sets the state of the selected high-current output channel to a logic 0, logic 1, or high-
impedance tristate output.

PARAMETERS

channel high-current output pins 0 to 7 (HOUT0–HOUT7)

state sets a given channel to one of the following output states depending
on how the output was configured by the digOutConfig_H()
function call.

Sinking configuration:

0 — connects the load to GND
1 — puts the output in a high-impedance tristate.

Sourcing configuration:

0 — connects the load in a high-impedance tristate
1 — connects the load to +K1 or + K2.

RETURN VALUE

0 — success.

-EINVAL — if not configured correctly or invalid parameter.

SEE ALSO

brdInit, digOutConfig_H
BL4S200 User’s Manual 93

digOutTriStateConfig_H

int digOutTriStateConfig_H(char configuration);

FUNCTION DESCRIPTION

Allows configuration of a high-current output to be a tristate type output. Upon config-
uration, the output will be initially set to a high-impedance state.

NOTE: Configuring a given output channel for tristate operation using the digOut-
TriStateConfig() function call will temporarily override the configuration set by
the digOutConfig_H() function call as long as it is kept a tristate channel. This
configuration can also be overridden by setting the channel as a PWM or PPM output.

PARAMETER

configuration configuration byte to configure output channels HOUT0–
HOUT7 as tristate outputs.

Each bit corresponds to one of the following high-current outputs.

Bit 7 = high-current output channel HOUT7
Bit 6 = high-current output channel HOUT6
Bit 5 = high-current output channel HOUT5
Bit 4 = high-current output channel HOUT4
Bit 3 = high-current output channel HOUT3
Bit 2 = high-current output channel HOUT2
Bit 1 = high-current output channel HOUT1
Bit 0 = high-current output channel HOUT0

The high-current outputs are configured to be tristate outputs by
setting the corresponding bit to 0 or 1: 0 = disable tristate operation,
1 = enable tristate operation.

EXAMPLE

RETURN VALUE

0 — success.

-EINVAL — board initialization not performed.

SEE ALSO

brdInit, digOutTriState_H, digOutConfig_H

configuration = 0x59; // 0 1 0 1 1 0 0 1
 // HOUT7 = Tristate disabled
 // HOUT6 = Tristate enabled
 // HOUT5 = Tristate disabled
 // HOUT4–HOUT3 = Tristate enabledg
 // HOUT2–HOUT1 = Tristate disabled
 // HOUT0 = Tristate enabled
BL4S200 User’s Manual 94

digOutTriState_H

int digOutTriState_H(int channel, int state)

FUNCTION DESCRIPTION

Sets the state of the high-current output channel to a logic 0, logic 1, or high-impedance
tristate.

PARAMETERS

channel high-current output pins 0 to 7 (HOUT0–HOUT7)

state sets a given channel to one of the following output states as long as
it has been enable as a tristate output by the
digOutTriStateConfig_H() function call.

Tristate configuration:

0 — connects the load to GND
1 — connects the load to +K1 or + K2.
2 — puts the output in a high-impedance tristate

RETURN VALUE

0 — success.

-EINVAL — invalid parameter or channel not configured for tristate.

SEE ALSO

brdInit, digOutTriStateConfig_H
BL4S200 User’s Manual 95

setPWM_H

int setPWM_H(int channel, float frequency, float duty,
char mode, char bind);

FUNCTION DESCRIPTION

Sets up a PWM output on the selected high-current output channel with the specified
frequency and duty cycle. The PWM output can be set to any of its three states during
either phase of the PWM signal. The PWM channel duty cycle can be bound to a PWM/
PPM on another channel on the same RIO chip block so that they share an edge.

PARAMETERS

channel high-current output channel being set up for PWM, 0–7
(HOUT0–HOUT7)

frequency PWM frequency in Hz (should be from 2 Hz to 50 kHz); use -1 to
preserve the existing frequency on the RIO block

duty PWM duty cycle (should be from 0 to 100%); use -1 and bind
parameter to use bound edge to set the duty cycle (a duty cycle
above 100.0% will be set to 100.0%)

mode sets the normal or begin state and the pulsed state of the PWM out-
put using these macros:

HCPWM_TRI_LOW — normally tristated and pulsed to sinking
HCPWM_TRI_HIGH — normally tristated and pulsed to sourcing
HCPWM_LOW_HIGH — normally sinking and pulsed to sourcing
HCPWM_HIGH_LOW — normally sourcing and pulsed to sinking
HCPWM_LOW_TRI — normally sinking and pulsed to tristate
HCPWM_HIGH_TRI — normally sourcing and pulsed to tristate

bind use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
leading edge of the PWM output on this channel to another PWM
or PPM output on a channel hosted by same RIO chip and block.
Bindings allow PWM and PPM outputs to align their leading and
trailing edges.
BL4S200 User’s Manual 96

setPWM_H (continued)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, setFreq_H, setDuty_H, setToggle_H, setSync_H
BL4S200 User’s Manual 97

setPPM_H

int setPPM_H(int channel, float frequency, float offset,
float duty, char mode, char bind_offset, char bind_duty);

FUNCTION DESCRIPTION

Sets up a PPM output on the selected high-current output channel with the specified
frequency, offset, and duty cycle. The PPM output can be set to any of its three states
during either phase of the PPM signal. The offset and duty of the PPM can be bound to
a PWM/PPM on another channel on the same RIO block so that they share an edge.

PARAMETERS

channel high-current output channel being set up for PPM,
0–7 (HOUT0–HOUT7)

frequency PPM frequency in Hz (should be from 2 Hz to 50 kHz); use -1 to
preserve the existing frequency on the RIO block

offset PPM offset (should be from 0 to 100%); use -1 and bind_offset
parameter to use bound edge to set the offset (an offset above
100.0% will be set to 100.0%)

NOTE: A zero offset will produce the smallest offset possible, which is one count. If you
must have a zero offset, use setPWM_H() instead of setPPM_H().

duty PPM duty cycle (should be from 0 to 100%); use -1 and bind_
duty parameter to use bound edge to set the duty cycle (a PPM
duty cycle above 100.0% will be set to 100.0%)

 set to 25%, duty in range 75-100% will have the same effect

NOTE: PPM will not wrap around the PPM period. If offset is set to 25%, the 75 to
100% duty cycle will have the same effect as offset = 25%, duty = 75%. The same
waveform as a wrapped PPM can be created using an inverted PPM

mode sets the normal or begin state and the pulsed state of the PPM out-
put using these macros:

HCPWM_TRI_LOW — normally tristated and pulsed to sinking
HCPWM_TRI_HIGH — normally tristated and pulsed to sourcing
HCPWM_LOW_HIGH — normally sinking and pulsed to sourcing
HCPWM_HIGH_LOW — normally sourcing and pulsed to sinking
HCPWM_LOW_TRI — normally sinking and pulsed to tristate
HCPWM_HIGH_TRI — normally sourcing and pulsed to tristate

bind_offset use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
leading edge of the PPM signal to another PWM or PPM output on
a channel hosted by same RIO chip and block. Bindings allow
PWM and PPM outputs to align their leading and trailing edges.
BL4S200 User’s Manual 98

setPPM_H (continued)

bind_duty use BL_BIND_LEAD or BL_BIND_TRAIL to enable binding for the
trailing edge of the PPM signal to another PWM or PPM output on
a channel hosted by same RIO chip and block

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — pin type does not permit this function.

-EACCES — resource needed by this function is not available.

-EFAULT — internal data fault detected.

positive number — Mode Conflict — the positive number is a bitmap that corresponds
to the pins on a particular block of a RIO chip that have not been configured to support
this function call. Appendix D provides the details of the pin and block associations to
allow you to identify the channels that need to be reconfigured to support this function
call.

SEE ALSO

brdInit, setFreq_H, setOffset_H, setDuty_H, setToggle_H, setSync_H
BL4S200 User’s Manual 99

setFreq_H

int setFreq_H(int channel, float frequency);

FUNCTION DESCRIPTION

Sets the frequency of all the PWM or PPM outputs on the same block as the channel.
Will preserve the duty cycle and offset percentages for all of the channels on the same
block.

This function call is for the high-current output channels only.

Repeated calls to this function by itself may cause the duty cycle and offset values to
drift. If this drift is of concern, call setOffset_H() and setDuty_H() to reset the
duty cycle and offset to the desired value.

PARAMETERS

channel all channels on the same RIO chip and block as this channel (0–7,
HOUT0–HOUT7) will have their frequency set. Duty cycle and
offset percentages will be maintained.

frequency frequency of the PWM and PPM outputs
(should be from 2 Hz to 50 kHz)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setPWM_H, setPPM_H, setOffset_H, setDuty_H, setToggle_H, setSync_H
BL4S200 User’s Manual 100

setDuty_H

int setDuty_H(int channel, float duty);

FUNCTION DESCRIPTION

Sets the duty cycle of the PWM or PPM output on a high-current output channel. Will
affect any PWM/PPM that has been bound to this channel’s PWM/PPM.

PARAMETERS

channel channel that is getting its duty cycle set, 0–7 (HOUT0–HOUT7)

duty duty cycle of the PWM/PPM output (should be from 0 to 100%, a
duty cycle above 100.0% will be set to 100.0%)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM_H, setPPM_H, setOffset_H, setFreq_H, setToggle_H, setSync_H
BL4S200 User’s Manual 101

setOffset_H

int setOffset_H(int channel, float offset);

FUNCTION DESCRIPTION

Sets the offset of a PPM output on a high-current output channel. Will affect any PWM/
PPM output that has been bound to this channel’s PPM signal.

PARAMETERS

channel channel that is getting its offset set, 0–7 (HOUT0–HOUT7)

duty PPM offset (should be from 0 to 100%, an offset above 100.0%
will be set to 100.0%)

NOTE: A zero offset will produce the smallest offset possible, which is one count. If you
must have a zero offset, use setPWM_H() instead of setOffset_H().

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

-EPERM — channel function does not permit this operation.

SEE ALSO

brdInit, setPWM_H, setPPM_H, setFreq_H, setDuty_H, setToggle_H, setSync_H
BL4S200 User’s Manual 102

setSync_H

int setSync_H(int channel, int edge);

FUNCTION DESCRIPTION

Enables or disables the global synch for the block the high-current output channel is
associated with.

PARAMETERS

channel channel that is on the block that will have its synch set

edge edge of the synch signal (0 will disable the synch).

BL_EDGE_RISE — synchronize event on rising edge
BL_EDGE_FALL — synchronize event on falling edge
BL_EDGE_BOTH — synchronize events on both edges

RETURN VALUE

0 — success.

-EINVAL — invalid parameter value.

SEE ALSO

brdInit, setPWM_H, setPPM_H
BL4S200 User’s Manual 103

4.4.4 Rabbit RIO Interrupt Handlers

addISR

int addISR(int channel, int io, int ier, void (*handler)());

FUNCTION DESCRIPTION

Adds an interrupt handler for the interrupts specified in the ier parameter for the given
RIO block hosting the given configurable I/O pin. The interrupt service routine (ISR) is
always disabled when created. Call enableISR() to enable the interrupt service
routine. The ISR handler function is responsible for clearing the interrupt(s) within the
hosting RIO block when called.

PARAMETERS

channel configurable I/O channel to bind to ISR, 0–31

io BL_INPUT_BLOCK for input block
BL_OUTPUT_BLOCK for output block

ier bit mask of interrupt(s) this handler services

BL_IER_DQE — decrement/quadrature/end
BL_IER_IIB — increment/inphase/begin
BL_IER_ROLL_D — counter rollover on decrement
BL_IER_ROLL_I — counter rollover on increment
BL_IER_MATCH3 — Match 3 condition
BL_IER_MATCH2 — Match 2 condition
BL_IER_MATCH1 — Match 1 condition
BL_IER_MATCH0 — Match 0 condition

handler pointer to the interrupt service function

RETURN VALUE

Success — returns the handler ID number (0..RSB_MAX_ISR-1).

-EINVAL— Invalid parameter given.

-ENOSPC — No more room in ISR table (increase RSB_MAX_ISR).

SEE ALSO

addISR_H, tickISR, enableISR, setIER
BL4S200 User’s Manual 104

addISR_H

int addISR_H(int channel, int ier, void (*handler)());

FUNCTION DESCRIPTION

Adds an interrupt handler for the interrupts specified in the ier parameter for the given
RIO block hosting the given high-current output pin. The interrupt service routine (ISR)
is always disabled when created. Call enableISR to enable the ISR. The ISR handler
given is responsible for clearing the interrupt(s) within the hosting RIO block.

PARAMETERS

channel high-current output channel to bind to ISR, 0–7

ier bit mask of interrupt(s) this handler services:

BL_IER_DQE — decrement/quadrature/end
BL_IER_IIB — increment/inphase/begin
BL_IER_ROLL_D — counter rollover on decrement
BL_IER_ROLL_I — counter rollover on increment
BL_IER_MATCH3 — Match 3 condition
BL_IER_MATCH2 — Match 2 condition
BL_IER_MATCH1 — Match 1 condition
BL_IER_MATCH0 — Match 0 condition

handler pointer to the interrupt service function

RETURN VALUE

Success — returns the handler ID number (0..RSB_MAX_ISR-1).

-EINVAL— Invalid parameter given.

-ENOSPC — No more room in ISR table (increase RSB_MAX_ISR).

SEE ALSO

addISR, tickISR, enableISR, setIER
BL4S200 User’s Manual 105

setIER

int setIER(int isr_handle, int ier);

FUNCTION DESCRIPTION

Sets the Interrupt Enable Register (IER) mask for an interrupt handler. Note that the in-
terrupt handler must be currently disabled to set the IER value. Disabling the ISR can
be done by calling enableISR() with a zero for the enable parameter.

PARAMETERS

isr_handle index to the desired ISR

ier bit mask of interrupts this handler services (bit positions match
RIO Interrupt Enable and Status registers)

RETURN VALUE

0 — success

-EINVAL— Invalid parameter given.

-EPERM — Handler is enabled, can't change IER.

SEE ALSO

addISR, addISR_H, enableISR, tickISR
BL4S200 User’s Manual 106

enableISR

int enableISR(int isr_handle, int enable)

FUNCTION DESCRIPTION

Enables or disables an interrupt handler.

PARAMETERS

isr_handle index to the desired ISR

enable non-zero enables the ISR,
zero disables the ISR

RETURN VALUE

0 — success.

-EINVAL— invalid parameter given.

SEE ALSO

addISR, addISR_H, setIER, tickISR

tickISR

void tickISR(void)

FUNCTION DESCRIPTION

Polls the RIO chip(s) for ISR events if interrupts are not being used. Any enabled ISR
events will be passed to the appropriate ISR handler.

RETURN VALUE

None.

SEE ALSO

addISR, addISR_H, enableISR, setIER
BL4S200 User’s Manual 107

4.4.5 Serial Communication

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C User’s Manual and Technical Note
213, Rabbit Serial Port Software.

Use the following function calls with the BL4S200.

serMode

int serMode(int mode);

FUNCTION DESCRIPTION

This function call sets the serial interfaces used by your application program. Call this
function after executing serXopen() and before using any other serial port function
calls.

PARAMETER

mode the defined serial port configuration

The mode parameter has no effect on the BL4S210 model, which is configured in hard-
ware for RS-485 on Serial Port C and one 3-wire RS-232 channel on Serial Port B.

RETURN VALUE

0 if valid mode selected, -EINVAL if not.

SEE ALSO

ser485Tx, ser485Rx

Mode
BL4S200, BL5S220, and BL4S230 Models Only

Serial Port C Serial Port E Serial Port F

0 RS-485 RS-232, 3-wire RS-232, 3-wire

1 RS-485 RS-232, 5-wire RTS/CTS
BL4S200 User’s Manual 108

ser485Tx

void ser485Tx(void);

FUNCTION DESCRIPTION

Enables the RS-485 transmitter. serMode() must be executed before running this
function call.

NOTE: Transmitted data are echoed back into the receive data buffer. The echoed data
could be used to identify when to disable the transmitter by using one of the following
methods.

Byte mode—disables the transmitter after the byte that is transmitted is detected in the
receive data buffer.

Block data mode—disable the transmitter after the same number of bytes transmitted are
detected in the receive data buffer.

RETURN VALUE

None.

SEE ALSO

brdInit, serMode, ser485En

ser485Rx

void ser485Rx(void);

FUNCTION DESCRIPTION

Disables the RS-485 transmitter. This puts you in listen mode, which allows you to
receive data from the RS-485 interface. serMode() must be executed before running
this function call.

RETURN VALUE

None.

SEE ALSO

brdInit, serMode, ser485Tx
BL4S200 User’s Manual 109

4.4.6 A/D Converter Inputs

anaInConfig

void anaInConfig(int channel, int opmode);

FUNCTION DESCRIPTION

Configures an A/D converter input channel for a given mode of operation. This func-
tion must be called before accessing the A/D converter chip.

The configuration of the A/D converter is complicated because channels AIN0–AIN3
are offset independently, but channels AIN4–AIN7 are biased in pairs. When config-
ured for the differential mode, the A/D converter will return differential readings for all
the channel pairs indicated below, with calibration constants reducing the effect of any
bias differences.

AIN0 — biased by D/A converter internal channel 2
AIN1 — biased by D/A converter internal channel 3

AIN2 — biased by D/A converter internal channel 4
AIN3 — biased by D/A converter internal channel 5

AIN4 — biased by D/A converter internal channel 6
AIN5 — biased by D/A converter internal channel 6

AIN6 — biased by D/A converter internal channel 7
AIN7 — biased by D/A converter internal channel 7

When the differential mode is selected, this function call configures both the selected
channel and its differential mate. The differential mode will always configure pairs. For
all of the pairs indicated above, both or neither will be configured for the differential
mode, depending on the mode selected for the channel being configured.

The AIN4–AIN7 pairs are allowed to be configured as paired differential mode or as
either unipolar or bipolar single-ended, but because the AIN4–AIN7 pairs share a D/A
converter bias channel, if a pair has mismatched configurations, they will incur extra
delays as the common D/A converter offset switches with reads from each. The same
is true if they are both bipolar single-ended, but are read with different gains

NOTE: If you plan to configure the D/A converter chip using anaOutConfig, you must
call anaOutConfig() before executing anaInConfig(). This is because the A/D
converter uses internal channels 2–7 on the D/A converter chip to bias the A/D
converter input circuit.
BL4S200 User’s Manual 110

anaInConfig (continued)

PARAMETERS

channel analog input channel, 0–7 (AIN0–AIN7)

opmode selects the mode of operation for the A/D converter channel pair.
The values are as follows:

SE0_MODE — single-ended unipolar (0–20 V)
SE1_MODE — single-ended bipolar (±10 V)
DIFF_MODE — differential bipolar (±20 V)
mAMP_MODE — 4–20 mA operation

RETURN VALUE:

0 — success.

BL_SPIBUSY — SPI port busy.

-EINVAL — invalid parameter.

SEE ALSO

brdInit, anaInCalib, anaIn, anaInVolts, anaInmAmps, anaInDiff
BL4S200 User’s Manual 111

anaInCalib

int anaInCalib(int channel, int opmode, int gaincode,
int value1, float volts1, int value2, float volts2);

FUNCTION DESCRIPTION

Calibrates the response of a given A/D converter channel as a linear function using the
two conversion points provided. Gain and offset constants are calculated and placed
into flash memory.

NOTE: The 10 and 90% points of the maximum voltage range are recommended when
calibrating a channel.

PARAMETERS

channel analog input channel number (0 to 7) corresponding to AIN0–AIN7

opmode the mode of operation for the specified channel. Use one of the
following macros to set the mode for the channel being configured.

SE0_mode = single-ended unipolar (0–20 V)
SE1_mode = single-ended bipolar (±10 V)
DIFF_MODE = differential bipolar (±20 V)
mAMP_mode = 4–20 mA

channel Single-Ended Differential 4–20 mA

0 +AIN0 +AIN0 -AIN1 +AIN0

1 +AIN1 — +AIN1

2 +AIN2 +AIN2 -AIN3 +AIN2

3 +AIN3 — +AIN3

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —
BL4S200 User’s Manual 112

anaInCalib (continued)

gaincode the gain code of 0 to 7 (use a gain code of 4 for 4–20 mA operation)

value1 the first A/D converter value

volts1 the voltage corresponding to the first A/D converter value

value2 the second A/D converter value

volts2 the voltage corresponding to the second A/D converter value

RETURN VALUE

0 — success.

-EINVAL — invalid parameter.

-ERR_ANA_CALIB — error writing calibration constants.

SEE ALSO

brdInit, anaInConfig, anaIn, anaInmAmps, anaInDiff, anaInVolts

Gain Code Macro

Voltage Range

Single-Ended
Unipolar

Single-Ended
Bipolar

Differential
Bipolar

0 GAIN_X1 0–20 V ±10 V ±20 V

1 GAIN_X2 0–10 V ±5 V ±10 V

2 GAIN_X4 0–5 V ±2.5 V ±5 V

3 GAIN_X5 0–4 V ±2 V ±4 V

4 GAIN_X8 0–2.5 V ±1.25 V ±2.5 V

5 GAIN_X10 0–2 V ±1 V ±2 V

6 GAIN_X16 0–1.25 V — ±1.25 V

7 GAIN_X20 0–1 V — ±1 V
BL4S200 User’s Manual 113

anaIn

int anaIn(int channel, int gaincode);

FUNCTION DESCRIPTION

Reads the state of an A/D converter input channel. If the access is for an A/D converter
single-ended bipolar channel and the gain code for the given channel has changed from
the previous cycle, the user block in the flash memory will be read to get the calibration
constants for the new gain value.

PARAMETERS

channel analog input channel number (0 to 7) corresponding to AIN0–AIN7

gaincode the gain code of 0 to 7 (use a gain code of 4 for 4–20 mA operation)

channel Single-Ended Differential 4–20 mA

0 +AIN0 +AIN0 -AIN1 +AIN0

1 +AIN1 — +AIN1

2 +AIN2 +AIN2 -AIN3 +AIN2

3 +AIN3 — +AIN3

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —

Gain Code Macro

Voltage Range

Single-Ended
Unipolar

Single-Ended
Bipolar

Differential
Bipolar

0 GAIN_X1 0–20 V ±10 V ± 20 V

1 GAIN_X2 0–10 V ±5 V ± 10 V

2 GAIN_X4 0–5 V ±2.5 V ± 5 V

3 GAIN_X5 0–4 V ±2 V ± 4 V

4 GAIN_X8 0–2.5 V ±1.25 V ± 2.5 V

5 GAIN_X10 0–2 V ±1 V ± 2 V

6 GAIN_X16 0–1.25 V — ± 1.25 V

7 GAIN_X20 0–1 V — ± 1 V
BL4S200 User’s Manual 114

anaIn (continued)

RETURN VALUE

A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit A/D conversions,
or a value of BL_ERRCODESTART or less to indicate an error condition:

A/D converter operation errors (will not create run-time error):

BL_SPIBUSY
BL_TIMEOUT
BL_OVERFLOW
BL_WRONG_MODE

System errors (can create run-time error unless disabled):

-ERR_ANA_INVAL — invalid parameter value.

SEE ALSO

brdInit, anaInConfig, anaInCalib, anaInmAmps, anaInDiff, anaInVolts
BL4S200 User’s Manual 115

anaInVolts

float anaInVolts(int channel, int gaincode);

FUNCTION DESCRIPTION

Reads the state of a single-ended A/D converter input channel and uses the previously
set calibration constants to convert it to volts. The voltage ranges given in the table be-
low are nominal ranges that will be returned. However, values outside these ranges can
often be seen before the return of a BL_OVERFLOW error.

If the gain code for a given channel has changed from the previous cycle, the following
code accesses will occur.

1. The user block will be read to get the calibration constants for the new gain value.

2. The D/A converter will be written to bias the A/D converter input circuit for proper opera-
tion. (The D/A converter access only applies for the single-ended bipolar A/D converter
operation.)

PARAMETERS

channel analog input channel number (0 to 7) corresponding to AIN0–AIN7

gaincode the gain code of 0 to 7; the table below applies for single-ended
modes only

Gain Code Macro

Voltage Range

Single-Ended
Unipolar

Single-Ended
Bipolar

0 GAIN_X1 0–20 V ±10 V

1 GAIN_X2 0–10 V ±5 V

2 GAIN_X4 0–5 V ±2.5 V

3 GAIN_X5 0–4 V ±2 V

4 GAIN_X8 0–2.5 V ±1.25 V

5 GAIN_X10 0–2 V ±1 V

6 GAIN_X16 0–1.25 V —

7 GAIN_X20 0–1 V —
BL4S200 User’s Manual 116

anaInVolts (continued)

RETURN VALUE

A voltage on the analog input channel, or a value of BL_ERRCODESTART or less to in-
dicate an error condition:

A/D converter operation errors (will not create run-time error):

BL_NOT_CAL — A/D converter is not calibrated for this channel/gain.
BL_OVERFLOW — A/D converter overflow.
BL_SPIBUSY — shared SPI port is already in use.
BL_TIMEOUT — A/D converter timeout.
BL_WRONG_MODE — A/D converter is in wrong mode (run anaInConfig()).

System errors (can create run-time error unless disabled):

-ERR_ANA_CALIB — fault detected in reading calibration facto.r
-ERR_ANA_INVAL — invalid parameter value.

SEE ALSO

brdInit, anaInConfig, anaIn, anaInmAmps, anaInDiff, anaInCalib
BL4S200 User’s Manual 117

anaInDiff

float anaInDiff(int channel, int gaincode);

FUNCTION DESCRIPTION

Reads the state of a differential A/D converter input channel and uses the previously set
calibration constants to convert it to volts. Voltage ranges given in the table below are
the nominal ranges that will be returned. However, values outside these ranges can of-
ten be seen before the return of a BL_OVERFLOW error.

If the gain code for a given channel has changed from the previous cycle, the user block
will be read to get the calibration constants for the new gain value.

PARAMETERS

channel the analog input channel number (0, 2, 4, 6) as shown below

gaincode the gain code of 0 to 7

channel Differential Inputs

0 +AIN0 -AIN1

2 +AIN2 -AIN3

4 +AIN4 -AIN5

6 +AIN6 -AIN7

Gain Code Macro Actual Gain
Differential

Voltage Range
Actual Voltage

Range

0 GAIN_X1 ×1 ± 20 V ± 10 V

1 GAIN_X2 ×2 ± 10 V ± 5 V

2 GAIN_X4 ×4 ± 5 V ± 2.5 V

3 GAIN_X5 ×5 ± 4 V ± 2 V

4 GAIN_X8 ×8 ± 2.5 V ± 1.25 V

5 GAIN_X10 ×10 ± 2 V ± 1 V

6 GAIN_X16 ×16 ± 1.25 V ± 0.625 V

7 GAIN_X20 ×20 ± 1 V ± 0,5 V
BL4S200 User’s Manual 118

anaInDiff (continued)

RETURN VALUE

A voltage on the analog input channel, or a value of BL_ERRCODESTART or less to
indicate an error condition:

A/D converter operation errors (will not create run-time error):

BL_NOT_CAL — A/D converter is not calibrated for this channel/gain.
BL_OVERFLOW — A/D converter overflow.
BL_SPIBUSY — shared SPI port is already in use.
BL_TIMEOUT — A/D converter timeout.
BL_WRONG_MODE — A/D converter is in wrong mode (run anaInConfig()).

System errors (can create run-time error unless disabled):

-ERR_ANA_CALIB — fault detected in reading calibration factor.
-ERR_ANA_INVAL — invalid parameter value.

SEE ALSO

brdInit, anaInConfig, anaIn, anaInmAmps, anaInVolts, anaInCalib
BL4S200 User’s Manual 119

anaInmAmps

float anaInmAmps(int channel);

FUNCTION DESCRIPTION

Reads the state of a single-ended A/D converter input channel and uses the previously
set calibration constants to convert it to a floating-point current value in milli amps. The
nominal range is 0 mA to 20 mA, although it is possible to receive values outside this
range before a BL_OVERFLOW error is returned.

PARAMETER

channel A/D converter input channel (0–3 corresponding to AIN0–AIN3)

RETURN VALUE

A current value corresponding to the current on the analog input channel, or a value of
BL_ERRCODESTART or less to indicate an error condition:

A/D converter operation errors (will not create run-time error):

BL_NOT_CAL — A/D converter is not calibrated for this channel/gain.
BL_OVERFLOW — A/D converter overflow.
BL_SPIBUSY — shared SPI port is already in use.
BL_TIMEOUT — A/D converter timeou.t
BL_WRONG_MODE — A/D converter is in wrong mode (run anaInConfig()).

System errors (can create run-time error unless disabled):

-ERR_ANA_CALIB — fault detected in reading calibration factor.
-ERR_ANA_INVAL — invalid parameter value.

SEE ALSO

brdInit, anaInConfig, anaIn, anaInDiff, anaInVolts, anaInCalib
BL4S200 User’s Manual 120

anaInDriver

int anaInDriver(char cmd);

FUNCTION DESCRIPTION

Low-level driver to read the ADS7870 A/D converter chip.

PARAMETER

cmd The cmd parameter contains a gain code and channel code, and the
MSB is set high for direct-mode access. The format is as follows:

Use the following calculation and tables to determine cmd:

cmd = 0x80 | (gain_code<<4) + channel_code

D7 D6–D4 D3–D0

1 gain_code channel_code

gain_code Multiplier

0 1

1 2

2 4

3 5

4 8

5 10

6 16

7 20

channel_code
Differential
Input Lines

channel_code
Single-Ended
Input Lines

mA
Input Lines

0 +AIN0 -AIN1 8 +AIN0 +AIN0

1 +AIN2 -AIN3 9 +AIN1 +AIN1

2 +AIN4 -AIN5 10 +AIN2 +AIN2

3 +AIN6 -AIN7 11 +AIN3 +AIN3

4 Reserved 12 +AIN4 Reserved

5 Reserved 13 +AIN5 Reserved

6 Reserved 14 +AIN6 Reserved

7 Reserved 15 +AIN7 Reserved
BL4S200 User’s Manual 121

anaInDriver (continued)

The BL4S200 boards were designed to extend the A/D converter input circuit configu-
rations, which is done by the anaInConfig() function call. The following table maps
the BL4S200 A/D converter configurations to the A/D converter channel_code listed
above:

RETURN VALUE

A value corresponding to the voltage on the analog input channel, which will be either
in the range [-20480,2047], or an error code of BL_ERRCODESTART or less as follows:

BL_SPIBUSY
BL_TIMEOUT
BL_OVERFLOW

BL4S200 A/D Converter Input channel_code

Differential 0–4

Single-Ended Unipolar 8–15

Single-Ended Bipolar 8–15

4–20 mA 8–11
BL4S200 User’s Manual 122

4.4.7 D/A Converter Outputs

anaOutConfig

int anaOutConfig(char polarity, int mode);

FUNCTION DESCRIPTION

Configures the D/A converter chip for a given output voltage range, 0–10 V or ±10 V,
and loads the calibration data for use by the D/A converter function calls. This function
must be called before accessing any of the D/A converter channels.

NOTE: If you are using the analog outputs, you must configure the D/A converter chip
using the anaOutConfig() function before executing anaInConfig() to configure
the A/D converter chip. This is because the A/D converter chip uses internal channels
2–7 on the D/A converter chip to bias the A/D converter input circuit, and the correct
configuration of the A/D converter would be affected if the D/A converter configura-
tion was changed later.

PARAMETERS

polarity sets the output configuration polarity as follows:

DAC_UNIPOLAR (0) = unipolar operation. (0–10V and 4–20 mA)
DAC_BIPOLAR (1) = bipolar operation. (±10V and 4–20 mA)

NOTE: This parameter has no effect when the D/A converter is configured for 4–20 mA
channels.

mode the mode of operation:

0 = asynchronous—an output is updated at the time data are written to the given channel

1 = synchronous—all outputs are updated with data previously written when the
anaOutStrobe() function is executed.

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

-EINVAL — invalid configuration parameter.

-ERR_ANA_CALIB — error reading calibration constants.

SEE ALSO

brdInit, anaOut, anaOutmAmps, anaOutStrobe, anaOutConfig, anaOutCalib
BL4S200 User’s Manual 123

anaOutStrobe

int anaOutStrobe(int channels);

FUNCTION DESCRIPTION

Outputs the previously written value of each channel indicated by the input parameter.

This function is only useful when the D/A converter is configured for synchronous
mode operation because each channel is updated immediately in the asynchronous mode
when a value is written to it. It is called internally by anaInConfig() to strobe the D/
A converter offsets when the D/A converter is in the synchronous mode, but its normal
use in programs should only be to strobe external D/A converter channels 0 and 1.

PARAMETER

channels bitmap of channels to be strobed.

1 — Channel 0
2 — Channel 1
3 — Channels 0 and 1

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

SEE ALSO

brdInit, anaOut, anaOutmAmps, anaOutConfig, anaOutCalib
BL4S200 User’s Manual 124

anaOutPwrOff

int anaOutPwrOff(BL_POWER_T mode);

FUNCTION DESCRIPTION

This function enables or disables the BL4S200 power supply that is used to power the
D/A converter voltage or current output circuits.

PARAMETER

mode D/A converter power-off mode.

BL_HIGH_Z (0) — high output impedance
BL_OHM100 (1) — 100 k to GND
BL_OHM2_5 (2) — 2.5 k to GND

RETURN VALUE

0 — success.

-EINVAL — invalid parameter.

SEE ALSO

anaOut, anaOutVolts, anaOutmAmps

CAUTION: Do not call this function until you have configured both D/A converter
channels to the desired voltage or current operation. Unconfigured D/A converter
channels will be set to approx. 0 V or 4 mA.
BL4S200 User’s Manual 125

anaOutCalib

int anaOutCalib(int channel, int calib_index, int value1,
float volts1, int value2, float volts2);

FUNCTION DESCRIPTION

Calibrates the response of a given D/A converter channel as a linear function with using
two conversion points provided by the user. Gain and offset constants are calculated
and written to the user block in flash memory for use by the D/A converter function
calls.

NOTE: The 10 and 90% points of the maximum voltage range are recommended when calibrating
a channel.

PARAMETERS

channel the D/A converter output channel (0–1) corresponding to
AOUT0–AOUT1

calib_index index used to go to the proper location in the lookup table for
writing the calibration data

0 = 0–10 V calibration data
1 = ±10 V calibration data
2 = 4–20 mA calibration data (unipolar configuration)

value1 the first D/A converter value (0–4095)

volts1 the voltage or current corresponding to the first D/A converter value
(0–10 V, ±10 V or 4– 20 mA)

value2 the second D/A converter value (0–4095)

volts2 the voltage or current corresponding to the second D/A converter value
(0–10 V, ±10 V or 4– 20 mA)

RETURN VALUE

0 — success.

-EINVAL — invalid parameter.

 -ERR_ANA_CALIB — error writing calibration constants.

SEE ALSO

brdInit, anaOut, anaOutVolts, anaOutmAmps, anaOutStrobe, anaOutConfig
BL4S200 User’s Manual 126

anaOut

void anaOut(int ch, int rawdata);

FUNCTION DESCRIPTION

Sets the voltage of a D/A converter output channel.

PARAMETERS

ch the D/A converter output channel (0–1) corresponding to
AOUT0–AOUT1

rawdata data value corresponding to the voltage desired on the output
channel (0–4095). If a value larger than 4095 is given, the channel
will be set to maximum (4095).

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

SEE ALSO

anaOutDriver, anaOutVolts, anaOutCalib
BL4S200 User’s Manual 127

anaOutVolts

void anaOutVolts(int ch, float voltage);

FUNCTION DESCRIPTION

Sets the voltage of a D/A converter output channel by using the previously set calibra-
tion constants to calculate the correct data values.

PARAMETERS

ch the D/A converter output channel (0–1) corresponding to
AOUT0–AOUT1

voltage the voltage desired on the output channel

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

-ERR_ANA_INVAL — invalid config parameter.

-ERR_ANA_CALIB — error reading calibration data.

SEE ALSO

brdInit, anaOut, anaOutStrobe, anaOutConfig, anaOutCalib
BL4S200 User’s Manual 128

anaOutmAmps

void anaOutmAmps(int ch, float current);

FUNCTION DESCRIPTION

Sets the current of a D/A converter output channel by using the previously set calibra-
tion constants to calculate the correct data values.

PARAMETERS

ch the D/A converter output channel (0–1) corresponding to
AOUT0–AOUT1

current the current desired on the output channel (valid range is 4–20 mA)

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

-ERR_ANA_CALIB — error reading calibration data.

SEE ALSO

brdInit, anaOut, anaOutVolts, anaOutStrobe, anaOutConfig, anaOutCalib
BL4S200 User’s Manual 129

anaOutDriver

int anaOutDriver(unsigned int cmd)

FUNCTION DESCRIPTION

Low-level driver to read the DAC128S085 D/A converter chip. It handles writing the
rawdata output value to the D/A converter chip.

The synch/asynch D/A converter mode is critical for determining whether a strobe
needs to follow anaOut in _bias_adc(), so any mode change is detected here, not
relying on that mode to only be changed through the high-level anaOutConfig()
function call.

PARAMETER

cmd The cmd parameter format is as follows:

Use the following calculation and tables to determine cmd:

cmd = (channel<<12) | rawdata value

RETURN VALUE

0 — success.

BL_SPIBUSY — SPI port busy.

D15–D12 D11–D0

channel
(0–7)

rawdata value
(0–4095)
BL4S200 User’s Manual 130

4.4.8 SRAM Use

The BL4S200 model and some memory variations described in Table 1 have a battery-
backed data SRAM and a program-execution SRAM. Dynamic C provides the
protected keyword to identify variables that are to be placed into the battery-backed
SRAM. The compiler generates code that maintains two copies of each protected variable
in the battery-backed SRAM. The compiler also generates a flag to indicate which copy of
the protected variable is valid at the current time. This flag is also stored in the battery-
backed SRAM. When a protected variable is updated, the “inactive” copy is modified, and
is made “active” only when the update is 100% complete. This assures the integrity of the
data in case a reset or a power failure occurs during the update process. At power-on the
application program uses the active copy of the variable pointed to by its associated flag.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf_device nandFlash;

int main() {
 ...

 _sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.
BL4S200 User’s Manual 131

5. USING THE ETHERNET TCP/IP
FEATURES

Chapter 5 discusses using the Ethernet TCP/IP features on the BL4S200 boards. Ethernet
is not available on BL5S220 and BL4S230 models, which have wireless network inter-
faces.

5.1 TCP/IP Connections

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight-through CAT 5/6 Ethernet cables and a hub, or an RJ-45 crossover
CAT 5/6 Ethernet cable.

The CAT 5/6 Ethernet cables and Ethernet hub are available from Rabbit in a TCP/IP tool
kit. More information is available at www.digi.com.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting
Started.”

2. Ethernet Connections

If you do not have access to an Ethernet network, use a crossover CAT 5/6 Ethernet cable
to connect the BL4S200 to a PC that at least has a 10Base-T Ethernet card.

If you have Ethernet access, use a straight-through CAT 5/6 Ethernet cable to establish an
Ethernet connection to the BL4S200 from an Ethernet hub. These connections are shown in
Figure 25.

Figure 25. Ethernet Connections

BL4S200

User’s PC

Crossover
CAT 5/6 Ethernet
cable

Direct Connection
(network of 2 computers)

BL4S200

Hub

CAT 5/6
Ethernet

To additional
network
elements

Direct Connection Using a Hub

Board Board

cables
BL4S200 User’s Manual 132

http://www.digi.com/products/

The PC running Dynamic C through the serial programming port on the BL4S200 does
not need to be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The BL4S200 is now ready to be used.

NOTE: A hardware RESET is accomplished by unplugging the AC adapter, then plug-
ging it back in, or by momentarily grounding the board reset input at pin 9 on screw
terminal header J2.

When working with the BL4S200, the green LNK light is on when a program is running
and the board is properly connected either to an Ethernet hub or to an active Ethernet card.
The orange ACT light flashes each time a packet is received.
BL4S200 User’s Manual 133

5.2 TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require that you connect your PC and the
BL4S200 together on the same network. This network can be a local private network (pre-
ferred for initial experimentation and debugging), or a connection via the Internet.

5.2.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TCPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the BL4S200 board, and 10.1.1.1 for your PC, you can edit
the values in the section that directly follows the “General Configuration” comment in
the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the
TCP_CONFIG.LIB library in the LIB\TCPIP directory. More information is available in
the Dynamic C TCP/IP User’s Manual.
BL4S200 User’s Manual 134

5.2.2 How to Set Up your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges. The instructions are specifically for Windows 2000, but the interface is similar
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from
that network to run these sample programs. Write down the existing settings before
changing them to facilitate restoring them when you are finished with the sample pro-
grams and reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g.,
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button.
Depending on which version of Windows your PC is running, you may have to select
the “Local Area Connection” first, and then click on the “Properties” button to bring up
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and
click on “Properties” to assign an IP address to your computer (this will disable “obtain
an IP address automatically”):

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

4. Click <OK> or <Close> to exit the various dialog boxes.

BL4S200

User’s PC

crossover
CAT 5/6 Ethernet
cable

IP 10.10.6.101
Netmask
255.255.255.0

Direct Connection PC to BL4S200

Board
BL4S200 User’s Manual 135

5.2.3 Run the PINGME.C Demo

Connect the crossover cable from your computer’s Ethernet port to the BL4S200’s RJ-45
Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP folder,
compile the program, and start it running under Dynamic C. When the program starts run-
ning, the green LNK light on the BL4S200 should be on to indicate an Ethernet connection
is made. (Note: If the LNK light does not light, you may not have a crossover cable, or if
you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the ping program:

ping 10.10.6.100

or by Start > Run

and typing the command

ping 10.10.6.100

Notice that the orange ACT light flashes on the BL4S200 while the ping is taking place,
and indicates the transfer of data. The ping routine will ping the board four times and write
a summary message on the screen describing the operation.
BL4S200 User’s Manual 136

5.2.4 Running More Demo Programs With a Direct Connection

The program SSI.C (SAMPLES\BLxS2xx\TCPIP\) demonstrates how to make the
BL4S200 a Web server. This program allows you to turn the LEDs on an attached Demon-
stration Board from the Tool Kit on and off from a remote Web browser. The LEDs on the
Demonstration Board match the ones on the Web page. Follow the instructions included
with the sample program. As long as you have not modified the TCPCONFIG 1 macro in
the sample program, enter the following server address in your Web browser to bring up
the Web page served by the sample program.

http://10.10.6.100.

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

The sample program RWEB DIGITAL OUTPUTS.C (SAMPLES\BLxS2xx\TCPIP\) dem-
onstrates using the digOut() function call to control configurable I/O sinking outputs to
toggle LEDs on and off on the Demonstration Board from your Web browser.

The sample program TELNET.C (SAMPLES\BLxS2xx\TCPIP\) allows you to communi-
cate with the BL4S200 using the Telnet protocol. This program takes anything that comes
in on a port and sends it out Serial Port E (BL4S200) or Serial Port B (BL4S210). It uses a
digital input to indicate that the TCP/IP connection should be closed and a digital output to
toggle an LED to indicate that there is an active connection.

Follow the instructions included with the sample program. Run the Telnet program on
your PC (Start > Run telnet 10.10.6.100). As long as you have not modified the
TCPCONFIG 1 macro in the sample program, the IP address is 10.10.6.100 as shown;
otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library. Each
character you type will be printed in Dynamic C's STDIO window, indicating that the
board is receiving the characters typed via TCP/IP.

5.3 Where Do I Go From Here?

NOTE: If you purchased your BL4S200 through a distributor or Rabbit partner, contact
the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.digi.com/support/ and
at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/questionSubmit.shtml.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Refer to the Dynamic C TCP/IP User’s Manual to develop your own applications. An
Introduction to TCP/IP provides background information on TCP/IP, and is available on
the Web site.
BL4S200 User’s Manual 137

http://www.rabbit.com/
http://www.digi.com/support/
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com/forums/

6. USING THE WI-FI FEATURES

Chapter 6 discusses using the TCP/IP Wi-Fi features on the BL5S220 board. This net-
working feature is not available on other BL4S200 models, which have other network
interfaces.

6.1 Introduction to Wi-Fi

Wi-Fi, a popular name for 802.11b/g, refers to the underlying technology for wireless local
area networks (WLAN) based on the IEEE 802.11 suite of specifications conforming to
standards defined by IEEE. IEEE 802.11b describes the media access and link layer control
for a 2.4 GHz implementation, which can communicate at a top bit-rate of 11 Mbits/s. Other
standards describe a faster implementation (54 Mbits/s) in the 2.4 GHz band (802.11g).
The adoption of 802.11 has been fast because it's easy to use and the performance is com-
parable to wire-based LANs. Things look pretty much like a wireless LAN.

Wi-Fi (802.11b/g) is the most common and cost-effective implementation currently avail-
able. This is the implementation that is used with the BL5S220. A variety of Wi-Fi hard-
ware exists, from wireless access points (WAPs), various Wi-Fi access devices with PCI,
PCMCIA, CompactFlash, USB and SD/MMC interfaces, and Wi-Fi devices such as Web-
based cameras and print servers.

802.11b/g can operate in one of two modes—in a managed-access mode (BSS), called an
infrastructure mode, or an unmanaged mode (IBSS), called the ad-hoc mode. The 802.11
standard describes the details of how devices access each other in either of these modes.

6.1.1 Infrastructure Mode

The infrastructure mode requires an access point to manage devices that want to communi-
cate with each other. An access point is identified with a channel and service set identifier
(SSID) that it uses to communicate. Typically, an access point also acts as a gateway to a
wired network, either an Ethernet or WAN (DSL/cable modem). Most access points can
also act as a DHCP server, and provide IP, DNS, and gateway functions.

When a device wants to join an access point, it will typically scan each channel and look
for a desired SSID for the access point. An empty-string SSID (" ") will associate the
device with the first SSID that matches its capabilities.
BL4S200 User’s Manual 138

Once the access point is discovered, the device will logically join the access point and
announce itself. Once joined, the device can transmit and receive data packets much like
an Ethernet-based MAC. Being in a joined state is akin to having link status in a
10/100Base-T network.

802.11b/g interface cards implement all of the 802.11b/g low-level configurations in firm-
ware. In fact, the 802.11b/g default configuration is often sufficient for a device to join an
access point automatically, which it can do once enabled. Commands issued to the chip set
in the interface allow a host program to override the default configurations and execute
functions implemented on the interface cards, for example, scanning for hosts and access
points.

6.1.2 Ad-Hoc Mode

In the ad-hoc mode, each device can set a channel number and an SSID to communicate
with. If devices are operating on the same channel and SSID, they can talk with each
other, much like they would on a wired LAN such as an Ethernet. This works fine for a
few devices that are statically configured to talk to each other, and no access point is
needed.

6.1.3 Additional Information

802.11 Wireless Networking; published by O'Reilly Media, provides further information about
802.11b wireless networks.
BL4S200 User’s Manual 139

6.2 Running Wi-Fi Sample Programs

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your module must be installed on the BL5S220 motherboard.

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the module to your PC.

4. Power must be applied to the BL5S220.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then compile and run it by pressing F9.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.
BL4S200 User’s Manual 140

6.2.1 Wi-Fi Setup

Figure 26 shows how your development setup might look once you’re ready to proceed.

Figure 26. Wi-Fi Host Setup

�(G)*5)(
�(G)*5)(
$A;

��4	�'�	3�	
6���
6>7��6<�)
	�
�63���
3����?

��#(�36���

��4	�'�	3�	
6���
6>7��6,�	
�
''63���
3����?
��

��

���

���

���

��

 �

��

���

��

��
�

��

��

��
�

��
��
�

�

��

��

���

�

��
�����

�.
�
�
.�

�.
�

�
.�

��
�

��
 .
��

�.��

�.
��

�.
��

�.��

�.��

�.
��

 .��

 .��

 .��

 .��

 .��

�.��

�.
��

�.
���.��

 .
��

�.
��

���

���

���

�

������������

�.�� �.��

� ��
�

��
�

����

�.��

�.��
�.�� �.��

���

����

���

��

 .�� .� .��

��
�

���

���
�
����

 �

D���7	 �

D"	%�

����
�.�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���
!��
���
!��
���
!��
���
!��

���-

���

D"���

D�����

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���
!��
���
!��
���
!��
���
!��

���

����

��
��

��
�� ��
�

��
�

��
� �� �� �� ��
�

��
�

���

�� �� �� �� �� ��

���

��
�

��
�

��
�

��
�

��
�

��
�

��� ��
��

��
��

��
��

��
��

���
�

���
�

���

��
��

���

��

�.���.��
�.��

�.��

 .
��

 .
��

�.
��

 .�

 .
��

 .
��

 .
��

�.
��

�.
��

�.
��

�.��

��
�

���

/�

���

��
�

��
�

 �
��� ��

�

����
���
���

����
���
���

����
���
���

����
���

����

���

!���

��

��
�� ��
�

!�
�"�

!�
�"�

!�
�"�

!�
�"�

��
�-

!�
�"�

!�
�"�

!�
�"�

!�
�"�

��
��

��
��

��
�
��
�

�.
��

�.��

�� ���

��

����
����

 ��

����
����

����
����

������������

����
!��
����

 ��

����

!������
!��

����

�������
����

 ��
����

����
��

����
!��

����
����

�

��
 ��

���

��� ��������

���
���

���

���

!"��

���

��� ���

���

���

���
���
���
���
���
���
���
���
���
���
���
���

����

� �,�

 �

���

���

,�
��� ���

���

���

 �

���
������
���
���
���
���
���
���
���

 ��

������

/�
���

��
��

���

���

���
���
���
���
���
���
���

���
���

���
���
���
���
���

 �

����

��� �� �

���

���

���

 ����

�� ���

���

 ��

��

��
���

���
���

���
���

�� ��

��
��

��

��������

!��

���� ����
����

����
����

���
���
���
���

������
����
����

��������
���

���

-��
"�H
���&��������

"�H
�����&��������

���

��
=�':)@
��
=�0�)*@

�31����4
��� �
�! ���!����

���C����

�	��	������6����

(0
��
 ��
40*(

�
�
	
�

�
"�
�

BL4S200 User’s Manual 141

6.2.2 What Else You Will Need

Besides what is supplied with the BL4S200 Tool Kit, you will need a PC with an available
USB port to program the BL5S220. You will need either an access point for an existing
Wi-Fi network that you are allowed to access and have a PC or notebook connected to that
network (infrastructure mode), or you will need at least a PDA or PC with Wi-Fi to use the
ad-hoc mode.
BL4S200 User’s Manual 142

6.2.3 Configuration Information

6.2.3.1 Network/Wi-Fi Configuration

Any device placed on an Ethernet-based Internet Protocol (IP) network must have its own
IP address. IP addresses are 32-bit numbers that uniquely identify a device. Besides the IP
address, we also need a netmask, which is a 32-bit number that tells the TCP/IP stack what
part of the IP address identifies the local network the device lives on.

The sample programs configure the BL5S220 with a default TCPCONFIG macro from the
LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library. This macro allows specific IP
address, netmask, gateway, and Wi-Fi parameters to be set at compile time. Change the
network settings to configure your BL5S220 with your own Ethernet settings only if that
is necessary to run the sample programs; you will likely need to change some of the Wi-Fi
settings.

• Network Parameters

These lines contain the IP address, netmask, nameserver, and gateway parameters.

#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_NAMESERVER "10.10.6.1"
#define MY_GATEWAY "10.10.6.1"

There are similar macros defined for the various Wi-Fi settings as explained in Section 6.3.1.

The Wi-Fi configurations are contained within TCPCONFIG 1 (no DHCP) and TCPCON-
FIG 5 (with DHCP, used primarily with infrastructure mode). You will need to #define
TCPCONFIG 1 or #define TCPCONFIG 5 at the beginning of your program.

NOTE: TCPCONFIG 0 is not supported for Wi-Fi applications.

There are some other “standard” configurations for TCPCONFIG. Their values are docu-
mented in the LIB\Rabbit4000\TCPIP\TCP_CONFIG.LIB library. More information
is available in the Dynamic C TCP/IP User’s Manual.
BL4S200 User’s Manual 143

6.2.3.2 PC/Laptop/PDA Configuration

This section shows how to configure your PC or notebook to run the sample programs.
Here we’re mainly interested in the PC or notebook that will be communicating wirelessly,
which is not necessarily the PC that is being used to compile and run the sample program
on the BL5S220.

This following instructions provide configuration information for the three possible Wi-Fi
setups shown in Figure 26. Start by going to the control panel (Start > Settings >
Control Panel) and click on Network Connections. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges.

When you are using an access point with your setup in the infrastructure mode, you will also
have to set the IP address and netmask (e.g., 10.10.6.99 and 255.255.255.0) for the access
point. Check the documentation for the access point for information on how to do this.

Infrastructure Mode (via Ethernet connection)

1. Go to the Local Area Connection to select the network interface card used you intend
to use (e.g., TCP/IP Xircom Credit Card Network Adapter) and click on the “Proper-
ties” button. Depending on which version of Windows your PC is running, you may
have to select the “Local Area Connection” first, and then click on the “Properties” but-
ton to bring up the Ethernet interface dialog. Then “configure” your interface card for
an “Auto-Negotiation” or “10Base-T Half-Duplex” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

2. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP
and click on “Properties” to fill in the following fields:

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

TIP: If you are using a PC that is already on a network, you will disconnect the PC from that
network to run these sample programs. Write down the existing settings before changing
them so that you can restore them easily when you are finished with the sample programs.

The IP address and netmask need to be set regardless of whether you will be using the
ad-hoc mode or the infrastructure mode.

3. Click <OK> or <Close> to exit the various dialog boxes.
BL4S200 User’s Manual 144

Infrastructure Mode (via wireless connection)

Set the IP address and netmask for your wireless-enabled PC or notebook as described in
Step 2 for Infrastructure Mode (via Ethernet connection) by clicking on Network
Connections, then on Local Area Connection. Now click on Wireless Network
Connection to select the wireless network you will be connecting to. Once a sample
program is running, you will be able to select the network from a list of available networks.
You will have to set your wireless network name with the access point SSID macro for the
infrastructure mode as explained in Section 6.3, “Dynamic C Wi-Fi Configurations.”

Ad-Hoc Mode

Set the IP address and netmask for your wireless-enabled PC or notebook as described in
Step 2 for Infrastructure Mode (via Ethernet connection) by clicking on Network
Connections, then on Local Area Connection. Now click on Wireless Network
Connection to select the wireless network you will be connecting to. Once a sample
program is running, you will be able to select the network from a list of available networks.
You will have set your wireless network name with the Wi-Fi channel macros for the ad-
hoc mode as explained in Section 6.3, “Dynamic C Wi-Fi Configurations.”
BL4S200 User’s Manual 145

Once the PC or notebook is set up, we're ready to communicate. You can use Telnet or a
Web browser such as Internet Explorer, which come with most Windows installations, to
use the network interface, and you can use HyperTerminal to view the serial port when
these are called for in some of the later sample programs.

Now we’re ready to run the sample programs in the Dynamic C Samples\TCPIP\WiFi
folder. The sample programs should run as is in most cases.

6.2.4 Wi-Fi Sample Programs

The sample programs in Section 6.2.4.1 show how to set up the country- or region-specific
attributes, but do not show the basic setup of a wireless network. The sample programs in
Section 6.2.4.2 show the setup and operation of a wireless network — the WIFISCAN.C
sample program is ideal to demonstrate that the BL5S220 has been hooked up correctly
and that the Wi-Fi setup is correct so that an access point can be found.

6.2.4.1 Wi-Fi Operating Region Configuration

The country or region you select will automatically set the power and channel require-
ments to operate the BL5S220. The following three options are available.

1. Country or region is set at compile time. This option is ideal when the end device is
intended to be sold and used only in a single region. If the end device is to be deployed
across multiple regions, this method would require an application image to be created for
each region. This option is the only approved option for the BL5S220 in Japan.

2. Country or region is set via the 802.11d feature of the access point. This option uses
beacons from an access point to configure the BL5S220 country or region automati-
cally. The end user is responsible for enabling 802.11d on the access point and then
selecting the correct country to be broadcast in the beacon packets.

NOTE: This option sets the power limit for BL5S220 to the maximum level permitted in
the region or the capability of the BL5S220, whichever is less. Since the beacons are
being sent continuously, the ifconfig IFS_WIFI_TX_POWER function cannot be
used with this option.

3. Country or region is set at run time. This is a convenient option when the end devices
will be deployed in multiple regions. A serial user interface would allow the BL5S220 to
be configured via a Web page. Systems integrators would still have to make sure the
end devices operate within the regulatory requirements of the country or region where
the units are being deployed.

These options may be used alone or in any combination. The three sample programs in the
Dynamic C Samples\WiFi\Regulatory folder illustrate the use of these three options.

• REGION_COMPILETIME.C—demonstrates how you can set up your BL5S220-based
system at compile time to operate in a given country or region to meet power and chan-
nel requirements.

The country or region you select will automatically set the power and channel require-
ments to operate the BL5S220. Rabbit recommends that you check the regulations for
the country where your system incorporating the BL5S220 will be deployed for any
BL4S200 User’s Manual 146

other requirements. Any attempt to operate a device outside the allowed channel range
or power limits will void your regulatory approval to operate the device in that country.

Before you compile and run this sample program, uncomment the #define IFC_
WIFI_REGION line corresponding to the region where your system will be deployed.
The Americas region will be used by default if one of these lines is not uncommented.
Now compile and run this sample program. The Dynamic C STDIO window will dis-
play the region you selected.

The sample program also allows you to set up the TCP/IP configuration, and set the IP
address and SSID as shown in the sample code below.

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.170"
#define IFC_WIFI_SSID "rabbitTest"

• REGION_MULTI_DOMAIN.C—demonstrates how the multi-domain options from the
access point can be used to configure your BL5S220-based system to meet regional
regulations. The sample program includes pings to indicate that the BL5S220-based
system has successfully received country information from your access point.

The country or region you select will automatically set the power and channel require-
ments to operate the BL5S220. Rabbit recommends that you check the regulations for
the country where your system incorporating the BL5S220 will be deployed for any
other requirements.

Before you compile and run this sample program, verify that the access point has the
802.11d option enabled and is set for the correct region or country. Check the TCP/IP
configuration parameters, the IP address, and the SSID in the macros, which are repro-
duced below.

#define TCPCONFIG 1

#define WIFI_REGION_VERBOSE
#define _PRIMARY_STATIC_IP "10.10.6.170"
#define IFC_WIFI_SSID "rabbitTest"

Now compile and run this sample program. The #define WIFI_REGION_VERBOSE
macro will display the channel and power limit settings. The Dynamic C STDIO win-
dow will then display a menu that allows you to complete the configuration of the user
interface.

• REGION_RUNTIME_PING.C—demonstrates how the region or country can be set at
run time to configure your BL5S220-based system to meet regional regulations. The
sample program also shows how to save and retrieve the region setting from nonvola-
tile memory. Once the region/country is set, this sample program sends pings using the
limits you set.

The country or region you select will automatically set the power and channel require-
ments to operate the BL5S220. Digi International recommends that you check the regu-
lations for the country where your system incorporating the BL5S220 will be deployed
for any other requirements.
BL4S200 User’s Manual 147

Before you compile and run this sample program, check the TCP/IP configuration
parameters, the IP address, and the SSID in the macros, which are reproduced below.

#define TCPCONFIG 1
// #define WIFI_REGION_VERBOSE

#define PING_WHO "10.10.6.1"
#define _PRIMARY_STATIC_IP "10.10.6.170"
#define IFC_WIFI_SSID "rabbitTest"

Now compile and run this sample program. Uncomment the #define WIFI_REGION_
VERBOSE macro to display the channel and power limit settings. The Dynamic C STDIO
window will then display a menu that allows you to complete the configuration of the
user interface.

6.2.4.2 Wi-Fi Operation

• WIFIDHCPORTSTATIC.C—demonstrates the runtime selection of a static IP configura-
tion or DHCP. The SAMPLES\TCPIP\DHCP.C sample program provides further exam-
ples of using DHCP with your application.

Before you compile and run this sample program, check the TCP/IP configuration
parameters, the IP address, and the SSID in the macros, which are reproduced below.

#define USE_DHCP
#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define IFC_WIFI_SSID "rabbitTest"

Modify the values to match your network. You may also need to modify the values for
MY_GATEWAY if you are not pinging from the local subnet.

Now press F9 to compile and run the sample program. When prompted in the Dynamic C
STDIO window, type 's' for static configuration or 'd' for DHCP.

• WIFIMULTIPLEAPS.C—demonstrates changing access points using WEP keys. You
will need two access points to run this sample program. The access points should be
isolated or on separate networks.

The sample program associates the RabbitCore module with the first access point (AP_0
defined below) with WEP key KEY0 (defined below). After associating, the sample
program waits for a predefined time period, and then pings the Ethernet address of the
access point (AP_ADDRESS_0). The sample program then associates with the second
access point and pings its Ethernet address (AP_1, KEY1, AP_ADDRESS_1), and then
switches back and forth between the two access points.

When changing access points, first bring the IF_WIFI0 interface down by calling
ifdown(IF_WIFI0). Next, change the SSID and key(s) using ifconfig() calls.
Finally, bring the IF_WIFI0 interface back up by calling ifup(IF_WIFI0). Note that
the sample program checks for status while waiting for the interface to come up or
down.

Before you compile and run this sample program, check the TCP/IP configuration
parameters, the IP address, and the SSID in the macros, which are reproduced below.

#define TCPCONFIG 1
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_WEP
BL4S200 User’s Manual 148

You do not need to configure the SSID of your network since that is done from the
access point names.

Now configure the access to the two access points.

// First Access Point
#define AP_0 "test1"
#define AP_0_LEN strlen(AP_0)
#define MY_ADDRESS_0 "10.10.6.250" // use this static IP when connected to AP 0
#define PING_ADDRESS_0 "10.10.6.1" // address on AP 0 to ping
#define KEY_0 "0123456789abcdef0123456789"

// Second Access Point
#define AP_1 "test2"
#define AP_1_LEN strlen(AP_1)
#define MY_ADDRESS_1 "10.10.0.99" // use this static IP when connected to AP 1
#define PING_ADDRESS_1 "10.10.0.50"// address on AP 1 to ping
#define KEY_1 "0123456789abcdef0123456789"

#define IFC_WIFI_SSID AP_0
#define _PRIMARY_STATIC_IP MY_ADDRESS_0

Modify the access point names and keys to match your access points and network.

• WIFIPINGYOU.C—sends out a series of pings to a RabbitCore module on an ad-hoc
Wi-Fi network.

This sample program uses some predefined macros. The first macro specifies the
default TCP/IP configuration from the Dynamic C LIB\Rabbit4000\TCPIP\TCP_
CONFIG.LIB library.

#define TCPCONFIG 1

Use the next macro unchanged as long as you have only one BL5S220. Otherwise use
this macro unchanged for the first BL5S220.

#define NODE 1

Then change the macro to #define NODE 2 before you compile and run this sample
program on the second BL5S220.

The next macros assign an SSID name and a channel number to the Wi-Fi network.

#define IFC_WIFI_SSID "rab-hoc"
#define IFC_WIFI_OWNCHANNEL "5"

Finally, IP addresses are assigned to the RabbitCore modules.

#define IPADDR_1 "10.10.8.1"
#define IPADDR_2 "10.10.8.2"

As long as you have only one BL5S220, the Dynamic C STDIO window will display
the pings sent out by the module. You may set up a Wi-Fi enabled laptop with the IP
address in IPADDR_2 to get the pings.

If you have two BL5S220 boards, they will ping each other, and the Dynamic C STDIO
window will display the pings.
BL4S200 User’s Manual 149

• WIFISCAN.C—initializes the BL5S220 and scans for other Wi-Fi devices that are
operating in either the ad-hoc mode or through access points in the infrastructure mode.
No network parameter settings are needed since the BL5S220 does not actually join an
802.11 network. This program outputs the results of the scan to the Dynamic C STDIO
window.

• WIFISCANASSOCIATE.C— demostrates how to scan Wi-Fi channels for SSIDs using
ifconfig IFS_WIFI_SCAN. This takes a while to complete, so ifconfig() calls a
callback function when it is done. The callback function is specified using ifconfig
IFS_WIFI_SCAN.

Before you run this sample program, configure the Dynamic C TCP_CONFIG.LIB
library and your TCPCONFIG macro.

1. Use macro definitions in the “Defines” tab in the Dynamic C Options > Project
Options menu to modify any parameter settings.

If you are not using DHCP, set the IP parameters to values appropriate to your network.

Set IFS_WIFI_SSID to an appropriate value. To connect to a specific BSS, set IFS_
WIFI_SSID to the SSID of your access point as a C-style string, for example,

or use an empty string, "", to associate with the strongest BSS available.

Alternatively, you may create your own CUSTOM_CONFIG.LIB library modeled on the
Dynamic C TCP_CONFIG.LIB library. Then use a TCPCONFIG macro greater than or
equal to 100, which will invoke your CUSTOM_CONFIG.LIB library to be used.
Remember to add the CUSTOM_CONFIG.LIB library to LIB.DIR.

2. If you are using DHCP, change the definition of the TCPCONFIG macro to 5. The default
value of 1 indicates Wi-Fi with a static IP address.

Now compile and run the sample program. Follow the menu options displayed in the
Dynamic C STDIO window.

Note that ifconfig IFS_WIFI_SCAN function calls do not return data directly since
the scan takes a fair amount of time. Instead, callback functions are used. The callback
function is passed to ifconfig() as the only parameter to IFS_WIFI_SCAN.

ifconfig(IF_WIFI0, IFS_WIFI_SCAN, scan_callback, IFS_END);

_PRIMARY_STATIC_IP = "10.10.6.100"
_PRIMARY_NETMASK = "255.255.255.0"
MY_NAMESERVER = "10.10.6.1"
MY_GATEWAY = "10.10.6.1"

IFS_WIFI_SSID = "My Access Point"

s - scan for BSS's,

a - scan and associate

m - dump MAC state information

t - dump tx information
BL4S200 User’s Manual 150

The data passed to the callback function are ephemeral since another scan may occur.
Thus, the data need to be used (or copied) during the callback function.

While waiting for user input, it is important to keep the network alive by calling
tcp_tick(NULL) regularly.

6.2.5 RCM5400W Sample Programs

The following sample programs are in the Dynamic C SAMPLES\RCM5400W\TCPIP\
folder.

• PASSPHRASE.C—This program demonstrates how to perform the CPU-intensive process
of converting an ASCII passphrase into a WPA PSK hex key.

For security reasons, the mapping function is deliberately designed to be CPU-intensive
in order to make a dictionary-based attack more difficult. It can take on the order of 40
seconds to perform the 4096 iterations on the BL5S220. Since this may be an unaccept-
able amount of time to “block” the application program, a method is provided to split
up the computation.

As you compile and run this sample program, there is no network activity. You will
only notice that some information is printed out in the Dynamic C STDIO window.

• PINGLED_STATS.C—This program is similar to PINGLED.C, but it also displays
receiver/transmitter statistics in the Dynamic C STDIO window.

Before you compile and run this sample program, change PING_WHO to the host you
want to ping. You may modify PING_DELAY define to change the amount of time in
milliseconds between the outgoing pings.

Modify the value in the MOVING_AVERAGE macro to change the moving average filter-
ing of the statistics. Also review the GATHER_INTERVAL and GRAPHICAL macros,
which affect the number of samples to gather and create a bar graph display instead of a
numeric display.

Uncomment the VERBOSE define to see the incoming ping replies.

• PINGLED_WPA_PSK.C—This program demonstrates the use of WPA PSK (Wi-Fi
Protected Access with Pre-Shared Key). WPA is a more secure replacement for WEP.
The implementation in the sample program supports use of the TKIP (Temporal Key
Integrity Protocol) cypher suite.

The sample program uses macros to configure the access point for WPA PSK, specify
the TKIP cypher suite, assign the access point SSID, and set the passphrase.

#define WIFI_USE_WPA // Bring in WPA support
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_TKIP // Define cypher suite

#define IFC_WIFI_SSID "parvati"

#define IFC_WIFI_WPA_PSK_PASSPHRASE "now is the time"
BL4S200 User’s Manual 151

The next macro specifies a suitable pre-shared key to use instead of the passphrase. The
key may be entered either as 64 hexadecimal digits or as an ASCII string of up to 63
characters.

#define IFC_WIFI_WPA_PSK_HEXSTR

TIP: There is a good chance of typos since the key is long. First, enter the key in this
sample program macro, then copy and paste it to your access point. This ensures that
both the BL5S220 and the access point have the same key.

TIP: For an initial test, it may be easier to use the 64 hex digit form of the key rather than
the ASCII passphrase. A passphrase requires considerable computation effort, which
delays the startup of the sample program by about 30 seconds.

Change PING_WHO to the host you want to ping. You may modify PING_DELAY to
change the amount of time in milliseconds between the outgoing pings.

Uncomment the VERBOSE define to see the incoming ping replies.

Once you have compiled the sample program and it is running, LED DS2 will flash
when a ping is sent, and LED DS3 will flash when a ping is received.
BL4S200 User’s Manual 152

• PINGLED_WPA2_CCMP.C—This sample program is an extension of PINGLED.C. It
demonstrates the use of WPA2 PSK (Wi-Fi Protected Access with Pre-Shared Key).).
WPA is a more secure replacement for WEP. The implementation in the sample pro-
gram uses the Advanced Encryption Standard (AES) based algorithm, also known as
the CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code
Protocol) cypher suite.

Apart from the configuration of WPA2_CCMP at the top of the sample program, the rest
of the code is identical to the case without WPA2 PSK. Indeed, most of the TCP/IP
sample programs should work with WPA2 CCMP simply by using the same configura-
tion settings.

Configure your access point for WPA2 PSK before you run this sample program.
Specify the CCMP cypher suite, and enter a suitable pre-shared key. The key may be
entered either as 64 hexadecimal digits or as an ASCII string of up to 63 characters.

TIP: There is a good chance of typos since the key is long. First, enter the key in this
sample program macro, then copy and paste it to your access point. This ensures that
both the BL5S220 and the access point have the same key.

TIP: For an initial test, it may be easier to use the 64 hex digit form of the key rather than
the ASCII passphrase. A passphrase requires considerable computation effort, which
delays the startup of the sample program by about 30 seconds.

Now change PING_WHO to the address of the host you want to ping.

You may modify the PING_DELAY define to change the amount of time (in milliseconds)
between the outgoing pings.

Uncomment the VERBOSE define to see the incoming ping replies.

Finally, compile and run this sample program. LED DS2 will flash when a ping is sent.
LED DS3 will flash when a ping is received.
BL4S200 User’s Manual 153

6.3 Dynamic C Wi-Fi Configurations

Rabbit has implemented a packet driver for the BL5S220 that functions much like an
Ethernet driver for the Dynamic C implementation of the TCP/IP protocol stack. In addi-
tion to functioning like an Ethernet packet driver, this driver implements a function call to
access the functions implemented on the 802.11b/g interface, and to mask channels that
are not available in the region where the BL5S220 will be used.

The Wi-Fi interface may be used either at compile time using macro statements or at run
time with the ifconfig() function call from the Dynamic C LIB\Rabbit4000\TCPIP\
NET.LIB library.

6.3.1 Configuring TCP/IP at Compile Time

Digi International has made it easy for you to set up the parameter configuration using
already-defined TCPCONFIG macros from the Dynamic C LIB\Rabbit4000\TCPIP\
TCP_CONFIG.LIB library at the beginning of your program as in the example below.

#define TCPCONFIG 1

There are two TCPCONFIG macros specifically set up for Wi-Fi applications with the
BL5S220. (TCPCONFIG 0 is not supported for Wi-Fi applications.)

These default IP address, netmask, nameserver, and gateway network parameters are set
up for the TCPCONFIG macros.

#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_NAMESERVER "10.10.6.1"
#define MY_GATEWAY "10.10.6.1"

The use of quotation marks in the examples described in this chapter is important since the
absence of quotation marks will be flagged with warning messages when encrypted librar-
ies are used.

Wi-Fi Parameters

• Access Point SSID—IFC_WIFI_SSID. This is the only mandatory parameter. Define
the IFC_WIFI_SSID macro to a string for the SSID of the access point in the infra-
structure (BSS) mode, or the SSID of the ad-hoc network in the ad-hoc (IBSS) mode.

The default is shown below.

#define IFC_WIFI_SSID "rabbitTest"

• Mode—IFC_WIFI_MODE determines the mode:
IFPARAM_WIFI_INFRASTRUCT for the infrastructure mode, or IFPARAM_WIFI_ADHOC
for the ad-hoc mode.

The default is shown below.

#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCT

TCPCONFIG 1 No DHCP

TCPCONFIG 5 DHCP enabled
BL4S200 User’s Manual 154

• Your Own Channel—IFC_WIFI_CHANNEL determines the channel on which to operate.
Define it to a string, not an integer.

The default is shown below.

#define IFC_WIFI_CHANNEL 0

The default 0 means that any valid channel may be used by the requested SSID. This
parameter is mandatory when creating an ad-hoc network. While it is optional for the
infrastructure mode, it is usually best left at the default 0.

Note that there are restrictions on which channels may be used in certain countries.
These are provided in the RabbitCore RCM5400 User’s Manual for some countries.

• Region/Country—IFC_WIFI_REGION sets the channel range and maximum power
limit to match the region selected. The RabbitCore RCM5400 User’s Manual lists the
regions that are supported and their corresponding macros.

The region selected must match the region where the BL5S220 will be used.

The default is shown below.

#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS

• Disable/enable encryption—IFC_WIFI_ENCRYPTION indicates whether or not encryp-
tion is enabled.

The default (encryption disabled) is shown below.

#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_NONE

The following encryption options are available.

• IFPARAM_WIFI_ENCR_NONE — no encryption is used.

• IFPARAM_WIFI_ENCR_ANY — any type of encryption is used.

• IFPARAM_WIFI_ENCR_WEP — use WEP encryption. You will need to define at least
one WEP key (see below).

• IFPARAM_WIFI_ENCR_TKIP — use TKIP or WPA encryption. You will need to
define a passphrase or a key for TKIP encryption, as well as define the WIFI_USE_WPA
macro (see below).

• IFPARAM_WIFI_ENCR_CCMP — use CCMP or WPA2 encryption. You will need to
define at least one WEP key (see below).

• There are four encryption keys (0, 1, 2, 3) associated with the IFC_WIFI_WEP_KEYNUM
macro (default 0). One or more of the following additional macros must be defined as
well. The default is for the keys to remain undefined.

IFC_WIFI_WEP_KEY0_BIN

IFC_WIFI_WEP_KEY1_BIN

IFC_WIFI_WEP_KEY2_BIN

IFC_WIFI_WEP_KEY3_BIN

IFC_WIFI_WEP_KEY0_HEXSTR

IFC_WIFI_WEP_KEY1_HEXSTR

IFC_WIFI_WEP_KEY2_HEXSTR

IFC_WIFI_WEP_KEY3_HEXSTR
BL4S200 User’s Manual 155

These macros specify the WEP keys to use for WEP encryption. These keys can be
either 40-bit or 104-bit (i.e., 5 bytes or 13 bytes). They must be defined as a comma-
separated list of byte values.

Note that you do not necessarily need to define all four WEP keys. You may typically
just define one key, but make sure it matches the key used on all other devices, and set
IFC_WIFI_WEP_KEYNUM to point to the correct key.

If both IFC_WIFI_WEP_KEY#_BIN and IFC_WIFI_WEP_KEY#_HEXSTR are defined
for a particular key, the hex version will be used.

• Use WPA encryption.

The following macro must also be used to compile WPA functionality into the Wi-Fi
driver. This is necessary to enable TKIP encryption.

#define WIFI_USE_WPA

• Set WPA passphrase—IFC_WIFI_WPA_PSK_PASSPHRASE is a string that matches the
passphrase on your access point. It may also point to a variable.

Define an ASCII passphrase here, from 1 to 63 characters long. An example is shown
below.

#define IFC_WIFI_WPA_PSK_PASSPHRASE "now is the time"

If possible, you should use IFC_WIFI_WPA_PSK_HEXSTR instead of IFC_WIFI_
WPA_PSK_PASSPHRASE to set the key.

• Set WPA hexadecimal key—IFC_WIFI_WPA_PSK_HEXSTR is a string of hexadecimal
digits that matches the 256-bit (64-byte) hexadecimal key used by your access point.

Specify a 64 hexadecimal digit (256 bits) key here. This key will be used and will over-
ride any passphrase set with the IFC_WIFI_WPA_PSK_PASSPHRASE macro. The
example hex key shown below

#define IFC_WIFI_WPA_PSK_HEXSTR \
 "57A12204B7B350C4A86A507A8AF23C0E81D0319F4C4C4AE83CE3299EFE1FCD27"

is valid for the SSID "rabbitTest" and the passphrase "now is the time".

Using a passphrase is rather slow. It takes a Rabbit 5000 more than 20 seconds to gen-
erate the actual 256-bit key from the passphrase. If you use a passphrase and #define
WIFI_VERBOSE_PASSPHRASE, the Wi-Fi library will helpfully print out the hex key
corresponding to that passphrase and SSID.

• Authentication algorithm—IFC_WIFI_AUTHENTICATION can be used to specify the
authentication modes used.

The default shown below allows enables both open-system authentication and shared-
key authentication.

#define IFPARAM_WIFI_AUTH_ANY
BL4S200 User’s Manual 156

The following authentication options are available.

• IFPARAM_WIFI_AUTH_OPEN — only use open authentication.

• IFPARAM_WIFI_AUTH_SHAREDKEY — only use shared-key authentication (useful
for WEP only).

• IFPARAM_WIFI_WPA_PSK — use WPA preshared-key authentication (useful for
TKIP and CCMP only).

• Fragmentation threshold—IFC_WIFI_FRAG_THRESHOLD sets the fragmentation
threshold. Frames (or packets) that are larger than this threshold are split into multiple
fragments. This can be useful on busy or noisy networks. The value can be between
256 and 2346.

The default, 0, means no fragmentation.

#define IFC_WIFI_FRAG_THRESHOLD 0

• RTS threshold—IFC_WIFI_RTS_THRESHOLD sets the RTS threshold, the frame size
at which the RTS/CTS mechanism is used. This is sometimes useful on busy or noisy
networks. Its range is 0 to 2347.

The default, 2347, means no RTS/CTS.

#define IFC_WIFI_RTS_THRESHOLD 2347

Examples are available within Dynamic C. Select “Function Lookup” from the Help
menu, or press <ctrl-H>. Type “TCPCONFIG” in the Function Search field, and hit
<Enter>. Scroll down to the section on “Wi-Fi Configuration.” The Dynamic C TCP/IP
User’s Manual.(Volume 1) provides additional information about these macros and Wi-Fi.

It is also possible to redefine any of the above parameters dynamically using the ifcon-
fig() function call. Macros for alternative Wi-Fi configurations are provided with the
ifconfig() function call, and may be used to change the above default macros or
configurations.
BL4S200 User’s Manual 157

6.3.2 Configuring TCP/IP at Run Time

There is one basic function call used to configure Wi-Fi and other network settings —
ifconfig(). See the Dynamic C TCP/IP User’s Manual, Volume 1 for more informa-
tion about this function call.

6.3.3 Other Key Function Calls

Remember to call sock_init() after all the Wi-Fi parameters have been defined. The
Wi-Fi interface will be up automatically as long as you configured Dynamic C at compile
time with one of the TCPCONFIG macros. Otherwise the Wi-Fi interface is neither up nor
down, and must be brought up explicitly by calling either ifup(IF_WIFI0) or
ifconfig(IF_WIFI0,…). You must bring the interface down when you configure
Dynamic C at run time before modifying any parameters that require the interface to be
down (see Section 6.3.2) by calling ifdown(IF_WIFI0). Then bring the interface back up.

Finally, no radio transmission occurs until you call tcp_tick(NULL).

Instead of executing the above sequence based on sock_init(), you could use sock_
init_or_exit(1) as a debugging tool to transmit packets (ARP, DHCP, association,
and authentication) while bringing up the interface and to get the IP address.
BL4S200 User’s Manual 158

6.4 Where Do I Go From Here?

NOTE: If you purchased your BL5S220 through a distributor or through a Rabbit partner,
contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit,com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample programs ran fine, you are now ready to go on.

An Introduction to TCP/IP, An Introduction to Wi-Fi, and the Dynamic C TCP/IP
User’s Manual.provide background and reference information on TCP/IP, and are avail-
able on the CD and on our Web site.
BL4S200 User’s Manual 159

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com/
http://www.rabbit.com/forums/

7. USING THE ZIGBEE FEATURES

Chapter 7 discusses using the ZigBee features on the BL4S230 board. This networking
feature is not available on other BL4S200 models, which have other network interfaces.

7.1 Introduction to the ZigBee Protocol

The ZigBee PRO specification was ratified in April, 2007, and covers high-level commu-
nication protocols for small, low-power digital modems based on the IEEE 802.15.4 stan-
dard for wireless personal area networks (WPANs). The XBee RF module used by the
BL4S230 operates in the 2.4 GHz industrial, scientific, and medical (ISM) radio band in
most jurisdictions worldwide.

The ZigBee protocol is ideal for embedded-system applications that are characterized by
low data rates and low power consumption. A network of devices using the ZigBee proto-
col works via a self-organizing mesh network that can be used for industrial control,
embedded sensors, data collection, smoke and intruder warning, and building automation.
The power consumption of the individual device could be met for a year or longer using
the originally installed battery.

A ZigBee device can be set up in one of three ways.

• As a coordinator: The coordinator serves as the root of the network tree. Each network
can only have one coordinator. The coordinator stores information about the network
and provides the repository for security keys.

• As a router. Routers pass data from other devices.

• As an end device. End devices contain just enough functionality to talk to their parent
node (either the coordinator or a router), and cannot relay data from other devices.
BL4S200 User’s Manual 160

An Introduction to ZigBee provides background information on the ZigBee protocol, and
is available on the CD and on our Web site.

7.2 ZigBee Sample Programs

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Dynamic C must be installed and running on your PC.

2. The programming cable must connect the programming header on the RabbitCore
module to your PC.

3. Power must be applied to the BL4S230.

4. The Digi® XBee USB used as the ZigBee coordinator must be connected to an avail-
able USB port on your PC if you are exercising the ZigBee protocol.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

NOTE: The Digi XBee USB device is an optional accessory and is not a part of the stan-
dard BL4S200 Tool Kit. See section F.2 Digi® XBee USB Configuration for more
information on the Digi XBee USB device.

To run a sample program, open it with the File menu (if it is not still open), then compile
and run it by pressing F9.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program.

The sample programs in the Dynamic C SAMPLES\XBee folders illustrate the use of the
ZigBee function calls.

The XBee RF module used by the BL4S230 presently sup-
ports using the BL4S230 in a mesh network. RCM4510W
modules on the BL4S230 are preconfigured with ZB router
firmware; coordinator firmware is included in the Dynamic C
installation along with a sample program to allow you to
download the coordinator firmware.

The firmware used with the XBee RF modules on the
BL4S230 is based on the API command set.

Figure 27. Mesh Network
BL4S200 User’s Manual 161

http://www.rabbit.com/

7.2.1 Setting Up the Digi XBee USB Coordinator

1. Connect the Digi® XBee USB acting as a ZigBee coordinator to an available USB port
on your PC or workstation. Your PC should recognize the new USB hardware.

2. Connect the Demonstration Board to the BL4S230 as shown below.

3. Compile and run the XBEE_GPIO_SERVER.C sample program in the Dynamic C
SAMPLES\BLxS2xx\XBee folder.

4. Open the ZigBee Utility by double-clicking XBEE_GPIO_GUI.exe in the Dynamic C
Utilities\XBee GPIO GUI folder — if you have problems launching the ZigBee
Utility, install a .Net Framework by double-clicking dotnetfx.exe in the Dynamic C
Utilities\dotnetfx folder. You may add a shortcut to the ZigBee Utility on your
desktop.

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��
�
��

���
���
���

���
���
���

 �

�
��
�
��
�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��
�
��
�
��

���
���

���

���
���
���

 �

�
��
�
��
�
��

���
���
���

����
���

 �

���

���

��
�
��
�

!� !�

���

�
��
�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���
��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�=�<06�:�
����"�#�$�%+

�()�*

�
05
5)
6(
0*

�
��

�
!�
�
��
�

�"	�
�"	�
�"	�
�"	�

�
05
5)
6(
0*

�
��

�
!�
�
��
�

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���
��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

���$

�"	�
�"	�
�"	�
�"	�

��� ���

���
*+�"���6�!��<�0!�

���
(0
495
�
05

�055)6(0*
���
BL4S200 User’s Manual 162

5. Confirm the following hardware setup is displayed on the “PC Settings” tab.

Now select the COM port the Digi® XBee USB is connected to, and click the “Open
Com Port” button. The message “Radio Found” is displayed to indicate that you
selected the correct COM port. The ZigBee parameters (firmware version, operating
channel, PAN ID) for the Digi® XBee USB will be displayed in the “Radio Parameters”
box. Go to Control Panel > System > Hardware > Device Manager > Ports on your
PC if you need help in identifying the USB COM port.

6. Any ZigBee devices discovered will be displayed in the “Devices Discovered” window
to the right.

If the utility times out and no ZigBee devices are displayed, you will have to reconfig-
ure the Digi® XBee USB and recompile the sample program once you make sure the
BL4S230 is powered up. The timeout may occur if you are doing development simulta-
neously with more than one ZigBee coordinator. Appendix F explains the steps to
reconfigure the Digi® XBee USB.

• 115200 baud

• Hardware flow control

• 8 data bits

• No parity

• 1 stop bit
BL4S200 User’s Manual 163

7. Select a device with your mouse pointer and click on the selected device to select that
device. This device will now be displayed in the “Selected Device” area.

8. You are now ready to interface with the BL4S230 via the ZigBee protocol. Try pinging
the selected device by clicking the “Send Ping” button.

7.2.2 Setting up Sample Programs

The sample programs are set up so that the BL4S230 you are using is a ZigBee router or
coordinator. Uncomment the line corresponding to the role the BL4S230 will have once it
is running the sample program. The default in the sample programs is for the BL4S230 to
be a router.

// Set XBEE_ROLE to NODE_TYPE_COORD, NODE_TYPE_ROUTER or NODE_TYPE_ENDDEV
// to match your XBee's firmware.
#define XBEE_ROLE NODE_TYPE_ROUTER

NOTE: Remember that the firmware loaded to the XBee RF module is different depend-
ing on whether the BL4S230 is a router (default) or a coordinator. See Appendix F,
“Additional Configuration Instructions,” for information on how to download
firmware to the BL4S230 to set it up as a coordinator or to resume its original
configuration as a router.

There are several macros that may be changed to facilitate your setup. The macros can
be included as part of the program code, or they may be put into the Program Options
“Defines” on the “Defines” tab in the Options > Program Options menu.
BL4S200 User’s Manual 164

Channel mask — defaults to 0x1FFE, i.e., all 16 possible channels via the macro in the
Dynamic C LIB\Rabbit4000\XBee\XBee_Firmware\XBEE_API.LIB library. If
you want to limit the channels used, all devices on your network should use the same
channel mask.

#define DEFAULT_CHANNELS XBEE_DEFAULT_CHANNELS

Extended PAN ID — the 64-bit network ID. Defaults to DEFAULT_PANID if set in the
Dynamic C LIB\Rabbit4000\XBee\XBEE_API.LIB library, otherwise defaults to
0x0123456789abcdef to match the default used on the Digi® XBee USB.

If set to 0x00, tells coordinators to “select a random extended PAN ID,” and tells routers
and end devices to “join any network.”

Change the extended PAN ID if you are developing simultaneously with more than one
ZigBee coordinator.

#define DEFAULT_EXTPANID "0x0123456789abcdef"

Node ID — the ID of your particular node via the macro in the Dynamic C LIB\
Rabbit4000\XBee\XBee_Firmware\XBEE_API.LIB library. Each node should
have a unique identifier.

#define NODEID_STR "RabbitXBee"

The XBee sample programs in the Dynamic C SAMPLES\XBee folder illustrate the use of
the XBee function calls.

• AT_INTERACTIVE.C—This sample program shows how to set up and use AT
commands with the XBee RF module.

The program will print out a list of AT commands in the Dynamic C STDIO window.
You may type in either “ATxx” or just the “xx” part of the command.

• Use just the AT command to read any of the values.

• Use [AT]xx yyyy (where the y is an integer up to 32 bits) to set any of the “set or read” values.
(Note that this works for NI, the node identifier, where the data will be a Node ID.string in quotes
— [AT]NI "Node ID string” where the quotes contain the string data)

• Type “menu” to redisplay the menu of commands.

• Press F4 to exit and close the STDIO window.

• AT_RUNONCE.C—This sample program uses many of the most important and useful
AT commands. Several commands can either set a parameter or read it. This sample
program simply reads the parameters and displays the results.

Compile and run this sample program. The program will display the results in the
Dynamic C STDIO window.
BL4S200 User’s Manual 165

The XBee sample program in the Dynamic C SAMPLES\BLxS2xx\XBee folder illustrates
the use of the XBee function calls.

• XBEE_GPIO_SERVER.C—This sample program shows how to set up and use endpoints
and clusters. It is meant to be run with the Windows GUI client (installed in Dynamic C’s
Utilities directory) and a Digi USB XBee coordinator or with the GPIO client
sample program (SAMPLES/XBEE/XBEE_GPIO_CLIENT.C) running on an RCM4510W
RabbitCore module or on a single-board computer with an XBee RF module.

Connect the BL4S230 to the Demonstration Board as explained in Section 7.2.1. Then
compile and run this sample program on the BL4S230. Run the Windows GUI client on
your PC. Configure the GUI client (XBEE_GPIO_GUI.exe in the Dynamic C
Utilities\XBee GPIO GUI folder) to connect to the Digi USB XBee coordinator
and scan for devices. Make sure the BL4S230 and the Digi USB XBee coordinator are
configured with the same PAN ID.

If you run the XBEE_GPIO_CLIENT.C sample program on another board with an XBee
RF module, set the PAN IDs to match between the client and the server sample programs.

Now select the GPIO server and use the GUI interface on the PC, or the command-line
client on another XBee-equipped board to view the server's inputs and change its outputs.
BL4S200 User’s Manual 166

7.3 Dynamic C Function Calls

Function calls for use with the XBee RF modules are in the Dynamic C LIB\Rabbit4000\
XBee\XBEE_API.LIB library. These ZigBee specific function calls are described in An
Introduction to ZigBee, which is included in the online documentation set.

7.4 Where Do I Go From Here?

NOTE: If you purchased your BL4S230 through a distributor or through a Rabbit partner,
contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample programs ran fine, you are now ready to go on.

An Introduction to ZigBee provides background information on the ZigBee protocol, and
is available on the CD and on our Web site.

Digi’s XBee™ Series 2 OEM RF Modules provides complete information for the XBee
RF module used on the BL4S230, provides background information on the ZigBee proto-
col, and is available at ftp1.digi.com/support/documentation/90000976_a.pdf.
BL4S200 User’s Manual 167

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/forums/
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com/
http://ftp1.digi.com/support/documentation/90000976_a.pdf

APPENDIX A. SPECIFICATIONS

Appendix A provides the specifications for the BL4S200 and describes the conformal
coating.
BL4S200 User’s Manual 168

A.1 Electrical and Mechanical Specifications

Figures A-1(a) and A-1(b) show the mechanical dimensions for the BL4S200.

Figure A-1(a). BL4S200/BL4S210 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

�
�

�

�
�
�

�
�
�

�

�
�

�
�

�

�
�
�

�
�
�

�

���
������

���
���
���

�
�
�

�
�
�

���
���
���

���
���
���

 �

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�

��

��

�
�
�

��� � �

���

�
�
�

�
�
�

�
�
�

���
���

���

���
���
���

 �

�
�
�

�
�
�

�
�
�

���
���
���

����

���

 �

���

���

��

�
�
�
�

!� !�

���

�
�
�

�
�
�

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

�
�
�
�

�
�
�
�

�
�

�
�

�

�
�
�

�
�
�

�

�
�

�
�

�

�
�
�

�
�
�

�

�
�

�
"	
�
#

$
	
�
#

�
�

�
"	
�
#

$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�
�

��
��

���

��

���
�

!
�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�

���

���

�
�
�

�
�
�

!
�

���

�
�
�
�

���
�
�
�
�

�
�

�
�
�

���

�
�
�

�
�
� !"��

�����

-
�
.

�
�
�

���

�
�
�
�
�
�

���

�
�
�

�
�
�

�
�
�

�

���
���

���

�
�

�
�
�

�
�
�

���

�
� �
�

�
�

��� ���

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

���

�
�
�

����������	���
����

�
�

�

�
�
�

�

����

����

����

������

�
�

���

�
�
�

�
�
�

�
�
�

���
���

���

���

���

���

����

����

�
�
�

�
�

/
�
/
�

���
���

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���

�
��

�
�
�

��C��
I'6<:
)?()52
���J
=��
>>@
4':(
)23)
0B
;0'*2

���
=���@

����
=���@

����
=���@

����
=���@

����
=���@

�
�
�
�

=�
�
@

����
=���@

�
�
�
�

=�
�
@

�
�
�
�

=�
�
@

�
�
�
�

=�
�
@

����
=��@

����
=��@

����
=���@

����
=���@

����
=��@

����
=���@

����
=���@

���
=���@

���
=���@

����
=��@

�
�
�
�

=�
�
@

����
=��@

����
=��@

����
=���@

����
=���@

����
=��@

�
�
�
�

=�
�
@

����
=���@

����
=���@

�
�
�
�

=�
�
@

����
=���@

�
�
�
�

=�
�
@

����
=���@

����
=���@

K
�����
29'
=��@

�
�
�
�

=�
�
�
@

����
=���@

����
=��@

�
�
�
�

=�
�
�
@

����
=��@

�
�
�
�

=�
�
�
@

����
=���@

����
=���@

����
=��@

����
=��@

�
�
�

=�
�
@

�
�
�

=�
�
@

����
=��@ ����

=���@

�
�
�
�

=�
�
�
@

�
�
�
�

=�
�
�
@

����
=���@

����
=���@

�96*0C-9(
L

6055)6(0*:

)?()52
���J
=��
>>@
4':(
)23)
0B
;0'*2

���
=��@

���
=��@���

=��@

�
�
�
�

=�
�
�
@

���
=��@�

�
�
�

=�
�
@

�
�
�

=�
�
@

���
=��@
BL4S200 User’s Manual 169

Figure A-1(b). BL5S220/BL4S230 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��

�
��

�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�
� �
��

�
�

�
���

�
���

��

����
����

����
����

�
����

���
�
���

�
���

!��
�
���

��

�
���

!���
���

!��

�
���

�
��

�
���

�
���

��

�
���

�
���

��

�
���
!��

�
���
�
���

�
��

��

���

��� �
���

�
���

�
��

�
��

�
�
�

�
�
�

!"�
�

�
�
�

��
� �
��

�
��

�
��

���
���
���
���
���
���
���
���
���
���
���
���

�
��

�
� �
,
�

 �

�
��

���

,
�

�
�� �
��

�
��

�
��

�

�
��

�
���
��
�
��
�
��

�
��
�
��
�
��
�
��
�
��

��

����
��

/
�

�
��

�
�

�
�

���

���

���

���

���

���
���
���
���

�
��
�
��

�
��

�
��
�
��
�
��
�
��

�

�
���

�
��

�
�

�

�
��

�
��

��
�

���
�

�
� �
��

�
��

��

��

�
�

�
��

��
�

��
�

��
�

��
�

�
�
�
�

�
�
�
�

�
�

�
����

���

!��
�
���

��
��

��
��

�
�
��

�
�
��

�
��

�
��
�
��
�
��

�
��

�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
��

�
��

-
�
�

"�
H
�
�
�
&�
���

����
"�
H
�����

&�
���

����

�
��

�
�
=�

':)@
�
�
=�

0�)*@

�
3
1
��
��
4

�
�
��

�
!
�
�
�
!
�
�
�
�

��
�C
��
��

�
��

�
�
�

��C��
I'6<:
)?()52
���J
=��
>>@
4':(
)23)
0B
;0'*2

���
=���@

����
=���@

����
=���@

����
=���@

����
=���@

�
��
�

=�
�
@

����
=���@

�
��
�

=�
�
@

�
��
�

=�
�
@

�
��
�

=�
�
@

����
=��@

����
=��@

����
=���@

����
=���@

����
=��@

����
=���@

����
=���@

���
=���@

���
=���@

����
=��@

�
��
�

=�
�
@

����
=��@

����
=��@

����
=���@

����
=���@

����
=��@

�
��
�

=�
�
@

����
=���@

����
=���@

�
��
�

=�
�
@

����
=���@

�
��
�

=�
�
@

����
=���@

����
=���@

K
�����
29'
=��@

�
��
�

=�
�
�@

����
=���@

����
=��@

�
��
�

=�
�
�@

����
=��@

�
��
�

=�
�
�@

����
=���@

����
=���@

����
=��@

����
=��@

�
��

=�
�@

�
��

=�
�@

����
=��@ ����

=���@

����
=���@

����
=���@

�96*0C-9(
L

6055)6(0*:

)?()52
���J
=��
>>@
4':(
)23)
0B
;0'*2

���
=��@

���
=��@

���
=��@

�
��
�

=�
�
�@

�
��
�

=�
�
@

����
=��@

���
=��@

�
��

2
9'

=�
�
@

�
��

=�
�
@

�
��

=�
�
@

���
=��@
BL4S200 User’s Manual 170

Table A-1 lists the electrical, mechanical, and environmental specifications for the
BL4S200.

Table A-1. BL4S200 Specifications

Feature BL4S200 BL4S210 BL5S220 BL4S230

Microprocessor Rabbit 4000® at 58.98 MHz
Rabbit® 5000 at

73.73 MHz
Rabbit 4000® at

29.49 MHz

Network Interface
10/100Base-T,

3 LEDs
10Base-T,
2 LEDs

Wi-Fi
(802.11b/g)

ZigBee 2007
(802.15.4)

Flash Memory (program)
1MB

(serial flash)
512KB

(parallel flash)
512KB

(parallel flash)
512KB

(parallel flash)

Flash Memory
(data storage)

supports
microSD™

Card
128MB–1GB

—
1MB

(serial flash)

Program Execution SRAM 512KB — 512KB —

Data SRAM 512KB 512KB 512KB 512KB

Backup Battery
Renata CR2032 or equivalent 3 V lithium coin type,

235 mA·h standard, socket-mounted

Configurable I/O
32 individually software-configurable I/O channels may be configured
as digital inputs 0–36 V DC, switching threshold 1.4 V/1.9 V typical,

or as sinking digital outputs up to 40 V, 200 mA each

High-Current Digital Outputs
8 outputs individually software-configurable as sinking or sourcing,

+40 V DC, 2 A max. per channel

Analog Inputs

Eight 11-bit res. channels, software-selectable ranges
unipolar: 1, 2, 2.5, 5, 10, 20 V DC; bipolar ± 1, ±2, ±5, ±10 V DC:

4 channels can be hardware-configured for 4–20 mA;
1 M input impedanceup to 4,100 samples/s

Analog Outputs
Two 12-bit res. channels,

buffered, 0–10 V DC, ±10 VDC, and 4–20 mA,
update rate 12 kHz
BL4S200 User’s Manual 171

Serial Ports

5 serial ports:

• one RS-485

• two RS-232
or one RS-
232 (with
CTS/RTS)

• one clocked
serial port
multiplexed
to two
RS-422 SPI
master ports

• one serial
port dedi-
cated for pro-
gramming/
debug

4 serial ports:

• one RS-485

• one RS-232
(no CTS/
RTS))

• one clocked
serial port
multiplexed
to two
RS-422 SPI
master ports

• one serial
port dedi-
cated for pro-
gramming/
debug

5 serial ports:

• one RS-485

• two RS-232 or one RS-232
(with CTS/RTS)

• one clocked serial port multi-
plexed to two RS-422 SPI mas-
ter ports

• one serial port dedicated for
programming/debug

Serial Rate
Max. asynchronous rate = 250kbps,

Max. synchronous rate = 1 MB/s

Hardware Connectors

RJ-45 connectors:
two RabbitNet™

Micro-Fit® connectors:
seven polarized 2 × 5 with 3 mm pitch
one polarized 2 × 7 with 3 mm pitch
one polarized 2 × 2 with 3 mm pitch
one polarized 2 × 3 with 3 mm pitch

Programming port:
2 × 5 IDC, 1.27 mm pitch

Network Connectors One RJ-45 Ethernet
One RP-SMA

antenna
—

Real-Time Clock Yes

Timers
Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),

one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Power 9–36 V DC, 4.5 W max.
9–36 V DC,
9.0 W max.

9–36 V DC,
4.5 W max.

Operating Temperature

-20°C to +85°C
(–40°C to

+85°C without
microSD™

Card)

0 to +70°C -30°C to +75°C -40°C to +85°C

Humidity 5–95%, noncondensing

Board Size
3.75" × 5.75" × 0.95"

(96 mm × 146 mm × 24 mm)
3.75" × 5.75" × 0.66"

(96 mm × 146 mm × 17 mm)

Table A-1. BL4S200 Specifications (continued)

Feature BL4S200 BL4S210 BL5S220 BL4S230
BL4S200 User’s Manual 172

A.1.1 Exclusion Zone

It is recommended that you allow for an “exclusion zone” of 0.25" (6 mm) around the
BL4S200 in all directions when the BL4S200 is incorporated into an assembly that
includes other components. This “exclusion zone” that you keep free of other components
and boards will allow for sufficient air flow, and will help to minimize any electrical or
EMI interference between adjacent boards. An “exclusion zone” of 0.12" (3 mm) is rec-
ommended below the BL4S200. Figure A-2 shows this “exclusion zone.”

Figure A-2. BL4S200 “Exclusion Zone”

A.1.2 Headers

The BL4S200 has 3 mm Micro-Fit® connectors at J1, J2, J3, J9, J10, J11, and J12 for phys-
ical connection to other boards via wiring harnesses. There are 3 mm Micro-Fit® connec-
tors at J5 and J7 for power-supply connections.

�
�� =�
@

�
�� =�
@

�
��

�
�
�

�
��

�
�
�

*+�"��� *+�"���

*+$"��� *+�"���

�
��

=�
�@

���
=�@

���
=�@

���
=�@

���
=�@

�
�� =�
@

�
��

=�
�@

�
�� =�
@

<93�'���
@��

���
=��@

���
=��@
BL4S200 User’s Manual 173

A.2 Conformal Coating

The areas around the crystal oscillator and the battery backup circuit on the BL4S200
modules based on the Rabbit 4000 microprocessor have had the Dow Corning silicone-
based 1-2620 conformal coating applied. The conformal coating protects these high-
impedance circuits from the effects of moisture and contaminants over time. Refer to the
individual RabbitCore module’s User’s Manual for additional information on where the
conformal coating was applied.

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303,
Conformal Coatings.
BL4S200 User’s Manual 174

A.3 Jumper Configurations

Figure A-3 shows the header locations used to configure the various BL4S200 options via
jumpers.

Figure A-3. Location of BL4S200 Configurable Positions

Table A-2 lists the configuration options.

Table A-2. BL4S200 Jumper Configurations

Header Description Pins Connected
Factory
Default

JP1 DIO16–DIO23

1–2 Inputs pulled up to +KC

3–4 Inputs pulled up to +5 V ×
5–6 Inputs pulled down to GND

7–8 Inputs pulled up to +3.3 V

JP2 DIO24–DIO31

1–2 Inputs pulled up to +KD

3–4 Inputs pulled up to +5 V ×
5–6 Inputs pulled down to GND

7–8 Inputs pulled up to +3.3 V

��� ���

���

���

���������

��� ���

�

�'(()*+

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���
BL4S200 User’s Manual 175

JP3 AOUT0

1–2
3–4

0 to +10 V D/A converter output ×
5–6 ±10 V D/A convert output

JP4
A/D Converter Voltage/Current
Measurement Options

None Voltage Option ×
1–2 AIN0 4–20 mA option

3–4 AIN1 4–20 mA option

5–6 AIN2 4–20 mA option

7–8 AIN3 4–20 mA option

JP5

AOUT0
1–3 D/A converter voltage output ×
3–5 D/A converter current output

AOUT1
2–4 D/A converter voltage output ×
4–6 D/A converter current output

JP6 AOUT1

1–2
3–4

0 to +10 V D/A converter output ×
5–6 ±10 V D/A convert output

JP7
RS-485 Bias and Termination
Resistors

1–2
5–6

Bias and termination resistors
connected ×

1–3
4–6

Bias and termination resistors not

connected*

JP8 DIO8–DIO15

1–2 Inputs pulled up to +KB

3–4 Inputs pulled up to +5 V ×
5–6 Inputs pulled down to GND

7–8 Inputs pulled up to +3.3 V

JP9 DIO0–DIO7

1–2 Inputs pulled up to +KA

3–4 Inputs pulled up to +5 V ×
5–6 Inputs pulled down to GND

7–8 Inputs pulled up to +3.3 V

* Although pins 1–3 and 4–6 of header JP7 are shown “jumpered” for the termination and
bias resistors not connected, pins 3 and 4 are not actually connected to anything, and this
configuration is a “parking” configuration for the jumpers so that they will be readily avail-
able should you need to enable the termination and bias resistors in the future.

Table A-2. BL4S200 Jumper Configurations

Header Description Pins Connected
Factory
Default
BL4S200 User’s Manual 176

A.4 Use of Rabbit Microprocessor Parallel Ports

Table A-3 lists the Rabbit microprocessor parallel ports and their use in the BL4S200
boards.

Table A-3. Use of Rabbit Microprocessor Parallel Ports

Port I/O Signal Initial State

PA0–PA7 I/O ID0–ID7 Pulled up

PB0 Input ADC busy (BL4S210) Pulled up

PB1 Input Not connected Pulled up

PB2–PB7 Output IA0–IA5 High

PC0 Output TXD SPI
Serial Port D

Inactive high

PC1 Input RXD SPI Pulled up

PC2 Output TXC RS-485
Serial Port C

Inactive high

PC3 Input RXC RS-485 Pulled up

PC4 Output TXB RS-232 (BL4S210)
Serial Port B

Inactive high

PC5 Input RXB RS-232 (BL4S210) Pulled up

PC6 Output TXA Programming Port
Serial Port A

Low

PC7 Input RXA Programming Port Pulled up

PD0–PD1 Output/ENET Not connected

PD2 Output
TXF RS-232
(except BL4S210)

Serial Port F

Low

PD3 Output
RXF RS-232
(except BL4S210)

Low

PD4–PD5 Output Not connected Low

PD6 Output
TXE RS-232
(except BL4S210)

Serial Port E

Low

PD7 Output
RXE RS-232
(except BL4S210)

Low

PE0 Output RIO I/O enable Inactive high

PE1 Input RIO interrupt input Pulled up

PE2 Output RIO Global Synch Low

PE3 Output SPI SCLKD Inactive high

PE4 Input ADC busy Pulled up

PE5 Input Not connected Pulled up

PE6–PE7 Output Not connected Low
BL4S200 User’s Manual 177

APPENDIX B. POWER SUPPLY

Appendix B describes the power circuitry provided on the BL4S200.

B.1 Power Supplies

Power is supplied to the BL4S200 boards via the Micro-Fit® connector at J5. The
BL4S200 is protected against reverse polarity by a diode at D10 as shown in Figure B-1.

Figure B-1. BL4S200 Power Supply

The input voltage range is from 9 V to 36 V. A switching power regulator is used to provide
+5 V for the BL4S200 logic circuits. In turn, the regulated +5 V DC power supply is used
to drive two regulated +3.3 V power supplies and ±12 V power supplies used by the op-
amps driving the outputs. A separate +3.3 V power supply is provided for the RabbitCore
module to ensure adequate capacity for its circuits.

The digital ground and the analog ground share a single split ground plane on the board,
with the analog ground connected at a single point to the digital ground by a 0 resistor

!"����
�	%��
��� !��	�

�
	
%
�
�

"�

��

��
��
F-

!������
 �

���
�

�

�

��

� ����

���

��
F-
���

���
F-

��
�

!�

��
���
F$

��
����

�%"��$"��
�	%��
��� !��	�

 �

!�����

��%

� �

� ���
��
F-

����
��
F-

����
��
F-

���

��
�

���

�
�

��M�
����!	�
�	%��
� ��!,

�������

N��
�
�	%��
� ��!"��

!"����
�	%��
��� !��	�

��
��
F-

���
�

��
��
F-

!������
 ��

�

���,
	6"&&�-6��
��������	
6����

BL4S200 User’s Manual 178

(R95). This is done to minimize digital noise in the analog circuits and to eliminate the
possibility of ground loops. External connections to analog ground are made on a Micro-
Fit® connector at J12.

B.1.1 Power for Analog Circuits

Power to the analog circuits is provided by way of a one-stage low-pass filter, which
isolates the analog section from digital noise generated by the other components. The ana-
log +3.3 V supply powers the D/A converter, and is not accessible to the user. The A/D
converter is powered by the regulated +3.3 V supply, and supplies the +2.5 V reference
violate from which the 1.116 V, 1.95 V, and 3.00 V reference voltages for the D/A con-
verter output circuits are derived.

NOTE: The +12 V power supplies used to drive the analog outputs only have sufficient
current output in their design to supply the analog output channels. Do not use these
voltage supplies for other applications.

B.2 Batteries and External Battery Connections

The SRAM and the real-time clock on the BL4S200 modules have battery backup. Power
to the SRAM and the real-time clock (VRAM) is provided by two different sources,
depending on whether the main part of the BL4S200 is powered or not. When the
BL4S200 is powered normally, and the +3.3 V supply is within operating limits, the
SRAM and the real-time clock are powered from the +3.3 V supply. If power to the board
is lost or falls below 2.93 V, the VRAM and real-time clock power will come from the bat-
tery. The reset generator circuit controls the source of power by way of its /RESET output
signal.

A replaceable 235 mA·h lithium battery provides power to the real-time clock and SRAM
when external power is removed from the circuit board. The drain on the battery is typi-
cally less than 10 µA when there is no external power applied to the BL4S200, and so the
expected shelf life of the battery is

The actual battery life in your application will depend on the current drawn by components
not on the BL4S200 and on the storage capacity of the battery. The BL4S200 does not
drain the battery while it is powered up normally.

235 mA·h
10 µA

------------------------ 2.7 years.=
BL4S200 User’s Manual 179

B.2.1 Replacing the Backup Battery

The battery is user-replaceable, and is fitted in a battery holder. To replace the battery, lift
up on the spring clip and slide out the old battery. Use only a Renata CR2032 or equivalent
replacement battery, and insert it into the battery holder with the + side facing up.

NOTE: The SRAM contents and the real-time clock settings will be lost if the battery is
replaced with no power applied to the BL4S200. Exercise care if you replace the battery
while external power is applied to the BL4S200.

Cycle the main power off/on after you install a backup battery for the first time, and when-
ever you replace the battery. This step will minimize the current drawn by the real-time
clock oscillator circuit from the backup battery should the BL4S200 experience a loss of
main power.

NOTE: Remember to cycle the main power off/on any time the RabbitCore module is
removed from the BL4S200 main board since that is where the backup battery is
located.

Rabbit’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, provides addi-
tional information about the current draw by the real-time clock oscillator circuit.

CAUTION: There is an explosion danger if the battery is short-circuited, recharged,
or replaced incorrectly. Replace the battery only with the same type or an equivalent
type recommended by the battery manufacturer. Dispose of used batteries according
to the battery manufacturer’s instructions.
BL4S200 User’s Manual 180

B.3 Power to Peripheral Cards

DCIN and Vcc are available on Micro-Fit® connector J7 to power RabbitNet peripheral
boards that may be used with the BL4S200.

Keep in mind that the BL4S200 draws 377 mA from the Vcc supply, and that the diode at
D10 (shown in Figure B-1) can handle at most 2 A at VRAW, so that leaves the remaining
current capacity to be shared among the DCIN and Vcc pins on Micro-Fit® connector J7.
Table B-1 lists the available current at DCIN based on the current drawn at Vcc.

For example, if the raw power supply input is 12 V, and the Vcc supply at J7 draws 200 mA,
641 mA will be available for DCIN.

Table B-1. DCIN Current Available at J7 (in mA)
Based on Power Supply and Vcc (= 5 V) Current Used at J7

VRAW Power Supply
Input at J2

(V)

Current at J7 with Vcc = 5 V

100 mA 200 mA 300 mA 400 mA 500 mA 600 mA 623 mA

8.0 545 450 355 260 164 69 47

8.5 574 484 395 306 216 127 107

9.0 599 515 431 347 263 178 159

10 641 566 490 415 340 265 248

12 703 641 579 517 455 393 378

18 805 764 723 682 642 601 591

24 855 824 794 763 733 703 696

30 884 860 836 811 787 763 750

40 913 895 877 859 841 823 819
BL4S200 User’s Manual 181

APPENDIX C. DEMONSTRATION BOARD

Appendix C explains how to use the Demonstration Board with the BL4S200 sample pro-
grams.
BL4S200 User’s Manual 182

C.1 Connecting Demonstration Board

Before running sample programs based on the Demonstration Board, you will have to con-
nect the Demonstration Board from the BL4S200 Tool Kit to the BL4S200 board. Proceed
as follows.

1. Use the 6-position connector to bare leads wiring harness included in the BL4S200 Tool
Kit to connect screw-terminal header J3 on the Demonstration Board to connector J7 on
the BL4S200. The connections are shown in Figure C-1, with the green wire to GND
and the blue wire to +V.

2. Make sure that your BL4S200 is connected to your PC via the programming cable and
that the power supply is connected to the BL4S200 and plugged in as described in
Chapter 2, “Getting Started.”

Figure C-1. Power Supply Connections Between BL24S60 and Demonstration Board

CAUTION: If you are using your own power supply with the Demonstration Board,
note that the maximum power supply input voltage the Demonstration Board can
handle is + 12 V DC. Do not use a higher power supply voltage.

�=�<06�:�
����"�#�$�%+

�()�*

�������

�
�

�
�

�
	
�
�

�
�
�

�

���
���

�� ��� ���
���

��

��

��

��

������
��

����

��

��

��

���

���

��� ���

���

���

���

���

���
�����

���

���

�
�

��

�

�
�
�

��
�

�

�
�

��

�

�
�
�

��
�

�

���
������

���
���
���

�
��

�
��

���
���
���

���
���
���

 �

�
��

�
��

�
��

���
���
���

���
���
���

�
��

��

��

�
�� ��� � �

���

�
��
�
��
�
��

���
���

���

���
���
���

 �

�
��

�
��

�
��

���
���
���

����

���

 �

���

���

��

�
��
�

!� !�

���

�
��

�
��

 �

���
���

 �

���
��

�� �

����
��

����

���
���
���

��� ���

��

��

!�

��

��
��
��

��

��

��
�
�

��
�
�

�
�

��

�

�
�
�

��
�

� �
�

��

�

�
�
�

��
�

�

�
�

�
"	
�
#
$
	
�
#

�
�

�
"	
�
#
$
	
�
#

�� �� �� ��

�� ��

��

���

���
���

�
�

�	���
���
�

�	%��

"�

�&���
�%� � �

�

�� �
������
���

�
��

�

���

�

���

�

�

�
�

� ��

�

��

� ��

�

� ��

�

� ��

�

�'(()*+

���

���
��� ���

���

�=�<06�:�
����"�#�$�%+

�()�*

��

��
��

���

��

���
�

!�

�
�

�
�

,
��

�

�

������

�
�

�
�

�
�

�
�
�
�

�
��
�

�
��

���

���

�
��

�
��

!�

���

��
��

���
�
�
��

��

�
��

���

�
��

�
�
� !"��

�����

-
�
.

�
�
�

���

�
��
�
��

���

�
��

�
��

�
��

�

���
���

���

�
�

�
��

�
��

���

�
� �
�

�
�

��� ���

��

��

�
��

�
��

�
��

�
��
�
��
�
��

���

�
��

����������	���
����

���

�
��

�

����

����

����

������

�
�

���

��
�

�
��

��
�

���
���

���

���

���

���

����

����

� �
�

�
�

/
�
/
�

���
���

�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
���

��
�

���
BL4S200 User’s Manual 183

C.2 Demonstration Board Features

The Demonstration Board can be used to illustrate I/O activity via LEDs and pushbutton
switches.

C.2.1 Pinout

Figure C-2 shows the pinouts for the input signals on screw-terminal header J1 and the
outputs on screw-terminal header J3.

Figure C-2. Demonstration Board Pinout

C.2.2 Configuration

The pushbutton switches may be configured active high or active low via jumper settings
on header JP15.

Figure C-3. Pushbutton Switch Configuration

���
!���
!���
!���
!���
��!

/
0

�
/

0
"

��

��7�!�
�%�
�%�
�%�
�%�
���

��

��4 �

��
�

/
0

"

��
<�

������

�%�&�%�

��0�8<6+!:

��
<�

�� ����

�%�&�%�

��0�8<6(�%(
BL4S200 User’s Manual 184

The four LED output indicators can be configured as sinking outputs or as sourcing out-
puts via jumpers on headers JP1–JP4 as shown in Figure C-4.

Figure C-4. LED Output Indicators Sinking or Sourcing Configuration

The power supply voltage input at +V on screw-terminal
header J3 is available as +V_ALT on screw-terminal
header J1. There is a potentiometer immediately above
the +V_ALT location to allow you to reduce the voltage
from the +V originally input.

Figure C-5 shows the location of the adjustable output
voltage and the potentiometer.

Figure C-5. Location of
Adjustable Output Voltage

��

=95
��	-�	�
>02)@

=95
������	�
>02)@

"��5���
"�	3���
(��5&'

��

�!0
BL4S200 User’s Manual 185

APPENDIX D. RABBIT RIO RESOURCE
ALLOCATION

Appendix D provides the pin and block associations on the Rabbit RIO chips with their cor-
responding I/O on the BL4S200 boards. The main shared resource within the RIO chips are
the counter/timer blocks — each RIO chip has eight counter/timer blocks. The BL4S200
boards have three RIO chips, which gives a total of 24 blocks. A given block is defined by
both the RIO number and the block number. The tables in this appendix provide a quick
reference of which block is used by each input and/or output pin on the BL4S200 board.
BL4S200 User’s Manual 186

D.1 Configurable I/O Pin Associations

Table D-1. Configurable I/O Pin Associations

I/O Pin RIO Chip
Inputs Outputs

Block Pin Block Pin

DIO0

0 5

0

4

0

DIO1 1 1

DIO2 2 2

DIO3 3 3

DIO4

1

1

0

0

0

DIO5 1 1

DIO6 2 2

DIO7 3 3

DIO8

3

0

2

0

DIO9 1 1

DIO10 2 2

DIO11 3 3

DIO12

5

0

4

0

DIO13 1 1

DIO14 2 2

DIO15 3 3

DIO16

2

0
0

0
2

DIO17 1 3

DIO18
1

0
1

2

DIO19 1 3

DIO20
2

0
2

2

DIO21 1 3

DIO22
3

0
3

2

DIO23 1 3

DIO24
4

0
4

2

DIO25 1 3

DIO26
5

0
5

2

DIO27 1 3

DIO28 0 7 0 6 0

DIO29 1 7 0 6 0

DIO30
2

6 0
Not controlled by any RIO chip

DIO31 7 0
BL4S200 User’s Manual 187

D.2 High-Current Output Pin Associations

D.3 Interpreting Error Codes

Some BL4S200 function calls may return a Mode Conflict error code. This error code is a
4-bit value that identifies other pins using the same counter/timer block on a particular
RIO chip that require this block to be in a mode that conflicts with the functionality that
has already been requested — the additional functionality requested cannot be supported.
The error code also helps you identify the other pins whose functionality needs to change to
possibly allow the latest function call to succeed.

The bit values in the Mode Conflict error codes have the following meanings.

• Bits [7:4] don’t matter, will always be zero

• Bit 3 — Pin 3 of this block has a mode conflict

• Bit 2 — Pin 2 of this block has a mode conflict

• Bit 1 — Pin 1 of this block has a mode conflict

• Bit 0 — Pin 0 of this block has a mode conflict

By looking at the tables in this appendix, you can identify the other pins that share the RIO
counter/timer block with the pin(s) that returned the Mode Conflict error code. For example,
if you already configured DIO8 and DIO9 as Quadrature Decoder inputs, then try to set
DIO11 as a counter input, the function call will return a Mode Conflict error code of 3.

This error code is a 4-bit value that identifies other pins other pins using the same coun-
ter/timer block that conflict with the requested function. In this case, 3 is 0011, which indi-
cates that pin 1 and pin 2 of the block used by DIO11 have the conflicts — they are using
the counter/timer in a way that conflicts with setting DIO11 as a counter input. Looking at
Table D-1, you find DIO11 is using block 3 on RIO chip 1, and pin 0 and pin 1 of this
block are used by DIO8 and DIO9. Therefore you cannot use DIO11 as a counter input
unless you remove the Quadrature Decoder inputs from this block. This illustrates how the
Mode Conflict error code can be used to identify the pin functions that cannot mix together
on the same RIO block.

Table D-2. High-Current Output Pin Associations

High-Current
Output Pin

RIO Chip Block
Sinking Sourcing

Pin Pin

HOUT0

0

0
0 1

HOUT1 2 3

HOUT2
1

0 1

HOUT3 2 3

HOUT4
2

0 1

HOUT5 2 3

HOUT6
3

0 1

HOUT7 2 3
BL4S200 User’s Manual 188

The tables in this appendix are useful for both finding the cause of mode conflicts, and for
planning which pins to use for which functions to avoid conflicts in the first place. Note
that pins DIO30 and DIO31 do not have their output functionality controlled by a RIO
chip. This means that you cannot assign PWM or PPM functions to these two pins. On the
other hand, both of these pins have a counter block that is not shared with any other pins
on their inputs, which makes these pins ideal for use as counter or capture inputs.

Notice that there is a pattern to the block sharing of certain configurable I/O pins. The first
16 configurable I/O pins, DIO0—DIO15, have blocks shared across four inputs or four
outputs. These are the only pins that can support functions such as Quadrature Decoder
inputs with an independent index-based reset. The next group of 12 configurable I/O pins
(DIO16–DIO27) share blocks among their configurable I/O pairs, bringing both the input
and output functionality of these pins into the same block. This allows PWM or PPM out-
puts that can be used with an external synchronization signal. It would also allow synchro-
nization of a pulse capture response to a PWM-based output pulse. The last 4 configurable
I/O pins have nonshared RIO blocks available for both the input and output functionality,
making these pins ideal for single-pin functions requiring a counter/timer.

Table D-3 shows all counter/timer modes of the RIO block and which functions can use
the given modes. The use of synch signals is allowed with all the functions, but does affect
the timer/counter so it may have an adverse affect on functions marked with * or #.

× — I/O are compatible with the given mode, and can work with any other function
using that mode.

* — I/O cannot share the block with any other * or # marked function without
possible conflicts.

— I/O can generally share the timer, but will be affected by settings of the limit
value (value at which the timer rolls over) or resetting of the counter, either
directly or through synch signals.
NOTE: The Rabbit RIO is driven by a 16Mhz Spread Spectrum Clock.

Table D-3. RIO Counter/Timer Block Mode Summary

Up Count
Count
Until

Match

Up/Down
Count

Free-
Running

Timer

Count
Until
End

Count
from

Begin to
End

Count
While

Begin Is
Active

Digital Input × × × × × × ×

Digital Output × × × × × × ×

Event Counter Input * * *

Event Capture Input # * * *

Quad. Decoder Input *

Ext. Interrupt Input × × × × × × ×

External Synch Input × × × × × × ×

PWM/PPM Output #
BL4S200 User’s Manual 189

APPENDIX E. RABBITNET

E.1 General RabbitNet Description

RabbitNet is a high-speed synchronous protocol developed by Rabbit to connect periph-
eral cards to a master and to allow them to communicate with each other.

E.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on the master.

Figure 1. Connecting Peripheral Cards to a Master

��"0<�

"+�8<

"+�8<

��"0<� "+�8<

����	
������
1	%��,��%�55��

"�	���)�#�)	��)
��06$ �6<�)
	�
�63���

�	�''�7
	
��06$ �6<�)
	�
�63���

"�	���)�#�)	��)
��06$ �6<�)
	�
�63���

BL4S200 User’s Manual 190

Use a straight-through CAT 5/6 Ethernet cable to connect the master to slave peripheral
cards, unless you are using a device such as the OP7200 that could be used either as a
master or a slave. In this case you would use a crossover CAT 5/6 Ethernet cable to
connect an OP7200 that is being used as a slave.

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.

E.1.2 RabbitNet Peripheral Cards

• Digital I/O

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of
0 to 10 V, 0 to 1 V, and -0.25 to +0.25 V. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

• A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the con-
nector. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

• D/A converter

8 channels of 0–10 V 12-bit D/A conversion. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

• Display/Keypad interface

Allows you to connect your own keypad with up to 64 keys and one character liquid
crystal display from 1 × 8 to 4 × 40 characters with or without backlight using standard
1 × 16 or 2 × 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

• Relay card

6 relays rated at 250 V AC, 1200 V·A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available. The Web site also has the latest revision of this user’s manual.
BL4S200 User’s Manual 191

http://www.rabbit.com/

E.2 Physical Implementation

There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral card. The receive function is used to read back information sent to the master by the
peripheral card. A clock is used to synchronize data going between the two devices at high
speed. The master is the source of this clock. A slave select (SS) function originates at the
master, and when detected by a peripheral card causes it to become selected and respond
to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay time
of the cable. Although a peripheral card could theoretically be up to 45 m (150 ft) from
the master for a data rate of 1 MHz, Rabbit recommends a practical limit of 10 m (33 ft).

Connections between peripheral cards and masters are done using standard 8-conductor
CAT 5/6 Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin
female connectors. The cables may be swapped end for end without affecting functionality.

E.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select sig-
nal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.
BL4S200 User’s Manual 192

E.3 Function Calls

The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET.LIB library in the Dynamic C RABBITNET folder.

rn_init

int rn_init(char portflag, char servicetype);

FUNCTION DESCRIPTION

Resets, initializes, or disables a specified RabbitNet port on the master single-board
computer. During initialization, the network is enumerated and relevant tables are filled
in. If the port is already initialized, calling this function forces a re-enumeration of all
devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS

portflag bit that represents a RabbitNet port on the master single-board
computer (from 0 to the maximum number of ports). A set bit re-
quires a service. If portflag = 0x03, both RabbitNet ports 0 and
1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.

0 = disable port
1 = enable port

RETURN VALUE

0

BL4S200 User’s Manual 193

rn_device

int rn_device(char pna);

FUNCTION DESCRIPTION

Returns an address index to device information from a given physical node address. This

function will check device information to determine that the peripheral card is connected
to a master.

PARAMETER

pna the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE

Pointer to device information. -1 indicates that the peripheral card either cannot be
identified or is not connected to the master.

SEE ALSO

rn_find
BL4S200 User’s Manual 194

rn_find

int rn_find(rn_search *srch);

FUNCTION DESCRIPTION

Locates the first active device that matches the search criteria.

PARAMETER

srch search criteria structure rn_search:

unsigned int flags; // status flags see MATCH macros below
unsigned int ports; // port bitmask
char productid; // product id
char productrev; // product rev
char coderev; // code rev
long serialnum; // serial number

Use a maximum of 3 macros for the search criteria:

RN_MATCH_PORT // match port bitmask
RN_MATCH_PNA // match physical node address
RN_MATCH_HANDLE // match instance (reg 3)
RN_MATCH_PRDID // match id/version (reg 1)
RN_MATCH_PRDREV // match product revision
RN_MATCH_CODEREV // match code revision
RN_MATCH_SN // match serial number

For example:

rn_search newdev;
newdev.flags = RN_MATCH_PORT|RN_MATCH_SN;
newdev.ports = 0x03; //search ports 0 and 1
newdev.serialnum = E3446C01L;
handle = rn_find(&newdev);

RETURN VALUE

Returns the handle of the first device matching the criteria. 0 indicates no such devices
were found.

SEE ALSO

rn_device
BL4S200 User’s Manual 195

rn_echo

int rn_echo(int handle, char sendecho, char *recdata);

FUNCTION DESCRIPTION

The peripheral card sends back the character the master sent. This function will check
device information to determine that the peripheral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

sendecho character to echo back.

recdata pointer to the return address of the character from the device.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

rn_write

int rn_write(int handle, int regno, char *data, int datalen);

FUNCTION DESCRIPTION

Writes a string to the specified device and register. Waits for results. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

regno command register number as designated by each device.

data pointer to the address of the string to write to the device.

datalen number of bytes to write (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master, and -2 means that the data length was
greater than 15.

SEE ALSO

rn_read
BL4S200 User’s Manual 196

rn_read

int rn_read(int handle, int regno, char *recdata, int datalen);

FUNCTION DESCRIPTION

Reads a string from the specified device and register. Waits for results. This function will

check device information to determine that the peripheral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

regno command register number as designated by each device.

recdata pointer to the address of the string to read from the device.

datalen number of bytes to read (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master, and -2 means that the data length was
greater than 15.

SEE ALSO

rn_write
BL4S200 User’s Manual 197

rn_reset

int rn_reset(int handle, int resettype);

FUNCTION DESCRIPTION

Sends a reset sequence to the specified peripheral card. The reset takes approximately
25 ms before the peripheral card will once again execute the application. Allow 1.5
seconds after the reset has completed before accessing the peripheral card. This func-
tion will check peripheral card information to determine that the peripheral card is con-
nected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

 rn_sw_wdt

int rn_sw_wdt(int handle, float timeout);

FUNCTION DESCRIPTION

Sets software watchdog timeout period. Call this function prior to enabling the software
watchdog timer. This function will check device information to determine that the periph-
eral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

timeout timeout period from 0.025 to 6.375 seconds in increments of 0.025
seconds. Entering a zero value will disable the software watchdog
timer.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.
BL4S200 User’s Manual 198

rn_enable_wdt

int rn_enable_wdt(int handle, int wdttype);

FUNCTION DESCRIPTION

Enables the hardware and/or software watchdog timers on a peripheral card. The soft-
ware on the peripheral card will keep the hardware watchdog timer updated, but will
hard reset if the time expires. The hardware watchdog cannot be disabled except by a
hard reset on the peripheral card. The software watchdog timer must be updated by soft-
ware on the master. The peripheral card will soft reset if the timeout set by
rn_sw_wdt() expires. This function will check device information to determine that the
peripheral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

wdttype 0 enables both hardware and software watchdog timers
1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

SEE ALSO

rn_hitwd, rn_sw_wdt
BL4S200 User’s Manual 199

rn_hitwd

int rn_hitwd(int handle, char *count);

FUNCTION DESCRIPTION

Hits software watchdog. Set the timeout period and enable the software watchdog prior
to using this function. This function will check device information to determine that the pe-
ripheral card is connected to a master.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

count pointer to return the present count of the software watchdog timer.
The equivalent time left in seconds can be determined from count
× 0.025 seconds.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

SEE ALSO

rn_enable_wdt, rn_sw_wdt
BL4S200 User’s Manual 200

rn_rst_status

int rn_rst_status(int handle, char *retdata);

FUNCTION DESCRIPTION

Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

retdata pointer to the return address of the communication byte. A set bit
indicates which error occurred. This register is cleared when read.

7—HW reset has occurred
6—SW reset has occurred
5—HW watchdog enabled
4—SW watchdog enabled
3,2,1,0—Reserved

RETURN VALUE

The status byte from the previous command.
BL4S200 User’s Manual 201

rn_comm_status

int rn_comm_status(int handle, char *retdata);

FUNCTION DESCRIPTION

If the communication error bit is set in the status byte, use this function call to determine
the error.

PARAMETERS

handle address index to device information. Use rn_device() or
rn_find() to establish the handle.

retdata pointer to the return address of the communication byte. A set bit
indicates which error occurred. This register is cleared when read.

7—Data available and waiting to be processed MOSI (master
out, slave in)

6—Write collision MISO (master in, slave out)
5—Overrun MOSI (master out, slave in)
4—Mode fault, device detected hardware fault
3—Data compare error detected by device
2,1,0—Reserved

RETURN VALUE

The status byte from the previous command.
BL4S200 User’s Manual 202

E.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format
for each designated bit.

7 6 5 4 3 2 1 0

× ×

00 = Reserved

01 = Ready

10 = Busy

11 = Device not connected

×
0 = Device

1 = Router

×
0 = No error

1 = Communication error*

* Use the function rn_comm_status() to determine which error occurred.

×
Reserved for individual peripheral
cards

×
Reserved for individual peripheral
cards

×
0 = Last command accepted

1 = Last command unexecuted

×

0 = Not expired

1 = HW or SW watchdog timer

expired†

† Use the function rn_rst_status() to determine which timer expired.
BL4S200 User’s Manual 203

APPENDIX F. ADDITIONAL CONFIGURATION
INSTRUCTIONS

Appendix F provides information on how to find the latest firmware for the XBee RF

module and the Digi® XBee USB used as the ZigBee coordinator, and how to install the
firmware.

F.1 XBee Module Firmware Downloads

By default, the BL4S230 is shipped from the factory with firmware to operate as a router in a
mesh network. You will need to run the MODEMFWLOAD.C sample program in the Dynamic C
SAMPLES\XBEE folder to download the firmware needed to operate the BL4S230 as a
coordinator.

NOTE: You can verify the firmware version by running the AT_INTERACTIVE.C sam-
ple program in the Dynamic C SAMPLES\XBEE folder and by entering the command
ATVR <Enter> to get the version number displayed in the Dynamic C STDIO window.

CAUTION: Different firmware versions are likely to interact with the Dynamic C librar-
ies in different ways. Rabbit has tested the firmware associated with a particular version
of Dynamic C for correct operation, and only this version is included on the Dynamic C
CD-ROM — do not use any other firmware versions with that version of Dynamic C.

Once you have successfully loaded the firmware, compile and run another sample program
to make sure the MODEMFWLOAD.C sample program does not inadvertently reload (or
partially reload) the firmware.

If you are uploading firmware because you upgraded to a more recent Dynamic C release,
remember to recompile your applications using the new version of Dynamic C once you
have uploaded the new firmware.

F.1.1 Dynamic C v. 10.44 and Later

Encrypted libraries have been created within Dynamic C for the firmware. The three
libraries are in the LIB\Rabbit4000\XBee\XBee_Firmware\ZigBee folder.

• A Dynamic C library of the type XB24-ZB_21….LIB is used for a coordinator
BL4S230.

• A Dynamic C library of the type XB24-ZB_23….LIB is used for a router BL4S230.
BL4S200 User’s Manual 204

Make the following modifications to the MODEMFWLOAD.C sample program.before you
run it according to whether you will be using the BL4S230 as a coordinator or a router.

• Select the XBee role macro according to whether the BL4S230 is being used as a coor-
dinator or a router.

#define XBEE_ROLE NODE_TYPE_COORD

#define XBEE_ROLE NODE_TYPE_ROUTER

• Some Rabbit boards use the ZNet 2.5 protocol. The BL4S230 uses the ZB protocol.
Make sure the #define statement calls for the ZB protocol.

#define XBEE_PROTOCOL XBEE_PROTOCOL_ZB

F.2 Digi® XBee USB Configuration

The Digi XBee USB device is an optional accessory and is available as a part of the Mesh
Networking Add on Kit (101-1272), or for separate purchase (101-1286). It is not a part of
the standard BL4S200 Tool Kit.

You may experience difficulty when you use the ZigBee sample programs and the Digi®
XBee USB with the default settings if you are working simultaneously with more than one
ZigBee coordinator.

Section 7.2.2 explains how to set up the BL4S230 configuration patterns for the sample
programs via macros in the Dynamic C LIB\Rabbit4000\XBee\XBEE_API.LIB library
folder.

Channel mask — defaults to 0x1FFE, i.e., all 16 possible channels via the macro in the
Dynamic C LIB\Rabbit4000\XBee\XBEE_API.LIB library.

#define DEFAULT_CHANNELS ZB_DEFAULT_CHANNELS

For example, to limit the channels to three channels, the macro would read as follows.

#define DEFAULT_CHANNELS 0x000E

Extended PAN ID — the 64-bit network ID. Defaults to DEFAULT_PANID if set in the
Dynamic C LIB\Rabbit4000\XBee\XBEE_API.LIB library, otherwise defaults to
0x0123456789abcdef to match the default used on the Digi® XBee USB.

If set to 0x00, tells coordinators to “select a random extended PAN ID,” and tells routers
and end devices to “join any network.”

Change the extended PAN ID if you are developing simultaneously with more than one
ZigBee coordinator.

#define DEFAULT_EXTPANID "0x0123456789abcdef"

The same configurations must then be applied to the Digi® XBee USB via Digi’s X-CTU
utility. If you have not previously used this utility, install it from the Dynamic C
Utilities\X-CTU folder by double-clicking Setup_x-ctu.exe,
BL4S200 User’s Manual 205

Continue the following steps with the Digi® XBee USB connected to your PC’s USB port.
Since the ZigBee Utility XBEE_GPIO_GUI.exe will conflict with X-CTU, first close the
ZigBee Utility if it is running.

1. Start X-CTU from the desktop icon and set the “PC Settings” tab to 115200 baud,
HARDWARE flow control, 8 data bits, parity NONE, 1 stop bit.

2. On the “PC Settings” tab, check the “Enable API” box under “Host Setup.”

3. On the “PC Settings” tab, select the “USB Serial Port” corresponding to the USB serial
port the Digi® XBee USB is connected to and click “Test/Query.” You should see a
response showing the Modem Type (XB 24-B) and the firmware version. Click OK.

Note that several USB serial ports could be listed. If you select a serial port without the
Digi® XBee USB connected, the X-CTU response to “Test/Query.” will be “communi-
cation with modem … OK,” but the modem type will be unknown, and the firmware
version will be blank.

If you a get a message that X-CTU is unable to open the COM port, verify that you
selected the COM port with the “USB Serial Port,” then try unplugging the Digi® XBee
USB from the USB slot and plugging it back in. Now click “Test/Query” again.

4. Under the “Modem Configuration” tab click the “Read” button. X-CTU will now display
the networking and I/O parameters for the Digi® XBee USB being used as the ZigBee
coordinator.

Modem: XBEE XB24-ZB

Function Set: ZIGBEE COORDINATOR API (do not select other settings)

Version: the version of the firmware included with the version of Dynamic C you are using (should be
of the type 21…)

5. Now change the networking parameters to match the parameters in the Dynamic C
LIB\Rabbit4000\XBee\XBEE_API.LIB library.

Networking

(D) CH - Operating Channel — this is the operating channel you could see when you ran the
AT_INTERACTIVE.C sample program in the Dynamic C SAMPLES\XBEE folder by enter-
ing the command ATCH <Enter>. This channel information cannot be changed from the X-CTU
utility.

(0123456789ABCDEF) ID - Extended Pan ID — set the new extended PAN ID that follows 0x to
match the DEFAULT_EXTPANID macro.

(1FFE) SC - Scan Channels - set the new value for the channels to scan, E, for example, to match
the new setting in the macro.

#define DEFAULT_CHANNELS 0x000E

6. Finish by clicking the “Write” button.

F.2.1 Additional Reference Information

Check Digi’s Web site for the latest information and documentation on the XBee Series 2
module, the X-CTU utility, and the Digi® XBee USB. Note that the XBee™ and the XBee
PRO™ RF modules are presently not compatible with the XBee Series 2 module used
BL4S200 User’s Manual 206

http://www.digi.com/products/wireless/zigbee-mesh/

with the BL4S230, but the general documentation about ZigBee and the use of AT com-
mands for the XBee™ and the XBee PRO™ RF modules is relevant.
BL4S200 User’s Manual 207

F.2.2 Update Digi® XBee USB Firmware

The firmware version used by the Digi® XBee USB must correspond to the firmware version
installed on the BL4S230. If you have updated the BL4S230 firmware (or you have a need
to re-install the firmware on the Digi® XBee USB), the corresponding firmware for the
Digi® XBee USB is in the Dynamic C Utilities\X-CTU\MODEMFW folder.

• Remember to record the extended PAN ID, NI, and other parameters you are using.

• Firmware of the type XB24-ZB_21….zip is used for the Digi® XBee USB coordinator.

CAUTION: Different firmware versions are likely to interact with the Dynamic C libraries
in different ways. Rabbit has tested the firmware associated with a particular version of
Dynamic C for correct operation, and only this version is included on the Dynamic C
CD-ROM — do not use any other firmware versions with that version of Dynamic C.

1. Start X-CTU from the desktop icon and set the “PC Settings” tab to 115200 baud,
HARDWARE flow control, 8 data bits, parity NONE, 1 stop bit.

2. On the “PC Settings” tab, check the “Enable API” box under “Host Setup.”

3. On the “PC Settings” tab, select the “USB Serial Port” and click “Test/Query.” You
should see a response showing the Modem Type (XB 24-B) and the firmware version.
Click OK.

Note that several USB serial ports could be listed. If you select a serial port without the
Digi® XBee USB connected, the X-CTU response to “Test/Query.” will be “communi-
cation with modem … OK,” but the modem type will be unknown, and the firmware
version will be blank.

If you a get a message that X-CTU is unable to open the COM port, verify that you
selected the COM port with the “USB Serial Port,” then try unplugging the Digi® XBee
USB from the USB slot and plugging it back in. Now click “Test/Query” again.

4. Under the “Modem Configuration” tab click the “Read” button. X-CTU will now dis-
play the networking and I/O parameters for the Digi® XBee USB.

Modem: XBEE XB24-ZB

Function Set: ZIGBEE COORDINATOR API (do not select other settings)

Version: the version of the firmware included with the version of Dynamic C you are using

5. Under the “Modem Configuration” tab click the “Download new versions…” button,
select “File,” and browse to the Utilities\X-CTU\MODEMFW subfolder, then click
“Open” when you have selected the firmware. (Do not select “Web,” which will allow
you to find the file on a Web site.) Remember to select firmware of the type XB24-ZB_
21….zip that is used for a coordinator.

The X-CTU utility will display an Update Summary box. Click “OK,” and then click “Done.”

6. Click the “Read” button, select XB24-B as the Modem type; select ZIGBEE COORDI-
NATOR API as the Function Set, and 21… as the Version, then click “Write.”

7. When the process is complete set the PANID, NI, and other parameters to the values
you were using before the firmware was upgraded.
BL4S200 User’s Manual 208

INDEX

A

A/D converter 40
buffered inputs 40
calibration 42
calibration constants 41
current-measurement setup 41
function calls

anaIn() 114
anaInCalib() 112
anaInConfig() 110
anaInDiff() 118
anaInDriver() 121
anaInmAmps() 120
anaInVolts() 116

analog I/O
reference voltage circuit 45
reference voltages 45

analog inputs See A/D converter
analog outputs See D/A convert-

er
antenna

extension 13

B

battery backup
battery life 179
use of battery-backed SRAM

131
battery connections 179
board initialization

function calls 68
brdInit() 68

C

CE compliance 11
design guidelines 12

certifications 13
Europe 15
FCC 13
Industry Canada 14
labeling requirements 14

clock doubler 47
configurable I/O

capture setup 32
counter setup 32
function calls

getBegin() 32
getEnd() 32
resetCounter() 32
setCapture() 32
setCounter() 32
setExtInterrupt() 32
setPPM() 33
setPWM() 33

interrupts setup 32
pin associations 187
PWM/PPM setup 33

configuration
BL4S200

4–20 mA current 41
configurable I/O inputs . 28
configurable I/O outputs 29
high-current outputs 34
RS-485 termination and bias

resistors 37
Digi® XBee USB (ZigBee co-

ordinator) 205
conformal coating 174
connections

Ethernet cable 132
connectivity tools

Connectivity Kit 9
crimp tool 9
Micro-Fit® connector parts ..

26

D

D/A converter 43
calibration 44
calibration constants 44
function calls

anaOut() 127
anaOutCalib() 126
anaOutConfig 123
anaOutDriver() 130
anaOutmAmps() 129
anaOutPwrOff() 125

anaOutStrobe() 124
anaOutVolts() 128

Demonstration Board 8, 182
configuration options 184

LED outputs 185
output voltage 185
pushbutton switches 184

hookup instructions 183
maximum power-supply volt-

age 183
pinout 184
power supply connections 183
wire assembly 8

Digi® XBee USB (ZigBee coor-
dinator)

configuration 205
uploading new firmware . 208

digital I/O
function calls

digIn() 69
digInBank() 70
digOut() 82
digOutBank() 83
getBegin() 77
getCounter() 77
getEnd() 78
globalSync() 81
pulseDisable() 91
pulseEnable() 91
resetCounter() 78
setCapture() 75
setCounter() 73
setDecoder() 72
setDigIn() 69
setDigOut() 81
setDuty() 89
setExtInterrupt() 71
setFreq() 88
setLimit() 79
setOffset() 90
setPPM() 86
setPWM() 84
setSync() 80

digital inputs
BL4S200 User’s Manual 209

pullup/pulldown configuration
28, 29, 34

switching threshold 28
digital outputs 34

PWM/PPM setup 33
sinking or sourcing 34

dimensions
BL4S200 main board 169

Dynamic C 9, 51, 52
add-on modules 19, 53

installation 19
basic instructions 51
battery-backed SRAM 131
debugging features 52
installation 19
protected variables 131
Rabbit Embedded Security

Pack 9, 53
standard features

debugging 52
starting 20
telephone-based technical sup-

port 9, 53
upgrades and patches 53

E

error codes
Mode Conflict 188

Ethernet cables 132
Ethernet connections 132

steps 132
Ethernet port 39

pinout 39
exclusion zone 173

F

features 6
firmware download

Digi® XBee USB 208
firmware updates 208

XBee module 204
coordinator vs. end device/

router 205
firmware updates . 204, 208

flash memory
lifetime write cycles 51

flash memory addresses
user blocks 49

H

high-current outputs
function calls

digOut_H() 93

digOutConfig_H() 92
digOutTriState_H() 95
digOutTriStateConfig_H()

94
setDuty_H() 101
setFreq_H() 100
setOffset_H() 102
setPPM_H() 33, 98
setPWM_H() 33, 96
setSync_H() 103

pin associations 188
PWM/PPM setup 33

I

interrupt handlers
function calls

addISR_H() 105
addISR() 104
enableISR() 107
setIER() 106
tickISR() 107

IP addresses
how to set 134
how to set PC IP address . 135

J

jumper configurations 175
JP1 (digital input DIO00–

DIO07 pullup/pulldown
configuration) 175

JP2 (digital input DIO08–
DIO15 pullup/pulldown
configuration) 175, 176

JP3 (digital input DIN16–
DIN19 pullup/pulldown
configuration) .. 28, 29, 34,
176

JP4 (digital input DIN20–
DIN23 pullup/pulldown
configuration) .. 28, 29, 30,
34

JP5 (digital input DIN24–
DIN31 pullup/pulldown
configuration) .. 28, 29, 34,
176

JP6 (A/D converter voltage/
current measurement op-
tions) 41, 176

JP7 (RS-485 bias and termina-
tion resistors) 37, 176

jumper locations 175

L

labeling requirements 14

M

memory 49
flash memory configurations

49
SRAM configuration for dif-

ferent sizes 49
Micro-Fit® connectors

parts 26
microSD™ Card

adapter 50
use with SD Card reader ... 50

Mode Conflict
error codes 188

models 7
BL4S200 7
BL4S210 7
BL4S230 7
BL5S220 7

O

operating region configuration .
146

options 9
Mesh Network Add-On Kit 9

P

pin associations
configurable I/O 187
high-current outputs 188

pinout
BL4S200 headers 25
Demonstration Board 184
Ethernet port 39

power management 178
power supply 178

battery backup 179
connections 17
RabbitNet peripheral cards ...

181
switching voltage regulator ...

178
Program Mode 46
programming

flash vs. RAM 51
programming cable 8
programming port 38
Remote Program Update 7

programming cable 8
connections 17
PROG connector 46
BL4S200 User’s Manual 210

programming port 38

R

Rabbit microprocessor
parallel ports 177
tamper detection 49
VBAT RAM memory 49

RabbitNet 10
Ethernet cables to connect pe-

ripheral cards 190, 191
function calls

rn_comm_status() 202
rn_device() 194
rn_echo() 196
rn_enable_wdt() 199
rn_find() 195
rn_hitwd() 200
rn_init() 193
rn_read() 197
rn_reset() 198
rn_rst_status() 201
rn_sw_wdt() 198
rn_write() 196

general description 190
peripheral cards 191

A/D converter 191
D/A converter 191
digital I/O 191
display/keypad interface ...

191
relay card 191

physical implementation . 192
RabbitNet peripheral cards ... 10

connection to master 190, 191
power from BL4S200 181
power-supply connections

181
real-time clock

how to set 66
reset

hardware 18
RIO pin/block associations

cinfigurable I/O 187
high-current outputs 188

RS-232 36
RS-485 36
RS-485 network 37

termination and bias resistors
37

Run Mode 46

S

sample programs 54
A/D converter

AD_CAL_ALL.C 42
AD_CALDIFF_CH.C ... 42
AD_RD_DIFF.C 63
AD_RD_MA.C 63
AD_RD_SE_BIPOLAR.C

63
AD_RD_SE_UNIPO-

LAR.C 63
AD_RDVOLT_ALL.C . 42
ADC_CAL_DIFF.C 62
ADC_CAL_MA.C .. 44, 62
ADC_CAL_SE_BIPO-

LAR.C 62
ADC_CAL_SE_UNIPO-

LAR.C 62
ADC_RD_CALDATA.C ..

62
D/A converter

DAC_CAL_MA.C 64
DAC_CAL_VOLTS.C .. 64
DAC_MA_ASYNC.C .. 64
DAC_MA_SYNC.C 64
DAC_RD_CALDATA.C ..

65
DAC_VOLT_ASYNC.C ..

65
DAC_VOLT_SYNC.C . 65

digital I/O
DIGIN_BANK.C 55
DIGIN.C 55
DIGOUT_BANK.C 56
DIGOUT.C 56
HIGH_CURRENT_IO.C ..

57
INTERRUPTS.C 57
PPM.C 58
PULSE_CAPTURE.C .. 58
PWM.C 58
QUADRATURE_DECOD-

ER.C 59
how to set IP address 134
microSD™ Card

SDFLASH_INSPECT.C 66
PC/notebook configuration ...

144
PONG.C 20
real-time clock

RTC_TEST.C 66
SETRTCKB.C 66

save/retrieve calibration con-
stants 23, 41, 62

serial communication
MASTER.C 61
PARITY.C 60

SIMPLE3WIRE.C 60
SIMPLE5WIRE.C 61
SLAVE.C 61

TCP_CONFIG.LIB 143
TCP/IP 66, 134

PINGME.C 136
SSI.C 137
TELNET.C 137

USERBLOCK_READ_
WRITE.C 23, 41, 62

Wi-Fi
PINGLED_STATS.C .. 151
PINGLED_WPA_PSK.C ..

151
PINGLED_WPA2_CC-

MP.C 153
PINGLED.C 151
WIFI_SCAN.C 146, 150
WIFI_SCANASSOCI-

ATE.C 150
WIFIDHCPORTSTATIC.C

148
WIFIMULTIPLEAPS.C ...

148
WIFIPINGYOU.C 149

Wi-Fi configuration macros ..
143

Wi-Fi network configuration
143

Wi-Fi regulatory setup
operating region configura-

tion 146
REGION_COMPILE-

TIME.C 146
REGION_MULTI_DO-

MAIN.C 147
REGION_RUNTIME_

PING.C 147
XBee module

AT_INTERACTIVE.C 22,
165, 204, 206

AT_RUNONCE.C 165
MODEMFWLOAD.C 204,

205
XBEE_GPIO_SERVER.C

162, 166
ZigBee 161
ZigBee setup 161

SD Card adapter 50
serial communication 36

function calls
ser485Rx() 109
ser485Tx() 109
serMode() 108
BL4S200 User’s Manual 211

programming port 38
RS-232 description 36
RS-485 description 36
RS-485 network 37
RS-485 termination and bias

resistors 37
serial ports

Ethernet port 39
setup 17

power supply connections . 17
software 9

libraries 67
BL4S200 67
BLxS2xx.LIB 67
PACKET.LIB 108
RN_CFG_BLS2xx.LIB 67
RNET.LIB 193
RS232.LIB 108
TCP_CONFIG.LIB 154
TCP/IP 67

Mode Conflict
error codes 188
RIO pin/block assocations

187, 188
sample programs 54

PONG.C 20
Wi-Fi configuration at com-

pile time 154
configuration macros ... 154

access point SSID 154
authentication 156
channel 155
enable/disable encryp-

tion 155
encryption keys 155
fragmentation threshold

157
mode 154
other macros 157
region/country 155
RTS threshold 157
select encryption key 155
set WPA hex key 156
set WPA passphrase 156
WPA encryption 156

network configuration . 154
TCPCONFIG macro ... 154

Wi-Fi configuration at run
time 158

specifications
BL4S200

dimensions 169
electrical 171
exclusion zone 173

headers 173
temperature 171

spectrum spreader
settings 48

status byte 203
subsystems 24

T

tamper detection 49
TCP/IP connections 132

10Base-T Ethernet card .. 132
additional resources 137
Ethernet hub 132
steps 132

Tool Kit 8
AC adapter 8
DC power supply 8
Demonstration Board 8
Dynamic C software 8
programming cable 8
software 8
User’s Manual 8
wire assembly 8

U

user block
function calls

readUserBlock() 49
writeUserBlock() 49

save/retrieve calibration con-
stants 23, 41, 62

V

VBAT RAM memory 49

W

Wi-Fi
additional resources 159
bring interface down 158
bring interface up 158
function calls

ifconfig() 154, 158
ifconfig(IF_WIFI0,…) 158
ifdown(IF_WIFI0) 158
ifup(IF_WIFI0) 158
sock_init_or_exit(1) 158
sock_init() 158
tcp_tick(NULL) 158

sample programs 146

X

XBee modem
function calls 167

XBee module
additional resources 167
firmware download 204

Z

ZigBee protocol
coordinator 160
end device 160
introduction 160
mesh network 161
router 160
BL4S200 User’s Manual 212

BL4S200 User’s Manual 213

SCHEMATICS

090-0267 BL4S200 Schematic
www.digi.com/documentation/schemat/090-0267.pdf

090-0227 RCM4000 Schematic
www.digi.com/documentation/schemat/090-0227.pdf

090-0229 RCM4300 Schematic
www.digi.com/documentation/schemat/090-0229.pdf

090-0266 RCM5400W Schematic
www.digi.com/documentation/schemat/090-0266.pdf

090-0246 RCM4500W Schematic
www.digi.com/documentation/schemat/090-0246.pdf

090-0252 USB Programming Cable Schematic
www.digi.com/documentation/schemat/090-0252.pdf

090-0272 Rabbit Demonstration Board
www.digi.com/documentation/schemat/090-0272.pdf

You may use the URL information provided above to access the latest schematics directly.

http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/
http://www.digi.com/support/documentation/

	BL4S200 User's Manual
	Table of Contents
	1. Introduction
	1.1 BL4S200 Description
	1.2 BL4S200 Features
	1.3 Development and Evaluation Tools
	1.3.1 Tool Kit
	1.3.2 Software
	1.3.3 Optional Add-Ons

	1.4 RabbitNet Peripheral Cards
	1.5 CE Compliance
	1.5.1 Design Guidelines
	1.5.2 Interfacing the BL4S200 to Other Devices

	1.6 Wi-Fi Certifications (BL5S220 Model only)
	1.6.1 FCC Part 15 Class B
	1.6.2 Industry Canada Labeling
	1.6.3 Europe

	2. Getting Started
	2.1 Preparing the BL4S200 for Development
	2.2 BL4S200 Connections
	2.2.1 Hardware Reset

	2.3 Installing Dynamic C
	2.4 Starting Dynamic C
	2.5 Run a Sample Program
	2.5.1 Troubleshooting

	2.6 Run a Wi-Fi Sample Program (BL5S220 only)
	2.7 Run a ZigBee Sample Program (BL4S230 only)
	2.8 Where Do I Go From Here?

	3. Subsystems
	3.1 BL4S200 Pinouts
	3.1.1 Connectors

	3.2 Digital I/O
	3.2.1 Configurable I/O
	3.2.2 High-Current Digital Outputs

	3.3 Serial Communication
	3.3.1 RS-232
	3.3.2 RS-485
	3.3.3 Programming Port
	3.3.4 Ethernet Port

	3.4 A/D Converter Inputs
	3.4.1 A/D Converter Calibration

	3.5 D/A Converter Outputs
	3.5.1 D/A Converter Calibration

	3.6 Analog Reference Voltages Circuit
	3.7 USB Programming Cable
	3.7.1 Changing Between Program Mode and Run Mode

	3.8 Other Hardware
	3.8.1 Clock Doubler
	3.8.2 Spectrum Spreader

	3.9 Memory
	3.9.1 SRAM
	3.9.2 Flash Memory
	3.9.3 VBAT RAM Memory
	3.9.4 microSD™ Cards

	4. Software
	4.1 Running Dynamic C
	4.1.1 Upgrading Dynamic C
	4.1.2 Add-On Modules

	4.2 Sample Programs
	4.2.1 Digital I/O
	4.2.2 Serial Communication
	4.2.3 A/D Converter Inputs
	4.2.4 D/A Converter Outputs
	4.2.5 Use of microSD™ Cards with BL4S200 Model
	4.2.6 Real-Time Clock
	4.2.7 TCP/IP Sample Programs

	4.3 BL4S200 Libraries
	4.4 BL4S200 Function Calls
	4.4.1 Board Initialization
	4.4.2 Digital I/O
	4.4.3 High-Current Outputs
	4.4.4 Rabbit RIO Interrupt Handlers
	4.4.5 Serial Communication
	4.4.6 A/D Converter Inputs
	4.4.7 D/A Converter Outputs
	4.4.8 SRAM Use

	5. Using the Ethernet TCP/IP Features
	5.1 TCP/IP Connections
	5.2 TCP/IP Sample Programs
	5.2.1 How to Set IP Addresses in the Sample Programs
	5.2.2 How to Set Up your Computer for Direct Connect
	5.2.3 Run the PINGME.C Demo
	5.2.4 Running More Demo Programs With a Direct Connection

	5.3 Where Do I Go From Here?

	6. Using the Wi-Fi Features
	6.1 Introduction to Wi-Fi
	6.1.1 Infrastructure Mode
	6.1.2 Ad-Hoc Mode
	6.1.3 Additional Information

	6.2 Running Wi-Fi Sample Programs
	6.2.1 Wi-Fi Setup
	6.2.2 What Else You Will Need
	6.2.3 Configuration Information
	6.2.4 Wi-Fi Sample Programs
	6.2.5 RCM5400W Sample Programs

	6.3 Dynamic C Wi-Fi Configurations
	6.3.1 Configuring TCP/IP at Compile Time
	6.3.2 Configuring TCP/IP at Run Time
	6.3.3 Other Key Function Calls

	6.4 Where Do I Go From Here?

	7. Using the ZigBee Features
	7.1 Introduction to the ZigBee Protocol
	7.2 ZigBee Sample Programs
	7.2.1 Setting Up the Digi XBee USB Coordinator
	7.2.2 Setting up Sample Programs

	7.3 Dynamic C Function Calls
	7.4 Where Do I Go From Here?

	Appendix A. Specifications
	A.1 Electrical and Mechanical Specifications
	A.1.1 Exclusion Zone
	A.1.2 Headers

	A.2 Conformal Coating
	A.3 Jumper Configurations
	A.4 Use of Rabbit Microprocessor Parallel Ports

	Appendix B. Power Supply
	B.1 Power Supplies
	B.1.1 Power for Analog Circuits

	B.2 Batteries and External Battery Connections
	B.2.1 Replacing the Backup Battery

	B.3 Power to Peripheral Cards

	Appendix C. Demonstration Board
	C.1 Connecting Demonstration Board
	C.2 Demonstration Board Features
	C.2.1 Pinout
	C.2.2 Configuration

	Appendix D. Rabbit RIO Resource Allocation
	D.1 Configurable I/O Pin Associations
	D.2 High-Current Output Pin Associations
	D.3 Interpreting Error Codes

	Appendix E. RabbitNet
	E.1 General RabbitNet Description
	E.1.1 RabbitNet Connections
	E.1.2 RabbitNet Peripheral Cards

	E.2 Physical Implementation
	E.2.1 Control and Routing

	E.3 Function Calls
	E.3.1 Status Byte

	Appendix F. Additional Configuration Instructions
	F.1 XBee Module Firmware Downloads
	F.1.1 Dynamic C v. 10.44 and Later

	F.2 Digi® XBee USB Configuration
	F.2.1 Additional Reference Information
	F.2.2 Update Digi® XBee USB Firmware

	Index
	Schematics

