
Version 6.x
Integrated C Development System

Technical Reference

for Zilog Z180 microprocessors

019-0083 � 020330-B

Dynamic C 32 v. 6.x Technical Reference

Part Number 019-0083 � 020330 - B � Printed in U.S.A.

Copyright

© 2002 Z-World, Inc. All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C® is a registered trademark of Z-World, Inc.
� PLCBus� is a trademark of Z-World, Inc.
� Windows® is a registered trademark of Microsoft Corporation.
� Modbus® is a registered trademark of Modicon, Inc.
� Hayes Smart Modem® is a registered trademark of Hayes Microcom-

puter Products, Inc.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

Technical Reference Table of Contents � iii

TABLE OF CONTENTS

About This Manual ix

Chapter 1: Installing Dynamic C 13
Installation Requirements .. 14
Installation Procedure .. 14

Chapter 2: Introduction to Dynamic C 15
Why C? ... 16
The Nature of Dynamic C ... 16
Speed ... 17

Dynamic C is Different .. 17
How Dynamic C Differs ... 18
Initialized Variables ... 18
Function Chaining ... 19
Global Initialization .. 20
Costatements ... 21
Interrupt Service Routines .. 21
Embedded Assembly Code ... 21
Shared and Protected Variables ... 22
Extended Memory ... 22
External Functions and Data ... 22
Function-Calling Methods .. 23
Subfunctions ... 24
Enumerated Types ... 24
Default Storage Class .. 24

Dynamic C and Z-World Controllers ... 24
Physical Memory .. 25
Watchdog Timer .. 25
Real-Time Operations ... 25
Restart Conditions ... 25

iv � Table of Contents Dynamic C 32 v. 6.x

Chapter 3: Using Dynamic C 27
Installation ... 28
Writing Programs ... 28
Compiling Programs .. 28

Compiler Options .. 30
Debugging Programs ... 32

Polling ... 33
Disassembler ... 34
Single Stepping ... 34
Break Points .. 35
Watch Expressions .. 35
Returning to Edit Mode .. 36

Creating Stand-alone Programs ... 36
Controller with Program in EPROM .. 37
Controller with Program in Flash Memory 37
Controller with Program in RAM ... 37

Help .. 37
Function Lookup ... 37
Function Assistance ... 38

Chapter 4: Dynamic C Environment 39
Editing ... 40

Menus .. 41
File Menu .. 42
Edit Menu .. 46
Compile Menu .. 50
Run Menu ... 52
Inspect Menu ... 54
Options Menu .. 58
Window Menu... 68
Help Menu .. 71

Chapter 5: The Language 75
Overview.. 76

Program Files .. 76
Support Files ... 77
Statements ... 78
Declarations .. 78
Functions ... 78
Prototypes ... 79
Type Definitions .. 80
Modules ... 82

Technical Reference Table of Contents � v

Macros ... 84
Program Flow .. 86

Loops ... 86
Continue and Break ... 87
Branching .. 89

Data .. 91
Primitive Data Types ... 91
Aggregate Data Types ... 92
Storage Classes ... 94
Pointers ... 94
Argument Passing ... 95

Memory Management .. 96
Memory Partitions .. 97

C Language Elements .. 99
Keywords .. 99
Names ... 112
Numbers .. 112
Strings and Character Data .. 113
Operators ... 115
Directives .. 124
Punctuation ... 127
Extended Memory Data .. 127

Chapter 6: Using Assembly Language 129
Register Summary ... 131
General Concepts ... 131

Comments ... 132
Labels .. 132
Defining Constants .. 132
Expressions ... 133
Special Symbols .. 133
C Variables .. 134

Standalone Assembly Code ... 135
Embedded Assembly Code .. 135

No IX, Function in Root Memory... 136
Using IX, Function in Root Memory .. 138
No IX, Function in Extended Memory ... 139

C Functions Calling Assembly Code ... 140
Assembly Code Calling C Functions ... 142
Indirect Function Calls in Assembly .. 143
Interrupt Routines in Assembly ... 143
Common Problems .. 145

vi � Table of Contents Dynamic C 32 v. 6.x

Chapter 7: Costatements 147
Overview.. 148
Syntax .. 150

Name ... 150
State ... 151
Waitfor .. 151
Yield .. 153
Abort ... 154
The CoData Structure .. 155
The Firsttime Flag and Firsttime Functions 157
Advanced CoData Usage .. 158

Chapter 8: Interrupts 161
Interrupt Vectors ... 164

Chapter 9: Remote Download 167
The Download Manager .. 169

Enter Password .. 169
Set Password ... 169
Report DLM Parameters ... 169
Download Program ... 170
Execute Downloaded Program.. 170
Hangup Remote Modem ... 170

The DLM Code .. 170
The Downloaded Program (DLP) .. 171
How to Use the DLM .. 172
The DLP File Format ... 173

Chapter 10: Local Upload 175
The Program Loader Utility ... 176

On-line Help .. 177
Set Communication Parameters .. 177
Reset the Target Controller ... 178
Select the Program File ... 179

Common Problems .. 180

Technical Reference Table of Contents � vii

Appendix A: Run-Time Error Processing 181
Long Jumps .. 184
Watchdog Timer ... 184
Protected Variables ... 185

Appendix B: Efficiency 187
Nodebug Keyword ... 188
Static Variables ... 188
Execution Speed .. 189
Subfunctions .. 189
Function Entry and Exit ... 190

Appendix C: Software Libraries 191
Headers .. 193

Function Headers .. 194
Modules ... 194

Appendix D: Extended Memory 197
Physical Memory ... 198

Memory Management ... 198
Memory Partitions .. 200
Control over Memory Mapping .. 202

Extended Memory Functions ... 202
Suggestions ... 203
Extended Memory Data .. 204

Appendix E: Compiler Directives 207
Default Compiler Directives .. 208

Appendix F: File Formats 209
Layout of ROM Files ... 210
Layout of Downloadable Files ... 210
Layout of Download to RAM Files ... 211
Hex File Information ... 212
Jumping to Another Program ... 213
Burning ROM .. 213

Copyright Notice ... 213

viii � Table of Contents Dynamic C 32 v. 6.x

Appendix G: Reset Functions 215
Reset Differentiation .. 216
Reset Generation .. 218

Appendix H: Existing Function Chains 219

Appendix I: New Features 221
Dynamic C 32 IDE .. 222

Compiler Options, Output Generation Group 222
Compiler Options, File Type for �Compile to File� Group............ 222
Target Communication .. 222

New Libraries .. 222
Program Loader Utility .. 222

Index 223

Technical Reference About This Manual � ix

ABOUT THIS MANUAL

Z-World customers develop software for their programmable controllers
using Z-World�s Dynamic C 32 development system running on an IBM-
compatible PC. The controller is connected to a COM port on the PC,
usually COM2, which by default operates at 19,200 bps.

Features which were formerly only available in the Deluxe version are
now standard. Dynamic C 32 supports programs with up to 512K in ROM
(code and constants) and 512K in RAM (variable data), with full access to
extended memory.

The Three Manuals
Dynamic C 32 is documented with three reference manuals:

� Dynamic C 32 Technical Reference

� Dynamic C 32 Application Frameworks

� Dynamic C 32 Function Reference.

This manual describes how to use the Dynamic C development system to
write software for a Z-World programmable controller.

The Application Frameworks manual discusses various topics in depth.
These topics include the use of the Z-World real-time kernel, costatements,
function chaining, and serial communication.

The Function Reference manual contains descriptions of all the function
libraries on the Dynamic C disk and all the functions in those libraries.

Please read release notes and updates for late-breaking
information about Z-World products and Dynamic C.$

Dynamic C 32 v. 6.xx � About This Manual

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas.

· Understanding of the basics of operating a software program and
editing files under Windows on a PC.

· Knowledge of the basics of C programming. Dynamic C is not the
same as standard C.

For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and Ritchie
C: A Reference Manual by Harbison and Steel

· Knowledge of basic Z80 assembly language and architecture.

For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Acronyms
Table 1 lists the acronyms that may be used in this manual.

$

$

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read-Only Memory

EEPROM Electronically Erasable Programmable Read-Only
Memory

LCD Liquid Crystal Display

LED Light-Emitting Diode

NMI Non-Maskable Interrupt

PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real-Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Technical Reference About This Manual � xi

Icons
Table 2 displays and defines icons that may be used in this manual.

Table 2. Icons

 Icon Meaning Icon Meaning

 $ Refer to or see ! Note

 (Please contact 7LS Tip

 Caution High Voltage

)' Factory Default

Conventions
Table 3 lists and defines typographic conventions that may be used in this
manual.

Table 3. Typographical Conventions

Example Description

while Courier font (bold) indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

// IN-01… Program comments are written in Courier font, plain
face.

Italics Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type a file’s
name).

Edit Sans serif font (bold) signifies a menu or menu selection.

. . . An ellipsis indicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text
may be repeated indefinitely.

[] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

< > Angle brackets occasionally enclose classes of terms.

a | b | c A vertical bar indicates that a choice should be made
from among the items listed.

Dynamic C 32 v. 6.xxii � About This Manual

Technical Reference Installing Dynamic C � 13

CHAPTER 1: INSTALLING DYNAMIC C

Dynamic C 32 v. 6.x14 � Installing Dynamic C

Installation Requirements
Your PC must meet the following requirements in order to successfully
install and use Dynamic C 32.

CPU is �386SX or higher (Pentium or higher is recommended)
OS is Windows 95, 98, 2000, Me or NT
CD-ROM (or compatible) drive
hard drive with at least 32 megabytes of free space
at least 16 megabytes of RAM
at least one free COM port

Installation Procedure
Dynamic C 32 software comes on one CD-ROM. Insert the CD-ROM
into the appropriate drive on the PC. After a few moments the installation
program should start automatically. If not, then issue the Windows
�Run...� command and type the following command.

�disk�\SETUP

where �disk� is the name of the CD-ROM drive. If the CD-ROM drive is
�D:� then type

D:\SETUP

The installation program will begin to run and guide you through the
installation process. Note that you will be asked to read and understand
the Z-World Software End User License Agreement. If you decline to
accept the terms of the agreement then the installation program will
terminate without installing Dynamic C 32.

When installation is complete a new Windows program group that includes
Dynamic C 32, the Program Loader Utility, and an on-line help file will
have been created. In addition, desktop shortcut icons for these items have
also been created.

The Dynamic C 32 application may now be run from Windows using any
of the standard methods (E.G.: double-clicking on the icon) to launch it.

Please contact Z-World�s Technical Support at
(530)757-3737 if there are any problems.(

Technical Reference Introduction to Dynamic C � 15

CHAPTER 2:

INTRODUCTION TO DYNAMIC C

Dynamic C 32 v. 6.x16 � Introduction to Dynamic C

Dynamic C is an integrated development system that runs on an IBM-
compatible PC and is designed for use with Z-World controllers and
control products.

Z-World�s Zilog Z180 microprocessor based controllers include a variety
of analog inputs and outputs, digital inputs and outputs, high-current
outputs, serial communication channels, clocks and timers. Z-World
controllers are programmed using an enhanced form of the well-known C
programming language... Dynamic C.

Why C?

Programmable controllers provide the most flexible way to develop a
control system. And C is the preferred language for embedded systems
programming. It is widely known and produces efficient and compact
code. Because C is a high-level language, code can be developed much
faster than with assembly language alone. And C allows programming at
the machine level when necessary.

The Nature of Dynamic C

Dynamic C integrates the following development functions

Editing, Compiling, Linking, Loading, Debugging

into one program. In fact, compiling, linking and loading are one function.
Dynamic C has an easy-to-use built-in text editor. Programs can be
executed and debugged interactively at the source-code level. Ultimately,
EPROM files or down-loadable files can be created for programs that will
run stand-alone in the controller. Pull-down menus and keyboard shortcuts
for most commands make Dynamic C efficient.

Because all the development functions are integrated, it is possible to
switch from one function to another with a simple keystroke.

Dynamic C also supports assembly language programming. It is not
necessary to leave C or the development system to write assembly lan-
guage code. C and assembly language may be mixed, line by line, in a
program.

For debugging, Dynamic C provides a standard I/O window, an assembly
window, a �watch� window, a register window and a stack window. The
standard I/O window allows the program in a controller to print messages
on the development screen. The assembly window displays an assembly
view of compiled code. The watch window allows the programmer to type
and evaluate expressions, monitor or set variables, and call functions.
Dynamic C�s debugger allows breakpoints to be set and cleared on-the-fly,
to single-step with and without descent into functions, and to view
execution at the assembly level as well as at the source-code level.

Technical Reference Introduction to Dynamic C � 17

Dynamic C provides extensions to the C language (such as shared and
protected variables) that support real-world system development. Interrupt
service routines may be written in C. Dynamic C supports real-time multi-
tasking with its real-time kernel and its costatement extension.

Dynamic C comes with many function libraries, all in source code. These
libraries support real-time programming, machine level I/O, and provide
standard string and math functions.

Please refer to the Dynamic C Application Frameworks and
Function Reference manuals.$

Speed

Dynamic C compiles directly to Z180 memory. Functions and libraries are
compiled and linked and downloaded on-the-fly. On a fast PC, Dynamic
C can compile more than 250 lines of source code per second, generating
about 2500 bytes of machine code per second. Thus, a large program�
say 8,000 lines of code�might generate 80 KBytes of machine code and
take about 30 seconds to compile and download.

The application code might only be 400 lines, yet it can make calls to
several thousand lines of library code, all of which are compiled when the
program is compiled.

Dynamic C is Different
Dynamic C differs from a traditional C programming system running on a
PC or under UNIX. The motivation for being different is to be better: to
help customers write the most reliable embedded control software possible.
Some of the devices and constructs that C programmers employ on other
systems just don�t work very well for embedded systems. At the very
least, they must be used with caution. In some instances, Z-World has
extended the C language where the value of the extension is compelling.

In an embedded system, there is no operating system or supervisor that can
halt a program if it goes wrong or perform services for the program. An
embedded program has to do it all, and handle its own errors and keep on
running. An embedded program also has to initialize itself.

In an embedded system, a program runs from EPROM (or flash) and uses
a separate RAM for data storage. Many Z-World controllers have battery-
backed RAM providing nonvolatile storage.

Often, an embedded program comprises a number of concurrently execut-
ing tasks, rather than a single task.

Dynamic C 32 v. 6.x18 � Introduction to Dynamic C

How Dynamic C Differs

The differences in Dynamic C are summarized here and are discussed after
the summary.

� Variables that are initialized when declared are considered named
constants and are placed in ROM. It is an error to try to change such
�variables.�

� The default storage class is static, not auto.

� There is no #include directive, nor are there any include (header)
files. Library functions and data are bound to a program by other
means. There is a #use directive.

� Dynamic C does not support enumerated types.

� The extern and register keywords have an altered meanings.

� Function chaining, a concept unique to Dynamic C, allows special
segments of code to be included within one or more functions. When a
named function chain executes, all the segments belonging to that
chain execute. Function chains allow software to perform initializa-
tion, data recovery, or other kinds of tasks on request.

� �Costatements� allow concurrent parallel processes to be simulated in a
single program.

� Dynamic C allows the programmer to write interrupt service routines
in C.

� Dynamic C supports embedded assembly code.

� Dynamic C has shared and protected keywords that help protect data
from unexpected loss.

� Dynamic C has a set of features that allow the programmer to make
fullest use of extended memory.

� Dynamic C provides two forms of argument passing (using the IX
index register vs. using the stack pointer SP).

� Dynamic C provides a subfunc construct to optimize frequently used
code.

Initialized Variables

Static variables initialized when they are declared are considered named
constants. The compiler places them in the same area of memory as
program code, typically in EPROM or flash memory. Uninitialized
variables are placed in RAM, and must be initialized by the application
program.

int i = 100; // initialized in declaration here,
// becomes a named constant

Technical Reference Introduction to Dynamic C � 19

int k; // variable placed in RAM, then
k = 100; // initialized by your program.

When a program is being compiled directly to a controller that has
EPROM, the compiler places constants and program code in RAM since it
cannot modify the controller�s EPROM. Under these circumstances,
constants can be modified, intentionally or not, but it is an error to do so.

The default storage class for local variables is static, not
auto, so be doubly careful when initializing variables in
functions.

!

Function Chaining

Function chaining, a concept unique to Dynamic C, allows special
segments of code to be distributed in one or more functions. When a
named function chain executes, all the segments belonging to that chain
execute. Function chains allow the software to perform initialization, data
recovery, or other kinds of tasks on request.

Dynamic C provides two directives, #makechain and #funcchain, and
one keyword, segchain.

� #makechain chain_name

Creates a function chain. When a program executes the named
function chain, all of the functions or chain segments belonging to that
chain execute. (No particular order of execution can be guaranteed.)

� #funcchain chain_name name

Adds a function, or another function chain, to a function chain.

� segchain chain_name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to
the named function chain.

Function chain segments defined with segchain must appear in a
function directly after data declarations and before executable statements,
as shown below.

my_function(){
data declarations
segchain chain_x{
some statements which execute under chain_x
}
segchain chain_y{
some statements which execute under chain_y
}
function body which executes when my_function
is called

}

Dynamic C 32 v. 6.x20 � Introduction to Dynamic C

A program will call a function chain as it would an ordinary void function
that has no parameters. For example, if the function chain is named
recover, this is how to call it.

#makechain recover
...
recover();

Several function chains can be found in Dynamic C libraries. These are
listed in Appendix X.

Global Initialization

Embedded systems typically have no operating system to perform services
such as initialization of data�something programmers who are accus-
tomed to an operating system might take for granted.

Various hardware devices in a system need to be initialized not only by
setting variables and control registers, but often by complex initialization
procedures. For this purpose, Dynamic C provides a specfic function
chain: _GLOBAL_INIT.

Any global initialization may be performed by adding segments to the
_GLOBAL_INIT function chain, as shown in this example.

int my_func(long j){

int b = 100;
int c, z;
char* k;

segchain _GLOBAL_INIT{
c = 40; k = �Press any key...�;
for(z = 0, z < c; z++){
...
}

}

your function code
...

}

Then, have the program call _GLOBAL_INIT during program startup, or
when the hardware resets. This function chain executes all the global
initialization statements indicated by all _GLOBAL_INIT segments in the
program (and in Dynamic C libraries as well).

Technical Reference Introduction to Dynamic C � 21

Z-World supports two levels of initialization. A major initialization, or
super initialization, takes place only when there is a need to erase all past
history, such as when installing a new program EPROM, or when a system
loses its memory. A minor, or normal, initialization taking place every
time the system resets or powers up. In a minor initialization, exactly
which data are (re)initialized depends on the nature of the system.

For further detail, refer to Appendix G, Reset Functions, and
to the Dynamic C Application Frameworks manual.$

Costatements

Dynamic C provides a capability whereby the program can execute a set of
tasks (almost) simultaneously. A data structure, some additions to the C
language, and some functions comprise what Z-World calls costatements.
A costatement is a construct�a block of code�that can suspend its own
execution, thereby allowing other code to execute. A set of costatements,
presumably in an endless loop, executes concurrently, seemingly in
parallel. All of the tasks in the set are in states of partial completion.

Costatements may execute repeatedly, or execute once, when triggered,
and then stop.

For further detail, refer to Chapter 7, Costatements, in this
manual, and to the Dynamic C Application Frameworks
manual.

$

Interrupt Service Routines

Interrupt service routines can be written in Dynamic C using the C
language. The keyword interrupt designates a function as an interrupt
service routine.

interrupt my_handler(){
...

}

Embedded Assembly Code

There are times when assembly language is necessary or desirable. For
time-critical or machine-dependent code, it is natural to choose assembly
language.

Dynamic C allows Z180 assembly code to be embedded in a C program.
Assembly code may be written within a C function or complete assembly
code functions may be written. C-language statements may also be
embedded in assembly code.

For further detail, refer to Chapter 6, Using Assembly
Language.$

Dynamic C 32 v. 6.x22 � Introduction to Dynamic C

Shared and Protected Variables

An important feature of Dynamic C is the ability to declare variables as
protected. Such a variable is protected against loss in case of a power
failure or other system reset because the compiler generates code that
creates a backup copy of a protected variable before the variable is
modified. If the system resets while the protected variable is being
modified, the variable�s value can be restored when the system restarts.

A system that shares data among different tasks or among interrupt
routines can find its shared data corrupted if an interrupt occurs in the
middle of a write to a multi-byte variable (such as type int or float).
The variable might be only partially written at its next use.

Declaring a multi-byte variable shared means that changes to the variable
are atomic, that is, any change to the variable is a complete change.
(Interrupts are disabled while the variable is being changed.)

Extended Memory

Dynamic C supports the 1-MByte address space of the Z180 microproces-
sor. The address space of the Z180 is segmented by a memory manage-
ment unit. Dynamic C allows programs containing up to 512 KBytes in
ROM (code and constants) and 512 KBytes of RAM (data). Normally,
Dynamic C takes care of memory management, but there are instances
where the programmer will want to take control of it.

Dynamic C has keywords and directives to help put code and data in the
proper place. The keyword root selects root memory (addresses within
the 64-KByte physical address space of the Z180). The keyword xmem
selects extended memory, which means anywhere in the 512-KByte code
space. The directive #memmap allows further control. Special statements
xdata and xstring declare blocks of data in extended memory. Certain
functions, such as xgetfloat and xstrlen help to access data in
extended memory.

Refere to Appendix D, Memory Management, and to the
XMEM.LIB library in the Dynamic C Function Reference
manual for more details.

$

External Functions and Data

The keyword static cannot apply to functions.

The keyword extern is used in module headers (those enclosed in
BeginHeader and EndHeader comments. A variable or function may
already be declared extern in your a controller�s BIOS symbol table.
Otherwise, declare a variable extern if it is to be defined later in the
program or in another file.

Technical Reference Introduction to Dynamic C � 23

Two files in the Dynamic C directory�LIB.DIR and DEFAULT.H�
contain lists of libraries that are needed for particular controllers. These
files are used automatically, but they can be modified if necessary.

Dynamic C has no #include directive, but does have a #use directive.
Whereas the #include directive causes program text to be inserted in
place of the directive, Z-World�s #use directive does not cause text
insertion, but identifies a library from which functions and data may be
taken. The file DEFAULT.H contains various sets of #use directives, one
set for each controller Z-World offers.

Dynamic C compiles, links, and downloads directly to a Z-World control-
ler (or to a file). Dynamic C functions are not compiled separately and
then linked. There are no pre-compiled software libraries. Dynamic C
uses source-code libraries from which necessary functions are extracted
during compilation. Since there are no #include directives in Dynamic
C, source libraries make global variables and function prototypes available
with special headers such as the following.

/*** BeginHeader my_proc, my_func, my_var */
void my_proc(int j);
float my_func(float arg);
extern int my_var;

/*** EndHeader */

These headers are found throughout library source code. Such headers
must be created to make functions known to the Dynamic C compiler if
other libraries are created.

Function-Calling Methods

Dynamic C provides a choice of two function-calling mechanisms. Two
keywords (and two directives), listed in Table 2-1, provide this choice.

It is generally more efficient to use the IX register. Do not use the IX
register as a frame reference pointer for functions that can be suspended
under the real-time kernel.

Table 2-1. Function-Calling Methods

Key, Directive Description

useix,
#useix

Use the IX register as a ‘frame reference pointer’ for
stack-based variables and arguments. See Chapter 6,
Using Assembly Language.

nouseix,
#nouseix

Use the stack pointer (SP) as a ‘frame reference
pointer.’ This is the normal case.

Dynamic C 32 v. 6.x24 � Introduction to Dynamic C

Subfunctions

Subfunctions allow often-used code sequences to be turned into an in-line
�subroutine� within a C function. The subfunction nextbyte in the
following example,

static char nextbyte();
subfunc nextbyte: *ptr++;
...
...nextbyte(); ...
...nextbyte(); ...
...

can save ten or more bytes of code memory each time it is called.

Enumerated Types

Dynamic C does not have enumerated types.

Default Storage Class

Unlike traditional C compilers, the default storage class for local variables
is static, not auto. The default setting may be changed with the
directive #class.

Attempts to write recursive or re-entrant functions will fail
if this default storage class is static. Recursive or re-
entrant functions require auto variables.

!

Dynamic C and Z-World Controllers
Z-World controllers are based on the Z180 microprocessor, which has an
instruction set nearly identical to that of a Zilog Z80. The Z180 is a well-
established and popular microprocessor. It is a descendent of the original
Z80 microprocessor, but the Z180 also has the following on-chip �periph-
eral� devices.

� Dual 16-bit programmable timers

� Dual asynchronous serial communication ports

� A clocked serial communication port

� Dual DMA channels for high-speed data transfer between
memory and I/O devices.

The Z180 has a relatively efficient instruction set. At 9.216 MHz, many
instructions take about 1 microsecond. Floating-point arithmetic is
accomplished in software. Floating-point add, subtract and multiply take
about 100 microseconds with a 9.216 MHz clock. Division is somewhat
slower.

Technical Reference Introduction to Dynamic C � 25

Physical Memory

Depending on the product and its jumper wiring, Z-World controllers can
address up to 512 KBytes of ROM, and 512 KBytes of RAM. It is often
not necessary to have memory chips this large on miniature controllers.
Typical SRAM chips have 32 or 128 KBytes.

Watchdog Timer

Programs sometimes fail or get stuck. Z-World controllers provide a
�watchdog� timer that will initiate a hardware reset unless the software
signals the timer periodically. A failed program will generally fail to �hit�
the watchdog timer. The watchdog timer can help the controller recover
from system hang-ups, endless loops and hardware upsets resulting from
electrical transients. The watchdog timer provides a natural way to recover
from most fatal software errors.

Real-Time Operations

Dynamic C includes two real-time function libraries, and extensions to the
C language to support real-time operations.

Refer to Chapter 7, Costatements, and to the Dynamic C
Application Frameworks manual for more information
about the real-time kernels.

$

Restart Conditions

Z-World embedded applications need to differentiate the causes of reset
and restart. Possible hardware resets are listed in Table 2-2.

In addition to these hardware resets, an application may cause a super
reset. Z-World�s super reset is a mechanism to initialize certain persistent
data in battery-backed RAM. A normal reset does not initialize these data,
but retains their values. A super reset always occurs when a program is
first loaded. Subsequent resets are normal resets, unless the software
performs a super reset intentionally.

Table 2-2. Hardware Resets

Regular Reset The system /RESET line is pulled low and released.

Power Fail Reset
Power drops below a threshold, the supervisor chip
pulls /RESET low and causes a reset.

Watchdog Reset
Software failed to “hit” the watchdog timer. It pulls
/RESET low and causes a reset.

Dynamic C 32 v. 6.x26 � Introduction to Dynamic C

See Appendix G, Reset Functions.$

Dynamic C includes the functions listed in Table 2-3 to differentiate the
various resets.

If these reset functions are to be used, call them before doing anything else
in the main function.

Dynamic C can generate two types of system reset. The function
sysForceReset causes a watchdog reset. The function
sysForceSupRst causes a super reset.

Table 2-3. Reset Functions

_sysIsSuperReset

This function detects whether a super reset was
requested. It also manages protected variables
and calls the sysSupRstChain function
chain.

_sysIsPwrFail
This function determines whether the system
had a power failure just before restarting.

_sysIsWDTO
This function determines whether the system
was reset by a watchdog timeout.

Technical Reference Using Dynamic C � 27

CHAPTER 3: USING DYNAMIC C

Dynamic C 32 v. 6.x28 � Using Dynamic C

The Dynamic C 32 compiler can generate up to 512 KBytes of code and
512 KBytes of data, and fully supports extended memory.

To run Dynamic C 32 under Windows, double-click the Dynamic C icon in
the Dynamic C program group or use one of the other standard Windows
methods to launch Dynamic C 32.

Installation
Dynamic C 32 must be installed on a hard disk and requires about 32
MBytes of disk space. The PC must be running Windows 95, 98, 2000,
Me or NT, on a machine having a 386SX processor or better. At least 16
Mbytes of RAM are required to run Dynamic C and there must be one free
serial port to communicate with the target controller.

Refer to the installation instructions in Chapter 1, Installing
Dynamic C.

$

Writing Programs
A Dynamic C text window is used to enter the program text line-by line.
Fragments of program text may be cut and pasted from one application to
another (for instance, from Microsoft WORD to Dynamic C) or from one
Dynamic C text window to another. Dynamic C allows text to be selected
and scrolled, and program files can be created and saved using the same
techniques as in other Windows programs.

Compiling Programs
Dynamic C provides several ways to compile programs, as shown in the
Compile menu.

Technical Reference Using Dynamic C � 29

It is essential that the .RTI file is created with a target
controller identical (board type, BIOS, memory size,
jumper settings, etc.) to the controller on which programs
compiled with the .RTI file will run.

!

Compile to Target F3

Dynamic C compiles, links and downloads machine code directly to a
target controller. If the controller has flash memory, Dynamic C places
code in flash memory. If the controller has EPROM, Dynamic C places
code in RAM. Dynamic C communicates with the controller through a PC
serial port. If the compilation is successful, Dynamic C enters run (AKA
debug) mode and maintains communication with the target controller.

Compile to File Ctrl+F3

Dynamic C compiles the program to a file whose nature and format can be
selected in the compiler options dialog. No file is generated if compilation
errors occur. Note that a controller has to be connected to the PC; Com-
pile to File takes target information from the controller.

Create *.RTI File for Targetless Compile

When this menu option is selected, Dynamic C creates a Remote Target
Information (.RTI) file by saving target information taken from the
required attached controller. A dialog box prompts for the location and file
name to save the .RTI file.

Compile to File with *.RTI File Alt+Ctrl+F3

Dynamic C allows a program to be compiled to a binary file or a down-
loadable file without having a target controller present. Before compiling
programs this way, first create a Remote Target Information (.RTI) file for
the specific controller the programs will run on.

Once a suitable .RTI file has been created, the Compile to File with *.RTI
File command generates output files the same way Compile to File does.
A dialog box prompts for which .RTI file to open. All compiler options
apply.

Dynamic C 32 v. 6.x30 � Using Dynamic C

Compiler Options

The Compiler selection on the Options menu provides many options.

The File Type for �Compile to File� options specifically affect the
Compile to File and the Compile to File with *.RTI File commands.

Application Only (.BPF)

When this option is selected, the Compile to File commands generate a
.BPF file containing the compiled application code, but without the BIOS
code. This option is included for backward compatibility only, for
controllers with standard a EPROM which require the Program Loader
Utility to load the application code into SRAM.

The �BIOS+... (.BIN)� Options

These options select what type of a .BIN (EPROM) file is generated. If
the Create HEX File Also compiler option is selected, the Compile to File
commands also generate an Intel hex format file (.HEX) in addition to the
.BIN file. In most cases, either the .BIN or the .HEX file format will work
with external device (standard or Flash EPROM) programmers.

Technical Reference Using Dynamic C � 31

BIOS+Application (.BIN)

When this option is selected, the Compile to File commands generate a
.BIN (standard or Flash EPROM) file containing the BIOS code of the
target controller (where the BIOS library functions are located) and the
compiled application code. It is important to note that the BIOS�s symbol
library is excluded from the .BIN file.

This option is useful for programming either standard or Flash EPROM
types. When this type of .BIN file is loaded via the Program Loader
Utility (PLU) into a Flash equipped target controller, communication with
Dynamic C or the PLU is still possible. This presumes that the .BIN file
code does not overwrite the target controller�s BIOS symbol library or
simulated EEPROM area, located at the end of the Flash.

However, if this type of .BIN file is externally programmed into a blank
EPROM which is then installed into the target controller, communication
with Dynamic C or the PLU is no longer possible. This is because the
BIOS�s symbol library is excluded from the .BIN file, which can be useful
in situations where extra code security is desired. Also excluded from the
.BIN file is the simulated EEPROM area, located at the end of a Flash.

BIOS+App+Library (.BIN)

When this option is selected, the Compile to File commands generate a
.BIN (Flash EPROM) file containing the BIOS code of the target control-
ler (where the BIOS library functions are located), the compiled applica-
tion code and the BIOS�s symbol library (located near the end of the
Flash). It is important to note that the Flash�s simulated EEPROM area is
excluded from the .BIN file.

This option is useful only for externally programmed Flash types, it
should not be used to generate .BIN files intended for loading to the target
controller via the Program Loader Utility (PLU). After installing the
externally programmed Flash into the target controller, communication
with Dynamic C or the PLU is still possible. Note that the Flash�s simu-
lated EEPROM area may or may not have been modified by the external
device programmer.

BIOS+App+Lib+SimEE (.BIN)

When this option is selected, the Compile to File commands generate a
.BIN (Flash EPROM) file containing the BIOS code of the target control-
ler (where the BIOS library functions are located), the compiled applica-
tion code, the BIOS�s symbol library (located near the end of a Flash
EPROM) and the Flash�s simulated EEPROM area (located at the end of
the Flash). It is important to note that the Flash�s simulated EEPROM area
is copied from the attached target controller or .RTI file (if available,
otherwise it is cleared) into the .BIN file.

Dynamic C 32 v. 6.x32 � Using Dynamic C

The DLM must be resident in any controller that will receive the
downloadable file.

Null Device (Bit Bucket)

When this option is selected, the Compile to File commands generate no
output. This option allows very fast compilation and is useful just to
(1) perform syntax checking, (2) perform type checking or (3) get the sizes
of each code and data segment. The memory mapping scheme is identical
to compiling with code with BIOS.

Debugging Programs
Once a program has been compiled successfully with a target controller
connected, Dynamic C enters run mode (also called debug mode). Modern
symbolic debuggers, such as Dynamic C�s debugger, make debugging
relatively easy. There are two general methods; expect to use a combina-
tion of the two.

Refer to Chapter 9, Remote Download, for details.$

This option is useful only for externally programmed Flash EPROM types,
it should not be used to generate .BIN files intended for loading to the
target controller via the Program Loader Utility (PLU). After installing the
externally programmed Flash EPROM into the target controller communi-
cation with Dynamic C or the PLU is still possible.

BIOS+App+Lib+ClrSEE (.BIN)

When this option is selected, the Compile to File commands generate a
.BIN (Flash EPROM) file containing the BIOS code of the target control-
ler (where the BIOS library functions are located), the compiled applica-
tion code, the BIOS�s symbol library (located near the end of a Flash
EPROM) and the Flash�s simulated EEPROM area (located at the end of
the Flash). It is important to note that the Flash�s simulated EEPROM area
is cleared (zeroed) in the .BIN file.

This option is useful only for externally programmed Flash EPROM types,
it should not be used to generate .BIN files intended for loading to the
target controller via the Program Loader Utility (PLU). After installing the
externally programmed Flash EPROM into the target controller communi-
cation with Dynamic C or the PLU is still possible.

Download via DLM (.DLP)

When this option is selected, the Compile to File commands generate a
downloadable program file (.DLP) to be used by the Z-World download
manager (DLM). When choosing this option, be prepared to enter certain
parameters generated by the DLM in a dialog box that appears after
Compile to File is clicked.

Technical Reference Using Dynamic C � 33

1. Make the program report its behavior by including debugging code�
such as calls to printf�in the program. This is useful, but it is often
not sufficient, especially if the printf contents scroll off the screen
too fast. Dynamic C, however, offers an option to save all the content
printed to the STDIO window into a file for later examination. This
allows the programmer to save a huge file of debug information and
then use another program on the PC to analyze the contents.

2. Probe and test the program as it runs. Unfortunately for debugging,
programs run faster than humans do. Addressing this difference,
Dynamic C lets the program run at a speed amenable to testing. Slow
it down here, make it run fast there, and stop whenever needed to
examine its state.

Dynamic C provides a variety of windows, listed in Table 3-1, to monitor a
program�s state.

Table 3-1. Dynamic C Monitoring Windows

Watch window Evaluates variables, expressions, and functions

STDIO window Calls to printf display in the STDIO window

Assembly window Examines, or step, the compiled code

Register window Shows Z180 register values, past and present

Stack window Shows the (top 8 bytes of the) processor stack, past
and present

The assembly, register, stack, STDIO, and watch windows are all scrolling
windows. The windows can be scrolled to view the history of contents of
registers, stack and watch expressions of the last few steps. This feature is
very useful to show how variables, registers or the stack change during
execution of the program.

An important aspect of the Dynamic C debugger is that it is symbolic.
This means that the executing program is linked to source code. The part
of the program that is executing is highlighted in the source-code window.
When expressions, variables, and functions are evaluated, they are
evaluated in C, using the names in the application, and normal integer,
floating, and character representations of constants apply. The execution
of the program can also be viewed at the machine level.

Polling

Under normal debugging conditions, Dynamic C monitors the activity on
the target controller. The controller is interrupted every 100 milliseconds.
This is called polling. If your the application has very tight timing
requirements, these interrupts could cause the application to fail. Dynamic
C allows polling to be enabled or disabled at the programmer�s option.

Dynamic C 32 v. 6.x34 � Using Dynamic C

There are three commands on the RUN menu.

Run (with polling),

Run w/ No Polling, and

Toggle Polling (allows user to control polling).

Single Stepping

Often there is a need simply to observe the program execute, statement by
statement. There are two commands on the RUN menu) for single
stepping.

Trace into (with descent into function calls), and

Step over (prevents descent into function calls).

An execution cursor highlights the current source statement (or assembly
instruction, if the assembly window is being used).

When one of the two single-stepping commands is clicked, the current
statement executes, debugging windows are updated, and the execution
cursor advances to the next statement in the execution sequence. To
examine code in greater detail, the assembly window may be activated to
show the compiled code in assembly language format.

This option may not be needed if the source code is already in assembly
language. Single stepping through assembly code is instruction by
instruction. The machine state (registers and stack) can also be displayed
independently at any time.

Disassembler

Besides displaying the assembly code at the execution point, Dynamic C
also allows code to be disassembled independently of the execution point.
The Disassemble at Cursor option of the INSPECT menu (CTRL-F10)
disassembles the machine code that represents the code at the screen
cursor.

Technical Reference Using Dynamic C � 35

This feature allows the compiled code of statements to be previewed long
before the code is executed. Another command on the INSPECT menu,
Disassemble at Address (ALT-F10), allows the machine code to be
disassembled at any address (except at addresses in the BIOS area). This
feature is especially handy to preview code generated for library functions.

Combined with the scrolling register, watch and stack windows, the
disassembler features let the programmer trace the history of the code and
know exactly which machine instruction caused what changes after the
fact.

Break Points

At times, there may be a need to run a program at full speed and then stop
at break points. These break points can be placed (and removed) at run
time anywhere in the source code. The line of code is highlighted where a
break point has been inserted in the source code.

There are hard break points and soft breakpoints. Interrupts are disabled
at hard break points. Interrupts are restored to their former state when
execution resumes after a hard break point. Soft break points do not affect
the interrupt state. The interrupt flag may be toggled independently using
the Toggle interrupt command on the RUN menu, or by using EI and DI
in the watch window (see below). The message bar at the bottom of the
Dynamic C window reports the current interrupt state. The iff in the
watch window may also be used to determine the interrupt state.

Watch Expressions

Watch expressions allow the programmer to obtain the value of a variable,
to evaluate an arbitrary expression, or to invoke a function out of se-
quence. To do this, select Add/Delete Watch Expressions from the
INSPECT menu (or press CTRL-W). This invokes the watch expression
dialog box, where an expression for evaluation is entered. If the cursor is
placed over a variable name, or some text in the source file is highlighted,
this text will appear in the dialog box when the dialog box is opened. The
result of a watch expression will appear in the watch window after the
dialog box closes.

A watch expression may be any valid C expression, including assignments,
function calls, and preprocessor macros (do not type a semicolon after the
expression). For example, the expression

MyVar = MyFunc(8)

would call the function MyFunc with the value 8 and assign the return
value to the variable MyVar (assuming MyVar and MyFunc have been
defined somewhere in the compiled program). A simpler watch expression
might include only the name of a variable and return its value.

Dynamic C 32 v. 6.x36 � Using Dynamic C

If a watch expression contains operations on long or float data types, the
programmer must include a dummy call to the appropriate operator. For
example, if division of long integers is desired in a watch expression, a
dummy call in the program is required as follows.

long k, l; // variables for dummy �/� operation

k / l; // compile �/� for Watch Expressions

There are two basic ways to work with the watch dialog.

1 Immediate Evaluation. Enter an expression in the dialog box edit line
and click Evaluate. The expression is evaluated only once, with the
results displayed immediately in the watch window.

2 Repeated Evaluation. Enter an expression in the watch line and click
Add to top. The expression will be added to the top of the watch list.
(Watch list entries are deleted using the Delete from top button.) All
the entries in the watch list are evaluated every time the program stops
at a break point, after single-stepping, and after the stop command
�CTRL-Z�. A watch window update can be forced using the Update
Watch Window command �CTRL-U�.

The keyboard shortcut �CTRL-W� allows a variable to be evaluated very
quickly. Just position the text cursor in the variable, type �CTRL-W� and
hit �ENTER�.

The ability to evaluate expressions and function calls periodically and at
will is a very powerful facility. Besides providing the ability to monitor
the program state, this allows the program to be changed.

The watch dialog can be used to set the value of variables. Functions
called via the watch dialog can be very effective (and possibly dangerous).
For example, the PLCBus may be reset this way, or events can be simu-
lated by changing the values at hardware inputs and outputs. A sophisti-
cated programmer might even write functions meant only to be executed in
the watch dialog for debugging purposes.

Returning to Edit Mode

After debugging, it is possible to continue editing the source code. Click
on the Edit mode in the EDIT menu. The keyboard shortcut is �F4�.

Creating Stand-alone Programs
As mentioned previously under Compiling, EPROM files can be created
using the Compile to File command. Generally, a program in a Z-World
controller will run by itself, once the controller is disconnected from the
PC running Dynamic C and is reset (for example, by turning power off and
then on). Check to make sure that the controller in run mode. The
controller manual provides detailed instructions.

Technical Reference Using Dynamic C � 37

Controller with Program in EPROM

Once an EPROM has been burned, place it in the controller�s EPROM
socket. The program runs when the controller restarts.

Controller with Program in Flash Memory

Dynamic C places the program code in nonvolatile flash memory when
compilation is to a flash-equipped controller. The program runs when the
controller restarts in run mode.

Controller with Program in RAM

Dynamic C places the program in RAM when compilation is to a control-
ler with EPROM. As long as the controller�s RAM is powered, the
program runs when the controller restarts in run mode.

Controllers that have no backup battery will lose the
contents of their RAM if they are disconnected from a
power source.

!

Help
Dynamic C provides three forms of on-line help. The first is a standard
Windows help system, containing descriptions of the available menus,
keystrokes, dialog box options and other information about Dynamic C.

Function Lookup

The second form of on-line help provides information about the use of
Dynamic C library functions. Most library functions have descriptive
headers that are displayed when help regarding the function is requested.
If a function name in a program is selected or clicked on, the help com-
mand (�CTRL-H� for short) will display the function header. If the
function name is unknown to Dynamic C, a library lookup dialog will
appear. Click Lib Entries to browse all the library functions known to
Dynamic C.

Dynamic C 32 v. 6.x38 � Using Dynamic C

Browsing has two benefits.

1. Review available functions.

2. Quick access to the function header, including its prototype. This
provides a quick reminder how to call the function.

An additional benefit is that a function prototype can be copied from the
help window and used to form a function call. This saves typing and time.
(Remember that any text in a library help window can be copied and then
pasted elsewhere.)

Function Assistance

The third form of help is a variant of the function �lookup.� Click on the
Insert Call button in the lookup dialog box for the function assistant to
place the function call in the program. The function assistant places a
prototypical call in the program when the OK button is clicked.

However, every individual function parameter can be specified in the
dialog. The function assistant reminds the programmer what types the
parameters have and the order of the parameters. The function assistant in
the following example shows that parameter 1 is named dst, a commonly
used abbreviation for �destination,� and that it is a char* (pointer to
char). The word �comment� in the example is the expression that
replaces parameter 1 in the function call.

Technical Reference Dynamic C Environment � 39

CHAPTER 4: DYNAMIC C ENVIRONMENT

Dynamic C 32 v. 6.x40 � Dynamic C Environment

Dynamic C can be used to edit source files, compile programs, and run
programs or choose options for these activities. There are two modes: edit
mode and run mode. The run mode can be also called the debug mode.
Compilation is, in effect, the transition between the edit mode and the run
mode. Developers work with Dynamic C by editing text, issuing menu
commands (or keyboard shortcuts for these commands), and viewing
various debugging windows.

Programs can compile

� directly to a target controller,

� to a file for burning an EPROM

� to a file meant for downloading to a controller in which the
Z-World Download Manager resides, or

� to a file meant for downloading to controller RAM.

In order to compile or run a program, a controller must be connected to the
PC or a .RTI (Remote Target Information) file for compilation must exist.

Dynamic C includes editing options, compiler options, and memory
options. Most of the options are in the Options menu.

Details about how to work with Windows have been omitted intentionally.

Refer to the Microsoft Windows Users Guide for details
regarding the use of Windows. Dynamic C follows Win-
dows software standards very closely.

$

Editing

Once a file has been created or has been opened for editing, the file is
displayed in a text window. It is possible to open or create more than one
file and one file can have several windows. Dynamic C supports normal
Windows text editing operations.

Use the mouse (or other pointing device) to position the text cursor, to
select text, or to extend a text selection. Scroll bars may be used to
position text in a window. Dynamic C will, however, work perfectly well
without a mouse, although it may be a bit tedious.

It is also possible to scroll up or down through the text using the arrow
keys or the PageUp and PageDown keys or the Home and End keys. The
left and right arrow keys allow scrolling left and right.

Technical Reference Dynamic C Environment � 41

Arrows Use the up, down, left and right arrow keys to move the cursor in
the corresponding direction.

The CTRL key works in conjunction with the arrow keys this way.

CTRL-Left Move to previous word
CTRL-Right Move to next word
CTRL-Up Scroll up one line (text moves down)
CTRL-Down Scroll down one line

Home Moves the cursor backward in the text.

Home Move to beginning of line
CTRL-Home Move to beginning of file
SHIFT-Home Select to beginning of line
SHIFT-CTRL-Home Select to beginning of file

End Moves the cursor forward in the text.

End Move to end of line
CTRL-End Move to end of file
SHIFT-End Select to end of line
SHIFT-CTRL-End Select to end of file

Sections of the program text can be �cut and pasted� (add and delete) or
new text may be typed in directly. New text is inserted at the present
cursor position or replaces the current text selection.

The Replace command in the Edit menu is used to perform search and
replace operations either forwards or backwards.

Menus
Dynamic C has eight command menus,

File Edit Compile Run Inspect Options Window Help

as well as the standard Windows system menus. An available command
can be executed from a menu by clicking the menu and then clicking the
command, or by (1) pressing the ALT key to activate the menu bar, (2)
using the left and right arrow keys to select a menu, (3) and using the up or
down arrow keys to select a command, and (4) pressing ENTER. It is
usually more convenient to type keyboard shortcuts (such as <CTRL-H>
for Help) once they are known. Pressing the ESC key will make any
visible menu disappear. A menu can be activated by holding the ALT key
down while pressing the underlined letter of the menu name (use the space
bar and minus key to access the system menus). For example, type �ALT-
F� to activate the File menu.

Dynamic C 32 v. 6.x42 � Dynamic C Environment

File Menu

Click the menu title or press �ALT-F� to select the File menu. The File
menu commands and their functions are described below.

New

Creates a new, blank, untitled program in a new window.

Open

Presents a dialog in which to specify the name of a file to open. Unless
there is a problem, Dynamic C will present the contents of the file in a text
window. The program can then be edited or compiled.

Refer to the Microsoft Windows User Guide for more
information.$

To select a file, type in the desired file name, or select one from the list.
The file�s directory may also be specified.

Technical Reference Dynamic C Environment � 43

Save

The Save command updates an open file to reflect the latest changes. If
the file has not been saved before (the file is new and untitled), the Save
As dialog will appear.

Use the Save command often while editing to protect against loss during
power failures or system crashes. The keyboard shortcut is �CTRL-S�.

Save As

Allows a new name to be entered for a file and then saves the file under
the new name.

Close

Closes the active window. The active window may also be closed by
pressing �CTRL-F4� or by double-clicking on its system menu. If there are
unsaved changes a dialog prompting to save or discard the changes will be
presented.

The file is saved when Yes is clicked or �y� is typed. If the file is untitled,
there will be a prompt for a file name in the Save As dialog. Any changes
to the document will be discarded if No is clicked or �n� is typed. Cancel
results in a return to Dynamic C, with no action taken.

Print Preview...

Shows approximately what printed text will look like. Dynamic C
switches to print preview mode when this command is selected, and allows
the programmer to navigate through images of the printed pages.

Dynamic C 32 v. 6.x44 � Dynamic C Environment

The following tool bar appears at the top of the print preview window.

From left to right, the icons on the print preview toolbar perform the
following functions: select the previous or next page; select one or two
pages displayed at a time; show the displayed page number; print (same as
the File>Print... menu command); Close (exit print preview mode).

Print...

Text can be printed from any Dynamic C window. There is no restriction
to printing only source code. For example, the contents of the assembly
window or the watch window can be printed. Dynamic C displays the
following type of dialog when the Print command is selected.

If the Print to File option is selected, Dynamic C creates a file (it will ask
for a path list) in a format suitable to send to the specified printer (I.E.: if
the selected printer is a PostScript printer, the file will contain PostScript).

To choose a printer, click the printer name in the drop-down list box and
then click on one of the names in the displayed list. Click the Properties
button to adjust or inspect options available on the selected printer.

The Print range can be All, specific Pages, or even just a Selection of text
if a block of text is currently selected in the active window. As many
copies of the text as needed may be printed. If more than one copy is
requested, the pages may be collated or uncollated.

Technical Reference Dynamic C Environment � 45

Print Setup...

Allows the printer�s page set up to be specified in the following type of
dialog box.

Depending on the printer selected, it may be possible to specify paper size
and paper orientation (portrait, or tall, vs. landscape, or wide). Most
printers have these options. A specific printer may or may not have more
than one paper source. The page�s margins are also set up here.

The Printer button allows you to specify the printer to be used and to set
its Properties, as has been previously covered in the File>Print... descrip-
tion.

Exit

To exit Dynamic C. When this is done, Windows will either return to the
Windows Program Manager or to another application. The keyboard
shortcut is �ALT-F4�.

Dynamic C 32 v. 6.x46 � Dynamic C Environment

Edit Menu

Click the menu title or press �ALT-E� to select the EDIT menu. The Edit
menu commands and their functions are described below.

Undo

Undoes recent changes in the active edit window. This command may be
repeated several times to undo multiple changes. The amount of editing
that may be undone will vary with the type of operations performed, but
should suffice for a few large cut and paste operations or many lines of
typing. Dynamic C discards all undo information for an edit window
when the file is saved. The keyboard shortcut is �ALT-BACKSPACE�.

Redo

Redoes modifications recently undone. This command only works
immediately after one or more Undo operations. The keyboard shortcut is
�ALT-SHIFT-BACKSPACE�.

Cut

Removes selected text from the active window. A copy of the text is saved
on the �clipboard.� The contents of the clipboard may be pasted virtually
anywhere, repeatedly, in the same or other source files, or even in word-
processing or graphics program documents. The keyboard shortcut is
�CTRL-X�.

Technical Reference Dynamic C Environment � 47

Copy

Makes a copy of selected text in the active window. The copy of the text is
saved on the �clipboard.� The contents of the clipboard may be pasted
virtually anywhere. The keyboard shortcut is �CTRL-C�.

Paste

Pastes text on the clipboard as a result of a copy or cut (in Dynamic C or
some other Windows application). The paste command places the text at
the current insertion point. Note that nothing can be pasted in a debugging
window. It is possible to paste the same text repeatedly until something
else is copied or cut. The keyboard shortcut is �CTRL-V�.

Find...

Finds specified text. The following dialog box appears in response to the
Find command.

Type the text to be found in the Find drop-down text box, or click on the
down-arrow icon to the right of the box and a drop-down list of previous
Find text is displayed. If you click on a previous Find text it will become
selected and ready for editing in the Find box. In this example, the Find
command (and the Find Next command, too) will find occurrences of the
word �switch.�

Use the From cursor checkbox to choose whether to search the entire file
or to begin at the cursor location. If Case sensitive is selected, the search
will only find occurrences that match exactly. Otherwise, the search will
find matches having either uppercase or lowercase letters. For example,
�switch,� �Switch� and �SWITCH� would all match. If Reverse is
selected, the search will occur in reverse, that is, the search will proceed
toward the beginning of the file, rather than toward the end of the file.

The keyboard shortcut for Find is �F5�.

Dynamic C 32 v. 6.x48 � Dynamic C Environment

Replace...

Replaces specified text. The following dialog box appears in response to
the Replace command.

Type the text to be found in the Find drop-down text box, or click on the
down-arrow icon to the right of the box and a drop-down list of previous
Find text is displayed. If you click on a previous Find text it will become
selected and ready for editing in the Find box.

Then, type the text to substitute in the Change to drop-down text box, or
select and/or edit a previous Change to text from the drop-down list. In
this example, the Replace command will find an occurrence of the word
�reg7� and replace it with �reg9.�

Use the From cursor checkbox to choose whether to search the entire file
or to begin at the cursor location. If Case sensitive is selected, the search
will only find occurrences that match exactly. Otherwise, the search will
find matches having either uppercase or lowercase letters. For example,
�reg7,� �Reg7� and �REG7� would all match.

The Selection only checkbox allows the substitution to be performed only
within the currently selected text. This box is disabled if no text is
selected. When used in conjunction with the Change All button it limits
text replacements to within a selected block of text.

If Reverse is selected, the search will occur in reverse, that is, the search
will proceed toward the beginning of the file, rather than toward the end of
the file. If No prompt is selected then the text replacement(s) will be
made without prompting. Otherwise, a prompt dialog asks whether or not
to make each change. This is an important safeguard, particularly if the
Change All button is clicked.

The keyboard shortcut for Replace is �F6�.

Technical Reference Dynamic C Environment � 49

Type the line number (or approximate line number) to which to jump.
That line, and lines in the vicinity, will be displayed in the source window.

Previous Error

Locates the previous compilation error or warning in the source code. Any
errors or warnings will be displayed in a list in the message window after a
program is compiled. Dynamic C selects the previous error or warning in
the list and positions the offending line of code in the text window when
the Previous Error command (�CTRL-P� for short) is made. Use the
keyboard shortcuts to locate errors or warnings quickly.

Next Error

Locates the next compilation error or warning in the source code. Any
errors or warnings will be displayed in a list in the message window after a
program is compiled. Dynamic C selects the next error or warning in the
list and positions the offending line of code in the source window when the
Next Error command (�CTRL-N� for short) is made. Use the keyboard
shortcuts to locate errors or warnings quickly.

Edit Mode

Switches Dynamic C back to edit mode from run mode (also called debug
mode). After a program has been compiled or executed, Dynamic C will
not allow any modification to the program unless the Edit Mode is
selected. The keyboard shortcut is �F4�.

Find Next

Once search text has been specified with the Find or Replace commands,
the Find Next command (�SHIFT-F5� for short) will find the next occur-
rence of the same text, searching forward or in reverse, case sensitive or
not, as specified with the previous Find or Replace command. If the
previous command was Replace, the operation will be a text replacement.

Goto...

Positions the insertion point at the start of the specified line. The follow-
ing dialog is displayed when the Goto command is issued.

Dynamic C 32 v. 6.x50 � Dynamic C Environment

There are three ways to compile.
1. Directly to a target controller, connected via COM port to Dynamic C.
2. To a file, with a controller connected via COM port to Dynamic C.
3. To a file, with no controller connected. This requires a Remote Target

Information (*.RTI) file for the intended controller.

Use Compile to File to generate a .BPF, .BIN, .DLP or NULL program
file, as set by the compiler options selected in the OPTIONS menu. Table
4-1 summarizes the file types.

Compile Menu

Click the menu title or press �ALT-C� to select the Compile menu.

Table 4-1. Dynamic C ‘Compile to File’ Types

Application Only
(.BPF)

The Compile to File or Compile to File with
*.RTI File command generates a .BPF file.
This option is included for backward
compatibility only and is used for
downloading programs via the Program
Loader Utility to RAM.

BIOS+Application
BIOS+App+Library
BIOS+App+Lib+SimEE
BIOS+App+Lib+ClrSEE
(.BIN)

The Compile to File or Compile to File with
*.RTI File command generates a .BIN
(EPROM) file. If the Create HEX File Also
compiler option is selected, the command also
generates an Intel hex format (.HEX) file.

Download via DLM
(.DLP)

The Compile to File or Compile to File with
*.RTI File command generates a downloadable
program file (.DLP) to be used by the Z-
World Down Load Manager (DLM).

Null Device
(Bit Bucket)

The Compile to File or Compile to File with
*.RTI File command generates no output. The
fast compilation is useful to (1) perform
syntax checking, (2) perform type checking,
or (3) get the sizes of each code and data
segment.

Technical Reference Dynamic C Environment � 51

The Memory Options command (in the Options menu) affects the
placement and allocation of code and data in the target controller�s
memory. The Serial Options command (in the Options menu) specifies
the speed and mode when the generated code is uploaded from the PC to
the target.

The Compile menu commands and their functions are described here.

Compile to Target

Compiles program and loads it in target controller�s memory. Dynamic C
automatically determines whether the target has on-target RAM, flash
EPROM or development-board RAM, and compiles with the appropriate
memory map. The controller�s reference manual describes which platform
is available for the target being used. Any compilation errors are listed in
the message window that is activated automatically. Otherwise, the
program is ready to run and Dynamic C is in run (or debug) mode. The
program will start running without a pause if #nodebug precedes the main
function. (Dynamic C will also lose contact with the target.) The key-
board shortcut is �F3�.

Compile to File

Compiles program to a file. A target controller must be connected because
Dynamic C takes configuration information from the target. Any compila-
tion errors are listed in the message window that is activated. Otherwise,
Dynamic C generates a file according to the compiler options that have
been selected. The keyboard shortcut is �CTRL-F3�.

Create *.RTI File for Targetless Compile

It is possible to compile without a target controller present if a Remote
Target Information (*.RTI) file for the intended controller is created. The
Compile to File with *.RTI File command may be used once that has been
done.

A target controller is still needed to create the *.RTI file. The intended
target must be identical to the controller used to create the *.RTI file.

Compile to File with *.RTI File

Compiles program to a file using *.RTI file created. Any compilation
errors are listed in the message window that is activated. Otherwise,
Dynamic C generates a file according to the compiler options that have
been selected. The keyboard shortcut is �ALT-CTRL-F3�.

For more details, refer to the OPTIONS menu discussion
later in this chapter.$

Dynamic C 32 v. 6.x52 � Dynamic C Environment

Run Menu

Click the menu title or press �ALT-R� to select the Run menu. The Run
menu commands and their functions are described here.

Run

Starts program execution from the current breakpoint. Registers are
restored, including interrupt status, before execution begins. The keyboard
shortcut is �F9�.

Stop

The Stop command places a hard break point at the point of current
program execution. Usually, the compiler cannot stop within ROM code
or in nodebug code. On the other hand, the target can be stopped at the
rst 028h instruction if rst 028h assembly code is inserted as in-line
assembly code in nodebug code. However, the debugger will never be
able to find and place the execution cursor in nodebug code. The key-
board shortcut for this command is �CTRL-Z�.

Run w/ No Polling

This command is identical to the Run command, with an important
exception. When running in polling mode (F9), the development PC polls
or interrupts the target system every 100 milliseconds to obtain or send
information about target break points, watch lines, keyboard-entered target
input, and target output from printf statements.

Technical Reference Dynamic C Environment � 53

Polling creates interrupt overhead in the target, which can be undesirable
in programs with tight loops. The Run w/ No Polling command allows the
program to run without polling and its overhead. (Any printf calls in the
program will cause execution to pause until polling is resumed. Running
without polling also prevents debugging until polling is resumed.) The
keyboard shortcut for this command is �ALT-F9�.

Trace Into

Executes one C statement (or one assembly language instruction if the
assembly window is displayed) with descent into functions. Execution
will not descend into functions stored in ROM because Dynamic C cannot
insert the required break points in the machine code. If nodebug is in
effect, execution continues until code compiled without the nodebug
keyword is encountered. The keyboard shortcut is �F7�.

Step over

Executes one C statement (or one assembly language instruction if the
assembly window is displayed) without descending into functions. The
keyboard shortcut is �F8�.

Toggle Breakpoint

Toggles a regular (�soft�) break point at the location of the execution
cursor. Soft break points do not affect the interrupt state at the time the
break point is encountered, whereas hard break points do. The keyboard
shortcut is �F2�.

Toggle Hard Breakpoint

Toggles a hard break point at the location of the execution cursor. A hard
break point differs from a soft breakpoint in that interrupts are disabled
when the hard break point is reached. The keyboard shortcut is �ALT-F2�.

Toggle Interrupt Flag

Toggles interrupt state. The keyboard shortcut is �CTRL-I�.

Toggle Polling

Toggles polling mode. When running in polling mode (F9), the develop-
ment PC polls or interrupts the target system every 100 milliseconds to
obtain or send information regarding target break points, watch lines,
keyboard-entered target input, and target output from printf statements.
Polling creates interrupt overhead in the target, which can be undesirable
in programs with tight loops.

This command is useful to switch modes while a program is running. The
keyboard shortcut is �CTRL-O�.

Dynamic C 32 v. 6.x54 � Dynamic C Environment

Reset Program

Resets program to its initial state. The execution cursor is positioned at
the start of the main function, prior to any global initialization and variable
initialization. (Memory locations not covered by normal program initial-
ization may not be reset.) The keyboard shortcut for this command is
�CTRL-F2�.

Reset Target

Tells the target system to perform a software reset including system
initialization. Resetting a target always brings Dynamic C back to edit
mode. The keyboard shortcut is �CTRL-Y�.

Close Serial Port

Closes the serial port currently in use by Dynamic C.

Inspect Menu

Click the menu title or press �ALT-I� to select the INSPECT menu.

The initial state includes only the execution point (program
counter), memory map registers, and the stack pointer. The
Reset Program command will not reload the program if
the previous execution overwrites the code segment.

!

The Inspect menu provides commands to manipulate watch expressions,
view disassembled code, and produce hexadecimal memory dumps. The
Inspect menu commands and their functions are described here.

Technical Reference Dynamic C Environment � 55

Add/Del Watch Expression

This command provokes Dynamic C to display the following dialog.

This dialog works in conjunction with the watch window. The text box at
the top is the current expression. An expression may have been typed here
or it was selected in the source code. This expression may be evaluated
immediately by clicking the Evaluate button or it can be added to the
expression list by clicking the Add to top button. Expressions in this list
are evaluated, and the results are displayed in the watch window, every
time the watch window is updated. Items are deleted from the expression
list by clicking the Del from top button.

An example of the results displayed in the watch window appears below.

The keyboard shortcut is �CTRL-W�.

Refer also to Watch Expressions in the Debugging section in
Chapter 3, Using Dynamic C.$

Clear Watch Window

Removes entries from the watch dialog and removes report text from the
watch window. There is no keyboard shortcut.

Dynamic C 32 v. 6.x56 � Dynamic C Environment

Update Watch Window

Forces expressions in the watch expression list to be evaluated and
displayed in the watch window. Normally the watch window is updated
every time the execution cursor is changed, that is when a single step, a
break point, or a stop occurs in the program. The keyboard shortcut is
�CTRL-U�.

Disassemble at Cursor

Loads, disassembles and displays the code at the current editor cursor.
This command only works in user application code (not the libraries) that
is not declared nodebug. This command does not stop the execution on
the target either. The keyboard shortcut is �CTRL-F10�.

Disassemble at Address

Loads, disassembles and displays the code at the specified address. This
command produces a dialog box that asks for the address at which
disassembling should begin. Addresses may be entered in two formats: a
4-digit hexadecimal number that specifies any location in the root space
(the valid range is 2000h to DFFFh), or a 2-digit CBR page number
followed by a colon followed by a 4-digit logical address (the page number
ranges from 00h to FFh, while the valid range for the logical address is
from E000h to FFFFh). Note that the disassembler rejects any attempt to
disassemble code between address 00000h and 02000h in the physical
memory, regardless of how the address is expressed in logical address.
The keyboard shortcut is �ALT-F10�.

Dump at Address

Allows blocks of raw values in any memory location (except the BIOS, at
00000h through 01FFFh) to be looked at.

Technical Reference Dynamic C Environment � 57

Values can either be displayed on the screen or written to a file if �Dump
to File� is checked. A typical screen display appears below.

The dump window can be scrolled. Scrolling causes the contents of other
memory addresses to appear in the window. The window always displays
128 bytes and their ASCII equivalent. Values in the dump window are
updated only when Dynamic C stops, or comes to a break point.

If �Dump to File� is checked, specify the number of bytes and the
pathname of the file. The file output closely resembles the memory dump
in the window above.

Dynamic C 32 v. 6.x58 � Dynamic C Environment

Editor

The Editor command gets Dynamic C to display the following dialog.

Options Menu

Click the menu title or press �ALT-O� to select the OPTIONS menu. The
Options menu commands and their functions are described here.

Use this dialog box to change the behavior of the Dynamic C editor. By
default, Tab Stops are set every three characters, but may be set to any
value greater than zero. Auto-Indent causes the editor to indent new lines
to match the indentation of previous lines. Remove Trailing Whitespace
causes the editor to remove extra space or tab characters from the end of a
line.

Technical Reference Dynamic C Environment � 59

Compiler

The Compiler command gets Dynamic C to display the following dialog,
which allows compiler operations to be changed.

The Run-Time Checking options group control the generation of code for
checking the application�s run-time operation. When selected, the code
generated by each of these options will cause a run-time error if a problem
is detected. These options increase the amount of code and cause slower
execution, but they can be valuable debugging tools. These options are
described in Table 4-2.

Table 4-2. Run-Time Checking Options

Array Indices Checks array bounds. This feature adds code for every
array reference.

Pointers Check for invalid pointer assignments. A pointer
assignment is invalid if the code attempts to write to a
location marked not writeable. Locations marked not
writeable include the entire root code segment. This
feature adds code for every pointer reference.

Stack Check for stack corruption. Stack errors are reported on
return from the function.

Dynamic C 32 v. 6.x60 � Dynamic C Environment

The Output Generation options group control miscellaneous aspects of
the compiler�s code and file output generation.

Create HEX File Also

When this option is selected, the Compile menu�s Compile to File and
Compile to File with *.RTI File commands also create an Intel hex
format file (.HEX) in addition to the .BPF or .BIN file.

Zero Time Stamp

When this option is selected, the compile time-stamp and performance
information which Dynamic C 32 normally embeds in the application code
is forced to zero. Thus a given version of Dynamic C 32 can always
compile a fixed set of application and library code to exactly the same
output file, which is useful for code certification. It is important to note
that when this option is selected, an application must not depend on the
uniqueness of its compile time-stamp to determine when it has been
updated with a newer version.

The File Type for �Compile to File� option group specifies the file type
when Compile to File or Compile to File with *.RTI File commands are
issued. The file types appear in Table 4-3.

Table 4-3. Dynamic C ‘Compile to File’ Types

Application Only
(.BPF)

The Compile to File or Compile to File with
*.RTI File command generates a .BPF file.
This option is included for backward
compatibility only and is used for
downloading programs via the Program
Loader Utility to RAM.

BIOS+Application
BIOS+App+Library
BIOS+App+Lib+SimEE
BIOS+App+Lib+ClrSEE
(.BIN)

The Compile to File or Compile to File with
*.RTI File command generates a .BIN
(EPROM) file. If the Create HEX File Also
compiler option is selected, the command also
generates an Intel hex format (.HEX) file.

Download via DLM
(.DLP)

The Compile to File or Compile to File with
*.RTI File command generates a downloadable
program file (.DLP) to be used by the Z-
World Down Load Manager (DLM).

Null Device
(Bit Bucket)

The Compile to File or Compile to File with
*.RTI File command generates no output. The
fast compilation is useful to (1) perform
syntax checking, (2) perform type checking,
or (3) get the sizes of each code and data
segment.

Technical Reference Dynamic C Environment � 61

The Warning Reports option group tells the compiler whether to report
all warnings, no warnings or serious warnings only. It is advisable to let
the compiler report all warnings because each is a potential run-time bug.

Demotions (such as converting a long to an int) are
considered non-serious with regard to warning reports.!

The Type Checking options group tells Dynamic C to perform the
appropriate type checking as described in Table 4-4.

Table 4-4. Type Checking Options

Prototypes Performs strict type checking of arguments of function calls
against the function prototype. The number of arguments
passed must match the number of parameters in the
prototype. In addition, the types of the arguments must
match those defined in the prototype. Z-World recommends
prototype checking because it identifies likely run-time
problems. To fully use this feature, all functions should
have prototypes (including functions implemented in
assembly).

Demotion Detects demotion. A demotion automatically converts the
value of a larger or more complex type to the value of a
smaller or less complex type. The increasing order of
complexity of Dynamic C’s scalar types is:

 char
 unsigned int
 int
 unsigned long
 long
 float

A demotion deserves a warning because information may be
lost in the conversion. For example, when a long variable
whose value is 0x10000 is converted to an int value, the
resulting value is 0. The high-order 16 bits are lost. An
explicit type casting can eliminate demotion warnings. All
demotion warning reports are considered non-serious.

Pointer Generates warnings if pointers to different types are
intermixed without type casting. While type casting has no
effect in straightforward pointer assignments of different
types, type casting does affect pointer arithmetic and pointer
dereferences. All pointer warning reports are considered
non-serious.

Dynamic C 32 v. 6.x62 � Dynamic C Environment

The Optimize For option group optimizes the program for size or for
speed. When the compiler knows more than one sequence of instructions
that perform the same action, it selects either the smallest or the fastest
sequence, depending on the programmer�s choice for optimization.

The difference made by this option is less obvious in the user application
(in which most code is not marked nodebug). The speed gain by optimiz-
ing for speed is most obvious for functions that are marked nodebug and
have no auto local (stack-based) variables.

Debugger

The Debugger command gets Dynamic C to display the following dialog.

The options on this dialog box may be helpful when debugging programs.
In particular, they allow printf statements and other STDIO output to be
logged to a file. Check the box labeled Log STDOUT to send a copy of
all standard output to the Log File. The name of the log file can be
specified, and the Append Log checkbox selects whether to append or
overwrite if the log file already exists. Normally, Dynamic C automati-
cally opens the STDIO window when a program first attempts to print to it.
This can be changed with the checkbox labeled Auto Open STDIO
Window.

Technical Reference Dynamic C Environment � 63

The Physical... memory options submenu produces the following dialog.

Memory

The Memory command gets Dynamic C to display a submenu. Click one
of the three submenu items to specify memory settings.

Dynamic C 32 v. 6.x64 � Dynamic C Environment

The size and boundaries of RAM and ROM can be specified according to
the information in Table 4-5.

Table 4-5. Physical Memory Options

Start of ROM ROM (EPROM or Flash) always starts at address 0000H.

End of ROM This option is only used to build an application EPROM
or to compile to Flash. Since the ROM always starts at
physical address 00000H, this option also specifies the
size of the EPROM to be built. For example, if 10000H
(64K) is specified as the end of ROM, an EPROM that has
64K bytes is needed for the application.

Start of RAM RAM starts at 40000H (256K), 80000H (512K), or
A0000H (640K). Normally, this option is set by the Auto
Config feature. However, if code that is meant for
download to RAM is compiled with multiple programs
resident, this option can be changed so different programs
occupy different segments of RAM.

End of RAM The physical address where RAM ends depends on the
RAM chip. The difference between end of RAM and start
of RAM is equal to the size of the RAM chip.

Max Root
Code

This is the anticipated maximum size of root code. This
parameter is meaningful only when building an
application EPROM or compiling to Flash. The size of
root code in the actual program can be less than or equal
to this amount. The maximum root code size cannot
exceed 44K (B000H).

To get optimum memory allocation, compile the program
to the Null Device and then use the information in the
information window to decide this parameter.

Code-Data
Gap

This option allows the compiler to load programs in RAM
using a 32K RAM on the target. It is meaningful only
when compiling directly to target RAM. Set this option to
8000H only if the target RAM size is 32K, otherwise set it
to 0000H.

Auto Config This box, when checked, makes Dynamic C determine the
start and end of RAM automatically. The code-data gap
will also be adjusted automatically.

Auto Config should always be checked for most program-
mers. This allows the physical memory options to be set
automatically when Dynamic C connects to the target
controller. Programmers who wish to create a program
that resides in a different part of memory can turn this
option off.

Technical Reference Dynamic C Environment � 65

The Logical... memory options submenu provides the following dialog.

The Stack Size option specifies the number of bytes (in hex) allocated for
the run-time stack. If the function calls nest deeply or if there are large
amounts of auto local function data, use this option to increase the
memory allocated.

The Aux Stack Size option specifies the number of bytes (in hex) allocated
to an alternate stack used mainly for stack verification bookkeeping.

The Heap Size option specifies the number of bytes (in hex) in the heap
(used for dynamic memory allocation functions such as malloc). Heap
space must be allocated before using dynamic memory allocation.

The Free Size option specifies the number of bytes (in hex) that are not
allocated for other purposes such as the heap. This space is completely
under the program�s control and is accessed entirely by pointers. Use the
Information Window (under the WINDOW menu) to find out where this
memory is allocated.

The Reserve... memory options submenu provides the following dialog.

Dynamic C 32 v. 6.x66 � Dynamic C Environment

Root Reserve and XMem Reserve specify how the compiler allocates
memory. When compiling code whose destination is not specified (that is,
anymem code), Dynamic C first compiles all code to root until the amount
of root memory left is less than the size of the Root Reserve. Then the
compiler places all anymem code in extended memory until the amount of
extended memory left is less than the XMem Reserve. The compiler then
returns to the root until memory is exhausted. Functions specifically
placed in root memory or in XMEM are always compiled in the area
specified. The reserves guarantee a minimum of space in both the root and
extended memory for functions that must go in one of those areas.

Leave enough space in the Root Reserve for all library functions invoked
in the program.

Display

The Display command gets Dynamic C to display the following dialog.

Use the Display options dialog box to change the appearance of Dynamic
C windows. First choose the window from the window list. Then select
an attribute from the attribute list and click the change button. Another
dialog box will appear to make the changes. Note that Dynamic C allows
only fixed-pitch fonts and solid colors (if a dithered color is selected,
Dynamic C will use the closest solid color).

The Editor window attributes affect all text windows, except two special
cases. After an attempt is made to compile a program, Dynamic C will
either display a list of errors in the message window (compilation failed),
or Dynamic C will switch to run mode (compilation succeeded). In the
case of a failed compile, the editor will take on the Error Editor at-
tributes. In the case of a successful compile, the editor will take on the
Debug Editor attributes.

Technical Reference Dynamic C Environment � 67

Serial

The Serial command gets Dynamic C to display the following dialog.

Use this dialog to tell Dynamic C how to communicate with the target
controller. The COM port, baud rate, and number of stop bits may be
selected. The transmission mode radio buttons also affect communication
by controlling the overlap of compilation and downloading.

In the No Background TX mode, Dynamic C will not overlap compila-
tion and downloading. This is the most reliable mode, but also the
slowest�the total compile time is the sum of the processing time and the
communication time.

In the Full Speed Bkgnd TX mode, Dynamic C will almost entirely
overlap compilation and downloading. This mode is the fastest, but may
result in communication failure.

The Sync. Bkgnd TX mode provides partial overlap of compilation and
downloading. This is the default mode used by Dynamic C.

Show Tool Bar

The Show Tool Bar command toggles the tool bar on or off:

Dynamic C remembers the toolbar setting on exit.

Dynamic C 32 v. 6.x68 � Dynamic C Environment

Table 4-6 explains what the toolbar buttons mean.

Save Environment

The Save Environment command gets Dynamic C 32 to update its
Windows Registry entries and the DCW.CFG configuration file immediately
with the current options settings. Dynamic C always updates these items
on exit. Saving them while working provides an extra measure of security.

Window Menu

Click the menu title or press �ALT-W� to select the Window menu.

Table 4-6. Dynamic C Toolbar

 New file Find

 Open file Replace

 Save file Repeat "Find" or "Replace"

 Print Switch to Edit mode

 Print preview Compile to RAM

 Cut (delete) Toggle assembly window

 Copy Toggle register window

 Paste Toggle stack window

Show "Help" contents

The first group of items is a set of standard Windows commands that allow
application windows to be arranged in an orderly way.

Technical Reference Dynamic C Environment � 69

The second group of items presents the various Dynamic C debugging
windows. Click on one of these to activate or deactivate the particular
window. It is possible to scroll these windows to view larger portions of
data, or copy information from these windows and paste the information as
text anywhere. The contents of these windows can be printed.

The third group is a list of current windows, including source code
windows. Click on one of these items to bring that window to the front.

The individual Window menu commands are described here.

Cascade

The Cascade command gets Dynamic C to display windows �on top of
each other,� but with a small offset. The window being worked in is
displayed in front of the rest.

Tile Horizontally

The Tile Horizontally command gets Dynamic C to display windows in
horizontal (landscape) orientation, although the windows are stacked
vertically.

Tile Vertically

The Tile Vertically command gets Dynamic C to display windows in
vertical (portrait) orientation.

Arrange icons

When one or more Dynamic C windows have been minimized, they are
displayed as icons. The Arrange icons command arranges them neatly.

Message

Click the Message command to activate the Message window. A compi-
lation with errors also activates the message window because the message
window displays compilation errors.

Watch

The Watch command activates the Watch window. The Add/Del Items
command on the Inspect menu will do this too. The Watch window
displays the results whenever Dynamic C evaluates watch expressions.

Stdio

Click the Stdio command to activate the STDIO window. The STDIO
window displays output from calls to printf. If the program calls
printf, Dynamic C will activate the STDIO window automatically, unless
another request was made by the programmer (see Debugger Options).

Dynamic C 32 v. 6.x70 � Dynamic C Environment

Assembly

Click the Assembly command to activate the Assembly window. The
assembly window displays machine code generated by the compiler in
assembly language format.

The Disassemble at Cursor or Disassemble at Address commands on the
Inspect menu also activate the assembly window.

Registers

Click the Registers command to activate the Register window.

The register window displays the Z180 register set. Letter codes indicate
the bits of the status (or flags, F) register. The window also shows the
source-code line and column at which the register �snapshot� was taken. It
is possible to scroll back to see the succession of register snapshots.

Stack

Click the Stack command to activate the Stack window.

Technical Reference Dynamic C Environment � 71

The information window displays how the memory is partitioned and how
well the compilation went. In this example, no space has been allocated to
the heap or free space. The base and top of these memory partitions can be
changed with commands from the Options menu.

Help Menu

Click the menu title or press �ALT-H� to select the Help menu. The Help
menu commands and their functions are described here.

Contents

This standard item displays the contents page of the on-line help system.

The stack window displays the top 8 bytes of the run-time stack. It also
shows the line and column at which the stack �snapshot� was taken. It is
possible to scroll back to see the succession of stack snapshots.

Information

Click the Information command to activate the Information window.

Dynamic C 32 v. 6.x72 � Dynamic C Environment

Keystrokes

Select this item for information on available keystrokes and their func-
tions. Many commands on the Dynamic C menus are also available
directly through the keyboard. In addition, some operations can only be
performed through the keyboard (certain cursor movement and editing
operations).

Search for Help on...

Select this standard item to search for help on a particular topic. Type in a
keyword and press ENTER to see a list of related topics. Then select a
topic from the list and press ENTER again to view the topic.

Library Help Lookup

Obtains help information for library functions. When a function name is
clicked or selected in source code and then the help command is issued,
Dynamic C displays help information for that function. The keyboard
shortcut is �CTRL-H�. If Dynamic C cannot find a unique description for
the function, it will display the following dialog box.

Click Lib Entries to display a list of the library functions currently
available to the program in the libraries named in the LIB.DIR file. Then
select a function name from the list to receive information about that
function.

Dynamic C displays a dialog like the following one when a function is
selected for display of help information.

Technical Reference Dynamic C Environment � 73

Although this may be sufficient for most purposes, the Insert Call button
can be clicked to turn the dialog into a �function assistant.�

The function assistant will place a call to the function displayed at the
insertion point in the source code. The function call will be prototypical if
OK is clicked; the call needs to be edited for it to make sense in the
context of the code.

Dynamic C 32 v. 6.x74 � Dynamic C Environment

Each parameter can be specified, one-by-one, to the function assistant.
The function assistant will return the name and data type of the parameter.
When parameter expressions are specified in this dialog, the function
assistant will use those expressions when placing the function call.

If the text cursor is placed on a valid C function call (and one that is
known to the function assistant), the function assistant will analyze the
function call, and will copy the actual parameters to the function lookup
dialog. Compare the function parameters in the Expr. in Call box in the
dialog with the expected function call arguments.

Consider, for example, the following code.

...
x = strcpy(comment, �Lower tray needs paper.�);
...

If the text cursor is placed on strcpy and the Library Help Lookup
command is issued, the function assistant will show comment as param-
eter 1 and Lower tray needs paper. as parameter 2. The arguments
can then be compared with the expected parameters, and the arguments in
the dialog can then be modified.

The function help dialog will probably be needed only when the program-
mer is unfamiliar with or unsure of a function.

About...

The Windows standard About... item displays the Dynamic C 32 version
number and the Z-World, Inc. copyright notice.

Technical Reference The Language � 75

CHAPTER 5: THE LANGUAGE

Dynamic C 32 v. 6.x76 � The Language

This chapter is not intended to be a C-language tutorial. The reader is
expected to know how to program, and to know the basic principles of the
C language. The objective of this chapter is to

1. Present the C-language features, and

2. Review the differences between C and Dynamic C.

Most punctuation in the examples is literal: it is generally required where
examples indicate.

The C language is �case-sensitive,� that is, upper case (capital) letters are
distinct from lower case letters. The term putchar is not the same as
PutChar. All keywords in C are lower case.

This manual shows syntax by example rather than by any formalism.

For a more formal treatment of the C language, refer to the
many good textbooks available.$

Overview

Program Files

Programs are built by creating text files containing program code (that is,
source files). Then there are libraries�files of useful functions. There are
many library files already in the Dynamic C LIB subdirectory. The default
library file extension is .LIB.

A controller program requires at least one application file containing the
main program and perhaps other functions and global data. The default
application file extension is .C. (There are many sample programs in the
SAMPLES subdirectory.)

Dynamic C links the application program to functions and data in the other
files selected for use with the application. The compiler will extract the
functions and data when needed.

Code in the BIOS of the target controller (or the RTI file) is also linked
(and is very important) to the program.

Thus, the overall structure of an application consists of a main program
(called main), zero or more functions, and zero or more global data, all of
which are distributed throughout one or more text files. The order in
which these are defined is not very important. The minimum program is
one file, containing only

main() { }

Technical Reference The Language � 77

Libraries are �linked� with the application through the #use directive.
The #use directive identifies a file from which functions and data may be
extracted. Files identified by #use directives are nestable, as shown in
Figure 5-1.

...
#use x.lib
...
main(){
...
}
...
#use z.lib
...

...
#use y.lib
...
function
...
function
...
function
...
#use z.lib
...

Application X.LIB
...
......
...
.....
..
....

Y.LIB

...

......

...

.....

..

....

Z.LIB

BIOS

Figure 5-1. Nesting Files in Dynamic C

The Modules section later in this chapter explains how Dynamic C knows
which functions and global variables in a library to use.

Support Files

Dynamic C has several support files without which it is not possible to
build an application. These files are listed in Table 5-1.

Table 5-1. Dynamic C Support Files

File Meaning

DCW.INI Most Windows applications have .INI files. This
.INI file is the one for Dynamic C. It contains the
display options and other environmental parameters.

DCW.CFG Contains configuration data for the target controller.

DC.HH Contains prototypes, basic type definitions, #defines,
and default modes for Dynamic C. This file can be
modified by the programmer.

LIB.DIR Contains pathnames for all libraries that are to be known
to Dynamic C. The programmer can add to, or remove
libraries from this list. The factory default is for this file
to contain all libraries on the Dynamic C distribution
disk.

DEFAULT.H Contains a set of #use directives for each control
product that Z-World ships. This file can be modified.

Dynamic C 32 v. 6.x78 � The Language

Statements

Except for comments, everything in a C program is a statement. Virtually
all statements end with a semicolon. A C program is treated as a stream of
characters where line boundaries are (generally) not meaningful. Any C
statement may be written on as many lines as needed. Comments (the
/*...*/ kind) may occur almost anywhere, even in the middle of a
statement, as long as they begin with /* and end with */.

A statement can be many things. A declaration of variables is a statement.
An assignment is a statement. A while or for loop is a statement. A
compound statement is a group of statements enclosed in curly brackets {
and }.

Declarations

A variable must be declared before it can be used. That means the variable
must have a name and a type, and perhaps its storage class could be
specified. If an array is declared, its size must be given.

// static integer variable & static integer array
static int thing, array[12];

// auto float array with 2 dimensions
auto float matrix[3][3];

// initialized pointer to char array
char *message = �Press any key...�;

If an aggregate type (struct or union) is being declared, its internal
structure has to be described, as shown below.

struct { // description of struct
char flags;
struct { // a nested structure here

int x;
int y;

} loc;
} cursor;

...

int a;
a = cursor.loc.x; // use of struct element here

Functions

The basic unit of a C-language application program is a function. Most
functions accept parameters�or arguments�and return results, but there
are exceptions. All C functions have a return type that specifies what kind
of result, if any, it returns. A function with a void return type returns no
result. If a function is declared without specifying a return type, the
compiler assumes that it is to return an int (integer) value. See Fig-
ure 5-2.

Technical Reference The Language � 79

Global Data

 � � �

�Main� Function

Function 1

Function 2

Function 3

 �
 �
 �

Function n

type name (params...){
 local data
 statement 1;
 statement 2;
 � � �
 statement n;
 return (expr);
}

Application

Function

Items accessible by all functions

Items accessible
by this function
only

Figure 5-2. Functions in C Programming

Functions may call other functions. (A function may even call itself.
Programmers call such a function a recursive function.) The main
function is called automatically after the program compiles or when the
controller powers up. The beginning of the main function is the entry
point to the entire program.

Prototypes

A function may be declared with a prototype. This is so that

1. Functions that have not been compiled may be called.

2. Recursive functions may be written.

3. The compiler may perform type-checking on the parameters to
make sure that calls to the function receive arguments of the
expected type. A function prototype describes how to call the
function and is nearly identical to the function�s initial code.

// this is a function prototype
long tick_count (char clock_id);

// this is the function�s definition
long tick_count (char clock_id){

...
}

Dynamic C 32 v. 6.x80 � The Language

It is not necessary to provide parameter names in a prototype, but the
parameter type is required, and all parameters must be included. (If the
function accepts a variable number of arguments, as printf does, use an
ellipsis.)

// this prototype is as good as the one above
long tick_count (char);

// this is a prototype that uses ellipsis
int startup (device id, ...){

...
}

Type Definitions

Both types and variables may be defined. One virtue of high-level
languages such as C and Pascal is that abstract data types can be defined.
Once defined, the data types can be used as easily as simple data types like
int, char and float. Consider this example.

typedef int MILES; // a basic type named MILES
typedef struct{ // a structure type...

float re; // ...
float im; // ...

} COMPLEX; // ...named COMPLEX

MILES distance; // declare variable of type MILES
COMPLEX z, *zp;// declare complex variable and ptr

Use typedef to create a meaningful name for a class of data. Consider
this example.

typedef uint node;
void NodeInit(node); // informative type name

void NodeInit(uint); // not very informative

Technical Reference The Language � 81

This example shows many of the basic C constructs.

/* Put descriptive information in your program
code using this form of comment, which can be
inserted anywhere and can span lines. The double
slash comment (shown below) may be placed at end-
of-line.*/

// Make driver functions available.
#use drivers.lib

// Define a macro (E.G.: a symbolic constant).
#define SIZE 12

int g, h; // Define global integers.

// Declare prototypes for functions defined below.
float sumSquare(int, int);
void init();

// Program starts here.
main(){

float x; // x is local to main.
init(10); // Call a void function.
x = sumSquare(g, h); // x gets sumSquare
value.
printf(�x = %f�,x); // printf is a stan-
dard

} // function.

// void functions do things but return no value.
void init(int a){ // Integer argument.

g = a; // g gets a (IE: 10).
h = SIZE; // h gets the symbolic

} // constant defined above.

// Other functions do things and return a value.
float sumSquare(int a, int b){ // Integer args.

float temp; // Local (auto) variable.
temp = a*a + b*b; // Arithmetic.
return(temp); // Return value.

}

/* and here is the end of the program */

This program calculates the sum of squares of two numbers, g and h,
which are initialized to 10 and 12, respectively. The main function calls
the init function to give values to the global variables g and h. Then it
uses the sumSquare function to perform the calculation and assign the
result of the calculation to the variable x. It prints the result using the
library function printf, which includes a formatting string as the first
argument.

Dynamic C 32 v. 6.x82 � The Language

Notice that all functions have { and } enclosing their contents, and all
variables are declared before use. The functions init and sumSquare
were defined before use, but there are alternatives to this. The Prototypes
section earlier in this chapter explained this.

Modules

Modules provide Dynamic C with the ability to know which functions and
global variables in a library to use.

A library file contains a group of modules. A module has three parts: the
key, the header, and a body of code (functions and data).

A module in a library has a structure like this one.

/*** BeginHeader func
1
, var

2
, */

prototype for func
1

declaration for var
2

/*** EndHeader */

definition of func
1
 var

2
 and possibly other

functions and data

The Key

The line (a specially-formatted comment)

/*** BeginHeader name
1
, name

2
, */

begins the header of a module and contains the module key. The key is a
list of names (of functions and data). The key tells the compiler what
functions and data in the module are available for reference. It is impor-
tant to format this comment properly. Otherwise, Dynamic C cannot
identify the module correctly.

If there are many names after BeginHeader, the list of names can
continue on subsequent lines. All names must be separated by commas.

The Header

Every line between the comments containing BeginHeader and
EndHeader belongs to the header of the module. When an application
#uses a library, Dynamic C compiles every header, and just the headers, in
the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and
variable declarations, a module header ensures proper type checking
throughout the application program.

The Body

Every line of code after the EndHeader comment belongs to the body of
the module until (1) end-of-file or (2) the BeginHeader comment of
another module. Dynamic C compiles the entire body of a module if any
of the names in the key are referenced (used) anywhere in the application.

Technical Reference The Language � 83

To minimize waste, it is recommended that a module header contain only
prototypes and extern declarations. (Prototypes and extern declara-
tions do not generate any code by themselves.) Define code and data only
in the body of a module. That way, the compiler will generate code or
allocate data only if the module is used by the application program.
Programmers who create their own libraries must write modules following
the guideline in this section. Remember that the library must be included
in LIB.DIR and a #use directive for the library must be placed some-
where in the code.

Example

/*** BeginHeader ticks */
extern ulong ticks;

/*** EndHeader */

ulong ticks;

/*** BeginHeader Get_Ticks */
ulong Get_Ticks();

/*** EndHeader */

ulong Get_Ticks(){
...

 }

/*** BeginHeader Inc_Ticks */
void Inc_Ticks(int i);

/*** EndHeader */

#asm
Inc_Ticks::

or a
di
...
ei
ret

#endasm

There are three modules defined in this code. The first one is responsible
for the variable ticks, the second and third modules define functions
Get_Ticks and Inc_Ticks that access the variable.

Note that although Inc_Ticks is actually an assembly language routine, it
has a function prototype in the module header, allowing the compiler to
check calls to Inc_Ticks.

If the application program calls Inc_Ticks or Get_Ticks (or both), the
module bodies corresponding to the called routines will be compiled. The
compilation of these routines further triggers compilation of the module
body corresponding to ticks because the functions use the variable
ticks.

Dynamic C 32 v. 6.x84 � The Language

Macros

Macros can be defined in Dynamic C. A macro is a name replacement
feature. Dynamic C has a text preprocessor that expands macros before
the program text is compiled. The programmer assigns a name to a
fragment of text. Subsequently, Dynamic C replaces the name with the
text fragment wherever the macro name appears in the program (this is a
macro call). In this example,

#define OFFSET 12
#define SCALE 72
int i, x;
i = x * SCALE + OFFSET;

the variable i gets the value x * 72 + 12. Macros can have parameters.
For example,

#define word(a, b) (a<<8 | b)
char c;
int i, j;
i = word(j, c); // same as i = (j<<8|c)

The compiler removes surrounding white space (comments, tabs and
spaces) and collapses each sequence of white space in the macro definition
into one space. It places a \ before any " or \ to preserve their original
meaning within the definition.

Dynamic C implements the # and ## macro operators. The # operator
forces the compiler to interpret the parameter immediately following as a
string literal. For example, if a macro is defined

#define report(value,fmt)\
printf(#value �=� #fmt �\n�, value)

then the macro in

report(string, %s);

will expand to

printf(�string� �=� �%s� �\n�, string);

and because C always concatenates adjacent strings, the final result is

printf(�string=%s\n�, string);

The ## operator concatenates the preceding character sequence with the
following character sequence, deleting any white space in between. Given

#define set(x,y,z) x ## z ## _ ## y()

the macro in

set(AASC, FN, 6);

will expand to

AASC6_FN();

Technical Reference The Language � 85

For parameters immediately adjacent to the ## operator, the corresponding
argument is not expanded before substitution, but appears as it does in the
macro call.

Generally speaking, Dynamic C expands macro calls recursively until they
can expand no more. Another way of stating this is that macro definitions
can be nested.

The exceptions to this rule are

1. Arguments to the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own
expansion.

The following complex example illustrates this.

#define A B
#define B C
#define uint unsigned int
#define M(x) M ## x
#define MM(x,y,z) x = y ## z
#define string something
#define write(value, fmt)\

printf(#value �=� #fmt �\n�, value)

The code

uint z;
M (M) (A,A,B);
write(string, %s);

will expand first to

unsigned int z; // simple expansion
MM (A,A,B); // M(M) does not expand recursively
printf(�string� �=� �%s� �\n�, string);

 // #value ® "string" #fmt ® "%s"

then to

unsigned int z;
A = AB; // from A = A ## B
printf(�string� �=� �%s� �\n�, something);

// string ® something

then to

unsigned int z;
B = AB; // A ® B
printf(�string=%s\n�, something);// concatenation

and finally to

unsigned int z;
C = AB; // B ® C
printf(�string = %s\n�, something);

Dynamic C 32 v. 6.x86 � The Language

Restrictions: The number of arguments in a macro call must match the
number of parameters in the macro definition. An empty parameter list is
allowed, but the macro call must have an empty argument list. Macros are
restricted to 32 parameters and 126 nested calls. A macro or parameter
name must conform to the same requirements as any other C name. The C
language does not perform macro replacement inside string literals or
character constants, comments, or within a #define directive.

A macro definition remains in effect unless removed by an #undef
directive. If an attempt is made to redefine a macro without using
#undef, a warning will appear and the original definition will remain in
effect.

Program Flow
Three terms describe the flow of execution of a C program: sequencing,
branching and looping. Sequencing is simply the execution of one
statement after another. Looping is the repetition of a group of statements.
Branching is the choice of groups of statements.

Program flow is altered by �calling� a function, that is transferring control
to the function. Control is passed back to the calling function when the
called function returns.

In the following descriptions, the recommended form allows the program-
mer to enclose any number of statements in the body of a control structure
simply by adding or deleting lines of code. Strictly speaking, the C
language does not require this regularity.

Loops

A while loop tests a condition at the start of the loop. As long as the
expression is true (that is, nonzero), the loop body (statement or compound
statement) governed by the while expression will execute. If the expres-
sion is initially false (zero), the program will skip the loop body altogether.

Recommended form C syntax

while(expression){
 some statements
}

while(expression)
statement

Technical Reference The Language � 87

A do loop tests a condition at the end of the loop. As long as the expres-
sion is true (that is, nonzero) the loop body (statement or compound
statement) governed by the while expression will repeat. A do loop
executes at least once before its test. Unlike other controls, the do loop
requires a semicolon at the end.

Recommended form C syntax

do{
 some statements
}while(expression);

do statement while(expression);

The for loop is more complex: it sets an initial condition (exp
1
), evaluates

a terminating condition (exp
2
), and provides a stepping expression (exp

3
)

that is evaluated at the end of each iteration. Each of the three expressions
is optional.

Recommended form C syntax

for(exp1 ; exp2 ; exp3){
 some statements
}

for(exp1 ; exp2 ; exp3) statement

If the end condition is initially false, a for loop body will not execute at
all. A typical use of the for loop is to count n times.

sum = 0;
for(i = 0; i < n; i++){

sum = sum + array[i];
}

This loops sets i to 0 initially, continues as long as i is less than n (stops
when i equals n), and increments i at each pass. Another use for the for
loop is the infinite loop, which is useful in control systems.

for(;;){
some statements

}

Here, there is no initial condition, no end condition, and no stepping
expression. The loop body (some statements) continues to execute
endlessly.

Continue and Break

Two other constructs are available to help in the construction of loops: the
continue statement and the break statement.

Dynamic C 32 v. 6.x88 � The Language

The continue statement causes the program control to skip uncondition-
ally to the next pass of the loop.

Example Equivalent Code

get_char();
while(! EOF){
 some statements
 if(bad) continue;
 more statements
}

get_char();
while(! EOF){
 some statements
 if(bad) goto xxx;
 more statements
xxx:
}

The break statement causes the program control to jump unconditionally
out of a loop.

Example Equivalent Code

for(i=0;i<n;i++){
 some statements
 if(cond_RED) break;
 more statements
}

for(i=0;i<n;i++){
 some statements
 if(cond_RED) goto yyy;
 more statements
}
yyy:
more code

The break keyword also applies to the switch/case statement described
in the next section. The break statement jumps out of the innermost
control structure (loop or switch statement) only.

There will be times when break is insufficient. The program will need to
either jump out more than one level of nesting or there will be a choice of
destinations when jumping out. Use a goto statement in such cases. For
example,

while(some statements)
for(i=0;i<n;i++){

some statements
if(cond_RED) goto yyy;
some statements
if(code_BLUE) goto zzz;
more statements

}
}
yyy:
handle cond_RED

zzz:
handle code_BLUE

Technical Reference The Language � 89

Branching

The goto statement mentioned previously is the simplest form of branch-
ing statement. Coupled with a statement label, it simply transfers program
control to the labeled statement.

some statements
abc:

other statements
goto abc;
...
more statements
goto def;
...

def:
more statements

Notice the colon (:) at the end of the labels.

The next simplest form of branching is the if statement. The simple form
of the if statement tests a condition and executes a statement or com-
pound statement if the condition expression is true (nonzero). The
program will ignore the if body when the condition is false (zero).

Recommended form C syntax

if(expression){
 some statements
}

if(expression) statement

A more complex form of the if statement tests the condition and executes
certain statements if the expression is true, and executes another group of
statements when the expression is false.

Recommended form C syntax

if(expression){
 some statements if true
}else{
 some statements if false
}

if(expr) stmtT else stmtF

Dynamic C 32 v. 6.x90 � The Language

The fullest form of the if statements produces a �chain� of tests.

Recommended form C syntax

if(expr1){
 some statements
}else if(expr2){
 some statements
}else if(expr3){
 some statements
 •••
}else{
 some statements
}

if(expr1) stmt1

else if(expr2) stmt2

else if(expr2) stmt2

else if(expr3) stmt3

•••
else stmtn

The program evaluates the first expression (expr
1
). If that proves false, it

tries the second expression (expr
2
), and continues testing until it finds a

true expression, an else clause, or the end of the if statement. An else
clause is optional. Without an else clause, an if statement that finds no
true condition will execute none of the controlled statements.

The switch statement, the most complex branching statement, allows the
programmer to phrase a �multiple choice� branch differently.

Recommended form

switch(expression){
 case const1 :
 statements1

 break;
 case const2 :
 statements2

 break;
 case const3 :
 statements3

 break;
 •••
 default:
 statementsDEFAULT

}

The switch expression is evaluated. It must have an integer value. If one
of the const

N
 expressions matches the switch expression, the sequence of

statements identified by the const
N
 expression is executed. If there is no

match, the sequence of statements identified by the default label is
executed. (The default part is optional.)

Technical Reference The Language � 91

Unless the break keyword is included at the end of the case�s statements,
the program will �fall through� and execute the statements for any number
of other cases. The break keyword causes the program to exit the
switch / case statement.

Notice the colons (:) at the end of the cases and after default.

Data
Data (variables and constants) have type, size, structure, and storage class.

Primitive Data Types

 Basic, or primitive, data types are provided in Table 5-2.

C supports string constants but not a string data type. (A string in C is
really an array of characters.)

Table 5-2. Dynamic C Basic Data Types

Type Description

char 8-bit unsigned integer. 8-bit characters fit precisely
into a char, hence the name.

Range: 0 to 255 (0xFF)

int 16-bit signed integer.

Range: –32,768 to +32,767

unsigned int 16-bit unsigned integer. In this manual, the term
uint is shorthand for unsigned int.

Range: 0 to 65,535

long 32-bit signed integer.

Range: –2,147,483,648 to +2,147,483,647

unsigned long 32-bit unsigned integer. In this manual, the term
ulong is shorthand for unsigned long.

Range: 0 to 232 –1

float 32-bit IEEE floating-point value. The sign bit is 1
for negative values. The exponent has 8 bits,
giving exponents from –127 to +128. The mantissa
has 24 bits. Only the 23 least significant bits are
stored; the high bit is implicitly 1. (Z180
controllers do not have floating point hardware.)

Range: –6.085 × 1038 to +6.085 × 1038

Dynamic C 32 v. 6.x92 � The Language

The structures of the primitive data types are shown in relative size in
Figure 5-3.

char

int

unsigned int

long int

unsigned long int

floats exp+127 mantissa 1.0... to 1.99...

s

s

Figure 5-3. Structures of Dynamic C Primitive Data Types

Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

Array

A data type, whether it is simple or complex, can be replicated in an array.
The declaration

int item[10]; // an array of 10 integers

represents a contiguous group of 10 integers. Array elements are refer-
enced by their subscript.

j = item[n]; // the nth element of item

Array subscripts count up from 0. Thus, item[7] above is the eighth item
in the array. Notice the [and] enclosing both array dimensions and array
subscripts. Arrays can be �nested.� The following doubly dimensioned
array, or �array of arrays�.

int matrix[7][3];

is referenced in a similar way.

scale = matrix[i][j];

The first dimension of an array does not have to be specified as long as an
initialization list is specified.

int x[][2] = { {1, 2}, {3, 4}, {5, 6} };
char string[] = �abcdefg�;

Technical Reference The Language � 93

Structure

Variables may be grouped together in structures (struct in C) or in
arrays. Structures may be nested.

struct {
char flags;
struct {

int x;
int y;

} loc;
} cursor;

Structures can be nested. Structure members�the variables within a
structure�are referenced using the dot operator.

j = cursor.loc.x

The size of a structure is the sum of the sizes of its components.

Union

A union overlays simple or complex data. That is, all the union members
have the same address. The size of the union is the size of the largest
member.

union {
int ival;
long jval;
float xval;

} u;

Unions can be nested. Union members�the variables within a union�are
referenced, like structure elements, using the dot operator.

j = u.ival

Composites

Composites of structures, arrays, unions, and primitive data may be
formed. This example shows an array of structures that have arrays as
structure elements.

typedef struct {
int *x;
int c[32]; // array in structure

} node;

node list[12]; // array of structures

Refer to an element of array c (above) as shown here.

z = list[n].c[m];
...
list[0].c[22] = 0xFF37;

Dynamic C 32 v. 6.x94 � The Language

Storage Classes

Variable storage can be static, auto, or register. These terms apply
to local variables, that is, variables defined within a function. If a variable
does not belong to a function, it is called a global variable�meaning
available anywhere�but there is no keyword in C to represent this fact.
Global variables (not declared within a function) always have static
storage.

The term static means the data occupies a permanent fixed location for
the life of the program. The term auto refers to variables that are placed
on the system stack for the life of a function call.

The term register describes variables that are allocated as if they were
static variables, but their values are saved on function entry and restored
when the function returns. Thus, register variables can be used with
reentrant functions as can auto variables, yet they have the speed of static
variables.

Variables and structures may be created dynamically from free memory
space (the �heap�). The standard C functions malloc and free allocate
and release blocks of storage. Such dynamic variables are neither local nor
global. The program accesses dynamic variables through pointers.

Pointers

A pointer is a variable that holds the 16-bit logical address of another
variable, a structure, or a function. Variables can be declared pointers with
the indirection operator (*).

int *index;

In this example, the variable index is a pointer to an integer. The state-
ment

j = *index;

references the value of the integer by the use of the asterisk. Pointers may
point to other pointers.

int **thing; // ptr to a ptr to an integer

j = **thing; // j gets the value ref�d by thing

Conversely, a pointer can be set to the address of a variable using the &
(address) operator.

int *p, thing;

p = &thing;

Then *p and thing have identical values. (But note that p and thing do
not, since p is a pointer and thing is an int.)

Technical Reference The Language � 95

It is possible to do pointer arithmetic, but this is slightly different from
ordinary integer arithmetic. Here are some examples.

typedef ... xyz; // arbitrary type & size
xyz f[10], *p, *q; // an array and some ptrs
...
p = &f; // p ® array element 0
q = p+5; // q ® array element 5
q++; // q ® array element 6
p = p + q; // illegal!

Beware of using uninitialized pointers. Uninitialized
pointers can reference ANY location in memory. Storing
data using an uninitialized pointer can overwrite code or
cause a fault.

A common mistake is to declare and use a pointer to char,
thinking there is a string. But an uninitialized pointer is all
there is.

char* string;
...
strcpy(string, �hello�); // invalid!
printf(string); // Invalid!

Pointer checking is a run-time option of Dynamic C. Use
the compiler options command in the OPTIONS menu.

!

Argument Passing

In C, function arguments are generally passed by value. That is, argu-
ments passed to a C function are generally copies�on the program
stack�of the variables or expressions specified by the caller. Changes
made to these copies do not affect the original values in the calling
program.

In Dynamic C and most other C compilers, however, arrays are always
passed by address. This policy includes strings (which are character
arrays).

Dynamic C passes structs by value�on the stack. Passing a large
struct takes a long time and can easily cause a program to run out of
memory. Pass pointers to large structs if such problems occur.

For a function to modify the original value of a parameter, pass the address
of, or a pointer to, the parameter and then design the function to accept the
address of the item.

Dynamic C 32 v. 6.x96 � The Language

Memory Management
Z180 instructions can specify 16-bit addresses, giving a logical address
space of 64 KBytes (65,536 bytes). Dynamic C supports a 1-megabyte
physical address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit Z180
addresses to 20-bit memory addresses. Three MMU registers (CBAR,
CBR, and BBR) divide the logical space into three sections and map each
section onto physical memory, as shown in Figure 5-4.

4000

C000

Logical Space Physical Space

FFFF

0000

XMEM

ROOT

BIOS

CBAR
Com Bank

00000

FFFFF

CBR

BBR

CBAR

CBR

BBR

Common/Bank Area Register

Common Base Register

Bank Base Register

2000

6000

8000

A000

E000

BIOS

Figure 5-4. Z180 On-Chip Memory Management Unit (MMU) Registers

The logical address space is partitioned on 4-KByte boundaries. The
upper half of CBAR identifies the boundary between the ROOT memory
and XMEM. The lower half of CBAR identifies the boundary between the
BIOS and the ROOT. The start of the BIOS is always address 0. The two
base registers CBR and BBR map XMEM and ROOT, respectively, onto
physical memory.

Given a 16-bit address, the Z180 uses CBAR to determine whether the
address is in XMEM, BIOS, or ROOT. If the address is in XMEM, the Z180
uses the CBR as the base to calculate the physical address. If the address
is in ROOT, the Z180 uses the BBR. If the address is in the BIOS, the Z180
uses a base of 0.

Technical Reference The Language � 97

A physical address is, essentially,

(base << 12) + logical address.

Figure 5-5 shows the address locations.

logical address

15 12 11 0

+
base

physical address

19 0

Figure 5-5. Z180 Physical Addresses

Memory Partitions

Table 5-3 explains the memory partitions in Dynamic C.:

Table 5-3. Dynamic C Memory Partitions

Name Size Description

BIOS 8 kbytes Basic Input/Output System. The BIOS is always
present and is always mapped to address 0 of
ROM or flash. The BIOS contains the power-up
code, the communication kernel, and important
system features.

ROOT 48 kbytes The area between the BIOS and XMEM (the bank
area). The root—“normal” memory—resides in a
fixed portion of physical memory. Root code
grows upward in logical space from address 2000
(hex) and root data (static variables, stack and
heap) grow down from E000. (Initialized static
variables are placed with code, whether in ROM,
flash, or RAM.)

XMEM 8 kbytes XMEM is essentially an 8-kbyte “window” into
extended physical memory. XMEM can map to any
part of physical memory (ROM, flash, or RAM)
simply by changing the CBR.

Dynamic C 32 v. 6.x98 � The Language

The XMEM area has many mappings to physical memory. The mappings
can change by changing the CBR as the program executes. Extended
memory functions are mapped into XMEM as needed by changing the CBR.
The mapping is automatic in C functions. However, code written in
assembly language that calls functions in extended memory may need to
do the mapping more specifically.

Functions may be classified as to where Dynamic C may load them. The
keywords in Table 5-4 apply to function definitions.

Depending on which compiler options are selected, code segments will be
placed in RAM, ROM, or flash.

Figure 5-6 shows the memory layout with code in RAM.

XMEM CODE

Logical Space Physical Space

FFFF

0000

XMEM

BIOS 00000

E000

BIOS

RAM

EPROM

ROOT DATA

ROOT CODE

ROOT DATA

ROOT CODE

Code Placed in RAM

Figure 5-6. Memory Layout with Code in RAM

Table 5-4. Memory Keyword Definitions

Keyword Description

root The function must be placed in root memory. It can call
functions residing in extended memory.

xmem The function must be placed in extended memory. Calls to
extended memory functions are not as efficient as calls to
functions in root memory. Long or infrequently used
functions are appropriate for placement in extended memory.

anymem This keyword lets the compiler decide where to place the
function. A function’s placement depends on the amount of
reserve memory available. Refer to the Memory Options
command in the OPTIONS menu.

Technical Reference The Language � 99

Figure 5-7 shows the memory layout with code in ROM or flash.

ROOT DATA

XMEM

Logical Space Physical Space

FFFF

0000

XMEM

BIOS 00000

E000

BIOS

RAM

EPROM

ROOT CODE

ROOT DATA

ROOT CODE

Code Placed in
ROM or flash

Figure 5-7. Memory Layout with Code in ROM or Flash

C Language Elements
A Dynamic C program is a set of files, each of which is a stream of
characters that compose statements in the C language. The language has
grammar and syntax, or rules for making statements. Syntactic elements�
often called tokens�form the basic elements of the C language. Some of
these elements are listed in Table 5-5.

Keywords

A keyword is a reserved word in C that represents a basic C construct. The
word while represents the beginning of a �while� loop. It cannot be used
for any other purpose. There are many keywords, and they are summa-
rized in the following pages.

Table 5-5. C Language Elements

keywords Words used as instructions to Dynamic C

Names Words used to name data

Numbers Literal numeric values

Strings Literal character values enclosed in quotes

operators Symbols used to perform arithmetic

punctuation Symbols used to mark beginnings and endings

directives Words that start with # and control compilation

Dynamic C 32 v. 6.x100 � The Language

abort�Jumps out of a costatement.

for(;;){
costate {
...

if(condition) abort;
}
...

}

See Chapter 7, Costatements.$
anymem�Allows the compiler to determine in which part of memory a

function will be placed.

anymem int func(){
...

}

#memmap anymem

#asm anymem
...

#endasm

auto�A local function variable is located on the system stack and exists
as long as the function call does.

int func(){
auto float x;
...

}

break�Jumps out of a loop, if, or case statement.

while(expression){
...
if(condition) break;

}

switch(expression){
...
case 3:

...
break;

...
}

Technical Reference The Language � 101

case�Identifies the next �case� in a switch statement.

switch(expression){
case const :

...
case const:

...
case const:

...
...

}

char�Declares a variable, or array, as a type character. This type is also
commonly used to declare 8-bit integers and �Boolean� data.

char c, x, *string = �hello�;
int i;
...
c = (char)i;

continue�Skip to the next iteration of a loop.

while(expression){
if(nothing to do) continue;
...

}

costate�Indicates the beginning of a costatement.

costate [name [state]] {
...
}

Name can be absent. If name is present, state can be always_on
or init_on. If state is absent, the costatement is initially off.

See Chapter 7, Costatements, and keywords abort, yield,
and waitfor.$

debug�Indicates a function is to be compiled in debug mode.

debug int func(){
...
}

#asm debug
...
#endasm

See also nodebug and directives #debug and #nodebug.$

Dynamic C 32 v. 6.x102 � The Language

default�Identifies the default �case� in a switch statement. The
default case, which is optional, executes only when the switch
expression does not match any other case.

switch(expression){
case const :

...
case const:

...
default:

...
}

do�Indicates the beginning of a do loop. A do loops tests at the end and
executes at least once.

do
...

while(expression);

The statement must have a semicolon at the end.

else�Indicates a false branch of an if statement.

if(expression)
statement // executes when true

else
statement // executes when false

extern�Indicates that a variable is defined in the BIOS, later in a
library file, or in another library file. Its main use is in module
headers.

/*** BeginHeader ..., var */
extern int var;

/*** EndHeader */
int var;
...

firsttime�Declares a function to be a waitfor delay function.

For details, see Chapter 7, Costatements.$
float�Declares a variable, function, or array, as 32-bit IEEE floating

point.

int func(){
float x, y, *p;
float PI = 3.14159265;
...

}

float func(float par){
...

}

Technical Reference The Language � 103

for�Indicates the beginning of a for loop. A for loop has an initializ-
ing expression, a limiting expression, and a stepping expression.
Each expression can be empty.

for(;;) // an endless loop
...

}

for(i = 0; i < n; i++) // counting loop
...

}

goto�Causes a program to go to a labeled section of code.

...
if(condition) goto RED;
...

RED:
statements

Use goto to jump forward or backward in a program. Never use
goto to jump into a loop body or a switch case. The results are
unpredictable. However, it is possible to jump out of a loop body
or switch case.

if�Indicates the beginning of an if statement.

if(tank_full) shut_off_water();

if(expression){
statements

}else if(expression){
statements

}else if(expression){
statements

}else if(expression){
statements
...

}else{
statements

}

If one of the expressions is true (they are evaluated in order), the
statements controlled by that expression are executed.

An if statement can have zero or more else if parts. The else
part is optional and executes when none of the if expressions is
true (nonzero).

Dynamic C 32 v. 6.x104 � The Language

int�Declares a variable, function, or array to be an integer. If nothing
else is specified, int implies a 16-bit signed integer.

int i, j, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned

int funct (int arg){
...
}

interrupt�Indicates that a function is an interrupt service routine.

interrupt isr (){
...
}

An interrupt service routine returns no value and takes no argu-
ments.

See also ret, reti, and retn.$
long�Declares a variable, function, or array to be 32-bit integer. If

nothing else is specified, long implies a signed integer.

long i, j, *k; // 32-bit signed
unsigned long int w; // 32-bit unsigned

long funct (long arg){
...
}

main�Identifies the main function. All programs start at the beginning
of the main function. (This is actually not a keyword, but is a
function name.)

nodebug�Indicates a function is not compiled in debug mode.

nodebug int func(){
...
}

#asm nodebug
...
#endasm

See also debug and directives #debug and #nodebug.$
norst�Indicates that a function does not use the RST instruction for

break points.

norst void func(){
...
}

Technical Reference The Language � 105

nouseix�Indicates a function does not use the IX register as a stack
frame reference pointer.

nouseix void func(){
...
}

See also useix and directives #useix and #nouseix.$
NULL�The null pointer. (This is actually a macro, not a keyword.) Same

as (void *)0.

pop�A keyword used in conjunction with certain directives (#memmap
and #class). These directives can push and pop their states.

#memmap root
root functions

#memmap push xmem
xmem functions here

#memmap pop

now back to root functions

protected�Declares a variable to be �protected� against system
failure. This means that a copy of the variable is made before it is
modified. If a transient effect such as power failure occurs while
the variable is being changed, the system will restore the variable
from the copy.

main(){
protected int state1, state2, state3;
...

}

push�A keyword used in conjunction with certain directives (#memmap
and #class). These directives can push and pop compilation
modes.

#class static // static local vars are default

#class push auto // auto local vars are default

#class pop // now back to static

register�Declares the storage class of a variable. The variable has the
speed of a static variable, yet can be used in reentrant functions.

int func(){
register float x, y;
register int i;
...

}

Dynamic C 32 v. 6.x106 � The Language

ret�Indicates that an interrupt service routine (written in C) uses the
ret instruction.

interrupt ret isr (){
...
}

See also interrupt.$
reti�Indicates that an interrupt service routine (written in C) uses the

reti instruction.

interrupt reti isr (){
...
}

See also interrupt.$
retn�Indicates that an interrupt service routine (written in C) uses the

retn instruction.

interrupt retn isr (){
...
}

See also interrupt.$
return�Explicit return from a function. For functions that return

values, this will return the function result.

void func (){
...
if(expression) return;
...

}

float func (int x){
...float temp;
...
return(temp * 10 + 1);

}

root�Indicates a function is to be placed in root memory.

root int func(){
...

}

#memmap root

#asm root
...

#endasm

Technical Reference The Language � 107

segchain�Identifies a function chain segment (within a function).

int func (int arg){
...int vec[10];
...
segchain _GLOBAL_INIT{
 for(i = 0; i<10; i++){ vec[i] = 0; }
}
...

}

This example adds a segment to the function chain
_GLOBAL_INIT. When this function chain executes, this and
perhaps other segments elsewhere execute. The effect in this
example is to (re)initialize vec.

shared�Indicates that changes to a multi-byte variable (such as a
float) are atomic. Interrupts are disabled while the variable is
being changed. Local variables cannot be shared.

shared float x, y, z;
shared int j;

...
main(){

...
}

If i is a shared variable, expressions of the form i++ (or i =
i+1) constitute two atomic references to variable i, a read and a
write. Be careful because i++ is not an atomic operation.

short�Declares that a variable or array is short integer (16 bits). If
nothing else is specified, short implies a 16-bit signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-bit, unsigned

short funct (short arg){
...

}

size�Declares a function to be optimized for size (as opposed to speed).

size int func (){
...

}

sizeof�A built-in function that returns the size�in bytes�of a
variable, array, structure, union, or of a data type.

j = 2 * sizeof(float);

int list[] = { 10, 99, 33, 2, -7, 63, 217 };
...

x = sizeof(list);

Dynamic C 32 v. 6.x108 � The Language

speed�Declares a function to be optimized for speed (as opposed to
size).

speed int func (){
...

}

static�Declares a local variable to have a permanent fixed location in
memory, as opposed to auto, where the variable exists on the
system stack. Global variables are by definition static. Local
variables are static by default, unlike standard C.

int func (){
...int i; // static by default
static float x; // explicitly static
...

}

struct�Indicates the beginning of a structure definition.

struct {
...int x;

int y;

} abc; // defines a struct object

typedef struct {
...int x;

int y;
} xyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz

Structure definitions can be nested.

subfunc�Begins the definition of a subfunction. A subfunction
encapsulates a useful code sequence and reduces the amount of
storage required by the parent function.

func(){
int aname();
subfunc aname: { k = inport (x); k + 4; }
...
... aname(); ...
...
... aname(); ...

...
}

See Appendix B, Efficiency, for details.$

Technical Reference The Language � 109

switch�Indicates the start of a switch statement.

switch(expression){
case const :

...
break;

case const :
...
break;

case const :
...
break

...
default :

...
}

The switch statement may contain any number of cases. It com-
pares a case-constant expression with the switch expression. If
there is a match, the statements for that case execute. The default
case, if it is present, executes if none of the case-constant expres-
sions match the switch expression.

If the statements for a case do not include a break, return,
continue, or some means of exiting the switch statement, the
cases following the selected case will execute, too, regardless of
whether their constants match the switch expression.

typedef�Identifies a type definition statement. Abstract types can be
defined in C.

typedef struct {
int x;
int y;

} xyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz

typedef uint node; // meaningful type name
node master, slave1, slave2;

union�Identifies the beginning of a �union.� Items in a union have the
same address. The size of a union is that of its largest member.

union {
int x;
float y;

} abc; // overlays a float and an int

Dynamic C 32 v. 6.x110 � The Language

unsigned�Declares a variable or array to be unsigned. If nothing else
is specified in a declaration, unsigned means 16-bit unsigned
integer.

unsigned i, j, *k; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned

unsigned funct (unsigned arg){
...

}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead
of �32768 to +32767. Values in an unsigned long integer range
from 0 to 232�1.

useix�Indicates that a function uses the IX register as a stack frame
pointer.

useix void func(){
...

}

See also nouseix and directives #useix and #nouseix.$
waitfor�Used in a costatement, this keyword identifies a point of

suspension pending the a condition, completion of an event, or a
delay.

for(;;){
costate {
...waitfor(input(1) == HIGH);

...
}
...

}

See Chapter 7, Costatements.$
while�Identifies the beginning of a while loop. A while loop tests at

the beginning and may execute zero or more times.

while(expression){
...

}

Technical Reference The Language � 111

xdata�This keyword declares a block of data in extended memory.
There are two forms.

xdata name { value_1 , ... value_n };

xdata name [n];

The name of the block represents the 20-bit physical address of the
block.

The value list of the first form may include constant expressions of
type int, float, uint, long, ulong, char, and (quoted) strings.

xmem�Indicates that a function is to be placed in extended memory.

xmem int func(){
...

}

#memmap xmem

xmemok�Indicates that assembly-language code embedded in a C
function can be compiled to extended memory.

#asm xmemok
...

#endasm

This keyword does not apply to C functions or to #memmap.

xstring�This keyword declares a table of strings in extended memory.
The table entries are 20-bit physical addresses (as unsigned long
integers). The name of the table represents the 20-bit address of
the table (as an unsigned long integer).

xstring name { string_1, ... string_n };

yield�Used in a costatement, this keyword causes the costatement to
pause temporarily, allowing other costatements to execute. The
yield statement does not alter program logic, but merely postpones
it.

for(;;){
costate {

...
...long computation

yield;
...

}
...

}

See Chapter 7, Costatements.$

Dynamic C 32 v. 6.x112 � The Language

Names

Names identify variables, certain constants, arrays, structures, unions,
functions, and abstract data types. Names must begin with a letter or an
underscore (_), and thereafter must be letters, digits, or an underscore.
Names may not contain any other symbols, especially operators. Names
are distinct up to 32 characters, but may be longer. Names may not be the
same as any keyword. Names are case-sensitive.

Examples

my_function // ok

_block // ok

test32 // ok

jumper- // not ok, uses a minus sign

3270type // not ok, begins with digit

// The following two names are not distinct!
Clean_up_the_data_in_the_arrays_now
Clean_up_the_data_in_the_arrays_later

References to structure and union elements require �compound� names.
The simple names in a compound name are joined with the dot operator
(period).

cursor.loc.x = 10; // set structure element to 10

Use the #define directive to create names for constants. These can be
viewed as symbolic constants. See Macros, previously discussed.

#define READ 010
#define WRITE 020
#define ABS 0
#define REL 1
#define READ_ABS READ + ABS
#define READ_REL READ + REL

The term READ_ABS is the same as 010 + 0 or 10, and READ_REL is the
same as 010 + 1 or 11. Note that Dynamic C does not allow anything to
be assigned to a constant expression.

READ_ABS = 27; // produces compiler error
// because 010 + 1 is 10

Numbers

Numbers are constant values and are formed from digits, possibly a
decimal point, and possibly the letters U, L, X, or A�F, or their lower case
equivalents. A decimal point or the presence of the letter E or F indicates
that a number is real (has a floating-point representation).

Technical Reference The Language � 113

Integers have several forms of representation. The normal decimal form is
most common.

10 �327 1000 0

An integer is long (32-bit) if its magnitude exceeds the 16-bit range
(-32768 to +32767) or if it has the letter L appended.

0L -32L 45000 32767L

An integer is unsigned if it has the letter U appended. It is long if it also
has L appended or if its magnitude exceeds the 16-bit range:

0U 4294967294U 32767U 1700UL

An integer is hexadecimal if preceded by 0x.

0x7E 0xE000 0xFFFFFFFA

It may contain digits and the letters a�f or A�F.

An integer is octal if begins with zero and contains only the digits 0�7.

0177 020000 000000630

A real number can be expressed in a variety of ways.

4.5 means 4.5
4f means 4.0
0.3125 means 0.3125
456e-31 means 456 × 10�31

0.3141592e1 means 3.141592

Strings and Character Data

A string is a group of characters enclosed in double quotes (��).

�Press any key when ready...�

Strings in C have a terminating null byte appended by the compiler.
Although the C language does not have a string data type, it does have
character arrays that serve the purpose. Dynamic C does not have string
operators, such as concatenate, but library functions are available.

See STRING.LIB in the Dynamic C Function Reference
manual.$

Dynamic C 32 v. 6.x114 � The Language

Strings are multi-byte objects, and as such they are always referenced by
their starting address, and usually by a char* variable. The following
example illustrates typical usage. Note that passing a pointer to a string is
the same as passing the string.

char* select = �Select option\n�;

char start[32];
strcpy(start,�Press any key when ready...\n�);

printf(select); // pass pointer to string
...
printf(start); // pass string

Character constants have a slightly different meaning. They are not
strings. A character constant is enclosed in single quotes (' ') and is a
representation of an 8-bit integer value.

�a� �\n� �\x1B�

Any character can be represented by an alternate form, whether in a
character constant or in a string. Thus, nonprinting characters and charac-
ters that cannot be typed may be used.

A character can be written using its numeric value preceded by a
backslash.

\x41 // the hex value 41

\101 // the octal value 101

\B10000001 // the binary value 10000001

There are also several �special� forms preceded by a backslash.

\a bell \b backspace

\f formfeed \n newline

\r carriage return \t tab

\v vertical tab \0 null char

\\ backslash \c the actual character c

\� single quote \� double quote

Examples

�He said \�Hello.\�� // embedded double quotes

char j = �Z�; // character constant

char* MSG = �Put your disk in the A drive.\n�;
 // embedded newline at end

printf(MSG); // print MSG

char* default = ��;
 // empty string: a single null byte

Technical Reference The Language � 115

Operators

An operator is a symbol such as +, �, or & that expresses some kind of
operation on data. Most operators are binary�they have two operands.

a + 10 // two operands with binary operator �add�

Some operators are unary�they have a single operand,

-amount // single operand with unary �minus�

although, like the minus sign, some unary operators can also be used for
binary operations.

There are many kinds of operators with operator precedence. Precedence
governs which operations are performed before other operations, when
there is a choice.

For example, given the expression

a = b + c * 10;

will the + or the * be performed first? Since * has higher precedence than
+, it will be performed first. The expression is equivalent to

a = b + (c * 10);

Parentheses can be used to force any order of evaluation. The expression

a = (b + c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence.
Again, parentheses can circumvent the normal associativity of operators.
For example,

a = b + c + d; // (b+c) performed first
a = b + (c + d); // now c+d is performed first

int *a(); // function returning ptr to int
int (*a)(); // ptr to function returning int

Unary operators and assignment operators associate from right to left.
Most other operators associate from left to right.

Certain operators, namely *, &, (), [], -> and . (dot), can be used on the
left side of an assignment to construct what is called an lvalue. For
example,

float x;

((char)&x) = �L�; // x�s LS byte gets value
(((char)&x)+3) = �H�; // x�s MS byte gets value

Dynamic C 32 v. 6.x116 � The Language

When the data types for an operation are mixed, the resulting type is the
more precise.

float x, y, z;
int i, j, k;
char c;

z = i / x; // same as (float)i / x
j = k + c; // same as k + (int)c

By placing a type name in parentheses in front of a variable, the program
will perform type casting or type conversion. In the example above, the
term (float)i means the �the value of i converted to floating point.�

The operators are summarized in the following pages.

() Grouping. Expressions enclosed in parentheses are performed first.
Parentheses also enclose function arguments. In the expression

a = (b + c) * 10;

the term b + c is evaluated first.

[] Array subscripts or dimension.

int a[12]; // array dimension is 12

j = a[i]; // references the ith element

All array subscripts count from 0.

. The dot operator joins structure (or union) names and subnames in
a reference to a structure (or union) element.

struct {
int x;
int y;

} coord;

m = coord.x;

-> Right arrow. Used with pointers to structures and unions, instead
of the dot operator.

typedef struct{
int x;
int y;

} coord;

coord *p; // ptr to structure
...
m = p->x; // ref to structure element

Technical Reference The Language � 117

! Logical NOT. This is a unary operator. Observe that C does not
provide a Boolean data type. In C, logical FALSE is equivalent to
0. Logical TRUE is equivalent to nonzero. The NOT operator
result is 1 if the operand is 0. The result is 0 otherwise.

test = get_input(...);

if(!test){
...

}

~ Bitwise complement. This is a unary operator. Bits in a char,
int, or long value are inverted:

int switches;
switches = 0xFFF0;
j = ~switches; // j becomes 0x000F

++ Pre- or post-increment. This is a unary operator designed primarily
for convenience. If the ++ precedes an operand, the operand is
incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, a[12];
i = 0;

q = a[i++]; // q gets a[0], then i becomes 1
r = a[i++]; // r gets a[1], then i becomes 2
s = ++i; // i becomes 3, then s = i
i++; // i becomes 4

If the ++ operator is used with a pointer, the value of the pointer
increments by the size of the object (in bytes) to which it points.
With operands other than pointers, the value increments by 1.

-- Pre- or post-decrement. This is a unary operator designed for
convenience. If the �� precedes an operand, the operand is
decremented before use. If the �� operator follows an operand, the
operand is decremented after use.

int j, a[12];
j = 12;

q = a[�j]; // j becomes 11, then q gets a[11]
r = a[�j]; // j becomes 10, then r gets a[10]
s = j�; // s = 10, then j becomes 9
j�; // j becomes 8

If the � operator is used with a pointer, the value of the pointer
decrements by the size of the object (in bytes) to which it points.
With operands other than pointers, the value decrements by 1.

Dynamic C 32 v. 6.x118 � The Language

+ Unary plus, or binary addition. (Standard C does not have unary
plus.) Unary plus does not really do anything.

a = b + 10.5; // binary addition
z = +y; // just for emphasis!

� Unary minus, or binary subtraction.

a = b - 10.5; // binary subtraction
z = -y; // z gets the negative of y

* Indirection, or multiplication. As a unary operator, it indicates
indirection. When used in a declaration, the * indicates that the
following item is a pointer. When used as an indirection operator
in an expression, the * provides the value at the address specified
by a pointer.

int *p; // p is a pointer to integer
int j = 45;

p = &j; // p now points to j.
k = *p; // k gets the value to which p

 // points, namely 45.
*p = 25; // The integer to which p

 // points gets 25. Same as j = 25,
 // since p points to j.

Beware of using uninitialized pointers. Also, the indirection
operator can be used in complex ways.

int *list[10] // array of 10 ptrs to int
int (*list)[10] // ptr to array of 10 ints

float** y; // ptr to a ptr to a float
z = **y; // z gets the value of y

typedef char **stp;
stp my_stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a = b * c; // a gets the product of b and c

(type) �Cast� operator. The cast operator converts one data type to
another. Floating-point values are truncated when converted to
integer. The bit patterns of character and integer data are not
changed with the cast operator, although high-order bits will be lost
if the receiving value is not large enough to hold the converted
value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // i gets 10;
c = *(char*)&x; // c gets the low byte of x

typedef ... typeA;
typedef ... typeB;

Technical Reference The Language � 119

typeA item1;
typeB item2;
...
item2 = (typeB)item1;// forces item1 to be

// treated as a typeB

& Address operator, or bitwise AND. As a unary operator, this
provides the address of a variable:

int x;

z = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer
(char, int, or long) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i & j; // z gets 0x0FF0

sizeof�The sizeof operator is a unary operator that returns the size
(in bytes) of a variable, structure, array, or union. It operates at
compile time as if it were a built-in function, taking an object or a
type as a parameter.

typedef struct{
int x;
char y;
float z;

} record;
record array[100];
int a, b, c, d;
char cc[] = �Fourscore and seven�;
char *list[] = { �ABC�, �DEFG�, �HI� };

// number of bytes in array
#define array_size sizeof(record)*100
a = sizeof(record); // 7
b = array_size; // 700
c = sizeof(cc); // 20
d = sizeof(list); // 6

Why is sizeof(list) equal to 6? List is an array of 3 pointers
(to char) and pointers have two bytes.

Why is sizeof(cc) equal to 20 and not 19? C strings have a
terminating null byte appended by the compiler.

/ Divide. This is a binary operator. Integer division truncates;
floating-point division does not.

int i = 18, j = 7, k; float x;
k = i / j; // result is 2;
x = (float)i / j; // result is 2.591...

Dynamic C 32 v. 6.x120 � The Language

% Modulus. This is a binary operator. The result is the remainder of
the left-hand operand divided by the right-hand operand.

int i = 13;
j = i % 10; // j gets i mod 10 or 3

int k = -11;
j = k % 7; // j gets k mod 7 or -4

<< Shift left. This is a binary operator. The result is the value of the
left operand shifted by the number of bits specified by the right
operand:

int i = 0xF00F;
j = i << 4; // j gets 0x00F0

The most significant bits of the operand are lost; the vacated bits
become zero.

>> Shift right. This is a binary operator. The result is the value of the
left operand shifted by the number of bits specified by the right
operand:

unsigned int i = 0xF00F;
int j = 0xF00F;
k = i >> 4; // k gets 0x0F00
k = j >> 4; // k gets 0xFF00
The least significant bits of the left operand are lost; the most
significant bits are either zeroed if the operation is unsigned, or
copies of the sign bit if the operation is signed.

< Less than. This binary (relational) operator yields a �Boolean�
value. The result is 1 if the left operand < the right operand, and 0
otherwise.

if(i < j){
body // executes if i < j

}
OK = a < b; // true when a < b

<= Less than or equal. This binary (relational) operator yields a
�Boolean� value. The result is 1 if the left operand £ the right
operand, and 0 otherwise.

if(i <= j){
body // executes if i <= j

}
OK = a <= b; // true when a <= b

Technical Reference The Language � 121

> Greater than. This binary (relational) operator yields a �Boolean�
value. The result is 1 if the left operand > the right operand, and 0
otherwise.

if(i > j){
body // executes if i > j

}
OK = a > b; // true when a > b

>= Greater than or equal. This binary (relational) operator yields a
�Boolean� value. The result is 1 if the left operand ³ the right
operand, and 0 otherwise.

if(i >= j){
body // executes if i >= j

}
OK = a >= b; // true when a >= b

== Equal. This binary (relational) operator yields a �Boolean� value.
The result is 1 if the left operand equals the right operand, and 0
otherwise.

if(i == j){
body // executes if i = j

}
OK = a == b; // true when a = b

Note that the == operator is not the same as the assignment
operator (=). A common mistake is to write

if(i = j){
body

}

Here, i gets the value of j, and the if condition is true
when i is non-zero, not when i equals j.

!

!= Not equal. This binary (relational) operator yields a �Boolean�
value. The result is 1 if the left operand ¹ the right operand, and 0
otherwise.

if(i != j){
body // executes if i != j

}
OK = a != b; // true when a != b

^ Bitwise exclusive OR. A binary operator, this performs the bitwise
XOR of two integer (8-bit, 16-bit or 32-bit) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i ^ j; // z gets 0xF00F

Dynamic C 32 v. 6.x122 � The Language

| Bitwise inclusive OR. A binary operator, this performs the bitwise
OR of two integer (8-bit, 16-bit or 32-bit) values.

int i = 0xFF00;
int j = 0x0FF0;
z = i | j; // z gets 0xFFF0

&& Logical AND. This is a binary operator that performs the �Bool-
ean� AND of two values. If either operand is 0, the result is 0
(FALSE). Otherwise, the result is 1 (TRUE).

|| Logical OR. This is a binary operator that performs the �Boolean�
OR of two values. If either operand is nonzero, the result is 1
(TRUE). Otherwise, the result is 0 (FALSE).

? : Conditional operators. This is a three-part operation unique to the
C language. It has three operands and the two operator symbols ?
and :. If the first operand evaluates true (nonzero), then the result
of the operation is the second operand. Otherwise, the result is the
third operand.

int i, j, k;
...
i = j < k ? j : k;

The ? : operator is for convenience. The above statement is
equivalent to the following.

if(j < k)
i = j;

else
i = k;

If the second and third operands are of different type, the result of
this operation is returned at the higher precision.

= Assignment. This binary operator causes the value of the right
operand to be assigned to the left operand. Assignments can be
�cascaded� as shown in this example.

a = 10 * b + c; // a gets the result of
// the calculation

a = b = 0; // b gets 0 and a gets 0

+= Addition assignment.

a += 5; // Add 5 to a. Same as a = a + 5

-= Subtraction assignment.

a -= 5; // Subtract 5 from a.
// Same as a = a - 5

Technical Reference The Language � 123

*= Multiplication assignment.

a *= 5; // Multiply a by 5.
// Same as a = a * 5

/= Division assignment.

a /= 5; // Divide a by 5.
// Same as a = a / 5

%= Modulo assignment.

a %= 5; // a mod 5. Same as a = a % 5

<<= Left shift assignment.

a <<= 5; // Shift a left 5 bits.
// Same as a = a << 5

>>= Right shift assignment.

a >>= 5; // Shift a right 5 bits.
// Same as a = a >> 5

&= Bitwise AND assignment.

a &= b; // AND a with b.
// Same as a = a & b

^= Bitwise XOR assignment.

a ^= b; // XOR a with b.
// Same as a = a ^ b

|= Bitwise OR assignment.

a |= b; // OR a with b.
// Same as a = a | b

, Comma operator. This operator, unique to the C language, is a
convenience. It takes two operands: the left operand�typically an
expression�is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes
the result of the operation.

This example shows somewhat complex initialization and stepping
in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,j�){
...

}

Because of the comma operator, the initialization has two parts: (1)
set i to 0 and (2) get the length of string s. The stepping expres-
sion also has two parts: increment i and decrement j.

The comma operator exists to allow multiple expressions in loop-
or if conditions.

Dynamic C 32 v. 6.x124 � The Language

Table 5-6 shows the operator precedence, from highest to lowest. All
operators grouped together have equal precedence.

Directives

Directives are special keywords prefixed with the symbol #. They tell the
compiler how to proceed. Only one directive per line is allowed, but a
directive may span more than one line if a backslash (\) is placed at the
end of the line(s).

� #asm [options...]
#endasm

Begins and ends blocks of assembly code. The following options are
available.

nodebug disable debug code during assembly

debug enable debug code during assembly

xmemok OK to compile to extended memory when assembly
code is embedded in a C function

Table 5-6. Operator Precedence

Operators Associativity

() [] -> . (dot) left to right

! ~ ++ -- - (type) * & sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

? : right to left

= += -= etc... right to left

, (comma) left to right

Technical Reference The Language � 125

� #class [push] [options...]
#class pop

Controls the default storage class for local variables. The following
options are available.

auto local variables are placed on the stack

static local variables have permanent, fixed storage

These options are nestable to 16 levels using the push and pop options.

� #debug
#nodebug

Enables or disables debug code compilation.

� #define name text
#define name(params...) text

Defines a macro with or without parameters. A macro without param-
eters may be considered a symbolic constant. (But in actuality it is
not.)

� #fatal ���
#error ���
#warns ���
#warnt ���

Instructs the compiler to act as if a fatal error (#fatal), an error
(#error), a serious warning (#warns) or a trivial warning (#warnt)
was issued. The string in quotes following the directive is the message
to be printed.

� #funcchain chain_name name

Adds a function, or another function chain, to a function chain.

� #if constant_expression
#elif constant_expression
#else
#endif

These directives control conditional compilation. Combined, they can
form a multiple-choice if. When the condition of one of the choices is
met, the Dynamic C code selected by the choice is compiled, whatever
it may be. Code belonging to the other choices is ignored entirely.

main(){
#if BOARD_TYPE == 1

#define product �Ferrari�
#elif BOARD_TYPE == 2

#define product �Maserati�

Dynamic C 32 v. 6.x126 � The Language

#elif BOARD_TYPE == 3
#define product �Lamborghini�

#else
#define product �Chevy�

#endif
...

}

The #elif and #else directives are optional. Any code between an
#else and an #endif is compiled when all of the expressions are
false.

� #ifdef name
#ifndef name

Similar to the #if above, these directives enable and disable code
compilation, respectively, based on whether the name has been defined
with a #define directive.

� #interleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the
program�s functions during compilation. #nointerleave forces the
user-written functions to be compiled first.

� #KILL name

To redefine a symbol found in the BIOS of a controller, first �kill� the
prior name.

� #makechain chain_name

Creates a function chain. When a program executes the function chain
named in this directive, all of the functions or segments belonging to
that chain execute.

� #memmap [push] [options...]
#memmap pop

Controls the default memory area for functions. The following options
are available.

anymem the compiler decides where to place functions
root functions in root memory
xmemfunctions in extended memory

These options are nestable to 16 levels using the push and pop options.

� #undef name

Removes (undefines) a defined macro.

Technical Reference The Language � 127

� #use libraryname

Activates a library (named in LIB.DIR) so modules in the library can
be linked with the application program. This directive immediately
reads in all the headers in the library unless they have already been
read.

� #useix
#nouseix

Controls whether functions use the IX register as a stack frame
reference pointer or the SP (stack pointer) register.

Punctuation

Punctuation marks serve as boundaries in C programs. Table 5-7 lists the
punctuation marks.

Extended Memory Data

Most of the details of calling extended memory functions are handled by
the compiler. The situation is more complicated for extended data. To
access extended memory data, use function calls to exchange data between
extended memory and root memory. These functions are provided in the
Dynamic C libraries.

An extended memory address is represented by an unsigned long integer
which contains the 20-bit physical address. Pointers, on the other hand,
are 16-bit machine addresses. They are not interchangeable. However,
there are library functions to convert between these address formats.

See XMEM.LIB.$

Table 5-7. Punctuation Marks

Symbols Description

: Terminates a statement label.

; Terminates a simple statement (or a do loop). Required by C!

, Separates items in a list, such as an argument list, declaration
list, initialization list or expression list.

() Encloses argument or parameter lists. Function calls always
require parentheses. Macros with parameters also require
parentheses.

{ } Begins and ends a compound statement, a function body, a
structure or union body, or encloses a function chain segment.

Dynamic C 32 v. 6.x128 � The Language

Dynamic C includes two nonstandard keywords to support extended
memory data: xstring and xdata.

The declaration

xstring name { string 1, ... string n };

defines name as the extended memory address of a table of extended
memory addresses (as unsigned long ints) and corresponding strings.

The xdata statement has two forms. The declaration

xdata name { value 1, ... value n };

defines a block of initialized extended memory data. The values must be
constant expressions of type char, int, unsigned int, long, un-
signed long, float, or string.

name 10
5.73
'A'

"start"
65575L

The other form

xdata name [n];

defines a block of n bytes in extended memory.

In either case, the term name is represented by an unsigned long integer
containing the 20-bit physical address of the block.

name

n bytes

See XDATA.C in the SAMPLES subdirectory for more details.$

"abc"
"start"

"stop"

"on"
"off"

name table

20-bit
addresses

Technical Reference Using Assembly Language � 129

CHAPTER 6:

USING ASSEMBLY LANGUAGE

Dynamic C 32 v. 6.x130 � Using Assembly Language

Dynamic C permits programing in assembly language. Assembly-
language statements may either be embedded in a C function or entire
functions may be written in assembly language. C statements may also be
embedded in assembly code and refer to C-language variables in the
assembly code.

A program may be debugged at the assembly language level by opening
the assembly window. Single-stepping and break points are supported in
the assembly window.

When the assembly window is open, single-stepping occurs instruction by
instruction rather than statement by statement.

Use the #asm and #endasm directives to place assembly code in programs.
For example, the following function will add two 64-bit numbers together.

useix int eightadd(char *ch1, char *ch2){

#asm
ld l,(ix+ch2) ; get dest ptr to hl
ld h,(ix+ch2+1)
ld e,(ix+ch1) ; get src ptr to de
ld d,(ix+ch1+1)
ld b,8 ; number of bytes
XOR a ; clear carry

loop:
ld a,(de) ; ch1 source byte
adc a,(hl) ; add ch2 byte
ld (hl),a ; result to ch2 addr
inc hl
inc de
djnz loop ; do 8 bytes

#endasm
return;

}

The same program could be written in C, but it would be many times
slower because C does not provide an add-with-carry operation (adc).

A C statement may be placed within assembly code by placing a C in
column 1.

The keyword nodebug can be placed on the same line as #asm. The main
reason for the nodebug option is to prevent Dynamic C from running out
of debugger table memory, which is limited to about 5,000 break points for
the entire program (not counting libraries). If nodebug is specified for an
entire function, then all the blocks of assembly code within the function
are assembled in nodebug mode. There is no need to place the nodebug
directive on each block.

Technical Reference Using Assembly Language � 131

Register Summary
Figure 6-1 shows the Z180�s basic register set.

I R

SP (stack pointer)

IX (index)

IY (index)

General
Registers

A F

B C

D E

H L

Alternate
Registers

A' F'

B' C'

D' E'

H' L'

Special
Registers

PC (program counter)

Figure 6-1. Z180 Basic Register Set

Refer to the Zilog Z180 MPU User�s Manual for instruc-
tions to swap register sets.$

The PC is the program counter; SP is the stack pointer. The IX and IY
registers are index registers. The I register is the interrupt vector register.
(The R register may be ignored.)

Dynamic C uses the HL register pair (1) to pass the first 16-bit argument,
and (2) to return a 16-bit function result. Dynamic C uses the BCDE
register group (1) to pass the first 32-bit argument and (2) to return a 32-
bit function result.

The Z180 has many other special-purpose registers.

General Concepts
Place a body of assembly code between the #asm directives.

#asm [options]

#endasm

The #asm directive accepts options.

See Directives in Chapter 5, The Language, for details.$

Register A is the accumulator. Registers B�L are general-purpose registers
and can be coupled in pairs BC, DE, HL for 16-bit values. Registers B, C,
D, and E may also be coupled (and called BCDE) for 32-bit values.
Register F (flags) holds status bits.

S: sign bit Z: zero bit
H: half-carry P/V: parity or overflow
N: negative op C: carry

The alternate set of registers (A��L�) is often used to save and restore
register values.

Flags

S Z H P/V N C
7 6 5 4 3 2 1 0

Dynamic C 32 v. 6.x132 � Using Assembly Language

Comments

Comments in embedded assembly code starts with a semicolon (;). The
assembler ignores all text from the semicolon to the end of line.

Labels

A label is a name followed by one or two colons (:). A label followed by
a single colon is local, whereas one followed by two colons is global. A
local label is not visible to the code out of the current embedded assembly
segment (that is, code before the #asm or after the #endasm directive).
Unless it is followed immediately by the keyword equ, the label identifies
the current code segment address. If the label is followed by equ, the label
�equates� to the value of the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code,
Z-World recommends that preprocessor macros be used instead of equs
whenever possible.

Defining Constants

Constants may be created and defined in assembly code. The keyword db
(�define byte�) places bytes at the current code segment address. The
keyword db should be followed immediately by numerical values and
strings separated by commas as shown here.

Example

Each of the following defines a string �ABC� in code space.

db �A�, �B�, �C�
db �ABC�
db 0x41, 0x42, 0x43

The numerical values and characters in strings are used to initialize
sequential byte locations.

The keyword dw defines 16-bit words, least significant byte first. The
keyword dw should be followed immediately by numerical values, as
shown in this example.

Example

The following defines three constants. The first two constants are literals,
and the third constant is the address of variable xyz.

dw 0x0123, 0xFFFF, xyz

The numerical values initialize sequential word locations, starting at the
current code segment address.

Technical Reference Using Assembly Language � 133

Expressions

The assembler parses most C-language constant expressions. A
C-language constant expression is one whose value is known at compile
time. All operators except the following are supported.

?: (conditional) [] (array index,
. (dot), -> (points-to)
* (dereference) sizeof()

For example, consider the following code.

#define FLAG1 1
#define FLAG2 4
#asm

...
and ~(FLAG1|FLAG2)
...
ld de, FLAG1+0x80
...

#endasm

The preprocessor expands macros before the assembler parses any text.

Special Symbols

Table 6-1 lists special symbols that can be used in an assembly language
expression.

See Embedded Assembly Code in Chapter 6, Using Assembly
Language, for details on @SP.

See C Functions Calling Assembly Code in Chapter 6, Using
Assembly Language, for details on @RETVAL.

$

Table 6-1. Special Assembly-Language Symbols

@PC The symbol @PC evaluates to the current address in the PC
(program counter) register.

@SP The symbol @SP indicates the amount of stack space (in
bytes) used for stack-based variables. This does not include
arguments.

@RETVAL The symbol @RETVAL evaluates to the offset, from the
frame reference point to the stack space reserved for
struct function returns.

Dynamic C 32 v. 6.x134 � Using Assembly Language

The @PC symbol is useful when referring to an offset from the current PC
address, as in the riasmseq assembly code multi-line macro definition.

// disable/restore interrupts assembly sequences

#define diasmseq ld a,i $ push af $ di

#define riasmseq pop af $ jp novf,@PC+3 $ ei

Notice the $ symbol in between the several assembly language statements
on the multi-line assembly macro definition lines. Each $ symbol denotes
a new logical line of assembly code.

When the diasmseq and riasmseq macros are used as matched pairs in
assembly code they save the current interrupt enable state, disable inter-
rupts and then later restore the previous interrupt enable state. It is impor-
tant, when making any stack references, to remember to take into account
that these macros use the AF register pair pushed on the stack to preserve
and then restore the interrupt enable state. The jp novf,@PC+3 instruc-
tion permits Dynamic C to make an absolute (NB: not PC-relative or
position independent) jump in a macro definition where the jump address
would not be unique (I.E.: if a label was included in the macro definition)
at compile time.

C Variables

C variable names may be used in assembly language. What a variable
name represents (the value associated with the name) depends on the
variable. For a global, static local or register local variable, the name
represents the address of the variable in root memory. For an auto
variable or formal argument, the variable name represents its own offset
from the frame reference point.

See Embedded Assembly Code in Chapter 6, Using Assembly
Language, for details.$

The name of a structure element represents the offset of the element from
the beginning of the structure. In the following structure, for example,

struct s {
int x;
int y;
int z;

};

the embedded assembly expression s+x evaluates to 0, s+y evaluates to 2,
and s+z evaluates to 4, regardless of where structure s may be.

Technical Reference Using Assembly Language � 135

In nested structures, offsets can be composite, as shown here.

struct s {
int x; // s+x = 0
struct a{ // s+a = 2

int b; // a+b = 0 s+a+b = 2
int c; // a+c = 2 s+a+c = 4

}
};

Standalone Assembly Code
A standalone assembly function is one that is defined outside the context
of a C-language function. It can have no auto variables and no formal
parameters. Dynamic C always places a standalone assembly function in
root memory.

When a program calls a function from C, it puts the first argument into a
primary register. If the first argument has one or two bytes (int, uint,
char, pointer), the primary register is HL (with register H containing
the most significant byte). If the first argument has four bytes (long,
ulong, float), the primary register is BCDE (with register B containing
the most significant byte). Assembly-language code can use the first
argument very efficiently. Only the first argument is put into the primary
register, while all arguments�including the first�are pushed on the stack.

C function values return in the primary register, if they have four or fewer
bytes, either in HL or BCDE.

Assembly language allows assumptions to be made about arguments
passed on the stack, and �auto� variables can be defined by reserving
locations on the stack for them. However, the offsets of such implicit
arguments and variables must be kept track of. If a function expects
arguments or needs to use stack-based variables, Z-World recommends
using the embedded assembly techniques described in the next section.

Embedded Assembly Code
When embedded in a C function, assembly code can access arguments and
local variables (either auto or static) by name. Furthermore, the
assembly code does not need to manipulate the stack because the functions
�prolog� and �epilog� already do so.

The concept and structure of a stack frame must be understood before
correct embedded assembly code can be written. A stack frame is a run-
time structure on the stack that provides the storage for all auto variables,
function arguments and the return address.

Dynamic C 32 v. 6.x136 � Using Assembly Language

first argument

saved IX register

last argument

last auto variable

storage for prior
contents of register

variables

Stack Frame

structure return
space

first auto variable

higher addresses

stack grows down

SP

lower addresses

�
�
�

IX

return address
(2�6 bytes)

(frame reference point)

�
�
�

optional

optional

optional

optional

optional

(optional)

Figure 6-2. General Appearance of assembly Code Stack Frame

Figure 6-2 shows the general appearance of a stack frame.

The return address is always necessary. The presence of auto variables and
register variables depends on the definition of the function. The presence
of arguments and structure return space depends on the function call. (The
stack pointer may actually point lower than the indicated mark temporarily
because of temporary information pushed on the stack.)

The shaded area in the stack frame is the stack storage allocated for auto
and register variables. The assembler symbol @SP represents the size of
this area. The meaning of this symbol will become apparent later.

The following sections describe how to access local variables in various
types of functions.

No IX, Function in Root Memory

Assume this simple function has been called.

int gi; // this is a global variable
root nouseix
void func(char ch, int i, long l){

auto int x;
static int y;
register int z;

#asm
some assembly code referencing gi, ch, i, l, x,
y, and z

#endasm
}

Technical Reference Using Assembly Language � 137

Figure 6-3 shows how the stack frame will look.

prior value of z (2) SP

return address (2) (frame reference point)

x (2)

ch (2)

i (2)

l (4)

�2

0

+2

+4

+6

Figure 6-3. Assembly Language Stack Frame
No IX, Function in Root Memory

The symbols for gi, ch, i, l, x, y and z will have the following values
when used in the assembly code.

There is a common method to access the stack-based variables l, i, ch
and x. Consider, for example, the case of loading variable x into HL.

The following code (using the symbol @SP) is one way to do it:

ld hl,@SP+x ; hl ¬ the offset from SP to the variable
add hl,sp ; hl ¬ the address of the variable
ld a,(hl) ; a ¬ the LSB of x
inc hl ; hl now points to the MSB of x
ld h,(hl) ; h ¬ the MSB of x
ld l,a ; l ¬ the LSB of x
;; at this point, hl has the value of x

For static variables (gi, y, and z), the access is much simpler because the
symbol evaluates to the address directly. The following code shows, for
example, how to load variable y into HL.

ld hl,(y) ; load hl with contents of y

l offset = +6 gi a 16-bit address (in root memory)

i offset = +4 x offset = –2

ch offset = +2 y, z 16-bit addresses (in root memory)

Dynamic C 32 v. 6.x138 � Using Assembly Language

Using IX, Function in Root Memory

Access to stack-based local variables is fairly inefficient. The efficiency
improves if there is a register for a frame pointer. Dynamic C can use the
register IX as a frame pointer. The function in the previous section would
then become the following.

int gi; // this is a global variable
root useix
void func(char ch, int i, long l){

auto int x;
static int y;
register int z;

#asm
some assembly code referencing gi, ch, i, l, x,
y, and z

#endasm
}

The keyword useix is the only change from the previous sample function.
Figure 6-4 shows the stack frame for this function.

l offset = +8

i offset = +6

ch offset = +4

The arguments will have slightly different offsets because of the additional
two bytes for the saved IX register value.

prior value of z (2) SP

return address (2) (frame reference point)
x (2)

ch (2)

i (2)

l (4)

�2

0

+2

+4

+6

Figure 6-4. Assembly Language Stack Frame
Useing IX, Function in Root Memory

Now, access to stack variables becomes easier. Consider, for example,
how to load ch into register A.

ld a,(ix+ch) ; a ¬ ch

Technical Reference Using Assembly Language � 139

The IX+offset load instruction takes 14 cycles and three bytes. If the
program needs to load a four-byte variable such as l, the IX+offset
instructions are as follows.

ld e,(ix+l) ; load LSB of l
ld d,(ix+l+1) ;
ld c,(ix+l+2) ;
ld b,(ix+l+3) ; load MSB of l

This takes a total of 56 cycles and 12 bytes. Even if IX is the frame
reference pointer, the @SP symbol may still be used.

ld hl,@SP+l ; hl ¬ the offset from SP to the variable
add hl,sp ; hl ¬ the address of the variable
ld e,(hl) ; e ¬ the LSB of l
inc hl ;
ld d,(hl) ;
inc hl ;
ld c,(hl) ;
inc hl ;
ld b,(hl) ; b ¬ the MSB of l

This takes 52 cycles and 11 bytes. The two approaches are competitive.
Nonetheless, the use of IX+offset is always beneficial when used to access
single- or double-byte variables.

The offset from IX is a signed 8-bit integer. To use IX+offset, the variable
must be within +127 or �128 bytes of the frame reference point. The @SP
method is the only method for variables out of this range, even if IX is
used as a frame reference pointer.

No IX, Function in Extended Memory

Functions that are (possibly) compiled to extended memory are not much
different from functions compiled to root memory. Examine this extended
memory function.

int gi; // this is a global variable
xmem
void func(char ch, int i, long l){

auto int x;
static int y;
register int z;

#asm xmemok
some assembly code referencing gi, ch, i, l, x,
y, and z

#endasm
}

If the xmem keyword is present, Dynamic C compiles the function to
extended memory. Otherwise, Dynamic C can determine where to
compile the function. On the other hand, the xmemok keyword must be
present since this function is compiled to extended memory.

Dynamic C 32 v. 6.x140 � Using Assembly Language

This is because functions compiled to extended memory have a 6-byte
return address instead of a 2-byte return address. In this example, the IX
register is not used. Figure 6-5 shows the stack frame of the function.

return address (6)

prior value of z (2) SP

(frame reference point)
x (2)

ch (2)

i (2)

l (4)

�2

0

+6

+8

+10

Figure 6-5. Assembly Language Stack Frame
No IX, Function in ExtendedMemory

l offset = +10

i offset = +8

ch offset = +6

Because of the additional 4 bytes for the return address, the arguments will
have slightly different offsets.

Because the compiler maintains the offsets automatically, there is no need
to worry about the change of offsets. The @SP approach discussed
previously as a means of accessing stack-based variables works whether a
function is compiled to extended memory or not, as long as the C-language
names of local variables and arguments are used.

A function compiled to extended memory can use IX as a frame reference
pointer as well. This adds an additional two bytes to argument offsets
because of the saved IX value. Again, the IX+offset approach discussed
previously can be used because the compiler maintains the offsets auto-
matically.

C Functions Calling Assembly Code
Dynamic C does not assume that registers are preserved in function calls.
In other words, the function being called need not save and restore
registers. The exception is the memory management unit register CBR
(common base register). If a function is in root memory and the caller is in
extended memory, the compiler assumes that the CBR is preserved by the
called function.

Technical Reference Using Assembly Language � 141

If a C-callable assembly function is expected to return a result (of primi-
tive type), the function must pass the result in the �primary register.� If the
result is an int, uint, char or a pointer, return the result in HL (register
H contains the most significant byte). If the result is a long, ulong or
float, return the result in BCDE (register B contains the most significant
byte). A C function containing embedded assembly code may, of course,
use a C return statement to return a value. A standalone assembly
routine, however, must load the primary register with the return value
before the ret instruction.

In contrast, if a function returns a structure (of any size), the calling
function reserves space on the stack for the return value before pushing the
last argument (if any). A C function containing embedded assembly code
may use a C return statement to return a value. A standalone assembly
routine, however, must store the return value in the structure return space
on the stack before returning.

An in-line assembly code may access the stack area reserved for structure
return values by the symbol @RETVAL, which is an offset from the frame
reference point. The following code shows how to clear field f1 of a
structure (as a returned value) of type struct s.

typedef struct ss {
int f0; // first field
char f1; // second field

} xyz;

xyz my_struct;
...
my_struct = func();
...
xyz func(){
#asm

...
xor a ; clear register A.
ld hl,@SP+@RETVAL+ss+f1 ; hl ¬ the offset from
 ; SP to the f1 field of
 ; the returned structure.
add hl,sp ; hl now points to f1.
ld (hl),a ; load a (now 0) to f1.
...

#endasm
}

It is crucial that @SP be added to @RETVAL because @RETVAL is an offset
from the frame reference point, not from the current SP.

Dynamic C 32 v. 6.x142 � Using Assembly Language

Assembly Code Calling C Functions
A program may call a C function from assembly code. To make this
happen, set up part of the stack frame prior to the call and �unwind� the
stack after the call. The procedure to set up the stack frame is described
here.

1. Save all registers that the calling function wants to preserve. A called
C function may change the value of any register. (Pushing registers
values on the stack is a good way to save their values.)

2. If the function return is a struct, reserve space on the stack for the
returned structure. Most functions do not return structures.

3. Compute and push the last argument, if any.

4. Compute and push the second to last argument, if any.

5. Continue to push arguments, if there are more.

6. Compute and push the first argument, if any. Also load the first
argument into the primary register (HL for int, uint, char and
pointers or BCDE for long, ulong, and float) if it is of a primitive
type.

7. Issue the call instruction.

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6
bytes of arguments, the program may pop data (2 bytes at time) from
the stack. Otherwise, it is more efficient to compute a new SP instead.
The following code demonstrates how to unwind arguments totaling
36 bytes of stack storage.

; note that HL is changed by this code!
; Use ex de,hl to save HL if HL has the return value

;;;ex de,hl ; save HL (if required)
ld hl,36 ; want to pop 36 bytes
add hl,sp ; compute new SP value
ld sp,hl ; put value back to SP

;;;ex de,hl ; restore HL (if required)

2. If the function returns struct, unload the returned structure.

3. Restore registers previously saved. Pop them off if they were stored on
the stack.

4. If the function return was not a struct, obtain the returned value from
HL or BCDE.

Technical Reference Using Assembly Language � 143

Indirect Function Calls in Assembly
Indirect function calls are calls made to a function through a pointer to the
function. The Z180 instruction set does not have an opcode for indirect
function calls. However, they can still be done. The following code
illustrates how.

; assume HL has the address of the called function
ld de,retAddr ; explicitly load the return address
push de ; save the return address
...
jp (hl) ; indirect jump to address specified by HL
...
retAddr:
; execution continues here when the function returns

If HL is supposed to contain an argument, use register IY or IX (if IX is
not used as a frame reference pointer) instead of HL.

Interrupt Routines in Assembly
Dynamic C allows interrupt service routines to be written in C (declared
with the keyword interrupt). However, the efficiency of one interrupt
routine affects the latency of other interrupt routines. Assembly routines
can be more efficient than the equivalent C functions, and therefore more
suitable for interrupt service routines.

Either standalone assembly code or embedded assembly code may be used
for interrupt routines. The benefit of embedding assembly code in a C-
language interrupt routine is that there is no need to worry about saving
and restoring registers or reenabling interrupts. The drawback is that the C
interrupt function does save all registers, which takes some amount of
time. A standalone assembly routine needs to save and restore only the
registers it uses.

In general, an interrupt routine performs the following actions:

1. Turn off interrupts upon entry. (The Z180 does this automatically.)

2. Save all registers (that will be used) on the stack. Interrupt routines
written in C save all registers on the stack automatically. Standalone
assembly routines must push the registers explicitly.

3. Determine the cause of the interrupt. Some devices, such as the ASCI
serial ports on the Z180, map multiple causes to the same interrupt
vector. An interrupt handler must determine what actually caused the
interrupt.

Dynamic C 32 v. 6.x144 � Using Assembly Language

4. Remove the cause of the interrupt. For example, an ASCI serial port
may cause an interrupt because it has received a byte. The interrupt
routine would read the byte from the receive buffer.

If an interrupt has more than one possible cause, check for all the
causes and remove all the causes at the same time.

5. When finished, restore registers saved on the stack. Naturally, this
code must match the code that saved the registers. Interrupt routines
written in C perform this automatically. Standalone assembly routines
must pop the registers explicitly.

6. Reenable interrupts. Interrupts are disabled for the entire duration of
the interrupt routine (unless they are enabled explicitly). The interrupt
handler must reenable the interrupt so that other interrupts can get the
attention of the CPU. Interrupt routines written in C reenable interrupts
automatically when the function returns. Standalone assembly inter-
rupt routines, however, must reenable the interrupt (using the instruc-
tion ei) explicitly.

The interrupts should be reenabled immediately before the return
instructions ret or reti. If the interrupts are enabled earlier, the
system can stack up the interrupts. This may or may not be acceptable
because there is the potential to overflow the stack.

7. Return. The three types of interrupt returns are: ret, reti and retn.

Refer to Chapter 8, Interrupts, and to the Zilog Z180 MPU
User�s Manual to learn about their differences.$

Technical Reference Using Assembly Language � 145

Common Problems
Unbalanced stack. Ensure the stack is �balanced� when a routine returns.
In other words, the SP must be same on exit as it was on entry. From the
caller�s point of view, the SP register must be identical before and after the
call instruction.

Using the @SP approach after pushing temporary information on the
stack. The @SP approach for in-line assembly code assumes that SP points
to the low boundary of the stack frame. This might not be the case if the
routine pushes temporary information onto the stack. The space taken by
temporary information on the stack must be compensated for.

The following code illustrates the concept.

;SP still points to the low boundary of the call frame
push hl ; save HL

;SP now two bytes below the stack frame!
...
ld hl,@SP+x+2 ; Add 2 to compensate for altered SP
add hl,sp ; compute as normal
ld a,(hl) ; get the content
...
pop hl ; restore HL

;SP again points to the low boundary of the call frame

CBR not preserved. Dynamic C assumes that root functions preserve the
CBR (common base register, for memory management). While most
functions have nothing to do with the CBR, some functions in extended
memory do manipulate the CBR. Make sure the CBR is preserved in a
function in root memory.

Registers not preserved. In Dynamic C, the caller is responsible for
saving and restoring all registers. An assembly routine that calls a C
function must assume that all registers will be changed.

Unpreserved registers in interrupt routines cause unpredictable and
unrepeatable problems. In contrast to normal functions, interrupt functions
are responsible for saving and restoring all registers themselves.

Dynamic C 32 v. 6.x146 � Using Assembly Language

Technical Reference Costatements � 147

CHAPTER 7: COSTATEMENTS

Dynamic C 32 v. 6.x148 � Costatements

Dynamic C supports multi-threaded real-time programming. Either the
real-time kernel (RTK.LIB) or the simplified real-time kernel (SRTK.LIB)
may be used. Costatements are another option. Costatements offer
cooperative multi-tasking within an application.

There are several advantages to costatements.

� Costatements are a feature built into Dynamic C.

� Costatements are cooperative instead of preemptive.

� Costatements can operate without multiple stacks.

Using costatements effectively requires a knowledge of their syntax, their
supporting data structures, and the mechanisms by which they may be put
to use.

Overview
Costatements are blocks of code that can suspend their own execution at
various times for various reasons, allowing other costatements or other
program code to execute. Costatements operate concurrently. For
example, the code shown in Figure 7-1 will operate as shown in the
diagram.

...

.....

...

..

b

main

a c
...
.....
...
..

...

.....

...

..

main(){
int x, y, z;
...
for(;;){

costate a {
...
}
costate b {
...
}
costate c {
...
}

}
}

Figure 7-1. Overview of Costatements

Blocks a, b, and c (each of them costatements) will operate independently,
concurrently, and with their own timing. The keyword costate identifies
a costatement.

Using costatements presupposes that there will be more than one costate-
ment. It is only when there is more than one task that costatements can be
considered cooperative, because it is only when there is more than one task
that any task can execute in the idle time of another task.

Technical Reference Costatements � 149

Nevertheless, some single tasks are easier to write using costatements.
Costatements can be used, for example, to create delays.

A typical set of costatements will execute in an endless loop. However,
this is not a requirement.

Costatements are cooperative concurrent tasks because they can suspend
their own operation. There are three ways they do this.

1. They can wait for an event, a condition, or the passage of a certain
amount of time. The waitfor statement is used. Special functions are
available to cover the passage of time: DelaySec, DelayMS,
DelayTicks, IntervalSec, and IntervalMS.

2. They can use a yield statement to yield temporarily to other
costatements.

3. They can use an abort statement to cancel their own operation.

Since costatements can suspend their own execution, they can also resume
their own execution from the point at which they suspended their opera-
tion. In general, each costatement�in a set of costatements�is in a state
of partial completion. Some are suspended; some are executing. With the
passage of time, other costatements suspend and others resume. Placing
the costatements in a loop is the simplest way to give each costatement a
chance to progress in its turn.

Costatements can be active (ON) or inactive (OFF). A costatement may be
declared to be �always on,� �initially on,� or �initially off. A costatement
that is initially on will execute once and then become inactive. A
costatement that is initially off will not execute until it is started by some
other part of the program. Then it will execute once and become inactive
again.

For each costatement, there is a structure of type CoData that supports its
operation. For example, the CoData structure maintains a position pointer
that tells the costatement where to resume execution when it has been
suspended.

Costatements may be named or unnamed. An unnamed costatement is
�always on.� The name of a named costatement can be one of the follow-
ing.

� A valid C name not previously used. This results in the creation of a
structure of type CoData of the same name.

� The name of a local or global CoData structure that has already been
defined.

� A pointer to an existing structure of type CoData.

Dynamic C 32 v. 6.x150 � Costatements

The functions VdInit and uplc_init also call
_GLOBAL_INIT. Refer to the Virtual Driver in the Dynamic
C Function Reference manual for more information.

$

A CoData structure may be declared independently of a costatement.
Thus, many costatements can use a single CoData structure (one at a
time). A single costatement may point to different CoData structures at
different times.

All costatements in a program, except those that use pointers as their
names, are initialized whenever the function chain _GLOBAL_INIT is
called.

Four functions, CoBegin, CoResume, CoPause, and CoReset are
available to operate costatements remotely. Two functions, isCoDone and
isCoRunning, return the state of a costatement.

A firsttime keyword is available to help create waitfor functions.

Syntax
The general format of a costatement appears below.

costate [name [state]] {
[statement | yield; | abort;
| waitfor(expression);] . . .

}

A costatement can have as many statements, including abort statements,
yield statements, and waitfors as needed.

Name

The term name, which is optional, can be any of the following.

� A valid C name not previously used. This results in the creation of a
structure of type CoData of the same name.

� The name of a local or global CoData structure that has already been
defined.

� A pointer to an existing structure of type CoData.

If name is missing, then the compiler creates an �unnamed� structure of
type CoData for the costatement.

Technical Reference Costatements � 151

State

The term state can be one of the following.

� always_on. The costatement is always active. (Unnamed
costatements are always on.)

� init_on. The costatement is initially on and will automatically
execute the first time it is encountered in the execution thread. The
costatement becomes inactive after it completes (or aborts).

If state is absent, the costatement is initially off. For the costatement to
execute, it must be triggered by the software. Then the costatement will
execute once and become inactive again.

Waitfor

Costatements can wait for an event, a condition, or the passage of a certain
amount of time. The waitfor statement, permitted only inside a costate-
ment, is available for this purpose.

waitfor (expression);

The waitfor suspends progress of the costatement, pending some
condition indicated by the expression.

When a program reaches the waitfor, if expression evaluates false (that
is, zero), the reentry point for the costatement is set at the waitfor
statement and the program jumps out of the costatement. Then, each time
the program reenters the costatement, it evalutes the waitfor expression.
If the expression is false, the program jumps out again. If the expression is
true (non-zero), the program will continue with the statement following the
waitfor.

The diagram on the left side of Figure 7-2 shows the execution thread the
first time through a costatement when a waitfor evaluates false. The
diagram on the right shows the execution thread through a costatement
when a waitfor continues to evaluate false.

costate ... {
statement
statement

}

...
waitfor(...);
...

statement

statement
statement

costate ... {
statement
statement

}

...
waitfor(...);
...

statement

statement
statement

Figure 7-2. Execution of waitfor Statement

(a) First Time (b) Subsequent Times

Dynamic C 32 v. 6.x152 � Costatements

When the waitfor is encountered in a costatement for the first time, a
first time flag associated with that the costatement is set. This flag is used
by routines perform timing delays.

Figure 7-3 diagram shows the execution thread through a costatement
when a waitfor finally evaluates true.

costate ... {
statement
statement

}

...
waitfor(...);
...

statement

statement
statement

Figure 7-3. Execution of True waitfor Statement

Delay Functions

Three special functions (others may be created) allow the use of delays in
the expression evaluated by a waitfor.

int DelaySec(ulong seconds);
int DelayMs(ulong milliseconds);
int DelayTicks(uint ticks);

int IntervalSec(ulong seconds);
int IntervalMs(ulong milliseconds);

Thus, an expression such as the following may be used.

// wait for 30 minutes
 waitfor(DelaySec(30L*60L));

// wait for device or 40 milliseconds
 waitfor(DelayMs(40L) || device_ready());

The virtual driver must be initialized with a call to VdInit
before these delay functions can be used.!

Refer to the Dynamic C Function Reference manual and
the Dynamic C Application Frameworks manual for more
details about the virtual driver and the delay functions.

$

Technical Reference Costatements � 153

Yield

A costatement can yield to other costatements. The yield statement is
permitted only inside a costatement.

yield;

The yield makes an unconditional exit from a costatement, as shown in
Figure 7-4.

costate ... {
statement
statement

}

...
yield;
...

statement

statement
statement

Figure 7-4. Unconditional Yield Exit from Costatement

The next time the program executes the costatement, it will resume at the
statement following the yield, as shown in Figure 7-5. Compare this
action with the description of the abort statement in the next section.

costate ... {
statement
statement

}

...
yield;

...

statement

statement

statement

Figure 7-5. Resumption of Program after Yield

Dynamic C 32 v. 6.x154 � Costatements

Example

Here is a loop containing two costatements.

while(1){
costate{

for(i = 0; i < 30000; i++){
some program code
yield;

}
}
costate{

waitfor(DelayMs(500));
printf(�i = %d\n�,i);

}
}

Exactly one iteration of the for loop gets executed on each pass through
the endless while loop. The second costatement checks whether 500 mil-
liseconds have passed since the program first entered it. It will print the
value of i if 500 milliseconds have passed.

The result is a loop that does two things concurrently. The code will
output the value of i every half second, and the for loop increments i
(and might do other things). The process will go on forever since both
costatements are in an endless loop.

Abort

A costatement can terminate itself. For this purpose, there is the abort
statement, which is permitted only inside a costatement.

abort;

The abort statement, in effect, causes execution to jump to the very end
of the costatement, where it exits. The costatement will then terminate. If
the costatement is always on, it will restart from the top the next time the
program reaches it. If the costatement is not always on, it becomes
inactive since the costatement terminates, and will not execute again until
turned on by some other software. Unnamed costatements are always on.

Technical Reference Costatements � 155

costate ... {
statement
statement

}

...
abort;
...

statement

statement
statement

costate ... {
statement
statement

}

...
abort;
...

statement

statement
statement

Figure 7-6. Execution of Abort Statement

(a) At Time of Abort (b) Next Time

The CoData Structure

Each costatement is associated with a structure of type CoData. For this
discussion, assume that each costatement corresponds to a static CoData
structure.

The structure CoData follows.

typedef struct {
char CSState;
uint lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{

ulong ul;
struct {

uint u1;
uint u2;

} us;
} content;
char ChkSum2;

} CoData;

Use the functions provided to operate costatements. Do
not use the fields of a CoData structure directly.!

Figure 7-6 illustartes the executuion of the abort statement.

Dynamic C 32 v. 6.x156 � Costatements

Costatement State

The CSState field contains two flags, STOPPED and INIT. The functions
CoBegin, CoReset, CoPause and CoResume set these two flags. The
functions isCoDone and isCoRunning report these flags, as ind icated in
Table 7-1.

The function isCoDone returns true (1) if both the STOPPED and INIT
flags are set.

The function isCoRunning returns true (1) if the STOPPED flag is not
set.

The CSState field applies only if the costatement has a name. The
CSState flag has no meaning for unnamed costatements.

Last Location

The two fields lastlocADDR and lastlocCBR represent the 24-bit
address of the location at which to resume execution of the costatement. If
lastlocADDR is zero (as it is when initialized), the costatement executes
from the beginning, subject to the CSState flags. If lastlocADDR is
non-zero, the costatement resumes at the 24-bit address represented by
lastlocADDR and lastlocCBR.

These fields are zeroed when (1) the CoData structure is initialized by a
call to _GLOBAL_INIT, CoBegin or CoReset, (2) the costatement is
executed to completion or (3) the costatement is aborted.

Table 7-1. Meanings of STOPPED and INIT Flags

STOPPED INIT Meaning

Yes Yes The costatement either is “done,” or has been
initialized to run from the beginning, but set to
inactive. This condition can be set by CoReset.

Yes No The costatement is paused, waiting to resume exe-
cution from wherever it was paused. This
condition can be set by CoPause.

No Yes The costatement has been initialized to run from
the beginning, and will run when your program
execution reaches it. This condition can be set by
CoBegin.

No No The costatement is active and running and will
resume execution where it left off when the
program execution reaches it. This is the normal
condition of a running costatement. CoResume
will return the flags to this state.

Technical Reference Costatements � 157

Check Sum

The ChkSum field is a one-byte checksum of the address. (It is the
exclusive-or result of the bytes in lastlocADDR and lastlocCBR.) If
ChkSum is not consistent with the address, the program will generate a run-
time error and reset. The checksum is maintained automatically. It is
initialized by _GLOBAL_INIT, CoBegin and CoReset.

First Time

The firsttime field is is a flag that is used by waitfor statements. It is
set to 1 before the waitfor expression is evaluated the first time. This
aids in calculating elapsed time for the functions DelayMS, DelaySec,
and DelayTicks.

Content

The content field (a union) is used by the costatement delay routines to
store a delay count.

Check Sum 2

The ChkSum2 field is currently unused.

The Firsttime Flag and Firsttime Functions

A firsttime function is a delay function that can be called from a
waitfor statement. For example, the first time the DelayMs function is
called, it must set up the countdown variables for the specified amount of
delay (stored in the field content of a CoData structure. All subsequent
calls to DelayMs merely check whether the delay has expired. The
initialization flag must be associated with the CoData structure because
several costatements may call DelayMs.

A firsttime function is declared with the keyword firsttime. A
proper firsttime function definition would look like the following.

firsttime int MyDelay(CoData *ptr, delay
params...){

some code
}

The first argument of a firsttime function must always be a pointer to a
CoData structure. A firsttime function will use this pointer to check
whether the costatement�s firsttime field is 1. If so, the function will
set up variables required to count the delay. The firsttime function
should also set the firsttime flag to 0 so subsequent visits to waitfor
do not reset the delay counter.

Dynamic C 32 v. 6.x158 � Costatements

Calling a First Time Function

From within a costatement, use a firsttime function as an argument to a
waitfor statement.

costate{
...

waitfor(MyDelay(1000));
...
}

Note that the call to MyDelay above has only one parameter. The CoData
pointer, required in the function definition, is not to be included in the call.
The compiler automatically passes the address of the CoData structure as
the first argument if a firsttime function is called from within a
costatement.

Advanced CoData Usage

Up to this point, the discussion has assumed that CoData structures are
static and that there is one for each costatement.

A costatement is like a script. It specifies the sequence of operations to
perform. The CoData data structure, on the other hand, is like an actor. It
is responsible for �acting out� the script. With a static CoData structure
for each costatement, there one �actor� for each �script.�

However, there are instances where multiple �actors� are needed for the
same �script�. For example, if a factory has n identical machines, and
there is a costatement to control the machines, a program with static
CoData will look like the following program.

...
for(;;){

costate{
control sequence for machine 1

}
costate{

control sequence for machine 2
}
...
costate{

control sequence for machine n
}

}
...

Technical Reference Costatements � 159

Although it is extremely simple, the above code is wasteful. A second
approach is given below.

CoData Machine[n]; // an array of codata blocks
CoData ThisMachine; // one of the machines
int i;
...
for(i=0; i<n; i++){ // for all machines,

CoBegin(&Machine[i]); // enable machine
}
...
for(;;){ // endless loop

for(i=0; i<n; i++){
ThisMachine = Machine[i]; // get machine info
costate ThisMachine always_on{

Control sequence. Applies to any machine

}
Machine[i]=ThisMachine; // store it back

}
}
...

This program is more space efficient than the one before it. It uses the
same costatement for all the machines. However, the CoData structure
must be copied from, and back to, the array because the Machine array is
the actual storage for the states of each individual machine.

The following example offers another way to implement the same pro-
gram.

CoData Machine[n]; // an array of codata blocks
CoData *pMachine; // ptr to a machine
uint i;
...
for(i=0; i<n; i++){ // for all machines,

CoBegin(&Machine[i]); // enable machine
}
...
for(;;){

for(i=0; i < n; i++){
pMachine=&Machine[i];
costate pMachine always_on {

control sequence for all machines

}
}

}

Dynamic C 32 v. 6.x160 � Costatements

For further information, refer to the Dynamic C Application
Frameworks manual.$

It is never acceptable to have more than one costatement
sharing a CoData (unless there is a guarantee they will not
use the CoData at the same time, as in the second example
above). The fields in CoData can control only one
costatement at a time.

!

In this approach, pMachine is a pointer to a CoData structure. Using
pointers, there is no need to copy CoData structures before and after the
costatement.

Technical Reference Interrupts � 161

CHAPTER 8: INTERRUPTS

Dynamic C 32 v. 6.x162 � Interrupts

Dynamic C provides facilities for writing interrupt service routines (ISRs)
in C and for setting up ISRs at compile time. Interrupt service routines
may be written in assembly language.

See Chapter 6, Using Assembly Language.$

A function that services interrupts must save and restore registers (includ-
ing the memory management unit�s CBR register). The keyword
interrupt applies to a C function that services interrupts. All
C-language ISRs save and restore registers.

Three additional keywords�ret, reti, or retn�can be used to select
the return-from-interrupt instruction that will be performed. The following
example shows an interrupt service routine in skeletal form.

interrupt reti iservice(){
EI(); // reenable interrupts (optional)
body of code...
return; // optional at end of code

}

When the above return is executed, the final two machine-level instruc-
tions after the registers have been restored are as follows.

ei ; enable interrupts
reti ; return from interrupt

If the ret keyword were to be used, then the final two instructions would
be as follows.

ei ; enable interrupts
ret ; return from interrupt

If the retn keyword were to be used, the final instruction would be as
follows.

retn ; return from interrupt

No ei is necessary for retn since this instruction restores the previous
state of the interrupts. If none of the keywords for the type of return is
given, the default ret is assumed.

Technical Reference Interrupts � 163

Dynamic C uses the reti instruction to return from an interrupt created by
a Z180 peripheral. The reti instruction creates a particular type of bus
cycle that the Z180 peripheral recognizes as acknowledging the comple-
tion of the interrupt service routine. The ret type of return can be used
for interrupts created by devices not in the Z180 scheme, although it would
not hurt to use reti. The only consideration would be the possibility of
affecting devices in the Z180 family that might be part of the system, that
is, accidentally sending the interrupt acknowledge signal to them before
servicing the device�s interrupt.

The retn instruction is used to return from a nonmaskable interrupt and it
restores the interrupt state to the state prior to the nonmaskable interrupt.

More information on the Z180 interrupts can be found in the
Zilog manuals.$

If an interrupt routine is short, or cannot be interrupted, then interrupts can
be left disabled throughout its execution. However, to keep interrupt
latency (the amount of time that another interrupt request must wait before
service) at a minimum, avoid disabling interrupts for long periods.

In addition, communication with the Dynamic C host system will be
disrupted if interrupts are off for long periods, although the communication
link can tolerate interrupts being off for approximately 0.5 seconds.

Two functions enable and disable interrupts.

void EI(); // enable interrupts
void DI(); // disable interrupts

The following function returns 1 if interrupts are enabled and 0 otherwise.

int iff();

The following functions read and set the 8-bit Z180 I register.

uint readireg();
void setireg(int value);

Normally, the I register points to a 256-byte vector table defined by the
debugger startup code. If the location of the table changes, copy the
interrupt vectors used by the debugger to the new area before modifying
the I register.

Dynamic C 32 v. 6.x164 � Interrupts

Interrupt Vectors
There are two types of Z180 interrupt vectors. The first type, which
handles modes 0, 1 and nonmaskable interrupts, requires that a jump
instruction be inserted at the vector location because control is actually
transferred to that location. This type includes the following vectors.

08h: jp restart_service ; mode 0 int
38h: jp interrupt0_service ; mode 1 int
66h: jp nmi_service ; nonmaskable

Use the following preprocessor directives to set the vectors at 38
H
 and 66

H
.

#JUMP_VEC RST38_VEC function_name
#JUMP_VEC NMI_VEC function_name

The term RST38_VEC refers to the interrupt at 38
H
 and NMI_VEC refers to

the interrupt at 66
H
. Note that jump instructions are not usually stored at

these locations because these locations are usually in the library EPROM
area and cannot be changed. Instead, these locations jump to a relay vector
in RAM which is actually modified.

The second type handles the Mode 2 interrupt used by Z180 peripheral
devices, Z180 internal I/O devices and Dynamic C. This involves a 256-
byte table, identified by the I register, that can contain addresses of up to
128 interrupt service routines.

Use the following preprocessor directive to set interrupt vectors in the page
specified by the I register.

#INT_VEC (const_expression) function_name

The constant expression is the offset, in bytes, of the interrupt vector,
which is always an even number from 0 to 126. The function name is the
name of the interrupt service routine.

The vector table can be set with assignment expressions
during Dynamic C development, but these assignments will
not work when the code is in flash or burned into ROM.
Always use the preprocessor directive, which is executed at
compile time.

!

#INT_VEC expressions are processed as they are encountered during
compilation. If a program specifies more than one location for a vector,
the last one will be used. This can happen accidentally if, for example, an
ISR is written for a device and then a library function that includes its own
ISR for the same device is invoked. The library ISR will be used and the
written ISR will be ignored, a situation that can be confusing.

Technical Reference Interrupts � 165

Example

The following program illustrates the use of interrupt service routines
written in Dynamic C.

int PRT1_init(int tc); // initialize PRT1
#define TDE1 1 // PRT ch1 down-count enable
#define TIE1 5 // PRT ch1 interrupt enable
shared long counter; // shared between different

// interrupt levels
#define ticks 2304 // (9.216MHz / 20) * .005 sec

main(){
counter = 0L; // initialize counter
PRT1_init(ticks); // 5 ms interrupts
for(;;){

if(counter >= 5000) break;
outport(ENB485, !(counter & 64));

}
IRES(TCR, TDE1); // disable count down
IRES(TCR, TIE1); // disable interrupts
printf(�Counter has reached 5000.\n�);

}

// this interrupt routine increments the �counter�
#INT_VEC PRT1_VEC ccc
interrupt reti ccc(){

inport(TCR);
inport(TMDR1L); // clear TIF
EI();
counter = counter + 1;

}

int PRT1_init(int tc){
IRES(TCR, TDE1); // disable count down
IRES(TCR, TIE1); // disable interrupts
outport(TMDR1L, tc);
outport(TMDR1H, tc >> 8); // set data reg
outport(RLDR1H, tc >> 8); // set reload counter
outport(RLDR1L, tc); // set reload counter
ISET(TCR, TDE1); // enable count down
ISET(TCR, TIE1); // enable interrupts
EI();

}

The interrupt routine ccc increments a counter every 5 milliseconds. The
program prints a message and stops as soon as the counter reaches 5000.

Dynamic C 32 v. 6.x166 � Interrupts

Technical Reference Remote Download � 167

CHAPTER 9: REMOTE DOWNLOAD

Dynamic C 32 v. 6.x168 � Remote Download

Z-World provides field programmability for its controllers. A
downloadable program file can be created by selecting the appropriate
compiler option. The Z-World Download Manager (DLM), resident in a
controller, will receive the program, place it in memory, and start it
running. Remote downloading requires a communications program such
as ProComm that has an XMODEM transfer protocol available.

The downloaded program (DLP) and the DLM exist simultaneously as
separate programs on the remote controller. They occupy different
portions of memory. It is necessary for Dynamic C to know certain
memory-mapping parameters about the DLM before it compiles the
downloadable file.

Figure 9-1 shows how the DLM and DLP are arranged in memory. The
download program can occupy both root and extended memory.

DLM data

Target Root Memory

(DLM stack)

DLP data

(DLP stack)

DLP code

DLM code

BIOS

BIOS-defined
data top

DLM stack can overlap DLP data

0x2000

0x0000

Aligned at 256-byte
boundaries

DLP : downloaded program
DLM : Download Manager

DLM data

Target Extended Memory

DLP code

DLM code

DLM xmem
data bottom

DLM xmem
code top

DLM root
code top

DLM root
data bottom

Figure 9-1. Arrangement of DLM and DLP in Memory

The DLM may run in RAM, EPROM, or flash. The file may be down-
loaded to flash or RAM.

The Z-World DLM uses memory-mapping information contained in the
DLP to place the DLP machine code in the correct locations in target
memory. The DLM does not download uninitialized data for the DLP.
Initialized data reside in code space.

Technical Reference Remote Download � 169

The Download Manager
The DLM is found in source code, for example, DLM_Z0.C in the
SAMPLES\AASC subdirectory. The DLM may be modified in any way.

Once the DLM is installed on the target (compile it to flash or burn an
EPROM), connect the target to the PC�s serial port. A modem connection
is acceptable. Start the communication program. Then, issue a break
request (ALT-B in ProComm). The break request will cause the DLM to
restart.

The Download Manager displays the following menu continuously:

Download Manager Menu

1) Enter Password

2) Set Password

3) Report DLM Parameters

4) Download Program

5) Execute Downloaded Program

6) Hang-up Remote Modem

Enter Choice #:

Enter Password

Choose Enter Password before enabling choices 2, 3 or 4.

Set Password

Choose Set Password (press 2) to change the password. The DLM will
prompt for a new password twice for verification. The DLM must allow
password changes. See below.

Report DLM Parameters

This menu choice causes the DLM to report some memory-mapping
parameters auch as the following.

DLM Root Code Top 00:7579

DLM Root Data Bottom E7:A7E5

DLM Xmem Code Top 0000D000

DLM Xmem Data Bottom 0008C000

Dynamic C requires these parameters to compile a downloadable program
correctly. Dynamic C prompts for these values when a program is
compiling to a DLP file. Actual values will differ.

Dynamic C 32 v. 6.x170 � Remote Download

Download Program

This menu choice initiates an XMODEM download on the target side. The
upload must then be initiated on the PC side, using the communication
program�s XMODEM communication facilities. The file must be a
downloadable program file created with Dynamic C. The DLM verifies
the correctness of all data transmitted.

Execute Downloaded Program

This menu choice causes the DLM to shut down the interrupts it uses (but
not the serial interrupt used for serial communication because that interrupt
vector is shared by the DLP) and jump to the startup code of the DLP,
from which it will not return. The DLM stores the CRC check sum for
each segment and the number, size, and locations of downloaded seg-
ments. The DLM verifies the check sum for each segment before the DLP
is invoked. The DLP will not run unless all CRCs (generally 3 or 4) are
correct.

When the DLM is invoked again with another break request, it will start up
at 0x2200, regardless of what else is running.

Hangup Remote Modem

This menu choice causes the DLM to issue standard modem hang-up and
reset commands, and then jump to the DLP.

The DLM Code
Password security and timeout periods for the DLM can be controlled
during compilation by changing the following macro definitions at the
beginning of the DLM source code.

DLM_PASSWORD_STR defines the default password. If set to the null
string (��), then just press ENTER after choosing Enter Password to
gain entry.

DLM_PASSWORD_LVL Setting the password level to 0 enables the
Set Password.command to change the password at runtime.

DLM_MIN_PW_LEN Sets the minimum length of a valid password

DLM_MAX_PW_LEN Sets the maximum length of a valid password.
THe password mus be betwen the minimum and the maximum values.
The program will prompt for a new password twice for verification.

PSW_TIMEOUT Sets the number of milliseconds the DLM should wait
for a password before jumping back to the DLP (if one is present).

DLM_TIMEOUT Sets the general timeout period for serial communica-
tions. If a serial communication function times out, the DLM returns
control to the DLP (if one is present).

Technical Reference Remote Download � 171

HANGUP_TIMEOUT Specifies the timeout period the DLM will allow
for successful hangup of the modem when transferring control to the
DLP. If the hangup operation is unsuccessful, the DLM still transfers
machine control to the DLP.

The Downloaded Program (DLP)
To create a downloadable program, select Download via DLM (.DLP) in
the Compiler Options dialog under the OPTIONS menu. Then issue the
Compile to File command. Dynamic C will present the Download
Manager Parameters dialog shown below.

Fill in the fields in this dialog to match those reported by the DLM when
the DLM parameters (menu choice 3, described previously) were re-
quested. The fields will be all zeros the first time the DLP is compiled.
Thereafter, the field values will be appear with the last values used.

Buttons in the dialog box allow the download parameters to be saved or
retrieved to/from a download configuration (DLC) file. This is convenient
to create DLPs for more than one type of controller. Be careful not to
compile a DLP for a configuration different from the one on which it will
actually run.

Dynamic C 32 v. 6.x172 � Remote Download

How to Use the DLM
Here is a step-by-step example of how to use the DLM to download and
run a program. This example also demonstrates the use of an .RTI file for
targetless compilation.

1. With a target controller connected to a PC, start Dynamic C, and open
the file DLM_Z0.C in the SAMPLES\AASC subdirectory. Set
DLM_PASSWORD_STR to the desired password, or to �� for no pass-
word.

2. Issue the Create *.RTI File Targetless Compile command to create an
.RTI file for later use.

3. Compile DLM_Z0.C to the target.

4. Reset the target. Start the communication program. Enter the pass-
word when the Download Manager Menu appears.

5. Press 3 to display the DLM memory map. Jot down the numbers.

6. With Dynamic C open, open the program that is to be downloaded.

7. Select the .DLP for download compiler option.

8. Issue the Compile to File with *.RTI File command. Dynamic C will
prompt for the name of the .RTI file to use. After that, the Download
Manager Parameters dialog box will appear. Enter exactly the
numbers from the DLM display in the corresponding fields on the
dialog box. Click the OK button.

Assuming successful compilation, a download file will be created
having the same name as the source file with a .DLP extension.

9. Press 4 in the DLM menu to initiate the download. Then initiate an
XMODEM upload in the communication program. (Use the Page Up and
X keys in ProComm.)

10. When the transfer is complete, the DLP is ready to run. Press 5 in the
DLM menu to run it.

11. To terminate the DLP and return to the DLM, issue a break request in
the communication program (ALT-B in ProComm). The Download
Manager menu will reappear.

Technical Reference Remote Download � 173

Offset Contents Type

0 DLP Root Code Bottom ulong

4 DLP Root Code Top ulong

8 DLP Xmem Code Bottom ulong

12 DLP Xmem Code Top ulong

16 DLP Root Data Bottom ulong

20 DLP Root Data Top ulong

24 DLP Xmem Data Bottom ulong

28 DLP Xmem Data Top ulong

32 NUMSEG uint

34–125 Reserved —

126 CRC for this header uint

The DLP File Format
The DLP file created by Dynamic C has the following format.

1. A 128-byte header

2. Following the header, there are NUMSEG segments consisting of the
following entries.

Offset Contents Type

0 Physical address for the segment body ulong

4 SEGLEN (length of segment body) ulong

8 The segment body —

(SEGLEN+8) CRC for segment and first 8 bytes uint

Dynamic C 32 v. 6.x174 � Remote Download

Technical Reference Local Upload � 175

CHAPTER 10: LOCAL UPLOAD

Dynamic C 32 v. 6.x176 � Local Upload

Z-World provides field programmability for its controllers. An uploadable
to Flash EPROM (.BIN) or to SRAM (.BPF) program file can be created
by selecting the appropriate compiler option. The Z-World Program
Loader Utility (PLU), running on a PC connected via a COM port to the
target controller, will transfer the program file into the target controller�s
memory, and optionally start it running immediately after upload. Local
uploading requires a direct serial connection between the host PC and the
target controller.

The uploadable program (.BIN or .BPF) should be of the appropriate type
for the target controller. A BIOS+Application (.BIN) type program file is
suitable for a Flash EPROM equipped target, while an Application Only
(.BPF) type program file should only be uploaded to SRAM on a standard
(non-Flash) EPROM equipped target controller. The PLU determines the
target controller EPROM type and defaults to selection of only the
appropriate program file type.

It is possible to override the default program type, however this is done at
the sole discretion of the user. The reader is cautioned against such usage
unless they have great confidence in their ability as well as complete and
detailed knowledge of the target controller�s workings. In addition, such
nonstandard uses of the PLU are beyond the scope of this manual.

The Program Loader Utility
The Program Loader Utility (PLU) is found in the main Dynamic C 32
installation directory as PRGLOADR.EXE. In addition, the Dynamic C
32 installer places a shortcut icon on the Windows desktop as well as a
Start bar Program Group entry. Start the PLU by any of the standard
Windows methods (E.G.: double click on its icon).

See Appendix F, File Formats for more information on these
file types.

$

Technical Reference Local Upload � 177

On-line Help

Select the Help>Contents menu item to display the following dialog box.

Click on an Uploading, Dump, or Serial Options link for information
about that Help topic.

Set Communication Parameters

Select the Options>Serial menu item to display the following dialog box.

Select the appropriate COM port from the Port list box. Also set the serial
Baud Rate and Stop Bits parameters, if necessary.

The Tx Mode group box provides three choices, but because the program
files are pre-compiled by Dynamic C the choices are all equivalent. The
PLU does not compile programs, and so can not overlap compilation and
target communication.

Dynamic C 32 v. 6.x178 � Local Upload

Reset the Target Controller

The target controller must be reset into program mode in order to
communicate with the PLU. Often, this entails setting a jumper or
pressing keys, and either cycling power or pressing a reset button. Consult
the specific controller�s hardware manual for details.

When the target controller is in program mode, select the Options>Reset
Target menu item to perform a software reset of the target controller. The
following message is briefly displayed.

If the target controller is communicating with the PLU then the Resetting
Target message will disappear. If you see the following message box then
the target controller is not communicating with the PLU.

The problem may be that the communication parameters need to be
changed (either in the PLU or the controller), or that the target controller is
not running in program mode. Click the OK button, check the controller�s
power supply and jumper settings, check the PLU�s communication
parameters, and try again.

Technical Reference Local Upload � 179

Select the Program File

Click on the File>Upload menu item to display the following dialog box.

The PLU defaults to the appropriate program file Upload . . . type for the
attached target controller. Subject to the cautions and disclaimers
expressed previously, click on Generic upload, entire *.* file to override
the program file type. The Physical Address (Hex): edit box is enabled,
allowing unrestricted upload directly to any physical address.

Select the Run after upload checkbox to optionally start the uploaded
program immediately after uploading it. Click the OK button to proceed
to the file selection dialog.

Browse to find and select the uploadable program file, which must be
located on a local drive or network drive accessible to the PC that is
running the PLU.

Dynamic C 32 v. 6.x180 � Local Upload

Click the Open button to start uploading the selected program file. A
message box similar to this one displays the upload progress.

When the progress message box disappears, the PLU has finished upload-
ing the program file to the target controller. If the Run after upload
checkbox was enabled before the upload, then the controller should begin
to run the newly uploaded application.

The controller should be returned to run mode in order to assure that the
program will resume execution after the next power interruption. As
mentioned before, this often entails setting a jumper or pressing keys, and
either cycling power or pressing a reset button. Consult the specific
controller�s hardware manual for details.

Common Problems
Reuse of programming port. An application program intended for
upload via the PLU which reuses a serial port that is used by the PLU for
communication with the target controller raises special concerns. In
particular, if the PLU communicates with the target controller via Z0 or a
PLCBus UART board, the application must use the run-time reload_vec
function to set the Z0 or /INT1 (respectively) interrupt service vector,
instead of the #INT_VEC compile-time directive.

Manual software reset. Although the PLU attempts a software reset of
the target controller at start-up, it does not automatically attempt a software
reset before every upload. When using the PLU to update the program on
a series of target controllers it is recommended to select the
Options>Reset Target menu item before each upload. This will help to
ensure that the PLU is communicating properly with each target controller
in turn.

Technical Reference Run-Time Error Processing � 181

APPENDIX A:

RUN-TIME ERROR PROCESSING

Dynamic C 32 v. 6.x182 � Run-Time Error Processing

Compiled code generated by Dynamic C calls an error-handling routine for
abnormal situations. The error handler supplied with Dynamic C prints
any error messages to the STDIO window. When software runs stand-
alone (disconnected from Dynamic C), such an error message will hang
while waiting for a response from the PC being used to development the
program or program the controller. Be sure to provide for an error handler
unless there is a certainty that there will never be any run-time errors.

Your program calls the error handler indirectly through the global function
pointer ERROR_EXIT. The following example shows the use of the
standard error handler.

main(){
... // ERROR_EXIT is a pointer
(*ERROR_EXIT)(50,0); // to the standard handler

} // or to your own

In this example, the standard Dynamic C error handler would send the
message �Run Time Error 50� to the STDIO window. The first argument
is the error number. The second argument specifies the address at which
the error occurred.

The following example illustrates the use of a custom error-handling
function that can take the place of the standard error handler:

void my_handler(uint code, uint address){

error processing code...

}

main(){
...
ERROR_EXIT = my_handler; // substitute my handler

some statements...

(*ERROR_EXIT)(code, addr); // call my own handler

some statements...

}

A built-in Dynamic C symbol�ROM�is set to 1 if the compilation is to
an EPROM file. Use this variable to conditionally install a custom error
handler such as the one below.

#if ROM
ERROR_EXIT = user_error_handler;

#endif

Technical Reference Run-Time Error Processing � 183

Table A-1 lists the ranges of Dynamic C error codes.

Table A-1. Ranges of Dynamic C Error Codes

Code Meaning

0 – 99 User, nonfatal. For example, 49 = overflow from pow10.

100 – 127 System, nonfatal

128 – 227 User, fatal, no return possible

228 – 255 System, fatal, no return possible

Table A-2 lists the fatal errors generated by Dynamic C.

Table A-2. Dynamic C Fatal Errors

Code Meaning

228 Pointer store out of bounds

229 Array index out of bounds

230 Stack corrupted

231 Stack overflow

232 Aux stack overflow

233 Not used

234 Domain error (e.g., acos(2))

235 Range error (e.g., tan(pi/2))

236 Floating point overflow

237 Long divide by zero

238 Long modulus, modulus zero

239 Subtraction overflow

240 Integer divide by zero

241 Unexpected interrupt

242 Execute outside program bounds (RST 38)

The standard error routine reports only fatal errors.

Dynamic C 32 v. 6.x184 � Run-Time Error Processing

Long Jumps
Error recovery is performed using Dynamic C�s setjmp and longjmp
functions. If an error is detected anywhere in a program, a �long jump�
can be made to a safe location so that the necessary recovery tasks can be
performed. Typically a jump is made from a deeply nested function back
to the main program.

The setjmp function marks a place in the code and saves the stack pointer
and important registers. The longjmp function causes a return to the
place marked by the setjmp call. The processor stack is immediately
�unwound� and a known state is restored. This example shows how to do
this.

// probably in main()

jmp_buf savreg; // you must make a save buffer
...
if(setjmp(savreg)){

code to recover from the error

}
 ...

// then, somewhere, deeper in your code...

if(big error) longjmp(savreg,1);

When longjmp is executed, the execution resumes immediately after the
call to setjmp, and the value returned by the call to setjmp is the same as
the second argument passed to longjmp. This value can be the error code
as long as it is nonzero. (The return value of setjmp is 0 when it is called
directly.)

Call longjmp in the same function as the call to setjmp or in a function
called directly or indirectly from that function. (The main function is
always a safe place to put setjmp.)

A �long jump� restores the SP, IX, and PC registers and also restores the
auxiliary stack pointer.

Watchdog Timer
Most Z-World controllers have a watchdog timer. The watchdog timer is
used to ensure that software does not get stuck. Even error-free software is
susceptible to transient problems such as power surges, power outages, and
dropped bits.

A watchdog timer will reset the system after a certain period (typically
about 1.6 seconds) if the software does not reset the watchdog timer within
that period. This safety feature helps to ensure that the program continues
to function.

Technical Reference Run-Time Error Processing � 185

The function call
hitwd();

resets the watchdog timer. A program must call hitwd at least at the
frequency of the watchdog timer (about once per second) no matter what
else it is doing.

Although the watchdog timer can be disabled on some, but
not all, Z-World controllers, Z-World does not recommend
disabling the watchdog timer.

!

Protected Variables
A program may need to recover protected variables at when it restarts.
However, if the program has never run before, it must initialize the
protected variables.

The function _prot_recover recovers protected variables; the function
_prot_init initializes them. The function _sysIsSuperReset calls
the appropriate protected variable function.

See Appendix G, Reset Functions, for more information.$

Dynamic C 32 v. 6.x186 � Run-Time Error Processing

Technical Reference Efficiency � 187

APPENDIX B: EFFICIENCY

Dynamic C 32 v. 6.x188 � Efficiency

There are a number of methods that can be used to reduce the size of a
program, or to increase its speed.

Nodebug Keyword
Dynamic C places an RST 28H instruction in debug code at the beginning
of each C statement to provide locations for break points. These �jumps�
to the debugger consume one byte and about 25 clocks of execution time
for each statement. A function will not have RST 28H instructions if the
nodebug keyword is used in the function declaration.

nodebug int myfunc(int x, int z){
...

}

Once a function is nodebug, it is no longer possible to single-step into the
function or set a break point in the function, except when the assembly
window is active. (It is possible to single-step through any assembly
code.) The nodebug keyword also reduces entry and exit bookkeeping for
the function and turns off all checking for array bounds, stack corruption
and pointer stores.

If the nodebug option is used for the main function, the program will
begin to execute as soon as it finishes compiling (as long as the program is
not compiling to a file).

Use the nodebug keyword with the #asm directive.

See Chapter 5: Using Assembly Language, for more infor-
mation.$

Use the directive #nodebug anywhere within the program to enable
nodebug for all statements following the directive. The #debug directive
has the opposite effect.

Static Variables
Static variables are much more efficient on the Z180 than auto vari-
ables. In Dynamic C, the default local storage class is static, while most
C compilers use auto. Use auto variables in reentrant or recursive
functions.

Here are some rules concerning declarations that will help to conserve
code and save time.

1. Use global variables for global communication or constants.

Technical Reference Efficiency � 189

2. Avoid auto variables within functions whenever possible. To save
code space and execution time while preserving reentrancy, use the
register storage class for one- or two-byte items.

3. The shared and the protected keywords in data declarations cause
slower fetches and stores, except for one-byte items and some two-byte
items.

4. When there are more than 128 bytes of auto variables declared in a
function, keep in mind that the first 128 bytes are more easily accessed
than later declarations, owing to the limited 8-bit range of Z180 IX
register addressing.

Execution Speed
Compiler Options can be used to set a switch to optimize for speed or for
size. The default is size. If speed is selected, then the program size might
increase somewhat. Using static variables with nodebug functions will
increase program speed greatly. Stack checking must be disabled for good
speed.

Subfunctions
Subfunctions, extensions in Dynamic C, allow often-used code sequences
to be turned into a �subroutine� within the scope of a C function.

func(){
int aname();
subfunc aname: { k = inport (x); k + 4; }
...
... aname(); ...
...
... aname(); ...

...
}

The subfunction is prototyped as if it were a regular function. It must be
static and may not have any arguments. Variables used within the
subfunction must be available within the scope of the parent C function.
The actual code after the subfunc keyword can appear anywhere in the
enclosing function. The return value, if any, is indicated by placing an
expression followed by a semicolon at the end of the subfunction body.
This causes the expression value to be loaded into the primary register (HL
or BCDE).

Dynamic C 32 v. 6.x190 � Efficiency

All subfunction calls take three bytes, low overhead compared to some
simple expressions. For example, the expression *ptr++ can generate 14
bytes or more. Substitute the following code.

static char nextbyte();
subfunc nextbyte: *ptr++;

nextbyte();
...
nextbyte();
...

This can save ten or more bytes each time nextbyte occurs.
Subfunctions can also make a program easier to read and understand if
descriptive names are used for obscure expressions. The advantage of the
subfunction over a regular function is that it has access to all the variables
within the program and the calling overhead is low.

Observe that the equivalent C function

nextbyte(char *ptr) { return *ptr++; }

can be used for the same purpose. However, the calling overhead is much
greater, a minimum of eight bytes, and at least eleven bytes if ptr is an
auto variable.

Subfunction calls cannot be nested.

Function Entry and Exit
The following events occur when a program enters a function.:

1. Save IX on the stack and make IX the stack frame reference pointer (if
in useix mode).

2. Create stack space for auto variables or to save register variables.

3. Set up stack corruption checks if stack checking is on.

4. Notify Dynamic C of the entry to the function so that single-stepping
modes can be resolved (if in debug mode).

Items three and four consume significant execution time and are elimi-
nated when stack checking is disabled or if the debug mode is off.

Disable stack checking if speed is needed during debugging. In general,
avoid using auto variables, except when a function must be reentrant.
Using the IX register as a frame reference pointer (useix and #useix
options) results in faster and more compact access to arguments and auto
variables, especially for char variables. The useix option is especially
valuable when embedding assembly language inside a C program. In this
case it is easiest to access the variables using the ix register. Use
nouseix only for functions that can suspend under the real-time kernel.

Technical Reference Software Libraries � 191

APPENDIX C: SOFTWARE LIBRARIES

Dynamic C 32 v. 6.x192 � Software Libraries

Dynamic C�s function libraries provide a way to bring in only those
portions of system code that a particular program uses. The file LIB.DIR
contains a list of all libraries known to Dynamic C. This list may be
modified by the user. In particular, any library created by a user must be
added to this list.

Libraries are �linked� with a user�s application through the #use directive.
Files identified by #use directives are nestable, as shown in Figure C-1.

...
#use x.lib
...
main(){
...
}
...
#use z.lib
...

...
#use y.lib
...
function
...
function
...
function
...
#use z.lib
...

Application X.LIB
...
......
...
.....
..
....

Y.LIB

...

......

...

.....

..

....

Z.LIB

BIOS

Figure C-1. Linking Nestable Files in Dynamic C

The file DEFAULT.H contains several lists of libraries to #use, one list for
each product that Z-World ships. Dynamic C usually knows which
controller is being used, so it selects the libraries appropriate to that
controller. These lists are the defaults. A programmer may find it conve-
nient or necessary to add or remove libraries from one or more of the lists.

The default libraries for a Z-World controller contain many function
names, global variable names, and in particular, many macro names. It is
likely that a programmer may try to use one of the Z-World names for a
newly written program. Unpredictable problems can arise. Z-World
recommends that DEFAULT.H be edited to comment out libraries that are
not needed.

Technical Reference Software Libraries � 193

Headers
Table C-1 describes the three kinds of headers in Dynamic C libraries.

Users who develop their own libraries are encouraged to include descrip-
tive headers for the library and all of its functions. In particular, accurate
and correctly formatted headers must be defined for function help to work
with functions.

Library Headers

A library has a single header at the beginning that describes the nature of
the library. The header is a specially formatted comment, such as the
following example.

/* START LIBRARY DESCRIPTION ********************
DRIVERS.LIB

Copyright (c) 1994, Z-World.

DESCRIPTION: Miscellaneous hardware drivers li-
brary. Many of these routines disable inter-
rupts for short periods. Define NODISINT to
prevent this.

SUPPORT LIBRARIES:

END DESCRIPTION ********************************/

Table C-1. Dynamic C Library Headers

Library Headers Describe libraries. Library headers should tell a
programmer how to use the library.

Function Headers Describe functions. Function headers form the basis
for function lookup help.

Module Headers Makes functions and global variables in the library
known to Dynamic C

Dynamic C 32 v. 6.x194 � Software Libraries

Function Headers

Each function in a Z-World library has a descriptive header preceding the
function to describe the function. The header is a specially formatted
comment, such as the following example.

/* START FUNCTION DESCRIPTION *******************
plcport <DRIVERS.LIB>

SYNTAX: int plcport(int bit);

KEY WORDS:

DESCRIPTION: Checks the specified bit of the PLC
bus port.

RETURN VALUE: 1, if specified bit is set, else
zero.

END DESCRIPTION ********************************/

Function headers are extracted by Dynamic C to provide on-line help
messages.

Modules

A library file contains a group of modules. A module has three parts: the
key, the header, and a body of code (functions and data).

A module in a library has a structure like this one.

/*** BeginHeader func
1
, var

2
, */

prototype for func
1

declaration for var
2

/*** EndHeader */

definition of func
1
 var

2
 and possibly other

functions and data

The Key

The line (a specially-formatted comment)

/*** BeginHeader name
1
, name

2
, */

begins the header of a module and contains the key of a module. The key
is a list of names (of functions and data). The key tells the compiler what
functions and data in the module are available for reference. It is impor-
tant to format this comment properly. Otherwise, Dynamic C cannot
identify the module correctly.

If there are many names after BeginHeader, the list of names can
continue on subsequent lines. All names must be separated by commas.

Technical Reference Software Libraries � 195

The Header

Every line between the comments containing BeginHeader and
EndHeader belongs to the header of the module. When an application
#uses a library, Dynamic C compiles every header, and just the headers, in
the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and
variable declarations, a module header ensures proper type checking
throughout the entire application program.

The Body

Every line of code after the EndHeader comment belongs to the body of
the module until (1) end-of-file or (2) the BeginHeader comment of
another module. Dynamic C compiles the entire body of a module if any
of the names in the key are referenced (used) anywhere in the application.

An Example Module

Notice in the following (extremely contrived) example that the header
contains only function and variable declarations, not definitions. Any
function or variable which is actually defined in a header will be compiled
into every application that #uses the library containing the header,
whether or not the specific function or variable is ever referenced.

/*** BeginHeader foo, bar, foobar */
struct foo { int i; int j }; // declaration!
extern float bar; // declaration!
int foobar(int b, struct foo *pf); // prototype!
/*** EndHeader */

float bar; // variable definition here!

// function definition follows!
nodebug int foobar(int b, struct foo *pf) {

bar = b + (float) (pf->i) / (float) (pf->j);
return((bar - b) >= 0.5);

}

To minimize waste, Z-World recommends that a module header contain
only macros, prototypes, extern variable declarations or other declara-
tions that do not directly generate code or data. Define code and data only
in the body of a module. That way, the compiler will generate code or
allocate data only if the module body is used by the application program.

Programmers who create their own libraries must write modules following
the guideline in this section. Remember that a library must be included in
LIB.DIR and a #use directive for the library has to be placed somewhere
in the code.

Dynamic C 32 v. 6.x196 � Software Libraries

Technical Reference Extended Memory � 197

APPENDIX D: EXTENDED MEMORY

Dynamic C 32 v. 6.x198 � Extended Memory

Physical Memory
Depending on PAL coding and board jumper settings, Z-World controllers
can address up to 512K of ROM or 256K of flash memory, and 512K of
RAM. The maximum memory available is 1 megabyte total.

Usually, memory chips installed on Z-World controllers have a capacity
less than 512K. A typical SRAM chip has 32K or 128K.

If a memory chip has less than 512K, addresses outside the
memory range map to addresses within the range. For
example, for a 32K chip, addresses evaluate modulo 32K.
If memory is addressed beyond the range of the chip, data
may seem to be replicated in memory. Or worse, data may
be overwritten.

!

Memory Management

Z180 instructions can specify 16-bit addresses, giving a logical address
space of 64K (65,536 bytes). Dynamic C supports a 1-megabyte physical
address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit Z180
addresses to 20-bit memory addresses. Three MMU registers (CBAR,
CBR, and BBR) divide the logical space into three sections and map each
section onto physical memory, as shown in Figure D-1.

4000

C000

Logical Space Physical Space

FFFF

0000

XMEM

ROOT

BIOS

CBAR
Com Bank

00000

FFFFF

CBR

BBR

CBAR

CBR

BBR

Common/Bank Area Register

Common Base Register

Bank Base Register

2000

6000

8000

A000

E000

BIOS

Figure D-1. Z180 On-Chip Memory Management Unit (MMU) Registers

Technical Reference Extended Memory � 199

The logical address space is partitioned on 4K boundaries. The upper half
of the CBAR identifies the boundary between the ROOT memory and
XMEM. The lower half of CBAR identifies the boundary between the BIOS
and the ROOT. The start of the BIOS is always address 0. The two base
registers CBR and BBR map XMEM and ROOT, respectively, onto physical
memory.

Given a 16-bit address, the Z180 uses CBAR to determine whether the
address is in XMEM, BIOS, or ROOT. If the address is in XMEM, the Z180
uses the CBR as the base to calculate the physical address. If the address
is in ROOT, the Z180 uses the BBR. If the address is in the BIOS, the Z180
uses a base of 0.

A physical address is, essentially,

(base << 12) + logical address.

logical address

15 12 11 0

+
base

physical address

19 0

Figure D-2. Z180 Physical Addresses

Dynamic C 32 v. 6.x200 � Extended Memory

Figure D-2 shows the address locations.

Memory Partitions

Table D-1 explains the memory partitions in Dynamic C.

The XMEM area has many mappings to physical memory. The mappings
can change by changing the CBR as the program executes. Extended
memory functions are mapped into XMEM as needed by changing the CBR.
The mapping is automatic in C functions. However, code written in
assembly language that calls functions in extended memory may need to
do the mapping more specifically.

Table D-1. Dynamic C Memory Partitions

Name Size Description

BIOS 8K Basic Input/Output System. The BIOS is always
present and is always mapped to address 0 of ROM
or flash. The BIOS contains the power-up code, the
communication kernel, and important system
features.

ROOT 48K The area between the BIOS and XMEM (the bank
area). The root—“normal” memory—resides in a
fixed portion of physical memory. Root code grows
upward in logical space from address 2000 (hex) and
root data (static variables, stack and heap) grow
down from E000. (Initialized static variables are
placed with code, whether in ROM, flash, or RAM.)

XMEM 8K XMEM is essentially an 8K “window” into extended
physical memory. XMEM can map to any part of
physical memory (ROM, flash, or RAM) simply by
changing the CBR.

Technical Reference Extended Memory � 201

Functions may be classified as to where Dynamic C may load them. The
keywords in Table D-2 apply to function definitions.

Depending on which compiler options are selected, code segments will be
placed in RAM, ROM, or flash.

Figure D-3 shows the memory layout with code in RAM.

XMEM CODE

Logical Space Physical Space

FFFF

0000

XMEM

BIOS 00000

E000

BIOS

RAM

EPROM

ROOT DATA

ROOT CODE

ROOT DATA

ROOT CODE

Code Placed in RAM

Figure D-3. Memory Layout with Code in RAM

Table D-2. Memory Keyword Definitions

Keyword Description

root The function must be placed in root memory. It can call
functions residing in extended memory.

xmem The function must be placed in extended memory. Calls to
extended memory functions are not as efficient as calls to
functions in root memory. Long or infrequently used
functions are appropriate for placement in extended memory.

anymem This keyword lets the compiler decide where to place the
function. A function’s placement depends on the amount of
reserve memory available. Refer to the Memory Options
command in the OPTIONS menu.

Dynamic C 32 v. 6.x202 � Extended Memory

Figure D-4 shows the memory layout with code in ROM or flash.

ROOT DATA

XMEM

Logical Space Physical Space

FFFF

0000

XMEM

BIOS 00000

E000

BIOS

RAM

EPROM

ROOT CODE

ROOT DATA

ROOT CODE

Code Placed in
ROM or flash

Figure D-4. Memory Layout with Code in ROM or Flash

Memory management in Dynamic C is automatic. The Dynamic C
compiler emits code that will set the mapping registers.

Control over Memory Mapping

The programmer controls how Dynamic C allocates and maps memory.

Refer to the discussion of the OPTIONS menu in Chapter 4,
The Dynamic C Environment.$

Extended Memory Functions
Physical memory is divided into 4K �pages.� Two consecutive pages are
visible in the extended memory window (XMEM) at any one time. Addi-
tional code is required to handle calls to functions or jumps to locations
not currently mapped in the extended memory window.

A program can use many pages of extended memory. Under normal
execution, code in extended memory maps to the logical address region
E000

H
 to F000

H
, the lower half of XMEM. As execution approaches F000,

the pages are shifted so that the code in the region F000 to FFFF (the
upper half) is moved down to the E000 to F000 region. The program
automatically calls a function in root memory to accomplish this task. The
function modifies the CBR to �slide� the code down one page and then
jumps to the new location. This transfer of control is made is at the end of
the first statement that crosses F000. (Hence, no single C expression can
be more than 4K long.)

Technical Reference Extended Memory � 203

However, switch or while statements that cause program jumps can be
as long as desired. If a jump crosses page boundaries, the program uses a
bouncer to execute the jump.

While any C function can call any other C function, no matter where in
memory it is located, calling a function located in extended memory is less
efficient than calling a function in root memory. That is because the
program must use a bouncer to modify the CBR before and after the call.

A bouncer is a 4-byte code in root memory that points at the extended
memory function and manipulates the stack and the CBR. Because of
bouncers, calling extended memory functions is no different from calling
root memory functions, assembly language or otherwise. All function
�entry points� are in root memory.

Suggestions

Pure Assembly Routines

Pure assembly functions (not inline assembly code) must reside in root
memory.

C Functions

C functions can be placed in root memory or extended memory. While
access to variables in C statements is not affected by the placement of the
function, there is bouncer overhead to call C functions in extended
memory. Dynamic C will automatically place C functions in extended
memory as root memory fills. Short, frequently used functions may be
declared with the keyword root to force Dynamic C to load them in root
memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of
whether it is compiled to extended memory or root memory.

However, because the bouncer of an extended memory function introduces
four more bytes between the last pushed argument and the return address,
the actual offset of arguments from the stack pointer depends on whether
the code is compiled to extended memory or not. Therefore, it is impor-
tant to use the symbolic names of stack-based variables instead of numeric
offsets to access the variables. For example, if j is a stack variable, @SP+j
is the actual offset of the variable from the stack pointer. Alternatively, if
IX is the frame reference pointer, �ix+j� specifies the address of the
stack-based variable.

Dynamic C 32 v. 6.x204 � Extended Memory

Dynamic C issues a warning when it finds assembly code embedded in an
extended memory function to discourage inline assembly segments that do
not use symbolic offsets for stack-based variables. The warning can be
disabled by appending the keyword xmemok after the #asm directive. Use
symbolic names, not numeric offsets.

All static variables, even those local to extended memory
functions, are placed in root memory. Keep this in mind if
functions have many variables or large arrays. Root
memory can fill up quickly.

!

Extended Memory Data

Most of the details of calling extended memory functions are handled by
the compiler. The situation is more complicated for extended data. To
access extended memory data, use function calls to exchange data between
extended memory and root memory. These functions are provided in the
Dynamic C libraries.

See XMEM.LIB.$

Extended memory addresses are 20-bit physical addresses (the lower 20
bits of a long integer). Pointers, on the other hand, are 16-bit machine
addresses. They are not interchangeable. However, there are library
functions to convert address formats.

Dynamic C includes two nonstandard keywords to support extended
memory data: xstring and xdata.

The declaration

xstring name { string 1, ... string n };

defines a table of 20-bit physical string addresses (as unsigned long
ints), and corresponding strings. The term name represents the 20 bit
physical address of the table in an unsigned long int.

"abc"
"start"

"stop"

"on"
"off"

name table

20-bit
addresses

Technical Reference Extended Memory � 205

The xdata statement has two forms. The declaration

xdata name { value 1, ... value n };

defines a block of initialized extended memory data. The values must be
constant expressions of type char, int, unsigned int, long, un-
signed long, float, or string.

name 10

5.73

'A'

"start"

65575L

The other form

xdata name [n];

defines a block of n bytes in extended memory.

name

n bytes

In either case, the term name represents the 20-bit (physical) address of the
block.

Use the following functions to move blocks of data between logical
memory and physical memory. Pass addresses of extended memory data
as long integers containing the 20-bit physical address in the least signifi-
cant bits. Names declared with xdata and xstring are 20-bit extended
memory addresses.

� xmem2root(long src, void *dst, uint n)

Copies n bytes from extended memory (src) to root memory starting
at dst.

� root2xmem (void *src, long dst, uint n)

Copies n bytes from root memory (src) to extended memory starting
at dst.

� uint xstrlen (long address)

Returns the length of the string at the address found at address. Keep
in mind that an xstring declares an array of 20-bit addresses of
strings.

� long xgetlong (long address)

Returns the long integer at the extended memory address.

Dynamic C 32 v. 6.x206 � Extended Memory

The following example illustrates the use of extended memory.

xstring greetings {�hello there�,
�good-bye�,
�nice to see you�,
�how have you been�};

xdata table { 1.23, 1.45, 1.67, 1.85,
1.93, 2.04, 5.03, 6.78 };

xdata store[10000];

main(){
float y;
long j, k;
int a;
char my_chars[30];

// get one floating number at j
j = ...
xmem2root (table + j*4, // x address

 &y, // destination
 4); // # bytes

// two bytes from store
j = ...
xmem2root(store + j, &a, 2);
root2xmem(&a, store + j, 2); // other direction

// copy string to root
j = 2; // if we want �nice to see you�
k = xgetlong(greetings+j*4);// addr of XMEM string
xmem2root(k,

 my_chars, // destination
 xstrlen(k)+1);// 1 is for null byte

}

Declarations involving xdata and xstring must be made
outside the context of a function.!

Refer also to XDATA.C in the Dynamic C SAMPLES
subdirectory for another example.

$

Technical Reference Compiler Directives � 207

APPENDIX E: COMPILER DIRECTIVES

Dynamic C 32 v. 6.x208 � Compiler Directives

Compiler directives are commands that instruct the compiler how to
proceed. They take the form of preprocessor commands, an example of
which appears here.

#nouseix

These directives are detailed in Chapter 5, The Language.
(The #nodebug directive automatically disables index
checking, pointer checking and stack verification.)

$

Default Compiler Directives
Default compilation options are specified in the library header file DC.HH.
The file DC.HH is compiled before any other library or user code. The
following major defaults are set in DC.HH.

1. The default storage class for variables is static.

#class static

This default may be changed, but Z-World libraries will not work then.
However, static is far more efficient and auto is often not required
in embedded programming. Reentrant functions require auto vari-
ables.

2. The default memory allocation is anymem.

#memmap anymem

This allows Dynamic C to choose between root memory and extended
memory.

3. The nodebug option is enabled when compiling code to ROM.

#if ROM == 1
#nodebug
#endif

The #nodebug global directive has extensive implications for gener-
ated code. Stack, index and pointer checking are disabled. All
debugging features are removed from the code (especially RST 28s,
which are used for break points). This generates smaller code that runs
efficiently.

4. The default for the use of the IX register is #nouseix.

Technical Reference File Formats � 209

APPENDIX F: FILE FORMATS

Dynamic C 32 v. 6.x210 � File Formats

Use the Compile to File or Compile to File with *.RTI File command to
generate an output file. Select the appropriate output file format in the
Compiler Options dialog.

Layout of ROM Files
When a program (say, filename.C) is compiled for ROM, the compiler
generates a file named filename.BIN. Dynamic C can also create an
extended Intel HEX file (filename.HEX).

Select the BIOS+Application (.BIN) compiler option. Check the Create
HEX File Also box to create an Intex hex file.

The resulting file contains the three code segments back-to-back. (Initial-
ized data are constants and considered code. Unitialized data are not
included in the ROM file.)

00000

XMEM CODE

ROOT CODE

BIOS

The BIOS included in the ROM file is either (1) a copy of the first 2000
H

of ROM of a Z-World controller connected to a development system or (2)
a copy of the BIOS in an .RTI file, depending on the compile command
selected.

Layout of Downloadable Files
Select the Download via DLM (.DLP) compiler option for downloadable
files.

Details of the file format are found in Chapter 9, Remote
Download.$

Technical Reference File Formats � 211

Layout of Download to RAM Files
Select the Application Only (.BPF) compiler option.

The following diagram shows the locations of different segments in a
RAM file.

RAM start

root data
48K

root code

End of File

XMEM CODE

Uninitialized data do not occupy any space in the RAM file. The root is
always 48 kbytes long. The load address for the code in RAM is embed-
ded in the file output. The default load address is 40000

H
 (256 kbytes) or

80000
H
 (512 kbytes), but can be changed. A RAM file starts with root

code and not the BIOS, as the BIOS is expected to be in the ROM of the
receiving controller.

The memory map for a 32-kbyte SRAM is as above, but the architecture
takes advantage of memory reflection. The default code data gap is 8000

H

(32 kbytes). This results in the actual layout of the code in the RAM as
shown below.

root

32K �real�
memory

16K

32K memory
�reflection�

32K

64K

48K

0

root
data

code

code

data

XMEM

XMEM

Dynamic C 32 v. 6.x212 � File Formats

The root data appear to start at 48 kbytes (and at 80 kbytes, 112 kbytes, ...)
since it really starts at 16 kbytes because of the duplication of the memory
image. Extended memory also appears to start at 48 kbytes. In this
scheme, the sum of root code and data is limited to 16 kbytes, and the total
extended memory code is limited to 16 kbytes.

Remember that all static variables, even those local to
extended memory functions, are placed in root memory.!

Hex File Information
A HEX file includes an identification flag and other pertinent information.
This information starts at address 2300

H
 in a ROM file and at 0300

H
 in a

RAM file, as indicated in Table F-1.

Table F-1. HEX File Information

0x?300 0xAA; identification byte

0x?301 0x55; identification byte

0x?302 0x81; identification byte

0x?303 0x42; identification byte

0x?304 0x01 for ROM file, 0x00 for RAM file

0x?305-6 16-bit cyclic redundancy check

0x?307 BBR register value

0x?308-9 16-bit address of first free byte above root code

Startup code for the program appears at 2200

H
 in a ROM file and at 0200

H

in a RAM file. The startup code performs the following functions.

1. Load the stack pointer (SP).

2. Set the I register (interrupt base).

3. Enable interrupts (ei).

4. Call library function named .startup.

5. Call bfree to initialize heap management.

6. Set ERROR_EXIT to exit() as a default.

7. Set aux stack (checking and debugging) and stack limit.

8. Reset RST 28 vector to debugger.

9. Push time in seconds since 1-JAN-1980 on stack as an unsigned
long.

10. Push program revision, as an int, on stack.

11. Call main().

Technical Reference File Formats � 213

Jumping to Another Program
Conceivably, several programs may be downloaded, all in different
sections of physical memory. There is a function resident in ROM that
makes it possible to jump from one program to another.

void newbbr(uint offset, uint CBAR_BBR)

This function does not return, but jumps to and starts up the program
specified by its arguments.

For example, say a program has been downlaoded at address 9C000
H
.

Then, the BBR is 9C
H
 � 2

H
 (for the size of the BIOS) or 9A

H
. The CBAR

is always E2
H
 (for RAM). The offset is always 2200

H
 (for RAM). The

following call to newbbr would be made.

newbbr(0x2200, 0xE29A)

Using the newbbr function requires a fair amount of mastery with
Dynamic C and the target controller.

Burning ROM
Z-World controllers support several types of EPROM, lncluding the
following.

27C256 32 kbytes 28 pins
27C512 64 kbytes 28 pins
27C010 128 kbytes 32 pins

Copyright Notice

The Dynamic C library is copyrighted. Place the following copyright
notice on any ROM created with Dynamic C.

© 1990-2002 Z-World, Inc.

In addition to this notice, a copyright notice may be added to protect other
user-written code.

Purchasers of the copyrighted Dynamic C software and a copyrighted
Z-World ROM are granted permission to copy the ROM, as described
above, provided that

1. The resulting ROMs are used only with Z-World controllers.

2. The above copyright notice is placed on the ROM.

Dynamic C 32 v. 6.x214 � File Formats

Technical Reference Reset Functions � 215

APPENDIX G: RESET FUNCTIONS

Dynamic C 32 v. 6.x216 � Reset Functions

Z-World�s embedded applications need to differentiate the cause of resets
and restarts. Table G-1 lists some possible hardware resets.

In addition to these hardware resets, an application may cause a super
reset. A super reset is necessary because important system data should
persist over the occurrence of regular resets and power failures.

Z-World�s super reset is a mechanism to initialize certain persistent data in
battery-backed RAM. A normal reset does not initialize these data, but
retains their values. A super reset always occurs when a program is first
loaded. Subsequent resets are normal resets, unless the software performs
a super reset intentionally.

Reset Differentiation
Dynamic C includes a set of functions to differentiate the various resets.
These functions are grouped into two main categories.

1. The function names begin with an underbar (_), have important side
effects, and may only be called once and only once at the beginning of
the main program.

2. The function names do not begin with an underbar, have no side
effects, and may be called anywhere in a program.

� int _sysIsSuperReset()

This function detects whether a super reset was requested. The
function returns 1 if a super reset was requested and 0 if not.

If a super reset was requested, this function calls _prot_init to
initialize the protected variable feature. In addition, it calls the function
chain sysSupRstChain. Additional code may be added to this
function chain.

If a super reset was not requested, this function also calls
_prot_recover to recover partially written protected variables.

Table G-1. Possible Hardware Resets

Regular Reset The system /RESET line is pulled low and released.

Power Failure
Reset

Power drops below a threshold, and the supervisor
chip pulls /RESET low and causes a reset.

Watchdog Reset
The watchdog timer was not reset. It pulls /RESET
low and causes a reset.

Technical Reference Reset Functions � 217

� int _sysIsPwrFail()

This function determines whether the system had a power failure just
before restarting. The function return 1 if a power failure occurred and
0 otherwise. A custom power-failure handler cannot be used with this
function.

� int _sysIsWDTO()

This function determines whether the system was reset by a watchdog
timeout. The function returns 1 of a watchdog timeout occurred and 0
otherwise.

The following is the recommended reset detection sequence. It should
be done before anything else in the main function.

main(){
...
declarations
...
if(_sysIsSuperReset()){

statements
}else if(_sysIsPwrFail()){

statements
}else if(_sysIsWDTO()){

statements
}else{

statements
}
...
rest of main

}

Functions of the second category have names similar to those in the first
category, but they do not have initial underbars.

int sysIsSuperReset()

int sysIsPwrFail()

int sysIsWDTO()

These functions reflect the cause of the last reset. They can be called
anywhere in the program as often as needed. Functions of the first
category can only be called at the beginning of main.

Dynamic C 32 v. 6.x218 � Reset Functions

Reset Generation
Software can generate two types of system reset.

Call sysForceReset to turn off interrupts and wait until the watchdog
resets. This reset will be registered as a watchdog reset when the applica-
tion restarts.

Call sysForceSupRst to request a super reset. This function turns off
interrupts and waits until the watchdog resets. This reset will be registered
as a super reset when the application restarts.

The controller must have a hardware watchdog enabled for either of these
functions to work.

Technical Reference Existing Function Chains � 219

APPENDIX H: EXISTING FUNCTION CHAINS

Dynamic C 32 v. 6.x220 � Existing Function Chains�

The function chains in Table H-1 exist in the libraries specified. Segments
may be added to these chains. Don�t redefine a chain if its library is
#used, noting that SYS.LIB is #used by default.

Table H-1. Dynamic C Function Chains

Library Function Chain Description

AASC.LIB _aascInitDF
Registers AASC hardware
dependent function pointers.

SRTK.LIB _srtk_hightask

A chain of code executed by
SRTK every 25 ms in the high-
priority task.

SRTK.LIB _srtk_lowtask

A chain of code executed by
SRTK every 100 ms in the low-
priority task.

SYS.LIB _sys_25ms

After sysInitTimer1 is
called, a chain of code executed
every 25 ms in the PRT1 ISR
(with interrupts disabled).

SYS.LIB _sys_25msPostEI

After sysInitTimer1 is
called, a chain of code executed
every 25 ms in the PRT1 ISR
(with interrupts enabled).

SYS.LIB _sys_390

On PK2100 series controllers
after sysInitTimer1 is
called, a chain of code executed
every 0.390 ms in the PRT1 ISR
(with interrupts disabled).

SYS.LIB _sys_781

After sysInitTimer1 is
called, a chain of code executed
every 0.781 ms in the PRT1 ISR
(with interrupts disabled).

SYS.LIB _sys_781PostEI

After sysInitTimer1 is
called, a chain of code executed
every 0.781 ms in the PRT1 ISR
(with interrupts enabled).

SYS.LIB sysSupRstChain
A chain of tasks to perform when
super resetting.

VDRIVER.LIB _GLOBAL_INIT

Performs general global
initialization tasks. Users are
encouraged to add segments to
this chain.

Technical Reference New Features � 221

APPENDIX I: NEW FEATURES

Dynamic C 32 v. 6.x222 � New Features

The reader is encouraged to read the Release_Notes.txt file in Dynamic C�s
main installation folder for more comprehensive information on changes.

Dynamic C 32 IDE

Compiler Options, Output Generation Group

The Zero Time Stamp checkbox has been added to help facilitate code
certification. When enabled, forces to zero the compile time-stamp and
compiler performance information which is embedded into the compiled
code. Identical compiler output will always generated, given a fixed set of
Dynamic C 32 compiler version and options, application code and library
code.

Compiler Options, File Type for �Compile to File� Group

The compile to .BIN (EPROM) file options have been expanded to include
the ability to create .BIN files which can communicate with Dynamic C or
the Program Loader Utility after being externally programmed into a Flash
EPROM chip. The simulated EEPROM area options include replacing it
(copying from the attached controller or new-style .RTI file), clearing
(zeroing) it or excluding it (not specifically programming the Flash chip�s
simulated EEPROM area at all).

In support of the new .BIN file options, the Remote Target Information
(.RTI) file has been extended to include a Flash equipped source
controller�s simulated EEPROM area. While Dynamic C 32 version 6.30
can use a .RTI file created by a previous version of Dynamic C, a .BIN file
created by compiling to file with an older .RTI file effectively only gives
the choice between clearing or excluding the simulated EEPROM area.
Previous versions of Dynamic C can not use the extended .RTI file format.

Target Communication

High resolution inter-character gaps have been reintroduced, allowing
more reliable target communication during debugging, especially when
combining high bps serial rates with slow controllers.

New Libraries
GESUPRT.LIB provides support for interfacing an application to the
Graphics Engine. SF1000_Z.LIB provides support for applications
requiring the extra nonvolatile storage that is available from Z-World�s
SF1000 series of Serial Flash memory cards.

Program Loader Utility
A new chapter has been added to explain basic operation of the Program
Loader Utility which is included with Dynamic C. See Chapter 10: Local
Upload.

Technical Reference Index � 223

INDEX

%= operator 123
& (address operator) 94, 119
&& operator 122
&= operator 123
() parentheses

as operators 116
(type) operator 118
* (indirection operator) 94, 118
*= operator 123
+ operator 118
++ increment operator 117
+= operator 122
-> right arrow operator 116
. dot

as operator 116
.BPF files 60
.DLP for Download 172
.RTI ... 222
/ operator 119
/= operator 123
; semicolon operator 78, 132
< operator 120
<< operator 120
<<= operator 123
<= operator 120
= operator 122
== operator 121
> operator 121
>= operator 121
>> operator 120
>>= operator 123
? : operator 122
@PC.. 134
@RETVAL 141
@SP 136, 137, 139, 140, 141, 145,

203
[] array indices 116
\ backslash 132

for character literals 84
^ operator 121
^= operator 123

Symbols

! logical NOT operator 117
!= operator 121
operator 84, 85
operator 84, 85
#asm ... 21, 83, 124, 130, 131, 188,

204
#class 24, 105, 125, 208
#debug ... 101, 105, 107, 109, 125,

188
#define ... 81, 84, 85, 86, 112, 125,

126
#elif 125, 126
#else 125, 126
#endasm 21, 83, 124, 130, 131, 132
#endif 125, 126
#error 125
#fatal 125
#funcchain 19, 125
#if .. 125
#ifdef 126
#ifndef 126
#include

absence of 18, 23, 77
#INT_VEC 164, 180
#interleave 126
#JUMP_VEC 164
#KILL 126
#makechain 19, 126
#memmap 22, 105, 126, 208
#nodebug . 51, 101, 105, 107, 109,

111, 125, 188, 208
#nointerleave 126
#nouseix 23, 105, 127, 208
#undef 86, 126
#use ... 18, 23, 77, 81, 83, 127, 195
#useix 23, 105, 127, 190
#warns 125
#warnt 125
% operator 120

Dynamic C 32 v. 6.x224 � Index

_aascInitDF 220
_GLOBAL_INIT ... 107, 150, 156,

157, 220
function chain 20
initializing CoData 150

_prot_init 185, 216
_prot_recover 185, 216
_srtk_hightask 220
_srtk_lowtask 220
_sys_25ms 220
_sys_25msPostEI 220
_sys_390 220
_sys_781 220
_sys_781PostEI 220
_sysIsPwrFail 26, 217
_sysIsSuperReset 26, 185, 216, 217
_sysIsWDTO 26, 217
{ } curly braces 78
| operator 122
|= operator 123
|| operator 122
~ bitwise complement operator 117
27C010 213
27C256 213
27C512 213

A

abort 100, 149, 150, 154, 156
About Dynamic C 74
abstract data types 80
active window 43
adc (add-with-carry) 130
Add to Top button 55
add-assign operator (+=) 122
add-with-carry (adc) 130
Add/Del Items <CTRL-W> 36, 55,

69
Add/Del Watch Expression

<CTRL-W> 35
Add/Del Watch Expression �CTRL-

W� 54, 55
adding watch window items 54, 55
address operator (&) 94, 119
address space 22

addresses in assembly language
 134, 137

aggregate data types 92
ALT key 41
ALT-Backspace 46
ALT-C 50
ALT-CTRL-F3 50, 51
ALT-F 41, 42
ALT-F10 35, 56
ALT-F2 52, 53
ALT-F4 42, 45
ALT-F9 34, 52
ALT-H 71
ALT-I .. 54
ALT-O 58
ALT-R 52
ALT-SHIFT-backspace 46
ALT-W 68
always_on 149, 151, 154, 156
analog input 16
analog output 16
AND

assign operator (&=) 123
logical operator (&&) 122

anymem 66, 100, 126, 208
Append Log 62
application files 76
Application Only (.BPF)... 30, 211
argument passing . 18, 23, 95, 135,

136, 141, 142, 143
modifying value 95

arguments 23
arrange icons

command 68
arranged icons 69
arrays 92, 93, 95

bounds checking 188
characters 113, 114
indices 116
subscripts 92

arrow keys 40, 41
for cursor

positioning 41
for editing text 41

Technical Reference Index � 225

ASCI serial port 143
assembly code multi-line macro

 134
assembly language . 16, 21, 34, 53,

83, 124, 130, 131, 132, 133,
140, 141, 142, 143, 144, 145,
188, 203

#asm directive 21
#endasm directive 21
embedding C statements 130

Assembly window 70
assembly window .. 16, 33, 34, 68,

69, 70, 130
assign operator (=) 122
assignment operators 122, 123
associativity 115, 124
auto 18, 19, 23, 24, 100, 125, 134,

135, 136, 138, 139, 188, 189,
190, 208

Auto Open STDIO Window 62
auxiliary stack 184, 212

size .. 65

B

backslash
character literals 114
continuation in directives 124

backup battery 37
basic unit of a C program 78
battery backup........................... 37
baud rate 67
BBR 96, 97, 98, 198, 199, 200,

201, 202, 213
BCDE 131, 135, 141, 142
BCDE (primary register) 189
BeginHeader 23, 82, 83, 102, 194,

195
beginning of file 41
beginning of line 41
BIN files . 31, 32, 50, 60, 176, 210
binary operators 115
BIOS 22, 30, 31, 32, 35, 76, 96, 97,

98, 102, 126, 199, 200, 201,
210, 211, 213

library functions 31
symbol library 31, 32

BIOS+App+Lib+ClrSEE (.BIN) 32
BIOS+App+Lib+SimEE (.BIN) 31
BIOS+App+Library (.BIN) 31
BIOS+Application (.BIN) 31, 210
bitwise

AND operator (&) 119
complement operator (~) 117
exclusive OR operator (^) ... 121
inclusive OR operator (|) 122

body
module 82, 83, 195

bouncer 203
BPF files 30, 50, 176
branching 89, 90
break 87, 88, 90, 100, 109

example 88
break points 16, 35, 53, 56, 104,

130, 188, 208
hard 35, 52, 53
interrupt status 35, 52, 53
soft 35, 52, 53, 183

breaking out of a loop 88
breaking out of a switch statement

 88
buttons, toolbar 67

C

C files .. 76
C functions calling assembly code

 140
C language . 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 33, 35, 76, 80,
91, 95, 99, 113, 133, 135

C statements embedded in assem-
bly code 130

C strings 91
C variables in assembly language

 134
cascaded windows 68, 69
case 90, 100, 101, 102, 109
case-sensitive searching 47, 48, 49
cast operator (type) 118

Dynamic C 32 v. 6.x226 � Index

CBAR .. 96, 97, 98, 198, 199, 200,
201, 202, 213

CBR (common-base register) .. 56,
96, 97, 98, 140, 145, 162, 198,
199, 200, 201, 202, 203

char 80, 101, 111, 128, 190, 205
characters 114

arrays 91, 113, 114
constants 114
embedded quotes 114
nonprinting values 114
special values 114

check sum 170
checking

array bounds 188
indices 208
pointers 94, 188, 208
stack 188, 189, 190, 208
syntax 32
type 32, 79

ChkSum 157
ChkSum2 157
Clear Watch Window 54, 55
clipboard 46, 47
clocked serial communication .. 24
clocks .. 16
Close �CTRL-F4� 43
closing a file 42, 43
CoBegin 150, 156, 157
CoData ... 149, 150, 155, 156, 157,

158, 160
description 156
general usage 158
initialization 150
structure

user defined 159
code size 189
Code with BIOS 30, 32
coercion 118
COM port 67, 169

PC 29, 169
comma operator 123
comment 81

multi-line 81
single line 81

comments 78
common base register (CBR) 140,

145
communication

RS-232 16, 24
RS-485 16, 24
serial 16, 24, 67, 163

clocked 24
with Dynamic C 29

compilation 28, 32, 40, 50, 51, 60,
69, 71, 126

direct 23
direct to controller 16
errors 49
speed 16, 17
targetless . 29, 30, 31, 32, 50, 51

COMPILE menu 41, 50, 51
compile time-stamp 60
Compile to File <CTRL-F3> ... 32,

50, 51, 60, 171, 210
Compile to File with *.RTI File

<ALT-CTRL-F3> 29, 30, 31,
32, 50, 51, 60, 172, 210

Compile to Target <F3> 29, 50, 51
compiler directives 124, 208

default 208
compiler options 30, 40, 50, 58, 59,

60, 61, 62, 94, 171, 189, 201,
210, 211, 213, 222

Application Only (.BPF) 30, 211
BIOS+App+Lib+ClrSEE (.BIN)

 32
BIOS+App+Lib+SimEE (.BIN)

 31
BIOS+App+Library (.BIN) .. 31
BIOS+Application (.BIN) ... 31,

210
Create HEX File Also 60
Download via DLM (.DLP) 32,

210
Null Device (Bit Bucket) 32
Program Loader Utility 30
simulated EEPROM 31, 32
Zero Time Stamp 60, 222

Technical Reference Index � 227

compiling 16, 28, 60
to file 29, 30, 31, 32, 40, 50, 51,

210
to flash 51
to RAM 50, 51
to ROM 50, 51
to target 29, 32, 40, 50, 51

compound
names 112
statements 78

concurrent processes ... 18, 21, 148
conditional operation (? :) 122
constants

character 114
named 112

content 157
contents

HELP 71
continue 87, 88, 101, 109

example 88
cooperative multitasking .. 21, 148,

149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160

CoPause 150, 156
copying text �CTRL-C� 46, 47
copyright 213
CoReset 150, 156, 157
CoResume 150, 156
costate 101, 150, 154, 158
costatements 18, 21, 100, 101, 110,

111, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158,
159, 160

abort 154
aborted 154
always on 149, 151, 154
firsttime flag and functions 157,

158
initially off 149, 151
initially on 149, 151
multiple threads .. 158, 159, 160
named 149, 150
shared code 159
shared data 160

state 149, 150, 151, 154, 156,
157

suspended .. 148, 149, 151, 152,
153, 154

syntax 150
unnamed 149, 150, 154
waitfor 151, 152
yield 153

CRC .. 170
Create *.RTI File for Targetless

Compile ... 29, 30, 31, 32, 50,
51, 172

Create HEX File Also 60, 210
creating

new file 42
standalone programs 36, 37

CSState 156
CTRL key 41
CTRL-C 47
CTRL-F10 34, 56
CTRL-F2 54
CTRL-F3 50, 51
CTRL-F4 43
CTRL-G 49
CTRL-H 37, 38, 72, 73, 74
CTRL-I 35, 52, 53
CTRL-N 49
CTRL-O 34, 52, 53
CTRL-P 49
CTRL-U 36, 54, 56
CTRL-V 47
CTRL-W 35, 36, 54, 55
CTRL-X 46
CTRL-Y 52, 54
CTRL-Z 36, 52
curly braces { } 78
cursor

execution 34, 53, 54
positioning 49
positioning with arrow keys . 41
text 40, 74

custom error handler 182
cutting text <CTRL-X> 46

Dynamic C 32 v. 6.x228 � Index

D

data in extended memory 127, 128,
204, 205, 206

data types 92
aggregate 92
primitive 91, 92

db .. 132
DC.HH 208
DCW.CFG 68
debug 101, 124

editor 66
mode 49, 52, 190

same as run mode 32
debug mode 29
debugger 16, 32, 212

options 58, 62
debugging .. 16, 32, 33, 36, 52, 53,

55, 56, 101, 104, 124, 125,
163, 188, 208, 212

Append Log 62
assembly-level view 16
Auto Open STDIO Window . 62
Log File 62
Log STDOUT 62
windows 33, 34

declarations 78, 82, 194
decrement operator (--) 117
default 90, 102, 109

directives 208
storage class 18, 19, 24

DEFAULT.H 23
Del from Top button 36, 55
Delay Functions 152
DelayMS 149, 157
DelaySec 149, 157
DelayTicks 149, 157
deleting watch window items .. 54,

55
demotion 60
descriptive function headers 37, 38
DI 35, 163
digital input/output 16
direct

compilation 16, 23

memory access (DMA) 24
directives 22, 124, 164, 208

#asm 21, 83, 124, 130, 131, 188,
204

#class 24, 125, 208
#debug 101, 105, 107, 109, 111,

125, 188
#define 81, 84, 85, 86, 125, 126
#elif 125, 126
#else 125, 126
#endasm . 21, 83, 124, 130, 131,

132
#endif 125, 126
#error 125
#fatal 125
#funcchain 19, 125
#if .. 125
#ifdef 126
#ifndef 126
#interleave 126
#KILL 126
#makechain 19, 126
#memmap 126, 208
#nodebug 51, 101, 105, 107,

109, 111, 125, 188, 208
#nointerleave 126
#nouseix 23, 105, 127, 208
#undef 86, 126
#use 18, 23, 77, 81, 83, 127, 195
#useix 23, 105, 127, 190
#warns 125
#warnt 125
default 208

Disassemble at Address <ALT-
F10> 56, 70

Disassemble at Cursor <CTRL-
F10> 34, 56, 70

disassembled code 54
disassembler 34
display

options 58, 66
divide-assign operator (/=) 123
division operator (/) 119
DLC (download configuration) file

 171

Technical Reference Index � 229

DLM (Download Manager) ... 168,
169, 170, 171, 172, 173, 210

DLM_MAX_PW_LEN 170
DLM_MIN_PW_LEN 170
DLM_PASSWORD_LVL 170
DLM_PASSWORD_STR 170, 172
DLM_TIMEOUT 170
DLM_Z0.C 169, 172
DLP files .. 50, 168, 170, 171, 172,

173, 210
DMA channels 24
do loop 87, 102
dot operator 93, 112, 116
download

configuration (DLC) file 171
local 176
remote .. 33, 168, 169, 170, 171,

172, 173, 210
Download Manager (DLM) 40, 51,

168, 169, 170, 171, 172, 173,
210

Download Program 170
Download to RAM 211
Download via DLM (.DLP) 32,

171, 210
downloadable

files 51
program 29, 30, 31, 32, 170, 171,

172, 173
downloading 29, 30, 31, 32
dummy call 36
Dump at Address 56
Dump to File 57
dump window 57
dw ... 132
dynamic

memory allocation 65
storage allocation 94
variables 94

Dynamic C . 14, 16, 17, 23, 28, 51,
126, 213

Application Frameworks 160
communication 29, 163
debugger 32, 33

differences 17, 18, 19, 20, 21, 22,
23, 24, 25, 76

exit 45, 68
Help Contents 37
installation 14, 28
installation procedure 14
installation requirements 14
license agreement 14
program group 14, 28
support files 77
usage 28

E

EDIT menu . 36, 41, 46, 47, 48, 49
edit mode 36, 40, 46, 49, 54
editing 16, 40

options 40
editor ... 16

options 58
EI 35, 162, 163
ei 144, 162, 212
else .. 102
embedded assembly code .. 16, 21,

135, 141, 142, 143, 144, 145
embedded quotes 114
End key 40, 41
end of file 41
end of line 41
EndHeader ... 23, 82, 83, 102, 194,

195
Enter Password 169, 170
enumerated types

absence of 24
EPROM 16, 18, 19, 22, 25, 29, 30,

31, 32, 37, 40, 50, 64, 98, 99,
112, 164, 168, 182, 198, 201,
202, 208, 210, 212, 213

file generation 60
flash 29, 37, 40, 51, 98, 99, 112,

168, 198, 201, 202
equ .. 132
equal operator (==) 121
ERROR_EXIT 103, 182, 212

Dynamic C 32 v. 6.x230 � Index

errors
codes 183
editor 66
fatal 183, 184, 185
handler

custom............................. 182
standard 182

locating 49
logging 184, 185
recovery 184, 185
run-time 182

ESC key 41
to close menu 41

Evaluate button 36, 55
examples

break 88
continue 88
for loop 87
goto 88
modules 83
multithreaded costatements 159
of array 92
union 28, 93

Execute Downloaded Program 170
execution 52, 55, 56

cursor 34, 53, 54
speed 189

Exit <ALT-F4> 45, 212
Expr. in Call 74
extended memory .. 18, 22, 63, 66,

96, 97, 98, 100, 102, 111, 124,
126, 127, 139, 140, 145, 169,
198, 199, 200, 201, 202, 203,
208

data 127, 128, 204, 205, 206
functions 204
strings 128, 204, 205, 206

extensions
real time 25

extern 18, 22, 83, 102, 195

F

F (status register) 70
F10 .. 68
F2 .. 52, 53
F3 .. 50, 51
F4 .. 36, 49
F5 .. 47
F6 .. 48
F7 34, 52, 53
F8 34, 52, 53
F9 .. 34, 52
fast .. 102
fatal errors 183, 184, 185
FILE menu 41, 42, 43, 44, 45
Find

Case sensitive 47
From cursor 47
Reverse 47

Find <F5> 46, 47
Find next <SHIFT-F5> 46, 49
firsttime 102, 150, 157

flaf 157
flag 157, 158
functions 157, 158

flash 98, 198, 201
flash EPROM... 29, 37, 40, 51, 98,

99, 112, 168, 198, 201, 202
flash memory 18, 19
float 36, 80, 102, 111, 128, 205

values 113
floating-point speed 24
for 78, 103

character literals 114
loop 87

example 87
frame

reference point 141
reference pointer .. 23, 105, 139,

140, 143, 190, 203
free .. 94
free memory 65
Free Size 65
free size 65

Technical Reference Index � 231

free space 71, 94
Full Speed Bkgnd TX 67
function calls .. 34, 74, 79, 86, 100,

127, 135, 136, 140, 141, 142,
145, 190

indirect 143
function chains 18, 19, 20, 107,

126, 150, 156, 157, 216, 220
_aascInitDF 220
_GLOBAL_INIT 220
_srtk_hightask 220
_srtk_lowtask 220
_sys_25ms 220
_sys_25msPostEI 220
_sys_390 220
_sys_781 220
_sys_781PostEI 220
sysSupRstChain 26, 220

function headers 193, 194
descriptive 38

function headers, descriptive 37
function help 194
function libraries 17, 23, 76, 77, 82,

102, 127, 220
function lookup <CTRL-H> 37, 38,

72, 73, 74
function returns 141, 142, 143, 190
functions 78

entry and exit 190
prototypes 23, 38, 79, 80, 82, 83

G

GESUPRT.LIB 222
global initialization 20, 21, 156,

157
global variables 94, 188
goto 88, 89, 103

example 88
Goto <CTRL-G> 46, 49
Graphics Engine 222
greater than operator (>) 121
greater than or equal operator (>=)

 121

H

Hangup Remote Modem......... 170
HANGUP_TIMEOUT 171
hard break points 35, 52, 53
hardware reset 25, 184, 185
header

BeginHeader 23
EndHeader 23
function 37, 38, 193, 194
library 193
module 82, 83, 102, 195

Heap Size 65
heap storage 71, 94, 212
Help

contents 37
online 37
topical 37

help
online 71, 72

HELP menu 37, 38, 41, 71, 72, 73,
74

HEX files 30, 60, 210, 212
information 212

hexadecimal integer values 113
high-current output 16
hitwd 185
HL ... 131, 135, 137, 141, 142, 143
HL (primary regster) 189
Home key............................ 40, 41
horizontal tiling 68, 69

I

I register 163, 164, 212
IBM PC 16, 52, 67
icons

arranged 68, 69
IEEE floating point 102
if 102, 103

multichoice 90
simple 89
with else 89

iff 35, 163

Dynamic C 32 v. 6.x232 � Index

immediate evaluation
watch line 36

increment operator (++) 117
index checking 208
index registers 18, 23, 131, 143
indirect function calls 103, 143
indirection operator (*) 94, 118
Information Window................. 65
Information window 71
information window 65, 68, 69, 71
init_on 149, 151
initialization

global 20, 21
initialized data 210
initialized static variables

placed in ROM 19
input

analog 16
digital 16

insertion point 47, 49
Inspect 69, 70
INSPECT menu 34, 41, 54, 55, 56,

69
installation

Dynamic C 14, 28
requirements 28

installation procedure 14
installation requirements 14
int 80, 81, 104, 107, 110, 111, 128,

205
as default function type 78

integer values 113
Intel

extended HEX format 212
HEX files 60
HEX format 30, 60, 210, 212

interrupt service routines ... 17, 21,
104, 106, 143, 144, 145, 162,
163, 164, 165

example 162, 165
interrupt status

and break points 35, 52, 53
interrupt vectors

setting 164

interrupts .. 21, 104, 106, 107, 143,
144, 145, 162, 163, 164, 165,
170, 218

base 212
disabling 163
flag 35, 53
latency 143, 163
Mode 0 164
Mode 1 164
Mode 2 164
service routines 21

IntervalMS 149
IntervalSec 149
isCoDone 150, 156
isCoRunning 150, 156
ISR (interrupt service routines)

 162, 164
IX (index register) 18, 23, 105, 110,

127, 131, 138, 139, 140, 143,
184, 189, 190, 203, 208

IY (index register) 131, 143

J

jump vectors
setting 164

K

kernel
real-time 25, 190

key module 82, 194
keyboard shortcuts 72
keystrokes 72

<ALT E> select EDIT menu . 46
<ALT R> select RUN menu . 52
<ALT-Backspace> undoing

changes 46
<ALT-C> select COMPILE

menu 50
<ALT-CTRL-F3> Compile to

File with *.RTI File 51
<ALT-F> select FILE menu . 41,

42
<ALT-F10> Disassemble at

Address 34, 56

Technical Reference Index � 233

<ALT-F2> Toggle hard break
point 52, 53

<ALT-F4> Exit 45
<ALT-F4> Quitting Dynamic C

 42
<ALT-F9> Run w/ No Polling 52
<ALT-H> select HELP menu 71
<ALT-I> select INSPECT menu

 54
<ALT-O> select OPTIONS menu

 58
<ALT-SHIFT-backspace>

redoing changes 46
<ALT-W> select WINDOW

menu 68
<CTRL-C> copying text . 46, 47
<CTRL-F> Compile to File .. 50
<CTRL-F10> Disassemble at

Cursor 34, 56
<CTRL-F2> Reset Program 52,

54
<CTRL-F3> Compile to File

with *.RTI File 50, 51
<CTRL-F4> Close 43
<CTRL-G> Goto 46, 49
<CTRL-H> Library Help lookup

 37, 38, 41, 72, 73, 74
<CTRL-I> Toggle interrupt . 35,

52, 53
<CTRL-N> next error 46, 49
<CTRL-O> Toggle polling .. 52,

53
<CTRL-P> previous error 46, 49
<CTRL-U> Update Watch

window 36, 54, 56
<CTRL-V> pasting text .. 46, 47
<CTRL-W> Add/Del Items . 35,

36, 54, 55
<CTRL-X> cutting text 46
<CTRL-Y> Reset target . 52, 54
<CTRL-Z> Stop 36, 52
<F10> Assembly window 68
<F2> Toggle break point 52, 53
<F3> Compile to Target .. 50, 51

<F4> switching to edit mode 46
<F5> finding text 46, 47
<F6> replacing text 46
<F7> Trace into 52, 53
<F8> Step over 52, 53
<F9> Run 52
<SHIFT-F5> Find next ... 46, 49

keywords .. 19, 22, 76, 98, 99, 100,
101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 139,
150, 162, 188, 201

L

language elements 99, 112, 113
operators 115

lastlocADDR 156, 157
lastlocCBR 156, 157
latency interrupts 143
less than operator (<) 120
less than or equal operator (<=) 120
Lib Entries 37, 72
LIB files 76
LIB.DIR 23, 72, 83, 127, 195
libraries .. 17, 23, 76, 77, 102, 127,

220
function 23
function prototypes 23
lookup dialog 37
modules 82, 194
real-time programming ... 17, 25

library functions 37, 66, 72, 126
library headers 193
Library Help lookup <CTRL-H>

 72, 73, 74, 194
license agreement 14
line continuation in directives . 124
linking 16
local download 176

PRGLOADR.EXE 176
locating errors 49
Log File 62
Log STDOUT 62
logical AND (&&) 122

Dynamic C 32 v. 6.x234 � Index

logical memory 63, 65, 96, 97, 98,
198, 199, 200, 201, 202, 203

logical operators 117, 122
logical OR (| |) 122
long 36, 104, 111, 128, 205
long integer values 113
longjmp 184
lookup function <CTRL-H> 72, 73,

74
loops 86, 87, 102, 103

breaking out of 88
skipping to next pass 88

M

macro
multi-line assembly code 134

macros ... 84, 85, 86, 125, 132, 133
restrictions 86
with parameters 84

main function . 51, 76, 78, 79, 104,
188, 212, 216, 217

malloc 65, 94
memory

allocation 66
dump 54
extended . 18, 22, 63, 66, 96, 97,

98, 100, 102, 111, 124, 126,
127, 139, 140, 145, 169, 198,
199, 200, 201, 202, 203, 204,
205, 206, 208
data 127, 128, 205
strings 128, 204, 205

flash 18, 19
logical .. 63, 65, 96, 97, 98, 198,

199, 200, 201, 202, 203
management 96, 97, 98, 100,

102, 106, 145, 198, 202, 211
physical .. 25, 63, 64, 96, 97, 98,

111, 127, 128, 198, 199, 200,
201, 202, 203, 204, 205, 206

random access 18, 19, 22, 25, 29,
37, 40, 51, 64, 98, 164, 168,
198, 201, 211, 212, 216

read-only 18, 19, 22, 25, 29, 30,
31, 32, 37, 40, 50, 51, 64, 98,
99, 112, 164, 168, 182, 198,
201, 202, 208, 210, 212, 213

reflection 211
reserve 63, 65
root . 22, 63, 66, 96, 97, 98, 100,

102, 106, 126, 134, 135, 136,
138, 139, 140, 145, 169, 198,
199, 200, 201, 203, 204, 205,
206, 208, 211, 212

memory management unit (MMU)
 22, 96, 97, 98, 140, 198, 199,
200, 201, 202, 211

Memory options 40, 51, 63
Logical 65
Physical 63
Reserve 65
Root Reserve 66
XMem Reserve 66

memory options 58
menu commands 41, 42
menus

COMPILE................. 41, 50, 51
EDIT 36, 41, 46, 47, 48, 49
FILE 41, 42, 43, 44, 45
HELP 37, 38, 41, 71, 72, 73, 74
INSPECT 34, 41, 54, 55, 56, 69
OPTIONS 30, 40, 41, 50, 51, 58,

59, 60, 61, 62, 63, 64, 65, 66,
67, 71, 94, 202

RUN 34, 35, 41, 52, 53, 54
system 41
WINDOW 41, 65, 68, 69, 70, 71

Message window 69
message window 49, 51, 68, 69
Microsoft Windows Users Guide

 40, 42
minimized windows 69
minus operator (-) 118
MMU (memory management unit)

 22, 96, 97, 98, 140, 198, 199,
200, 201, 202, 211

mod-assign operator (%=) 123

Technical Reference Index � 235

Mode 0 interrupts 164
Mode 2 interrupts 164
modes

debug 29, 49, 52, 190
debug (same as run mode) 32
edit 36, 40, 46, 49, 54
preview 43
run 29, 32, 49, 52

modules 77, 82, 83, 102
body 82, 83, 195
example 83
header 82, 83, 102, 195
key 82, 194
library 82, 194

modulus operator (%) 120
mouse .. 40
moving

to beginning of file 41
to beginning of line 41
to end of file 41
to end of line 41

multi-line assembly code macro
 134

multiplication operator (*) 118
multipy-assign operator (*=) .. 123
multitasking ... 148, 149, 150, 151,

152, 153, 154, 155, 156, 157,
158, 159, 160

cooperative 21
multithreaded costatements ... 158,

159, 160
multithreaded systems 148

N

named
constants 18, 112
costatements 150

names 112
#define 112

New... 42
new libraries

GESUPRT.LIB 222
SF1000_Z.LIB 222

newbbr 213

Next error <CTRL-N> 46, 49
No Background TX 67
nodebug . 52, 53, 56, 62, 104, 124,

130, 188, 189, 208
nonmaskable interrupts ... 163, 164
norst .. 104
NOT

logical operator (!) 117
not equal operator (!=) 121
nouseix 23, 105, 136, 190
NULL 105
NULL device 50
Null Device (Bit Bucket) 32
numbers 112

O

Object File Option 60
octal integer values 113
offsets in assembly language . 134,

137, 139, 140
online help 37, 71, 72, 194
Open ... 42
opening an existing file 42
operators 115, 118

, comma 123
! logical NOT 117
!= not equal 121
(macros) 84, 85
(macros) 84, 85
% modulus 120
%= assign 123
& address 119
& bitwise AND 119
&& logical AND................. 122
&= assign 123
() parentheses 116
(type) cast 118
* indirection 118
* multiplication 118
*= assign 123
+ plus 118
+ unary plus 118
++ increment 117
+= assign 122

Dynamic C 32 v. 6.x236 � Index

-> right arrow 116
. dot 116
/ division 119
/= assign 123
< less than 120
<< shift left 120
<<= assign 123
<= less than or equal 120
= assign 122
== equal 121
> greater than 121
>= greater than or equal 121
>> shift right 120
>>= assign 123
? : conditional 122
[] array indices 116
^ bitwise exclusive OR 121
^= assign 123
| | logical OR 122
| bitwise inclusive OR 122
|= assign 123
~ bitwise complement 117
assignment 122, 123
associativity 115, 124
binary 115
comma 123
conditional 122
decrement 117
in assembly language 133
logical 117, 122
minus 118
precedence 115, 124
relational 120, 121
sizeof 119
unary 115
unary minus 118

optimization 188
Optimize For (size or speed) 62
Options

Display 66
options

compiler 58, 59, 60, 61, 62
debugger 58, 62
display 58, 66

editor 58
memory 58, 63
serial 58, 67

OPTIONS menu 30, 40, 41, 50, 51,
58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 71, 94, 202

OR assign operator (|=) 123
OR logical operator (| |) 122
output

analog 16
digital 16
high-current 16

Output Generation 60
Create HEX File Also 60
Zero Time Stamp 60

P

PageDown key 40
PageUp key 40
parallel processes 18, 21
passing arguments 18, 23, 95, 135,

136, 141, 142, 143
passwords in DLM 170, 172
Paste .. 47
pasting text <CTRL-V> 46, 47
PC 16, 52, 67, 134

COM port 29, 169
serial port 29

PC (program counter) 184
physical address 97, 199
physical memory 25, 63, 64, 96, 97,

98, 111, 127, 128, 198, 199,
200, 201, 202, 203, 204, 205,
206

PLU... 180
cautions and disclaimers 176,

179
common problems 180
Dump 177
Generic upload 179
Help 177
Manual software reset 180
Open 180
program mode 178

Technical Reference Index � 237

Reset Target 178, 180
Resetting Target 178
Reuse of programming port 180
Run after upload 179, 180
run mode 180
Serial Options 177
software reset 178, 180
Upload 179
upload to physical address .. 179
Uploading 177
use of #INT_VEC 180
use of reload_vec 180

PLU (Program Loader Utility) 176,
222

PRGLOADR.EXE 176
plus operator (+) 118
pointer checking 94, 188, 208
pointers 94, 95, 114, 116, 118, 119,

127, 160
uninitialized 94

polling 33, 52, 53
pop 105, 125, 126
ports

serial 24, 67
positioning text 49
post-decrement operator (--) ... 117
post-increment operator (++) .. 117
power fail 25, 26
power failure 43, 105, 184, 216,

217
pre-decrement operator (--) 117
pre-increment operator (++) ... 117
precedence 115, 124
preprocessor 208
preserving registers . 142, 143, 145
preview mode 43
Previous error <CTRL-P> .. 46, 49
PRGLOADR.EXE 176
primary register 131, 135, 141, 142,

189
primitive data types 91, 92
Print 44, 45

Properties 44, 45

Range
All 44
Pages 44
Selection 44

Print Preview 43, 44
Print Setup 45
printf ... 33, 52, 53, 62, 69, 81, 114
ProComm 168, 169, 172
program

example 81
program counter (PC) 184
program flow 86, 87, 88, 89, 90
program group 14

Dynamic C 14, 28
Program Loader Utility (PLU) 176,

222
PRGLOADR.EXE 176

programmable ROM 18, 19, 22, 25,
29, 30, 31, 32, 37, 40, 50, 51,
64, 98, 99, 112, 164, 168, 182,
198, 201, 202, 208, 210, 212,
213

programming
real-time 17, 21

promotion 116
protected variables 17, 18, 22, 105,

185, 189, 216
prototypes 195

function ... 23, 38, 79, 80, 82, 83
in headers 82, 194

PSW_TIMEOUT 170
punctuation 127
push 105, 125, 126

Q

quitting Dynamic C <ALT-F4> 42,
45

R

RAM .. 64, 98, 164, 198, 201, 211,
212, 213

static . 18, 19, 22, 25, 29, 37, 40,
51, 64, 98, 164, 168, 198, 201,
211, 212, 216

Dynamic C 32 v. 6.x238 � Index

read-only memory.. 18, 19, 22, 25,
29, 30, 31, 32, 37, 40, 50, 51,
64, 98, 99, 112, 164, 168, 182,
198, 201, 202, 208, 210, 212,
213

readireg 163
real-time

extensions 25
kernel (RTK) 17, 25, 190
library 25
operations 25
programming 17, 21
systems 148

redoing changes
<ALT-SHIFT-backspace> 46

reentrant functions 188, 190
Register window 70
registers 18, 105, 136, 138, 139,

189, 190
set .. 131
snapshots 70
variables 94
window 16, 33, 68, 69, 70

regular reset 25
relational operators 120, 121
Release_Notes.txt 222
reload_vec 180
remote download 33, 168, 169,

170, 171, 172, 173, 210
Remote Target Information 222
remote target information (RTI) file

 29, 30, 31, 32, 40, 50, 51, 76,
172, 210

Replace 48
Change All 48
From cursor 48
No prompt 48
Reverse 48
Selection only 48

Replace <F6>...................... 41, 48
replacing text 46, 48, 49
Report DLM Parameters 169
reserve memory 63, 65

reset . 25, 26, 36, 37, 216, 217, 218
hardware 25
power fail 25
regular 25
software 54
super 216
watchdog 25

Reset Functions 26
_sysIsPwrFail 26
_sysIsSuperReset 26
_sysIsWDTO 26

reset generation 218
Reset program <CTRL-F2> 52, 54
Reset target <CTRL-Y> 52, 54
resetting program 54
restarting 25, 26

program................................. 54
target controller 54

ret 105, 106, 141, 144, 162, 163
reti 105, 106, 144, 162, 163
retn 105, 106, 144, 162, 163
return 106, 109, 141, 162
return address 136, 140
returning to edit mode 36
reverse searching 47, 48, 49
ROM 52, 53, 64, 98, 164, 182, 198,

201, 208, 210, 212, 213
programmable 18, 19, 22, 25, 29,

30, 31, 32, 37, 40, 50, 51, 64,
98, 99, 112, 164, 168, 182,
198, 201, 202, 208, 210, 212,
213

root 66, 96, 106, 126, 199, 200,
201, 203, 204

code 211
memory .. 22, 63, 66, 96, 97, 98,

100, 102, 106, 126, 134, 135,
136, 138, 139, 140, 145, 169,
198, 199, 200, 201, 203, 204,
205, 206, 208, 211, 212

reserve 66
root2xmem 205
RS-232 communication 16, 24
RS-485 communication 16, 24

Technical Reference Index � 239

rst 028h 52
RST 28 208, 212
RST 28H 188
RTI (remote target information) file

 29, 30, 31, 32, 40, 50, 51, 76,
172

RTI files 210
RTK (real-time kernel) 17, 25, 190
RTK.LIB 148
Run <F9> 34, 52
RUN menu .. 34, 35, 41, 52, 53, 54
run mode 29, 32, 49, 52
Run w/ No Polling <ALT-F9> . 34,

52
run-time

checking 59
errors

and standalone programs 182
stack size 65

running
a program 52
in polling mode 52
standalone 16
with no polling 52

S

sample programs 76, 128, 169, 172,
206

basic C constructs 81
SAMPLES subdirectory .. 76, 128,

206
SAMPLES\AASC subdirectory

 169, 172
Save .. 43
save and restore registers 184
Save as 43
Save Environment 68
saving a file 42, 43
saving and restoring registers . 162
saving as a new file 42
scroll bars 40
scrolling 40, 41, 70
search

HELP 72

Search for Help on... 72
searching for text 47, 48, 49
searching in reverse 47, 48, 49
segchain 19, 107
selecting

COMPILE menu <ALT-C> .. 50
EDIT menu <ALT-E> 46
FILE menu <ALT-F> 41, 42
HELP menu <ALT-H>.......... 71
INSPECT menu <ALT-I> 54
OPTIONS menu <ALT-O>... 58
RUN menu <ALT-R> 52
WINDOW menu <ALT-W> . 68

selecting text
to beginning of file 41
to end of file 41
to end of line 41
to start of line 41

serial communication ... 16, 24, 67,
163

clocked 24
serial options 51, 58, 67
serial port 29, 67

ASCI 143
PC 169

Set Password 169, 170
setireg 163
setjmp 184
setting

interrupt vectors 164
jump vectors 164

SF1000 series 222
SF1000_Z.LIB 222
shared variables ... 17, 18, 22, 107,

189
shift left operator (<<) 120
shift right operator (>>) 120
SHIFT-F5 49
shift-left-assign operator (<<=) 123
shift-right-assign operator (>>=)

 123
short .. 107
shortcuts

keyboard 72

Dynamic C 32 v. 6.x240 � Index

Show Tool Bar 67
single stepping 34, 56, 130, 190

in assembly language 188
with descent <F7> 53
without descent <F8> 53

size .. 107
sizeof 107, 119
skipping to next loop pass 88
soft break points 35, 52, 53, 183
software

errors 25
libraries 23, 76, 77, 82, 102, 127,

220
reset 54

software reset
Reset Target 178

source window 69
SP (stack pointer) 18, 23, 127, 131,

136, 141, 142, 145, 184, 203,
212

special characters 114
special symbols

in assembly language 133
speed 108
SRTK.LIB 148
stack . 95, 100, 105, 135, 136, 137,

138, 140, 141, 142, 143, 144,
145, 184, 190

checking 188, 189, 190, 208
frame .. 135, 136, 138, 140, 141,

142, 143, 145
frame reference point 141
frame reference pointer 23, 105,

139, 140, 143, 190, 203
limit 212
pointer (SP) .. 18, 127, 131, 136,

141, 142, 145, 184
size

auxiliary 65
run-time 65

snapshots 71
verification 65
window 16, 33, 69, 70

stack pointer (SP) 203, 212

Stack window 70
standalone

assembly code 135
programs 16

standard error handler 182
startup code 212
statements 78
static

RAM 18, 19, 22, 25, 29, 37, 40,
51, 64, 98, 164, 168, 198, 201,
211, 212, 216

variables 18, 19, 22, 24, 108,
125, 134, 135, 136, 138, 139,
188, 189, 208, 212

status register (F) 70
STDIO window 16, 33, 62, 68, 69,

182, 183
Step over <F8> 34, 52, 53
Stop <CTRL-Z> 36, 52
stop bits 67
stopping a running program 52
storage class 78, 100, 105, 108,

125, 136, 189
auto 94
default 18, 19, 24, 208
register 94
static 94

strcpy 74, 114
string 205
STRING.LIB 112
strings 111, 113, 114, 125, 128

extended memory 205
functions 113
in C 91
in extended memory .. 128, 204,

205, 206
terminating null byte 113

struct 78, 93, 95, 108, 116, 134,
136, 141, 142

structures .. 93, 116, 134, 136, 141,
142

return space 136, 141, 142

Technical Reference Index � 241

subdirectories
SAMPLES 76, 128, 206
SAMPLES\AASC 169, 172

subfunc 18, 24, 108, 189, 190
subfunctions 18, 24, 108, 189, 190
subscripts

array 92
subtract assign operator (-=) ... 122
super reset 21, 25, 26, 216, 218
support files 77
suspend 23
suspended costatements . 148, 149,

151, 152, 153, 154
switch 90, 100, 101, 102, 109, 203

breaking out of 88
switching to edit mode .. 36, 46, 49
symbolic constant 125
Sync. Bkgnd TX 67
syntax

checking 32
costatements 150

SYS.LIB 220
sysForceReset 26, 218
sysForceSupRst 26, 218
sysIsPwrFail 217
sysIsSuperReset 217
sysIsWDTO 217
sysSupRstChain 26, 216, 220

T

table of operator precedence ... 124
Target Communication 222
targetless compilation .. 29, 30, 31,

32, 50, 51
text cursor 40, 74
Tile Horizontally 69
tiling windows 68, 69
timer .. 16

programmable 24
watchdog 25, 184, 185, 217, 218

Toggle break point <F2> 52, 53
Toggle hard break point <ALT-F2>

 52, 53

Toggle interrupt <CTRL-I> 35, 52,
53

Toggle polling <CTRL-O> 34, 52,
53

toolbar 67
print preview 44

topical help 37
Trace into <F7> 34, 52, 53
type

casting 116, 118
checking 32, 61, 79
conversion 116, 118
definitions 80

typedef 80, 109
types

function 78

U

unary
minus operator (-) 118
operators 115
plus operator (+) 118

unbalanced stack 145
undoing changes <ALT-Back-

space> 46
uninitialized

data 211
pointers 94

union 78, 93, 109, 116
unpreserved registers 142, 143, 145
unsigned 110
unsigned int 128, 205
unsigned integer values 113
unsigned long 128, 204, 205
untitled files 43
Update Watch window <CTRL-U>

 36, 54, 56
uplc_init

initialize CoData structures . 150
useix 23, 110, 138, 190
using

assembly language 21
Dynamic C 28

Dynamic C 32 v. 6.x242 � Index

V

variables
global 94

VdInit 152
initialize CoData structures . 150

vertical tiling 68
void ... 78

W

waitfor 102, 110, 149, 150, 151,
152, 154, 157, 158

warning reports 61
warnings 204
watch

dialog 36, 55
expressions 35, 55, 56, 69
line

immediate evaluation 36
list ... 56

for repeated evaluation 36
window .. 16, 33, 35, 36, 54, 55,

68, 69
adding items 54, 55
clearing 55
deleting items 54, 55
updating 56

watch expression
Add to top 55
Del from top 55
Evaluate 55

WATCH menu 36
Watch window 69
watchdog 26

reset 25
timeout 25, 26

watchdog timer 25, 184, 185, 217,
218

while ... 78, 86, 100, 101, 110, 203
WINDOW menu 41, 65, 68, 69, 70,

71
windows 14, 28, 40, 68

assembly 16, 33, 34, 68, 69, 70,
130

cascaded 68, 69
debugging 33, 34
information 65, 68, 69, 71
message 68, 69
minimized 69
program group 14
register 16, 33, 68, 69, 70
Run... 14
stack 16, 33, 34, 68, 69, 70
STDIO . 16, 33, 62, 68, 69, 182,

183
tiled horizontally 68, 69
tiled vertically 68
watch 16, 33, 35, 36, 54, 55, 56,

68, 69

X

xdata 22, 111, 128, 204, 205
XDATA.C 128, 206
xgetfloat 22
xgetong 205
xmem 66, 96, 97, 98, 111, 126,

139, 199, 200, 201, 202, 203
XMEM reserve 66
XMEM.LIB 22, 127
xmem2root 205
xmemok 111, 124, 139, 204
XMODEM 168, 170
XOR assign operator (^=) 123
xstring 22, 111, 128, 204, 205
xstrlen 22, 205

Y

yield 111, 149, 150, 153, 154

Z

Z180 ... 16, 17, 21, 24, 70, 96, 131,
164, 188, 189, 198, 199, 200,
201

Z80 24, 163, 164
Zero Time Stamp 60, 222
Zilog 16, 24, 163

Printed in U.S.A.

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

