
TN261

The Slave Port Driver

The Rabbit family of microprocessors has hardware for a slave port, allowing a master controller to read
and write certain internal registers on the Rabbit. The library, Slaveport.lib, implements a complete
master/slave protocol for the Rabbit slave port. Sample libraries, Master_serial.lib and
Sp_stream.lib provide serial port and stream-based communication handlers using the slave port pro-
tocol. These slave port libraries are located in the folder /Lib/.../SLAVEPORT/ where you installed
Dynamic C.

Slave Port Driver Protocol
Given the variety of embedded system implementations, the protocol for the slave port driver was
designed to make the software for the master controller as simple as possible. Each interaction between the
master and the slave is initiated by the master. The master has complete control over when data transfers
occur and can expect single, immediate responses from the slave.

Overview
1. Master writes to the command register after setting the address register and, optionally, the data register.

These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register. This also causes the
SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and data registers.

5. Master writes to the slave port status register to clear interrupt line from the slave.
022-0132 Rev. A www.rabbit.com 1

http://www.rabbit.com

Registers on the Slave
From the point of view of the master, the slave is an I/O device with four register addresses.

Accessing the same address (0, 1 or 2) uses two different registers, depending on whether the access was a
read or a write. In other words, when writing to address 0, the master accesses a different location than
when the it reads address 0.

The status port is a bit field showing which slave port registers have been updated. For the purposes of this
protocol, only bit 3 needs to be examined. After sending a command, the master can check bit 3, which is
set when the slave writes to the response register. At this point the response and returned data are valid and
should be read before sending a new command. Performing a dummy write to the status register will clear
this bit, so that it can be set by the next response.

Table 1. The slave registers that are accessible by the master

Register
 Name

Internal
Address of

Register

Address of Register
From Master’s

Perspective
Register Use

SPD0R 0x20 0 Command and response register

SPD1R 0x21 1 Address register

SPD2R 0x22 2 Optional data register

SPSR 0x23 3

Slave port status register. In this protocol the only bit
used is for checking the command response register.
Bit 3 is set if the slave has written to SPD0R. It is
cleared when the master writes to SPSR, which also
deasserts the SLAVEATTN line.

Table 2. What happens when the master accesses a slave register

Register
Address

Read Write

0 Gets command response from slave
Sends command to slave, triggers
slave response

1 Not used
Sets channel address to send
command to

2 Gets returned data from slave Sets data byte to send to slave

3 Gets slave port status (see below) Clears slave response bit (see below)
2 www.rabbit.com TN261

http://www.rabbit.com

Pin assignments for the Rabbit acting as a slave are as follows:

For more details and read/write signal timing see the microprocessor user’s manual for your Rabbit chip.

Polling and Interrupts
Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPinit() determines which one is used. In interrupt mode, the developer can indicate whether the han-
dler functions for the channels are interruptible or non-interruptible.

Communication Channels
The Rabbit slave has 256 configurable channels available for communication. The developer must provide
a handler function for each channel that is used. Some basic handlers are available in the library
Slave_Port.lib. These handlers will be discussed later in this chapter.

When the slave port driver is initialized, a callback table of handler functions is set up. Handler functions
are added to the callback table by SPsetHandler().

Functions
Slave_port.lib provides the following functions:

SPinit()
SPsetHandler()
MyHandler()
SPtick()
SPclose()

Table 3. Pin assignments for the Rabbit acting as a slave

Rabbit
2000/3000 Pin

Rabbit 4000
Pins

Function

PE7 PB6 /SCS chip select (active low to read/write slave port)

PB2 /SWR slave write (assert for write cycle)

PB3 /SRD slave read (assert for read cycle)

PB4 SA0 low address bit for slave port registers

PB5 SA1 high address bit for slave registers

PB7
/SLVATTN asserted by slave when it responds to a command. cleared
by master write to status register

PA0-PA7 slave port data bus
TN261 www.rabbit.com 3

http://rabbit.com

SPinit

int SPinit (int mode);

DESCRIPTION

This function initializes the slave port driver. It sets up the callback tables for the different chan-
nels. The slave port driver can be run in either polling mode where SPtick() must be called
periodically, or in interrupt mode where an ISR is triggered every time the master sends a com-
mand. There are two version of interrupt mode. In the first, interrupts are reenabled while the
handler function is executing. In the other, the handler function will execute at the same inter-
rupt priority as the driver ISR.

PARAMETERS

mode 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY

SLAVE_PORT.LIB
4 www.rabbit.com TN261

http://www.rabbit.com

SPsetHandler

int SPsetHandler (char address, int (*handler)(), void
*handler_params);

DESCRIPTION

This function sets up a handler function to process incoming commands from the master for a
particular slave port address.

PARAMETERS

address The 8-bit slave port address of the channel that corresponds to the han-
dler function.

handler Pointer to the handler function. This function must have a particular
form, which is described by the function description for
MyHandler() shown below. Setting this parameter to NULL un-
loads the current handler.

handler_params Pointer that will be saved and passed to the handler function each time
it is called. This allows the handler function to be parameterized for
multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY

SLAVE_PORT.LIB
TN261 www.rabbit.com 5

http://rabbit.com

MyHandler

int MyHandler (char command, char data_in, void *params);

DESCRIPTION

This function is a developer-supplied function and can have any valid Dynamic C name. Its pur-
pose is to handle incoming commands from a master to one of the 256 channels on the slave
port. A handler function must be supplied for every channel that is being used on the slave port.

PARAMETERS

command This is the received command byte.

data_in The optional data byte

params The optional parameters pointer.

RETURN VALUE

This function must return an integer. The low byte must contains the response code and the high
byte contains the returned data, if there is any.

LIBRARY

This is a developer-supplied function.
6 www.rabbit.com TN261

http://www.rabbit.com

SPtick

void SPtick (void);

DESCRIPTION

This function must be called periodically when the slave port is used in polling mode.

LIBRARY

SLAVE_PORT.LIB

SPclose

void SPclose(void);

DESCRIPTION

This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY

SLAVE_PORT.LIB

Handler Examples
The rest of this technical note describes some useful handlers.

Status Handler
SPstatusHandler(), available in Slave_port.lib, is an example of a simple handler to report
the status of the slave. To set up the function as a handler on slave port address 12, do the following:

SPsetHandler (12, SPstatusHandler, &status_char);

Sending any command to this handler will cause it to respond with a 1 in the response register and the cur-
rent value of status_char in the data return register.
TN261 www.rabbit.com 7

http://rabbit.com

Serial Port Handler
Slave_port.lib contains handlers for all serial ports A, B, C and D on the slave.
Master_serial.lib contains code for a master using the slave’s serial port handler. This library
illustrates the general case of implementing the master side of the master/slave protocol.

Commands to the Slave

The following table lists the command numbers (and their descriptions) that the master can send to the
slave.

Table 4. Commands from master to slave

Command Command Description

1
Transmit byte. Byte value is in data register. Slave responds with 1 if the
byte was processed or 0 if it was not.

2
Receive byte. Slave responds with 2 if has put a new received byte into the
data return register or 0 if there were no bytes to receive.

3
Combined transmit/receive. The response will also be a logical OR of the
two command responses.

4
Set baud factor, byte 1 (LSB). The actual baud rate is the baud factor
multiplied by 300.

5
Set baud factor, byte 2 (MSB). The actual baud rate is the baud factor
multiplied by 300.

6 Set port configuration bits

7 Open port

8 Close port

9
Get errors. Slave responds with 1 if the port is open and can return an error
bitfield. The error bits are the same as for the function serAgetErrors() and
are put in the data return register by the slave.

10, 11
Returns count of free bytes in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(10) should be read first to latch the count.

12, 13
Returns count of free bytes in the serial port read buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(12) should be read first to latch the count.

14, 15
Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(14) should be read first to latch the count.

16, 17
Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the MSB of the count respectively. The
LSB(16) should be read first to latch the count.
8 www.rabbit.com TN261

http://www.rabbit.com

Slave Side of Protocol

To set up the serial port handler to connect serial port A to channel 5 , do the following:

SPsetHandler (5, SPserAhandler, NULL);

Master Side of Protocol

The following functions are in Master_serial.lib. They are for a master using a serial port handler
on a slave.

cof_MSgetc

int cof_MSgetc(char address);

DESCRIPTION

Yields to other tasks until a byte is received from the serial port on the slave.

PARAMETERS

address Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB

cof_MSgetc()
cof_MSputc()
cof_MSread()
cof_MSwrite()
MSclose()
MSgetc()
MSgetError()

MSopen()
MSputc()
MSrdFree()
MSsendCommand()
MSread()
MSwrFree()
MSwrite()
TN261 www.rabbit.com 9

http://rabbit.com

cof_MSputc

void cof_MSputc(char address, char ch);

DESCRIPTION

Sends a character to the serial port. Yields until character is sent.

PARAMETERS

address Slave channel address of serial handler.

ch Character to send.

RETURN VALUE

 0: Success, character was sent.
-1: Failure, character was not sent.

LIBRARY

MASTER_SERIAL.LIB
10 www.rabbit.com TN261

http://www.rabbit.com

cof_MSread

int cof_MSread(char address, char *buffer, int length, unsigned long
timeout);

DESCRIPTION

Reads bytes from the serial port on the slave into the provided buffer. Waits until at least one
character has been read. Returns after buffer is full, or timeout has expired between reading
bytes. Yields to other tasks while waiting for data.

PARAMETERS

address Slave channel address of serial handler.

buffer Buffer to store received bytes.

length Size of buffer.

timeout Time to wait between bytes before giving up on receiving anymore.

RETURN VALUE

>0: Bytes read.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
TN261 www.rabbit.com 11

http://rabbit.com

cof_MSwrite

int cof_MSwrite(char address, char *data, int length);

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yields to other tasks while waiting
for write buffer to clear.

PARAMETERS

address Slave channel address of serial handler.

data Array to be transmitted.

length Size of array.

RETURN VALUE

Number of bytes actually written or -1 if error.

LIBRARY

MASTER_SERIAL.LIB

MSclose

int MSclose(char address);

DESCRIPTION

Closes a serial port on the slave.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
12 www.rabbit.com TN261

http://www.rabbit.com

MSgetc

int MSgetc(char address);

DESCRIPTION

Receives a character from the serial port.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Value of received character.
-1: No character available.

LIBRARY

MASTER_SERIAL.LIB

MSgetError

int MSgetError(char address);

DESCRIPTION

Gets bitfield with any current error from the specified serial port on the slave. Error codes are:
SER_PARITY_ERROR
SER_OVERRUN_ERROR

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
TN261 www.rabbit.com 13

http://rabbit.com

MSinit

int MSinit(int io_bank);

DESCRIPTION

Sets up the connection to the slave.

PARAMETERS

io_bank The I/O bank and chip select pin number for the slave device. This is a
number from 0 to 7 inclusive.

RETURN VALUE

1: Success.

LIBRARY

MASTER_SERIAL.LIB

MSopen

int MSopen(char address, unsigned long baud);

DESCRIPTION

Opens a serial port on the slave, given that there is a serial handler at the specified address on
the slave.

PARAMETERS

address Slave channel address of serial handler.

baud Baud rate for the serial port on the slave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.

-1: Slave port comm error occurred.

LIBRARY

MASTER_SERIAL.LIB
14 www.rabbit.com TN261

http://www.rabbit.com

MSputc

int MSputc(char address, char ch);

DESCRIPTION

Transmits a single character through the serial port.

PARAMETERS

address Slave channel address of serial handler.

ch Character to send.

RETURN VALUE

1: Character sent.
0: Transmit buffer is full or locked.

LIBRARY

MASTER_SERIAL.LIB

MSrdFree

int MSrdFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the slave.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
TN261 www.rabbit.com 15

http://rabbit.com

MSsendCommand

int MSsendCommand(char address, char command, char data, char
*data_returned, unsigned long timeout);

DESCRIPTION

Sends a single command to the slave and gets a response. This function also serves as a general
example of how to implement the master side of the slave protocol.

PARAMETERS

address Slave channel address to send command to.

command Command to send to the slave. For a list of valid commands see Table 4.

data Data byte to be sent to the slave.

data_returned Address of variable to place data returned by the slave.

timeout Time to wait before giving up on slave response.

RETURN VALUE

≥0: Response code.
-1: Timeout occured before response.
-2: Nothing at that address (response = 0xff).

LIBRARY

MASTER_SERIAL.LIB
16 www.rabbit.com TN261

http://www.rabbit.com

MSread

int MSread(char address, char *buffer, int size, unsigned long
timeout);

DESCRIPTION

Receives bytes from the serial port on the slave.

PARAMETERS

address Slave channel address of serial handler.

buffer Array to put received data into.

size Size of array (max bytes to be read).

timeout Time to wait between characters before giving up on receiving any more.

RETURN VALUE

The number of bytes read into the buffer (behaves like serXread()).

LIBRARY

MASTER_SERIAL.LIB

MSwrFree

int MSwrFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port write buffer on the slave.

PARAMETERS

 address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY

MASTER_SERIAL.LIB
TN261 www.rabbit.com 17

http://rabbit.com

MSwrite

int MSwrite(char address, char *data, int length);

DESCRIPTION

Sends an array of bytes out the serial port on the slave (behaves like serXwrite()).

PARAMETERS

address Slave channel address of serial handler.

data Array of bytes to send.

length Size of array.

RETURN VALUE

Number of bytes actually sent.

LIBRARY

MASTER_SERIAL.LIB
18 www.rabbit.com TN261

http://www.rabbit.com

Sample Program for Master

This sample program, /Samples/SlavePort/master_demo.c, treats the slave like a serial port.

#use "master_serial.lib"
#define SP_CHANNEL 0x42

char* const test_str = "Hello There";

main(){
char buffer[100];
int read_length;

MSinit(0);

// comment this line out if talking to a stream handler
printf("open returned:0x%x\n", MSopen(SP_CHANNEL, 9600));

while(1)
{

costate
{

wfd{cof_MSwrite(SP_CHANNEL, test_str, strlen(test_str));}
wfd{cof_MSwrite(SP_CHANNEL, test_str, strlen(test_str));}

}
costate
{

wfd{ read_length = cof_MSread(SP_CHANNEL, buffer, 99, 10);
}

if(read_length > 0)
{

buffer[read_length] = 0; //null terminator
printf("Read:%s\n", buffer);

}
else if(read_length < 0)
{

printf("Got read error: %d\n", read_length);
}
printf("wrfree = %d\n", MSwrFree(SP_CHANNEL));

}
}

}

TN261 www.rabbit.com 19

http://rabbit.com

Byte Stream Handler
The library, SP_STREAM.LIB, implements a byte stream over the slave port. If the master is a Rabbit,
the functions in MASTER_SERIAL.LIB can be used to access the stream as though it came from a serial
port on the slave.

Slave Side of Stream Channel

To set up the function SPShandler() as the byte stream handler, do the following:

SPsetHandler (10, SPShandler, stream_ptr);

This function sets up the stream to use channel 10 on the slave.

A sample program described in the section titled “Byte Stream Sample Program” shows how to set up and
initialize the circular buffers. An internal data structure, SPStream, keeps track of the buffers and a
pointer to it is passed to SPsetHandler() and some of the auxiliary functions that supports the byte
stream handler. This is also shown in the sample program.

Functions

These are the auxiliary functions that support the stream handler function, SPShandler().

cbuf_init

void cbuf_init(char *circularBuffer, int dataSize);

DESCRIPTION

This function initializes a circular buffer.

PARAMETERS

circularBuffer The circular buffer to initialize.

dataSize Size available to data. The size must be 9 bytes more than the number
of bytes needed for data. This is for internal book-keeping.

LIBRARY

RS232.LIB

cbuf_init()
cof_SPSread()
cof_SPSwrite()
SPSinit()
SPSread()

SPSwrite()
SPSwrFree()
SPSrdFree()
SPSwrUsed()
20 www.rabbit.com TN261

http://www.rabbit.com

cof_SPSread

int cof_SPSread(SPStream *stream, void *data, int length, unsigned
long tmout);

DESCRIPTION

Reads length bytes from the slave port input buffer or until tmout milliseconds transpires
between bytes after the first byte is read. It will yield to other tasks while waiting for data. This
function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to read from slave port buffer.

length Number of bytes to read.

tmout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE

The number of bytes read from the buffer.

LIBRARY

SP_STREAM.LIB
TN261 www.rabbit.com 21

http://rabbit.com

cof_SPSwrite

int cof_SPSwrite(SPStream *stream, void *data, int length);

DESCRIPTION

Transmits length bytes to slave port output buffer.This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to write to slave port buffer.

length Number of bytes to write.

RETURN VALUE

The number of bytes successfully written to slave port.

LIBRARY

SP_STREAM.LIB

SPSinit

void SPSinit(void);

DESCRIPTION

Initializes the circular buffers used by the stream handler.

LIBRARY

SP_STREAM.LIB
22 www.rabbit.com TN261

http://www.rabbit.com

SPSread

int SPSread(SPStream *stream, void *data, int length, unsigned long
tmout);

DESCRIPTION

Reads length bytes from the slave port input buffer or until tmout milliseconds transpires
between bytes. If no data is available when this function is called, it will return immediately.
This function will call SPtick() if the slave port is in polling mode.

This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Buffer to read received data into.

length Maximum number of bytes to read.

tmout Time to wait between received bytes before returning.

RETURN VALUE

Number of bytes read into the data buffer

LIBRARY

SP_STREAM.LIB
TN261 www.rabbit.com 23

http://rabbit.com

SPSwrite

int SPSwrite(SPSream *stream, void *data, int length);

DESCRIPTION

This function transmits length bytes to slave port output buffer. If the slave port is in polling
mode, this function will call SPtick() while waiting for the output buffer to empty. This
function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Bytes to write to stream.

length Size of write buffer.

RETURN VALUE

Number of bytes written into the data buffer.

LIBRARY

SP_STREAM.LIB
24 www.rabbit.com TN261

http://www.rabbit.com

SPSwrFree

int SPSwrFree(void);

DESCRIPTION

Returns number of free bytes in the stream write buffer.

RETURN VALUE

Space available in the stream write buffer.

LIBRARY

SP_STREAM.LIB

SPSrdFree

int SPSrdFree(void);

DESCRIPTION

Returns the number of free bytes in the stream read buffer.

RETURN VALUE

Space available in the stream read buffer.

LIBRARY

SP_STREAM.LIB
TN261 www.rabbit.com 25

http://rabbit.com

SPSwrUsed

int SPSwrUsed(void);

DESCRIPTION

Returns the number of bytes currently in the stream write buffer.

RETURN VALUE

Number of bytes currently in the stream write buffer.

LIBRARY

SP_STREAM.LIB

SPSrdUsed

int SPSrdUsed(void);

DESCRIPTION

Returns the number of bytes currently in the stream read buffer.

RETURN VALUE

Number of bytes currently in the stream read buffer.

LIBRARY

SP_STREAM.LIB
26 www.rabbit.com TN261

http://www.rabbit.com

Byte Stream Sample Program

This program, /Samples/SlavePort/Slave_Demo.c, runs on a slave and implements a byte
stream over the slave port.

#class auto

#use "slave_port.lib"
#use "sp_stream.lib"

#define STREAM_BUFFER_SIZE 31

main()
{

char buffer[10];
int bytes_read;

SPStream stream;

// Circular buffers need 9 bytes for bookkeeping.
char stream_inbuf[STREAM_BUFFER_SIZE + 9];
char stream_outbuf[STREAM_BUFFER_SIZE + 9];

SPStream *stream_ptr;

// setup buffers
cbuf_init(stream_inbuf, STREAM_BUFFER_SIZE);
stream.inbuf = stream_inbuf;
cbuf_init(stream_outbuf, STREAM_BUFFER_SIZE);
stream.outbuf = stream_outbuf;

stream_ptr = &stream;

SPinit(1);

SPsetHandler(0x42, SPShandler, stream_ptr);

while(1)
{

bytes_read = SPSread(stream_ptr, buffer, 10, 10);
if(bytes_read)
{

SPSwrite(stream_ptr, buffer, bytes_read);
}

}
}

TN261 www.rabbit.com 27

http://rabbit.com

	The Slave Port Driver
	Slave Port Driver Protocol
	Overview
	Registers on the Slave
	Polling and Interrupts
	Communication Channels
	Functions
	SPinit
	SPsetHandler
	MyHandler
	SPtick
	SPclose

	Handler Examples
	Status Handler
	Serial Port Handler
	Commands to the Slave
	Slave Side of Protocol
	Master Side of Protocol
	cof_MSgetc
	cof_MSputc
	cof_MSread
	cof_MSwrite
	MSclose
	MSgetc
	MSgetError
	MSinit
	MSopen
	MSputc
	MSrdFree
	MSsendCommand
	MSread
	MSwrFree
	MSwrite

	Sample Program for Master

	Byte Stream Handler
	Slave Side of Stream Channel
	cbuf_init
	cof_SPSread
	cof_SPSwrite
	SPSinit
	SPSread
	SPSwrite
	SPSwrFree
	SPSrdFree
	SPSwrUsed
	SPSrdUsed

	Byte Stream Sample Program

