RABBIT, ~Susgs

Semiconductor

TECHNICAL NOTE

TN253

Execution Tracing

Execution tracing is an advanced debugging feature available with Dynamic C 9 through 10.11. It is not
supported in later versions of Dynamic C. Execution tracing allows examination of the flow of a program’s
execution in real time instead of single stepping through it. The Trace window can show which statement
was executed, what type of action occurred, when the action was executed, and the contents of the regis-
ters after executing it. The contents of the Trace window can also be saved to a file for later access.

Enabling Execution Tracing

To use execution tracing it may be selected on the Debugger tab of the Project Options menu. If “Enable
execution tracing” is checked, the target will send trace information back to Dynamic C when you turn on
tracing by choosing Inspect | Start Tracing or when your program does so by executing a TRACEON
macro. Unchecking this box will disable the menu command and macro.

Figure 1. Dynamic C Menu: Options | Project Options
x|

Eommunicationsl Compiler

| Defines I Targetless I

— Debugger Options
¥ Enable debug kemel

¥ Enable instruction level single stepping

¥ Enable breakpaints Max breakpoints: I32 |vi

[v Enable watch expressions Max expressions: IB |vi Stuct watch memnang: |512 |vi

¥ Enable stack tracing Stack hrace thes:|4095| vi

v Enable egecution tracing
— Trace Buffer [PC]

Size [MEytes) |8 B [~ wrap Enties: 123,351

— Trace Lewel Trace Window Fields to Trace
* Full, Line breaks and function entm/exit [v Action [v File name
= Function entrplexit only ¥ Functionname v Time [msec)
W Line/calurnn W Register values:

— Saving Trace "Window ta a File
[~ Save on program temination

| =

ak I Cancel Help

022-0123 Rev. A rabbit.com 1

http://www.rabbit.com

The macro TRACE is another option for enabling execution tracing, albeit in a limited way. Read more
about the TRACE macro in the sections titled “Starting and Stopping Execution Tracing” and “Using
Trace Macros”.

Configuration Options
The Debugger tab is also where you may configure execution tracing parameters such as the buffer used to
hold trace entries.

Trace Buffer (PC)

This section is where you specify how much memory is allocated on the host PC for trace entries received
from the target. The default is 64 MB. If you check the “Wrap” box, new trace entries overwrite existing
ones when the buffer fills up, starting with the oldest. When “Wrap” is unchecked, any entries received
after the buffer fills up are discarded.

The number of entries displayed is the maximum number of trace entries the buffer will hold given the size
of the trace buffer you specify and the Trace window information fields you select.

Trace Level

This section is where you specify which events will be captured by the trace. Full tracing captures all
debuggable statements plus function entries and exits. If you don’t want to include all statements, you can
choose to capture each function entry and exit only.

Dynamic C statements are debuggable by default, while assembly code is not. You can toggle this with the
debug and nodebug keywords for Dynamic C functions, and with the debug and nodebug options of the
#asm compiler directive for blocks of assembly code.

Trace Window Fields to Trace

This section is where you specify the trace information that will be captured from the target and displayed
in the Trace window. You can include the function name, file name, and line and column where each trace
entry originated; the type of action being performed; the time stamp when the action was performed; and
the contents of the registers after the action was performed. The more fields you select to be displayed in
the Trace window, the larger each entry, and so the fewer entries the trace buffer can hold.

Saving Trace Window to a File

This section is where you specify the file that will contain the entries that are displayed in the Trace win-
dow. Checking the “Save on program termination” box on the Debug Windows tab will cause Dynamic C
to write the contents of the trace buffer to a file when the program terminates. When this box is checked,
the dropdown text box and browse button become active. You must specify a filename and its path. If a
filename is entered that does not exist, the file will be created. If the file exists, it will be overwritten.

Note that this feature saves the contents of the trace buffer at the time your program terminates, so if the
buffer fills up while your program is running not all trace entries received will be written to the file. If you
want to save trace entries before they are lost, you can do so at any time from the Trace window.

2 rabbit.com TN253

http://www.rabbit.com

Trace Window Configuration
The Debug Windows tab is where you select configuration options for the Trace window. Highlight “Exe-
cution Trace” in the list debug windows as shown in the screenshot below.

Figure 2. Dynamic C Menu: Options | Environment Options

Environment Options il

Editor | Gutter&Marginl Displa_l,ll Syntax Colorsl Code Templates Debug *#indows | Frint # Alerts

r General Preferences

{~ Do not automatically open % Open selected r Asselmbl_l,l I” Stdio
(" Open |ast used windows Ll] i
FEny [~ Stack [~ Stack Trace

(" Open all debug windows [~ Execution Trace

— Specific Preferences

, — Fonts and Colorg
Debug windows
Foreground Color

Stdio -
Aszembly I- Black 'I @l

E!t:;i};te;g Background Caolor
Memary Dump ||:| ‘white j @l
Watch

Fant [~ Use fived pitch
Stack Trace -
[LI II:ouner ey j |

_| Apply settings to all debug windows

r— Options

v Butomatically scrall race entries to bottor af windows

[~ Show file narme with full path

oK I LCancel | Help |

The available options for the selected window are shown in the bottom half of the dialog box. The options
for the Trace window are: automatic scrolling of the entries and whether the full path is displayed when the
file name is displayed. These options can be set on the Debug Windows tab at compile time or toggled at
runtime from a right-click pop-up menu accessible via the Trace window. The section titled “The Trace
Window” has more details on the Trace window and its right-click menu.

TN253 rabbit.com 3

http://rabbit.com

Starting and Stopping Execution Tracing

There are three ways to toggle tracing during program execution.

The first two require that tracing be enabled in the Debugger
tab of the Project Options dialog and they do not trace in

nodebug functions.

1. GUI options: Opening the Inspect menu, you will see the
“Stop Execution Tracing” and the “Start Execution Tracing”
commands, along with their keyboard shortcuts and toolbar
buttons. Use any of these methods to start and stop execu-
tion tracing while the program is running or while stopped at

a breakpoint.

2. TRACEON and TRACEOFF: Macros that are the equal to

the GUI options

The third way does not require tracing to be enabled and it can
be done in nodebug functions.

| Inspect Cptions “Window Help

¥ add watch. .. Chrl4+
Q Deleke Watch

Sk Delete Al Watches

a® Update Watch Window Chrl+L
Qf Evaluate Expression... Chrl+F7
fml Disassemble at Cursor Chrl4+F10
::ﬁ Disassemble at Address. .. Alk+F10
I Cump &k Address., .. CErl+D
E Shop Execubion Tracing Chel AT
LH Start Execution Tracing Shift+Ced+T
a0 bo execubion paint Zhr +E

3. TRACE: A macro that causes itself, and only itself, to be

traced.

The sample program Demo4 . ¢ uses trace macros. A description of this sample can be found in the section
titled “Using Trace Macros”.

Enabling execution tracing causes more code to be compiled into the BIOS, meaning there is less memory
available on the target for your program, so if you get insufficient memory errors with your program, dis-
abling tracing might help. Also, when you turn on tracing from the menu or a macro, your program will
suffer a performance hit because of the extra communication required between Dynamic C and the target.
If your program requires precise timing, tracing may interfere.

The Trace Window

Trace entries received are displayed in the Trace window. This window is only available if tracing is

enabled in Project Options and Dynamic C is in run mode.

Figure 3. Execution Trace Window

2 EADCINPROGASAMPLESADEMOD3.C Trace

Action

| Funiction | File M arne

| Line/Col | Tirneztamp

Execute
Execute
Execute
Execute
Execute

Execute

main E:

main
main

main

kbhit

E
E
main E:
E
E

ZWDCINPROCHLIEWSTDIO.LIE

ADCINPROGYSAMPLESYWDEMOZ. C 19,4 22141
WDCINPROGHY SAMPLESHDEMOZ . C 20,4 23391
WDCINTROGH SAMPLESWDEMOZ.C 20,12 24500

A\DCINPROGH SAMPLEEWDEMOZ.C 26,2 ZE7z7
WVDCINDROGH SAMPLESWLEMOZ.C

27,4 ZRE4E

: OxB3
EC :
LE :
HL :
AF':
EC':
LE':
HL':
I
IT :
5P
PC :
HPC:

Ox0o0o
0xC330
Ox1F72
OxF330
Ox0o0o
Q01000
O0xDFFE
0xC53B
Ox1FO7
0xDFF2
Ox1FCE
0x0030

The Trace window has a right-click pop-up menu. An option on this menu controls the display of an addi-
tional column in the Trace window. If “Group repeated statements” is selected, then “Show Repeat Count”

rabbit.com

TN253

http://www.rabbit.com

may also be selected and will display values in the rightmost column of the Trace window. A value dis-
played under “Show Repeat Count” is the number of times the corresponding statement has been executed
and, therefore, traced. The Timestamp column is not updated for subsequent traces of a repeated statement

The “Group repeated statements” option is useful when trac-

ing statements inside a loop. v Show Repeat Count

v Group repeated statements

The rest of the pop-up menu options are more or less self- Open Source

explanatory. You can choose to open the source code for any v Auko Scral
function in the Trace window by selecting the function and v Full file pathname
choosing “Open Source.” In Figure 3, note that a trace state-

for Kbhi . 1 din the T ind Ch Copy selected traces Chrl+1C
ment or kbhit () '1s se. ecjte 1.nt e Trace win ow: 00s- Copy with header Chrl-alt e
ing “Open Source” in this situation would open a window for celect Al CHl+A
STDIO.LIB, the library file that contains the function . .
kbhit (). Save trace window ko File

You can also toggle auto scroll, as well as decide whether to

display the complete path in the File Name column. The last three menu options are for saving Trace win-
dow contents to another file. You can select trace statements in the window and then using “Copy selected
traces” or “Copy with header” you can paste the selected traces anywhere you can perform a paste opera-
tion. You can also choose to copy the entire contents of the current Trace window to a named file. This is
similar to the option in the Debugger tab of the Project Options dialog, which allows saving the Trace win-
dow to a file upon program termination.

Activating the Trace Window

The Trace window may be activated or deactivated using the Windows menu as shown in the screen shot
below. The screen shot also shows the keyboard shortcut (Alt+F12) and the toolbar button that toggles the
Trace window.

The fields displayed in the Trace window are speci- N

fied in the Debugger tab of the Options | Project PwindowHelp

Options menu. ' _—
I Minirnize L4

Restore
Close

% Cascade

= Tile Horizonkally
[T Tile Yertically
E Arrange Icons

IQ' Compiler Messages

J 0, watch Chrl+Alk -+
i Information = Srin
1 DEMO i A Assembly Fi0
Z Skdio R Reqister F11
S stack Fiz
Lﬂj] Execution Trace AlE+F12
(70 Stack Trace ChHT

TN253 rabbit.com 5

http://rabbit.com

Using Trace Macros

The sample program Demo4 . ¢ demonstrates execution tracing using trace macros. Trace macros provide
a finer grain of control than the menu options.

The sample program Demo4 . ¢ is in TN253 . zip, which is available with this technical note. The sam-
ple program can also be found in the Samples folder with Dynamic C versions 9 through 10.11.

To run Demo4 . ¢, open Dynamic C, go to -

. . . s [ic C Disk. 9.00

the Debugger tab of the Project Options dia- " "'r_" e : IW_ e o
. . e I ample Lrn Nspec oy [=

log, select “Enable execution tracing” and 2 P FERAS P

then choose “Full” for the Trace Level. “ [= W “ =] “ R ' A RS
Click “OK” to save and close the dialog, “ B EMss o Project Options
then compile and run Demo4 . c. — =

Toolbars L

When the program finishes, the Trace win-
dow will open and you can examine its entries. If the Trace window does not open automatically when
Demo4.c exits, open it using one of the options described in the section entitled Activating the Trace Win-
dow. The Trace window can be opened anytime after the program is compiled, but execution speed is
slightly affected if the window is open while the program is running.

_TRACE

The TRACE macro creates one entry in the trace buffer containing the program state information at the
time the macro executes. It is useful if you want to monitor one statement closely rather than follow the
flow of part of a program. In Demo4 . ¢, TRACE is executed at lines 45 and 77, as you can see in
Figure 4.

Figure 4. Trace Window Contents after Running Demo4.c

EE:"\DEIHFHDEKSAHPLES\DEHD#.E Trace
Action Function | File Mame Line/Cal
Execute foo DENMO4.C

Execute foo LEMO4_C &0, 2
Execute foo LEMO4_C &5l,2
Execute foo DEMO4_C 62,1
Exit foo DEMO4 . C &2, 1
Execute main LEMO4_C 71,4
MACERO fool DEMO4 . C 45,1
MACERO main DEMO4 . C 7.1l
Execute foo DEMO4_C Lg, 4
Execute foo LEMO4_C 50,2
Execute foo LEMO4_C &5l,2
Execute foo DEMO4 . C &z, 1
Exit foo DEMO4 . C &6z, 1
Execute main DEMO4_C g0, 4
Execute main LEMO4_C 21,4
MACERO fool DEMO4 . C 45,1
Execute main DEMO4_C oz, d
Execute main LEMO4_C 23,1
Exit main DEMO4 . C 83,1

The TRACE macro does not affect the TRACEON and TRACEOFF macros, and likewise is not
affected by them. It will execute regardless of whether tracing is turned on or off. An interesting thing to
note about TRACE is that it generate a trace statement even when it appears in a nodebug function.

6 rabbit.com TN253

http://www.rabbit.com

_TRACEON

The TRACEON macro turns on tracing. This does not cause any information to be recorded by itself like
the TRACE macro, but rather causes a change of state within the debug kernel so that program state infor-
mation is recorded for program and library statements executed thereafter, until the TRACEOFF macro is
executed or by menu command. Dynamic C captures the information you specified in the Project Options
dialog and displays it in the Trace window.

In Demo4 . c, TRACEON is executed in the function foo () . Note that tracing is turned on in the second
call to fool () inmain (), but that except for the TRACE statement there are no trace statements for
fool (). This is because statements in nodebug functions are not traceable.

_TRACEOFF

The TRACEOFF macro turns off tracing, starting with the next statement after it executes. Instances of
the TRACE macro will still execute, but tracing remains off until it is turned on by the TRACEON macro
or by menu command.\

Summary

Execution tracing is a good data gathering tool to use when you are not sure what is happening. The large
amount of tracing information that may be saved on the host PC is available even if the program crashes.

TN253 rabbit.com 7

http://rabbit.com

	Execution Tracing
	Enabling Execution Tracing
	Configuration Options
	Trace Buffer (PC)
	Trace Level
	Trace Window Fields to Trace
	Saving Trace Window to a File

	Trace Window Configuration

	Starting and Stopping Execution Tracing
	The Trace Window
	Activating the Trace Window

	Using Trace Macros
	Summary

