
TN245

Client-Side SSL Workaround Using
Rabbit Server-Side SSL

Some Rabbit-based applications may require that the device initiate a connection to a server (with
the Rabbit acting as a client), rather than the other way around (with the Rabbit acting as a server).
The current Rabbit implementation of SSL does not support client-side SSL, so some applications
will simply not be possible. However, there are a large number of applications that can use the
server-side SSL implementation to emulate a client-side SSL setup (i.e., the Rabbit initiates the
connection, but still uses SSL). The following process is one possible solution (other solutions are
likely) that can be used to implement a “client-push” application using the Rabbit and the current
SSL implementation, as long as the developer has access to the server-side (i.e., the PC) application.

NOTE: Rabbit SSL does not have a published public API, so it will be necessary to use the
HTTPS methods in the Dynamic C HTTP.LIB library to do SSL communication. All of these
functions are in HTTP.LIB, begin with the prefix http_sock_, and are documented for the
<Ctrl-H> help functionality in Dynamic C.

The process for setting up client-SSL emulation (or client callback) requires only one additional
step when establishing the SSL session, and some software support on the server. The steps of the
process are outlined below and in Figure 1 on the next page.

1. The Rabbit-based device initiates a standard TCP/IP connection to the server, and sends a
plain-text packet with a unique identifier (not an IP address – the unique identifier ensures that
fraudulent attempts to mimic the Rabbit-based device are not possible, see Step 2).

2. The server (PC) stores a table* that associates the Rabbit’s unique identifier to the Rabbit’s IP
address. This way, even if an attacker tried to mimic the Rabbit by sending a message with the
same identifier, the server would only connect to the actual Rabbit-based device (assuming the
address could not be spoofed, but the SSL authentication by the PC/server would fail if that
happened — so the method is as secure as a standard Rabbit SSL session).

3. Upon receiving the “connect-to-me” message from the Rabbit, the server initiates a (client)
connection to the Rabbit-based device and begins an SSL session. From here, the SSL protocol
takes over. Once the SSL session is established, there is no functional difference between the
client and the server, so the user is then free to use the SSL socket for any desired purpose.

* This table is part of the reason why the developer needs access to the server-side application.
022-0110 Rev. A 1

Figure 1. Steps to Set Up Client-SSL Emulation
022-0110 Rev. A 2

The primary catch with this method is that if the Dynamic C HTTP.LIB library is used, the HTTP
headers must be discarded by the server and by the Rabbit when reading from the socket during a
non-Web transmission.* This is fairly simple to do in practice (see the References below on the
HTTP protocol).

This strategy suffers from a potential denial-of-service attack, but limiting the number of connec-
tions to a single device in a specific period of time should alleviate some of this issue (this is only
one possible solution to the DOS attack problem — generally this problem is difficult to deal with
in any network situation and is not limited to Rabbit-based devices).

References
1. IETF RFC2616. Hypertext Transfer Protocol — HTTP v. 1.1.

2. World Wide Web Consortium (www.w3.org), Hypertext Transfer Protocol.

3. Internet Engineering Task Force (www.ietf.org).

4. Dynamic C TCP/IP User’s Manual, Volume 2, Chapters 2 and 4.

* This is another reason why the developer needs access to the server.
022-0110 Rev. A 3

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6809
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor
2932 Spafford Street

Davis, California 95616-6809
USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/Protocols/
http://www.ietf.org/
http://www.zworld.com/documentation/docs/manuals/TCPIP/UsersManualV2/tcpV2.pdf
http://www.zworld.com/documentation/docs/manuals/TCPIP/UsersManualV2/tcpV2.pdf

