
TN215

Using the I2C Bus with a Rabbit Microprocessor

This document describes how to use the library, I2C.LIB, to enable the Rabbit 2000 microproccessor to 
communicate with I2C peripheral devices. The library covers the basic I2C protocol. You must have a 

Rabbit 2000 or newer Rabbit chip to use the I2C library. Most Dynamic C libraries are forward compati-
ble; to verify this for a particular library read the comments at the top of the library file. 

The term “I2C” comes from IIC, an acronym for Inter IC. The I2C bus is a popular way for a processor to 
communicate with peripheral chips on a board. Its simple and flexible nature make it a good choice for 
low-speed peripherals. There are a number of these that can be used by the Rabbit, including serial 
EEPROM chips, ADCs, and even more exotic types such as video switches and USB controllers.

Physical Properties of the I2C Bus

I2C is a synchronous serial bus that can be shared by several peripheral devices. The physical connection 
is made up of two wires (SCL and SDA) pulled up to a logic high level by resistors. All nodes on the bus 
use open-collector style drivers when controlling SCL or SDA. This prevents the possibility of contention 
between nodes.

Figure 1.   

I2C Protocol
The master (i.e., the Rabbit) normally controls the clock line (SCL) and determines when a data transfer 
will occur. Peripherals are not able to interrupt the master. A data bit on the SDA line is normally latched 
before the clock goes into a high state. The master can signal a start (S) or stop (P) condition by violating 
this and creating a transition while the clock is high. A falling edge indicates a start, while a rising edge 
indicates a stop. This is followed by bits being clocked out normally, with the most significant bit first. At 
the end of each byte, the master generates an extra clock pulse, and the receiver of the byte (slave or mas-
ter) generates an acknowledge bit (ACK). The ACK is a low state on SDA while SCL is high. 

Since SDA is pulled up, an ACK will only be generated if the receiver intentionally pulls the line low.

���

���

������ ��� 	
�
��
�������

��� ���
022-0061 Rev. B www.rabbit.com 1

http://www.rabbit.com


Which Parallel Port to Use

There are 5 parallel ports on the Rabbit 2000. The I2C library uses port D because it has open drain capa-
bilities, which makes clock stretching easy to detect. Clock stretching is when a slave device needs more 
time to prepare to send a byte of data and so pulls SCL low to indicate that it is not yet ready. 

Port D is hardcoded in i2c.lib with #ifndef directives. To use a different parallel port you must 
#define a few things in your application code, as well as change the function i2c_init(). Refer to 
i2c.lib, and specifically the comment “Define these to change basic bit handling,” to see what needs to 
be done.

I2C Library API

The functions in I2C.LIB handle the generic aspects of an I2C interface. Drivers for specific I2C periph-

eral devices can easily be built with these functions. The basic operations for a Rabbit I2C master are:

• Initialize the I2C interface pins

i2c_init() // Sets up the SCL and SDA port pins for open-drain output
// Also initializes delay constant

• Send a start condition

i2c_start_tx() // initiates  I2C transmission by sending S (START)

i2c_startw_tx() // initiates I2C transmission by sending S
// inserts delay after S pulse.

• Send a byte of data
i2c_write_char() // Sends 8 bits to slave
i2c_wr_wait() // Retries char write until slave responds 

• Listen for an Acknowledgement
i2c_check_ack() // Checks if slave pulls data low for ACK on clock pulse

• Receive a byte of data

i2c_read_char() // Reads 8 bits from slave

• Send an Acknowledgement
i2c_send_ack() // Sends ACK sequence to slave
i2c_send_nak() // Sends NAK sequence to slave

• Send a stop condition
i2c_stop_tx() // Sends P (STOP) to slave
2 www.rabbit.com TN215

http://www.rabbit.com


These actions are combined in driver functions to communicate with a specific I2C device. For additional 
information on this API, refer to the Dynamic C Function Reference Manual or use the “Function 
Lookup/Insert” feature on Dynamic C’s Help menu.

Device Specific Functions
To write a set of functions for a given device, you will need to consult its datasheet and write functions for 
each of the operations you wish to perform. This is simple, since the master’s tasks breaks down into a 
series of byte writes and byte reads. Examples of higher-level API functions written for specific devices 
are in I2C_DEVICES.LIB. This library contains implementations for a 24LC16 EEPROM and a 
MAX518 DAC.

After writing a byte, the master usually listens for an acknowledgement bit and and acts appropriately 
depending on if one is received or not. Not receiving an ACK from the slave does not always indicate an 

error. Several types of I2C devices stop acknowledging while they are busy to indicate that they are not 
ready. EEPROMs doing a write operation and ADCs performing a conversion are good examples of this. 

If the I2C device only receives commands, then it is a simple matter sending it a Start, writing the com-
mand bytes to it, listening for an ACK after each one, and finally ending with a Stop. If the device sends 
data back to the master, the operation is more complex. 

In this case, the master starts the transfer by sending a Start followed by one or more bytes. The slave 
should ACK each of these. At some point the master will begin reading bytes from the device and sending 
an ACK bit after each one. The master usually ends the transfer by not acknowledging the last byte and 
then sending a Stop condition.

Note that even while reading, the master still controls the clock (SCL), but the device is controlling SDA

Sample Programs
Sample programs are available in the directory where Dynamic C was installed, in the folder 
Samples\I2C. The program, i2c_test.c, writes a string to the beginning of the memory space of a 
Microchip 24LC16 serial EEPORM, and then reads it back. The program, i2c_dac_sample.c, tests 
the connection of the Rabbit to a MAX517/518/519 chip This sample will cycle through DAC values zero 
through 255, creating a sawtooth output.

Summary

Communicating with devices over an I2C bus requires a tailored implementation for each device type. 
After reading this document and looking at the sample programs, you should be able to create an imple-
mentation for whatever device you will be using. The best resource for further informaion is the datasheet 

for the chip you are interfacing to the Rabbit. The better datasheets include an overview of I2C in addition 

to specifics about communicating with the chip. The I2C specification was developed by Philips Semicon-
ductor and is available on their website: www.semiconductors.philips.com.
TN215 www.rabbit.com 3

http://www.semiconductors.philips.com/
http://rabbit.com

	Using the I2C Bus with a Rabbit Microprocessor
	Physical Properties of the I2C Bus
	I2C Protocol
	Which Parallel Port to Use
	I2C Library API
	Device Specific Functions
	Sample Programs
	Summary


