
 i

Application Note: Private MIBs for
NET+OS x.x

 ii

TABLE OF CONTENTS
TABLE OF CONTENTS... ii
Overview ... 1

Requirements ... 1

Documentation ... 1

Qualify your resources .. 2
BUILD NAMIB ...2
DOWNLOAD AND RUN NAMIB APPLICATION2
COMPILE THE SAMPLE NAMIB MIB2

Steps to Build and Test the Sample MIB Application2
WALK THE MIB ...4
ADDING A SECOND MIB..5
CONFIGURATION AND TOOLS MODIFICATIONS5

gen.bat...5
project.bld...6
\mibs\listgh ..6
otherleds.config ..6
otherleds.inc ...6
\mibs\otherleds.sm2 ...6

Building NAMIB with a second MIB .. 7

OTHERLEDS.SM2... 8

otherleds.config.. 10
ADD SPECIFICATIONS TO OTHERLEDS,CONFIG..............................10
RECREATE THE OTHERLEDSACTION.C SOURCE FILE10
ACTION ROUTINE SOURCE MODIFICATION11

Add New MIB to Database and Verify... 11
PROJECT BUILD AND DEBUG..12

Verify the OTHERLEDS MIB in MIB Browser 12

SAMPLE FILES ... 12

 1

OVERVIEW
These tools support the integration of MIBs (Management Information Bases) in the
NET+OS environment:

• SMICng

• MIBMAN

SMICng is the SNMP MIB Information Compiler. SMICng checks MIB modules at the
level of strictness you specify through command line switches, compiler directives, and
environment variable options. The output of SMICng is an intermediate file that is ready
for processing by MIBMAN.

MIBMAN is a utility that translates Simple Network Management Protocol
(SNMP) Management Information Bases (MIBs) into C code that contains:

• Templates for action routines that you implement
• Management API declarations for MIB objects that correspond to

management variables.
You invoke these tools through a script named ‘gen.bat’.

This document describes and demonstrates how to integrate two private MIBs into a
NET+OS 6.0 application. This document also identifies the variables, tables, and
interfaces you create with MIBMAN that are exposed through the Management API.

The information is presented through a sample application that uses two private MIBs to
manage some common NetARM resources (GPIO PortC LEDs) on the 7520
development board.

REQUIREMENTS

Knowledge of SNMP in operation and the ability to use a MIB browser and compiler.

Knowledge of C programming and the ability to create an application for NET+OS as
well as the capability to debug the application.

A NET+OS development system with a Green Hills compiler and debugger, MIBMAN,
and SMICng.

A MIB browser and compiler.

DOCUMENTATION

SMICng – usesmic.htm (provided on the NET+Works CD)

MIBMAN – userguide_programmerguide_ghs.pdf – ‘Using the MIBMAN Utility’ (provided
both on the NET+Works CD and in hard copy)

Readme document – located in the sample application root directory

‘Understanding SNMP MIBs’ ISBN – 0-13-437708-7 available at Amazon.com

 2

QUALIFY YOUR RESOURCES

You must be able to:

Build, download, and execute the sample application ‘namib’.

Display and set variables in the sample application’s MIB with a Web browser. For
instructions about your MIB browser and compiler, see the documentation you received
with them.

The next sections outline a method of qualifying your development kit and software by
using the sample ‘namib’ application.

Build namib
For instructions about how to build, download, and debug your application, see the
NET+OS with Green Hills Programmer’s Guide..

Download and Run namib application
For instructions about how to build, download, and debug your application, see the
NET+OS with Green Hills Programmer’s Guide..

. The message ‘The example MIB has been loaded.’ will appear in the console or
HyperTerm window.

Compile the sample namib MIB
Your MIB browser requires a MIB database from which to define the operations and
objects that are available to SNMP on a particular MIB. To prepare the MIB, you need to
run the MIB compiler on the MIB source files.

The files for this example are located in the (PROJECT_ROOT)\mibs directory, where
(PROJECT_ROOT) is the directory that contains the project.bld file (default is:
C:\NETOS60_GH361\src\examples\namib).

After you compile (create the database files), you need to register the new MIB with your
browser. For instructions about compiling and registering the MIB, see the
documentation you received with your MIB browser/compiler.

After you compile and register the MIB, you are ready to use the MIB browser to verify
the sample application’s MIB.

Steps to Build and Test the Sample MIB Application
To build and test the sample namib application, first

1. Open a DOS Window and set the current directory to the root directory of the
namib application; for example:

C:\NETOS60_GH361\src\examples\namib

2. Verify that these files are present in the directory:

• Gen.bat

 3

• Mibman.jar

• Project.bld (Green Hills)

• Readme

• Root.c

• Table.c

• Table.h

(For a description of these files, see the Readme file.)

3. Verify that you have Java in your path. If you need to install the Java runtime
environment, go to http://www.sun.com for the latest supported version.

4. Verify that the \mibs subdirectory exists and contains these files:

• Example.inc

• Listgh

• Example.config

• Example.sm2

• Rfc1902.sm2

• Rfc1903.sm2

• Rfc1904.sm2

5. Run the gen command (batch file). output of the session looks similar to this

 4

6. Take note of several new files that appear in the namib directory. Mibman.h.
mibman.c, example.h, example.c are all outputs of this process.

7. Note, in the \mibs directory, several files are produced: rfc1902.out, rfc1903.out,
and example.out.

8. The next step is to compile the MIB(s) for your MIB browser. The tools you use
for this step determine the procedure for compiling and registering the MIB.

9. Build the project either in the Green Hills IDE or by invoking the Green Hills Build
tool on the command line (“build image.bld” from the \32b directory).

10. Open the terminal (HyperTerm) window for COM1, download the image, and
execute the namib application.

11. Start the MIB browser after the application has started.

For the exact steps for contacting your target and retrieving information from the
SNMP agent, see the documentation you received with your MIB browser.

Walk the MIB
First, you must contact the SNMP agent running in your application. Your MIB browser
provides the means for testing this connection.

After you establish contact, you can examine the contents of the application’s MIB.

 5

Next is a screen capture of the basic namib MIB. This output was generated by
performing a ‘walk’ with the selection on 1.3.6.1.4.1.901
(iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).nsil(901)).

When you can do this (retrieve the objects’ identifiers and values), you have a working
application with an SNMP agent running and a properly compiled MIB.

Adding a second MIB
We will add a MIB to the existing application.

Configuration and Tools Modifications
gen.bat
You must modify the gen.bat file to process the additional source (otherleds.sm2). Add a
line, as shown here:

..\..\..\bin\smicng -z -cm .\mibs\otherleds.inc > .\mibs\otherleds.out

Insert this code just before this line

java -jar ..\..\..\bin\mibman.jar mibs\listgh mibs

 6

project.bld
Modify the project.bld file) to include the following lines

OTHERLEDS.c

 C

OTHERLEDSAction.c

 C

\mibs\listgh
This line is appended to \mibs\listgh:

mibs\otherleds.out

This step appends otherleds.out in the MIBMAN processing.

otherleds.config
Add to the directory \mibs, the file otherleds.config. It contains three lines that cause
MIBMAN to create action routines. This is the entirety of the file’s content.

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.1

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.2

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.3

otherleds.inc
Add otherleds.inc to the directory \mibs. This is identical to example.inc except for this
line:

#condInclude "otherleds.sm2"

which replaces:

#condInclude "example.sm2”.

\mibs\otherleds.sm2
This is the source file for the second mib ‘otherleds’ that is added to the project.

The second MIB in this example is called OTHERLEDS. Its source is otherleds.sm2.

The .inc file necessary for this otherleds.inc. is virtually a copy of example.inc except for
this line:

“#condInclude "otherleds.sm2"

which replaces:

“#condInclude "example.sm2”

 7

To add OTHERLEDS to this project, you need to modify the:Gen.bat file. Add a line to
include the new MIB source: ..\..\..\bin\smicng -z -cm .\mibs\otherleds.inc >
.\mibs\otherleds.out.

BUILDING NAMIB WITH A SECOND MIB

1. Run the gen command (batch file). The output of the session will look like this:

Note the additional statement from MIBMAN ‘Reading OTHERLEDS’ and the
statement that OTHERLEDSAction.c already exists.

2. Next, rebuild the application in the Green Hills IDE (or at the command line by
invoking the builder from \32b – build image.bld).

3. Compile the new MIB, and register it with your MIB browser.

4. Download and start the application.

5. Start the MIB browser when the application has started.

Your new MIB should resemble this:

 8

OTHERLEDS.SM2

The first three items in the file otherleds.sm2 are the Name, Imports statement and,
MODULE-IDENTITY. For information about the format of the MIB module and the syntax
of the statements, see ‘Understanding SNMP MIBs’. The first two chapters describe the
format of the MIB specification, provide some history, and explain the organization of the
IOD. (That’s more than enough to get started.)

The next statements set some important information that identifies this object. First is the
nsil object identifier (common with example.sm2), followed by identities for ‘examples2’,
‘secondGroup and secondTable. (differentiate this object and its components from
‘example’).

examples2 OBJECT IDENTIFIER ::= {nsil 1000 }

-- scalar items

-- Now define a group and a table

secondGroup OBJECT IDENTIFIER ::= {secondExample 1}

secondTable OBJECT IDENTIFIER ::= {secondExample 2}

 9

-- scalar items

 ledsMaskOn OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-write

 STATUS current

 DESCRIPTION

 "This object is used to turn on multiple LEDs"

 DEFVAL {0}

 ::= {secondGroup 1}

 ledsMaskOff OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-write

 STATUS current

 DESCRIPTION

 "This object is used to turn off multiple LEDs"

 DEFVAL {0}

 ::= {secondGroup 2}

 ledsMaskSet OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-write

 STATUS current

 DESCRIPTION

 "This object is used to turn on and off multiple LEDs"

 DEFVAL {0}

 ::= {secondGroup 3}

 END

 10

OTHERLEDS.CONFIG

The file specifies some needed action routines to MIBMAN. MIBMAN is the second tool
that the gen.bat file invokes.

Defining the ledsMaskOn, ledsMaskOff and ledsMaskSet objects in the otherleds.sm2
file gave MIBMAN enough information to define some variables and structures (for the
management interface, among others) to implement these objects. MIBMAN also
creates action routines for the variables.

One of the messages that appears in the console window when running the batch file is:

“The file xxxxxxAction.c already exists and has not been overwritten.” This feature
protects your action routine sources from being replaced by the template MIBMAN
creates for these variables. However, we need the templates that MIBMAN creates, so
we will rebuild (after renaming the existing OTHERLEDSAction.c).After rebuilding, we
can integrate whatever code we wanted from the original source (OTHERLEDSAction.c-
save) with the newly-generated template OTHERLEDSAction.c.

MIBMAN uses the contents of otherleds.config to determine which action routines to
generate. We want action routines for all the objects (ledsMaskOn, ledsMaskOff and
ledsMaskSet)i to be able to set the values of these variables through the MIB browser.

Add specifications to otherleds,config
The identification of the routines by their target objects requires us to look in the file
otherleds.h to retrieve the OIDs for these objects.

#define OTHERLEDS_ledsMaskOn "1.3.6.1.4.1.901.1000.1.1.1"

#define OTHERLEDS_ledsMaskOff "1.3.6.1.4.1.901.1000.1.1.2"

#define OTHERLEDS_ledsMaskSet "1.3.6.1.4.1.901.1000.1.1.3"

are present.

Open the otherleds.config file and verify that the statements:

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.1

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.2

GenerateWriteActionRoutine 1.3.6.1.4.1.901.1000.1.1.3

are present.

Recreate the OTHERLEDSAction.c source file
Next, either rename the OTHERLEDSAction.c file or delete it to allow MIBMAN to
generate the action routine templates on the next pass.

 “Execute the gen.bat command again, and then examine the contents of
OTHERLEDSAction.c. You will find an action routine for each of the two statements in
the otherleds.config that we just entered.

 11

The output displayed is:

Action Routine Source Modification
The action routines that MIBMAN generatesy MIBMAN are stubs. You need to add code
to these routines to perform the needed work. An example of turning the yellow LED on
and off is available in the EXAMPLEAction.c file.

ADD NEW MIB TO DATABASE AND VERIFY

See the section: “Compile the sample namib MIB” and the documentation you received
with theMIB Compiler and browser for instructions about compiling and registering the
new MIB.

After the OTHERLEDS MIB has been registered, you can browse its contents.

Here is a sample MIB browser output that describes the ledsMaskOn variable’s
properties:

 12

Project Build and Debug
You need to add the new C sources that were created to your project’s build files.

• Navigate to the ‘project.bld’ file. From the ‘Project’ drop-down menu, select ‘Add
File to Project.Bld’. Add the filesOTHERLEDS.c and OTHERLEDSAction.c files
to the project.

• Navigate to the ‘image.bld’ file and perform a build (Rebuild All is not necessary).

• After successfully building, you can download and run the application.

VERIFY THE OTHERLEDS MIB IN MIB BROWSER

After you install or register the newly-compiled MIB with the MIB browser and start the
application running, you can use the MIB browser to interact with the agent running in
your target.

At this point, it should be easy to verify the OIDs, types and names of all the variables.

To see the OID for each variable, see the generated .c and .h files (EXAMPLE.c,
EXAMPLE.h, OTHERLEDS.c, OTHERLEDS.h).

SAMPLE FILES

NetSilicon recommends that you save a copy of your working source code tree before
you make these changes.

Extract the contents of the zip file into the project root directory with these options
selected:

• All files

• Overwrite existing files

These files contain all the edits described above.

The code, MIB specifications, and configuration files for this sample are provided in two
zip files.

Unzip the netos60-with-private-mibs-rev0.1.zip file into your project root directory; for
example: C:\NETOS60_GH361\netsilicon_netos_source\netos\src\examples\namib.

Additionally, to support the Yellow LED and pc0 LED on and off calls, you need to
extract the contents of: netos60-with-private-mibs-bsp-mods.zip into your platform bsp
directory. The file is gpio.c. Find the directory in your source tree where that file is
located, and replace it with the gpio.c in the zip file then rebuild the bsp before rebuilding
the application.

