

Polling ASCII devices as
Modbus slaves

February 2018
90000648

90000648 B www.digi.com Page | 2 of 23

Contents
1 Introduction ... 3

1.1 Abstract ... 3

1.2 Sample application... 3

1.3 Overview of ASCII Import function ... 3

2 Setting up the Digi One IAP .. 4

2.1 Overview .. 4

2.2 By web wizard, release E ... 5

2.3 Reboot the Digi One IAP ...12

2.4 By telnet, release E PN ...12

3 Programming the Momentum MSTR block ...14

3.1 MSTR read using Modbus/TCP from an ASCII device ..14

3.2 MSTR write using Modbus/TCP to an ASCII device ..16

3.3 MSTR write using Modbus/TCP to load the half-duplex poll ..16

4 Application examples: Putting it all together ...18

4.1 Using Modbus/TCP for receive-only from an ASCII device ..18

4.2 Using Modbus/TCP for transmit-only to an ASCII device...19

4.3 Using Modbus/TCP for half-duplex to an ASCII device ...19

5 Troubleshooting and FAQ ..23

5.1 My ASCII is showing up funny; “Stop the Press” becomes “tSpoT ehP erss.”23

5.2 Can I use the Modbus function 23 to read/write in a single command?23

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 3 of 23

1 Introduction

1.1 Abstract
This application note describes how to use a Modbus, and Modicon MSTR blocks, to remotely
read or write ASCII data using the Digi One IAP and the Release E firmware. The Digi One IAP
makes the ASCII device (such as a barcode scanner, weight scale, or LED marquee sign)
appear as a Modbus slave device.

1.2 Sample application
The sample application shown next includes two ASCII devices in two distinct modes and uses
both serial ports.

A Momentum PLC uses digital input from a position sensor to sense the presence of a product
on a moving conveyor, and uses an ASCII command to poll the weight from a weight scale
under the conveyor. So the PLC sends a fixed, ASCII-poll command and receives a variable
ASCII response.

For the second device, the Momentum formats and sends ASCII strings to be displayed on a
marquee or LED signboard—the Momentum expects no response.

1.3 Overview of ASCII Import function
A Modbus/TCP master such as a Modicon PLC, supports only Modbus protocols on its Ethernet
port. Unless you purchase special hardware modules, you cannot open a raw socket to access
a remote ASCII device by TCP/IP tunneling.

The Digi One IAP ASCII Import function solves this problem by making the ASCII serial device
appear as a Modbus slave. ASCII Import accepts Modbus reads and writes, and responds with
the expected Modbus response. In this way, a Modicon PLC can use MSTR blocks to read and
write the Digi One IAP. In addition, ASCII data is packed into the data registers that are read or
written.

1.3.1 ASCII Import as receive-only
Some ASCII devices—such as the serial output printer output from a vibration monitor or a
barcode scanner—only send out messages. The Digi One IAP considers such devices as
receive-only. Your PLC does a Modbus read of the Digi One IAP, and the response is one of
the following:

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 4 of 23

• All zero values (meaning no waiting data)

• The oldest ASCII message waiting in queue packed as holding registers

Setting the slave timeout to zero (0) causes old messages to be saved indefinitely, while setting
slave timeout from 1 to 65,535 ms (about one minute) causes old messages to be discarded
after this timeout if they are not read.

1.3.2 ASCII Import as transmit-only
Some ASCII devices, such as a serial printer or an LED marquee display, only receive
messages and never send a response. The Digi One IAP considers such devices as transmit-
only. Your PLC creates an ASCII string packed in holding registers and does a Modbus write to
the Digi One IAP. The Digi One IAP unpacks the ASCII data and sends it out the serial port.

1.3.3 ASCII Import as half-duplex (poll/response)
Some ASCII devices—such as a weight scale that can be queried for gross, net, and tare
weights—must be polled for a response. The Digi One IAP considers such devices as half-
duplex. Your PLC creates an ASCII string that represents the poll and does a Modbus write to
the Digi One IAP. The Digi One IAP unpacks the ASCII data and remembers it in one of 10
buffers. The data is not sent out at this time. Instead, when your PLC does a Modbus read of
the Digi One IAP, it sends out the remembered poll and returns the ASCII response packed into
the Modbus read response. The Digi One IAP maintains ten separate buffer pairs per serial
port. These buffer pairs can be used by 10 remote masters to avoid conflicts, or by a single
master to remember 10 distinct polls. For example, you could use buffers 1, 2, and 3 to hold the
requests to read gross, net, and tare weights respectively, and use buffer 4 to hold the request
to reset or zero the tare weight.

2 Setting up the Digi One IAP
The instructions in this application guide are based on the assumption that you understand the
basics of setting up and accessing your Digi product by Ethernet and TCP/IP. If you need help
with these procedures, see the related guides at Digi’s support site.

2.1 Overview
Here is a summary of the steps for configuring the Digi One IAP.

• Configure incoming Modbus/TCP masters (a message source).

• Configure ASCII device on port 1 for half-duplex (weight scale).

• Configure ASCII device on port 2 for transmit-only (LED marquee display).

• Configure Modbus messages to slave 1 to go to port 1.

• Configure Modbus messages to slave 2 to go to port 2.

http://www.digi.com/
http://www.digi.com/support

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 5 of 23

2.2 By web wizard, release E

2.2.1 Select the Industrial Automation Wizard
1. In the left column, under the Applications section, click Industrial Automation.

2. Click Launch the Industrial Automation Wizard. The wizard walks you through the
process of defining where messages come from and where they go.

2.2.2 Create a new group and reset all IA settings
1. Click Create new configuration using new data flow group, and check Reset all Industrial

Automation settings to factory defaults.

2. Enter a name in the Table field. Use any name you like; for example, table1 or myTable.

3. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 6 of 23

2.2.3 Limit this group to any protocol that supports mapping
1. To map Modbus to ASCII, click Protocol Mapping. This setting lets you use most protocols

within your configuration, including mixing Modbus and Rockwell protocols.

2. Click Next.

2.2.4 Define Modbus Ethernet/IP as the master or message source
1. When you see the information dialog box about Message Sources (not shown in this

document), click Next.
2. Click Receive messages from network devices connecting using the network.

3. From the pulldown menu, select the Modbus/TCP Protocol. The Network port
automatically sets to 502.

4. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 7 of 23

2.2.5 Message source protocol settings
You don’t need to make any changes in this window; the default settings are fine as is. Note that
the Permission Level is set to allow all Modbus messages, and error responses (Modbus
exception 0x0A and 0x0B) are enabled. Click Next >>.

2.2.6 Define timeouts for the incoming Modbus/TCP connection
You don’t need to make any changes in this window; the default settings are fine as is.

Click Next >>.

2.2.7 Master summary
1. (Note that this step is optional.) To define more masters, check Continue creating more

message sources.
In this example, no additional masters are required, but you could enable some Rockwell
protocols. If you have only one ASCII device, you can also enable a serial master on the
other Digi One IAP’s serial port.

2. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 8 of 23

2.2.8 Define first message destination (serial port #1)
1. Click Next to pass an information dialog about Message Destinations and go to the

window shown next.

2. Click Send only messages matching specific protocol address.

3. Enter 1 for the Address. This address is the slave address or unit ID from the Modbus
requests. The first message destination does not have to be 1; it could be 9, 23, or any valid
Modbus address.

4. Click Next.

2.2.9 Set the protocol and port number
1. Click Send messages to serial device connected to serial port.

2. Select Serial Port 1 from the pulldown menu. Note that slave address of 1 and serial port 1
are independent. Setting slave address of 1 to serial port 2 is just as valid.

3. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 9 of 23

2.2.10 Set the serial port settings
1. Select the serial port settings from the pulldown menus.

2. For most IA protocols, you must set Flow Control to None.

3. Click Next.

2.2.11 Set the ASCII Import-specific protocol settings
You will need to scroll through this window. For detailed help, including the format for characters
such as carriage return, click Help.

1. In the End Delimiter input box, specify the delimiter (a carriage return) for this device
entering \r.

2. In the example, click half and swap, leave Pad empty bytes… set to 0.

3. In the Preload write strings used for polling input box, predefine the poll string for the
gross weight by entering WG?\r.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 10 of 23

2.2.12 Set the serial port settings
Slave timeout applies only to half-duplex or receive-only ASCII Import modes. The table
describes how slave timeout is used in the modes:

In this mode Slave timeout is

Transmit-only Ignored.

Half-duplex The maximum time the Digi One IAP waits for
the start of a slave process/.

Receive-only Used as an age limit for received ASCII
messages. If it is set to 0, there is no age limit.
Otherwise, it is the age in milliseconds that the
received ASCII message can wait in queue to
be read.

1. Enter a value in the Slave timeout input box.

2. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 11 of 23

2.2.13 Repeat for second destination (serial port #2)
1. Click the Continue creating more message destinations checkbox.

2. Click Next.

3. Repeat the steps from 2.2.8 to 2.2.12 to the second serial port for ASCII Import and Modbus
slave address 2. The LED sign uses transmit-only because you send it only strings to
display.

2.2.14 Review the summary
1. After you set up port 2, uncheck the Continue creating more message destinations

checkbox.

2. Click Next. A summary of the master and destinations setup appears.

3. Click Next.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 12 of 23

2.3 Reboot the Digi One IAP
You can make minor changes to the Digi One IAP configuration without rebooting. However,
when you change the number or type of master (message sources), or the number or type of
slave (message destinations), it is safest to reboot. These changes, which affect the tasks
running in the Digi One IAP RTOS, occasionally fail to take effect unless you reboot.

2.4 By telnet, release E PN
1. Use either HyperTerminal or telnet to log into your Digi One IAP.

2. Enter the IP address of your DS and the well-known telnet port of 23.
You can use the text script shown next.

3. Cut and paste the script into a text editor like WordPad.

4. Edit it as required.

5. Cut and paste again into HyperTerminal using Edit > Paste to Host menu.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 13 of 23

clear all IA config revert ia=factory

setup port 1 (screw term) as ascii_import (baud = 9600,8,N,1) set port ra=1 dev=ia
set line ra=1 baud=9600 csize=8 parity=N stopb=1
set ia serial=1 protocol=ascii_import type=slave table=1 set ia serial=1 slavetimeout=5sec
duplex=half packing=swap set ia serial=1 end="\r" prewrite1="WG?\r"

setup port 2 (db9) as ascii_import (baud = 2400,7,E,2) set port ra=2 dev=ia
set line ra=2 baud=2400 csize=7 parity=E stopb=2
set ia serial=2 protocol=ascii_import type=slave table=1 set ia serial=2 duplex=xmt
packing=swap

setup network for Modbus/TCP incoming
set ia master=1 active=on protocol=mbtcp transport=tcp ipport=502 table=1

setup destination table set ia table=1 name=table1
set ia table=1 addroute=1 active=on protocol=ascii_import set ia table=1 route=1 protaddr=1
type=serial port=1

set ia table=1 addroute=2 active=on protocol=ascii_import set ia table=1 route=2 protaddr=2
type=serial port=2

reboot the Digi One IAP boot action=reset

You can add the third and fourth routes to your table to enable use of Modbus slave address 3
or 4 to remote Digi One SP or Digi One IA. The ASCII handling is done within the local Digi One
IAP, so the remote units can be a non-IAP device server. Note that the IP address is defined;
you’ll need to change it. The Digi One IAP supports up to 64 incoming or outgoing TCP sockets,
so you should be able to connect to approximately 60 remote device servers.

setup a remote Digi One SP or Digi One IA for receive-only ascii_import
via MSG block Destination Node = 3 & 4

set ia table=1 addroute=3 active=on protocol=ascii_import

set ia table=1 route=3 protaddr=3 type=ip ipaddress=192.168.1.60

set ia table=1 route=3 ipport=2101 connect=active duplex=rcv slvtout=0ms set ia table=1 addroute=4 active=on
protocol=ascii_import

set ia table=1 route=4 protaddr=4 type=ip ipaddress=192.168.1.61 set ia table=1 route=4 ipport=2101 connect=active
duplex=xmt

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 14 of 23

3 Programming the Momentum MSTR block
The instructions in this application guide are based on the assumption that you understand the
basics of programming and accessing your PLC. The examples in the next sections are taken
from Concept v2.6 and a 984 ladder program for a 171CCC96020 (“E1M”) Momentum
processor.

3.1 MSTR read using Modbus/TCP from an ASCII device
The ladder networks described in this section enable reading from the Digi One IAP. You can
use the ladder networks for either receive-only or half-duplex.

3.1.1 Create the MSTR read block trigger
A timer is the most common form of trigger. Because the Modicon PLC can manage only a
small number of MSTR blocks running concurrently, it may be necessary to chain your blocks to
run in series instead of in parallel.

The ladder code below creates a cyclic (repeating) timer that triggers every five seconds (50 x
0.1 sec). Coil RD_Trigger is used to trigger the MSTR read, and setting coil RD_Disable to 1
disables the MSTR read function.

3.1.2 Suggested MSTR read network including exception response abort
Ladder logic is a combination of art and science, and you can code the same functionality in
many different ways. Because some design assumptions in the Modicon PLC differ from design
assumptions within the Digi One IAP, Digi suggests that you follow this network design.

• Rung 1: Positive-transition contact RD_Trigger starts the MSTR block. Operation of the
MSTR block is independent of the width of the trigger signal.

• Rung 2: This rung self-latches the MSTR block as long as:

o RD_Running is true

o Both RD_Failed and RD_Done are false

This design causes a single Modbus/TCP read per trigger, and exception responses
do not cause immediate retries. This is important for robust behavior with the Digi
One IAP. RD_Running is true as long as the MSTR block is active.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 15 of 23

• Rung 3: A TEST block aborts the MSTR block if an error code other than zero (0) is
generated. Note that RD_ErrCode is the second register in the MSTR blocks control register
space. TST_Zero holds the initialized constant zero (0).

• Rung 4: Coil RD_Done combined with RD_Failed can be used as a trigger for another
MSTR block.

RD_Dest is defined as a ByteArr36 or 36-character byte array.

Here is the DX Zoom of the MSTR block. Page 2 of 4 is for Modbus/TCP reads using Ethernet.
For descriptions of the fields, see the list after this screen.

Field descriptions:

• TCP/IP Operation Function Code is 2.

• Error Status is read-only. Codes are in the form hex 300X, where X is 2, A, or B, indicates
that an exception response was received. For example:

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 16 of 23

o 3002 indicates that either the read is invalid or, for half-duplex, the poll buffer is
empty.

o 300A indicates that the slave address is not in the Digi One IAP destination table.

o 300B indicates that the ASCII device is not responding.

For descriptions of other values, see the Modicon documentation.

• Number of Registers Transferred is the number of registers to read.

• Function-dependent Information is the offset. The value of 5001 means read starting at
holding register 4x05001 (offset 5000 on the wire). The Digi One IAP uses the register offset
to select which buffer to use. (For more information, see section 4.)

• Map Index is the unit ID sent or slave address. Set this as needed according to the Digi
One IAP’s destination table you created—probably either 1 or 2.

• Slot ID must be 1, to indicate the first Ethernet port on Momentum.

• IP Address is a standard IP address, such as 192.168.1.23 or 10.20.20.20.

• The Digi One IAP does not support function 23, so leave the last two entries set at zero.

3.2 MSTR write using Modbus/TCP to an ASCII device
The ladder networks to write are the same as to read except as noted next.

3.2.1 Create the MSTR write block trigger
A timer also can be used to write. Because the Modicon PLC can manage only a small number
of MSTR blocks running concurrently, you can chain the blocks to run in series and not in
parallel.

3.2.2 Suggested MSTR write network including exception response abort
This network is the same as that shown in section 3.1.2. The only differences in the MSTR “DX
Zoom” settings are:

• TCP/IP Operation Function Code is 1.

• The middle node is the destination holding registers, not the source registers.

3.3 MSTR write using Modbus/TCP to load the half-duplex poll
The design of the Digi One IAP in half-duplex mode requires that the poll request be written to
the Digi One IAP before a Modbus read triggers the half-duplex poll-response cycle. The first
two (of 10) buffers allow a non-volatile load of 12 bytes each. For larger poll strings, or for the
remaining eight buffers, the Modbus master must write the strings to the Digi One IAP. The next
section shows two networks that sense and trigger such a reload if the Digi One IAP returns an
exception code 2 in response to a read in half-duplex mode.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 17 of 23

3.3.1 Create the MSTR Reload block trigger
This TEST block watches for an error code of hex 3002 (decimal 12290) in the associated
MSTR read block. If an error is seen and RD_Disable is 0, the coil LOAD_Trigger is set to true
to trigger the Modbus write to reload the Digi One IAP.

3.3.2 Suggested MSTR write network including exception response abort
This network is the same as the one shown in section 3.1.2. The only differences in the MSTR
“DX Zoom” settings are:

• TCP/IP Operation Function Code is 1.

• The middle node is the destination holding registers, not the source.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 18 of 23

4 Application examples: Putting it all together

4.1 Using Modbus/TCP for receive-only from an ASCII device
You can configure an ASCII device such as a barcode scanner to send only ASCII strings.
Modbus reads are used to fetch the strings.

4.1.1 Digi One IAP
Configure the serial port for ASCII Import and receive-only. In this mode, the Digi One IAP
receives and queues at least 5000 ASCII strings.

If you have configured an end pattern (such as carriage return or “\r”), it is used to determine
the break between strings. Otherwise, the character timeout is used to detect an idle gap
between strings. The default character timeout is 50 milliseconds.

The slave timeout has special meaning in this mode. When this value is set to zero (0), the
strings are queued until either they are read or the Digi One IAP is powered off. Therefore, a
Modbus master reading the Digi One IAP might see strings that are days or even months old.
Setting the slave timeout anywhere from 1 to 65,535 defines an age in milliseconds after which
the string is discarded. Setting the slave timeout to 1000 milliseconds specifies that a Modbus
master sees only strings that have been received within the last second.

Q: What if no strings are waiting? If no strings are waiting, the response is fully padded. The
default pad byte is zero or null, but you can change this to any 8-bit value.

Q: Can I use an external hardware trigger? Many barcode scanners allow a digital input to
trigger a scan. You will find this problematic because of both the time it takes the Modbus read
request to be processed and the time it takes to visually detect the barcode is variable. The
result is a race condition, and you could miss the string at times. The most robust solution is a
half-duplex poll/response, if your ASCII device supports this.

Q: Can the Digi One IAP parse the string into a number? No. The Digi One IAP always returns the
ASCII string packed as registers. You need to process the string within your PLC program.

Q: Can the Digi One IAP push or write the string into the PLC? No. The Digi One IAP is always the
slave here. The PLC must read the Digi One IAP.

Q: Can multiple masters share an ASCII device? Not really. Because only one queue exists,
concurrent masters reading see an unpredictable subset of the strings.

4.1.2 Modicon MSTR block
Follow the ladder example in section 3.1.1 to create a MSTR read block. You are not required to
load or write a string to the Digi One IAP.

If you are reading the ASCII string into a structured byte array, use either of these steps:

• Set the Digi One IAP to pack the bytes as swapped, not direct.

• Select to pack as ch_pad or pad_ch to put one ASCII character per register.

4.1.3 Modbus register offsets to use
You can read from 1 to 125 registers (2 to 250 characters) using Modbus function 3. The next
string in queue is returned as the read response. The string is truncated if it is longer than the

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 19 of 23

read and padded if it is shorter. The concept of 10 buffers is ignored, so only the offset 4x05001
is used when you are sending pre-formatted strings exactly as the ASCII device requires.
Multiple masters can safely share a single ASCII device in this mode.

Duplex Setting Elements Buffer Read Write
rcv/receive-only Max 250 bytes n/a 4x05001 Error

4.2 Using Modbus/TCP for transmit-only to an ASCII device
You can configure an ASCII device such as an LED sign or serial printer to receive only ASCII
strings. Modbus writes are used to send the strings. Any responses are discarded.

4.2.1 Digi One IAP
Configure the serial port for ASCII Import and Transmit Only. Most other settings are ignored.
By default, the ASCII string is assumed to end at the first pad character, which usually is zero
or null. Sending a short string like “HELLO” as any number of registers (for example, 3, 30 or
100) results in the same six characters being sent.

Q: Can multiple masters share an ASCII device as transmit only? Yes. The Digi One IAP
properly handles many concurrent masters writing to the ASCII device. You cannot predict the
exact order in which the strings will be seen by the ASCII device. However, every Modbus write
is sent as one continuous ASCII message.

4.2.2 Modicon MSTR block
Follow the ladder example in section 3.1.2 to create a MSTR write block. You are not required
to read any data from the Digi One IAP because it discards any response from the ASCII device
in this mode.

If you are writing the ASCII string from a structured byte array, use either of these steps:

• Set the Digi One IAP to pack the bytes as swapped, and not direct.

• Select to pack as ch_pad or pad_ch to send one ASCII character per register.

4.2.3 Modbus register offsets to use (preformed strings)
You can write from 1 to 122 registers using Modbus function 16. Trailing pad bytes (by default
zero or NUL) are truncated and not sent. The concept of 10 buffers is ignored, so only the offset
4x00001 is used when you are sending pre-formatted strings exactly as the ASCII device
requires. Multiple masters can safely share a single ASCII device in this mode.

Duplex Setting Elements Buffer Read Write
xmt/transmit-only Max 244 bytes n/a Error 4x00001

4.3 Using Modbus/TCP for half-duplex to an ASCII device
Many ASCII devices—such as barcode scanners or weight scales—require a poll before they
send a response. A Modbus write loads the poll into the Digi One IAP. Subsequent Modbus
reads cause this poll to be repeated and the response returned as the Modbus read response.

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 20 of 23

4.3.1 Digi One IAP
Configure the serial port for ASCII Import and half-duplex. Set the other parameters as needed.
For details, see the web user interface help.

The first two buffers include non-volatile initial values up to 12 characters (the prewrite1 and
prewrite2). Poll strings for buffers three to 10, or longer than 12 characters, must be dynamically
written as needed. The poll buffer is limited to 256 bytes.

Q: Can multiple masters share an ASCII device as half-duplex? Yes, but all masters share the
10 buffers per serial port. Because a time gap exists between the Modbus write to load the poll
and the Modbus read to send the poll, multiple masters must either:

• All share the same poll

• Use distinct buffers to hold their distinct polls

4.3.2 Modicon MSTR block
You will probably require two MSTR blocks per slave poll:

• An MSTR write to load the poll

• An MSTR read to use the poll and obtain a response

• For more information, see sections 3.3 and 3.1.

You must reload the poll string if an exception response 2 is returned to the read.

4.3.3 Modbus register offsets to use (preformed poll strings)
You can write from one to 122 registers (two to 244 bytes) using Modbus function 16.

You can read from one to 125 registers (two to 250 bytes) using Modbus function 3.

Function Elements Buffe

Read Write

Load/read poll string Max 244 bytes 1 4x00001 4x00001

Load/read poll string Max 244 bytes 2 4x00101 4x00101

Load/read poll string Max 244 bytes 3 4x00201 4x00201

Load/read poll string Max 244 bytes 4 4x00301 4x00301

Load/read poll string Max 244 bytes 5 4x00401 4x00401

Load/read poll string Max 244 bytes 6 4x00501 4x00501

Load/read poll string Max 244 bytes 7 4x00601 4x00601

Load/read poll string Max 244 bytes 8 4x00701 4x00701

Load/read poll string Max 244 bytes 9 4x00801 4x00801

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 21 of 23

Function Elements Buffe

Read Write

Load/read poll string Max 244 bytes 10 4x00901 4x00901

Issue poll/return response Max 250 bytes 1 4x05001 error

Issue poll/return response Max 250 bytes 2 4x05101 error

Issue poll/return response Max 250 bytes 3 4x05201 error

Issue poll/return response Max 250 bytes 4 4x05301 error

Issue poll/return response Max 250 bytes 5 4x05401 error

Issue poll/return response Max 250 bytes 6 4x05501 error

Issue poll/return response Max 250 bytes 7 4x05601 error

Issue poll/return response Max 250 bytes 8 4x05701 error

Issue poll/return response Max 250 bytes 9 4x05801 error

Issue poll/return response Max 250 bytes 10 4x05901 error

4.3.4 Modbus register offsets to use (for Digi One IAP forming of strings)
Sending fixed or constant strings from a PLC is easy. However, formatting strings such as
“AMT002345q\r” to instruct a motion controller to move where the number changes frequently
can be difficult in PLC ladder logic.

The Digi One IAP provides special support for formatting. It supports common “C” language
printf-style formatting commands. So the poll in the previous paragraph is loaded as
“AMT%06dq\r”. After loading the poll, use a Modbus write to send integers to be formatted.
From one to four values are supported per string, so format string “1:%d 2:%02x 3:%04d 4:%c”
would expect four integers to be written each time it is to be formatted.

command Description example
%d Signed decimal. Width is as required. 1 or -99

%04d Signed decimal with fixed-width zero-padded. 0001 or 0175

%u Unsigned decimal. Width is as required. 0 or 17556

%02u Unsigned decimal with fixed-width zero-padded. 01 or 75

%x Hexadecimal 0-9,a-f. Width is as required. 0 or 1abf6

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 22 of 23

%04x Hexadecimal 0-9,a-f. Fixed-width zero-padded. 0001 or 7fff

%X Hexadecimal 0-9,A-F. Width is as required. 0 or 1ABF6

%04X Hexadecimal 0-9,A-F. Fixed-width zero-padded. 0001 or 7FFF

%c Send a single ASCII character. A or ~

%% Send a single ‘%’ character. 0001 or 7FFF

Use a Modbus write to 4x00n01—where ‘n’ selects the buffer—to load a poll string. The string is
not sent out the serial port.

Function Elements Buffer Read Write

Load/read poll string Max 244 bytes 1 4x00001 4x00001

Load/read poll string Max 244 bytes 2 4x00101 4x00101

Load/read poll string Max 244 bytes 3 4x00201 4x00201

Load/read poll string Max 244 bytes 4 4x00301 4x00301

Load/read poll string Max 244 bytes 5 4x00401 4x00401

Load/read poll string Max 244 bytes 6 4x00501 4x00501

Load/read poll string Max 244 bytes 7 4x00601 4x00601

Load/read poll string Max 244 bytes 8 4x00701 4x00701

Load/read poll string Max 244 bytes 9 4x00801 4x00801

Load/read poll string Max 244 bytes 10 4x00901 4x00901

Use a Modbus write to 4x02n01—where ‘n’ selects the buffer—to send from one to four integers
to be formatted.

Note that:

Sending too many integers for your format string causes the extra integers to be ignored.

Sending too few integers for your format string causes unpredictable values to be used
for the missing integers, and the formatted string is not sent out the serial port.

Function Elements Buffer Read Write

Have integers formatted 1 to 4 words 1 error 4x02001

Have integers formatted 1 to 4 words 2 error 4x02101

Have integers formatted 1 to 4 words 3 error 4x02201

Have integers formatted 1 to 4 words 4 error 4x02301

Have integers formatted 1 to 4 words 5 error 4x02401

Have integers formatted 1 to 4 words 6 error 4x02501

Have integers formatted 1 to 4 words 7 error 4x02601

Have integers formatted 1 to 4 words 8 error 4x02701

http://www.digi.com/

Polling ASCII devices as Modbus slaves

90000648 B www.digi.com Page | 23 of 23

Function Elements Buffer Read Write

Have integers formatted 1 to 4 words 9 error 4x02801

Have integers formatted 1 to 4 words 10 error 4x02901

Use a Modbus read to 4x05n01—where ‘n’ selects the buffer—to send the last formatted string
as a poll and return the response.

Function Elements Buffer Read Write

Issue poll/return response Max 250 bytes 1 4x0500

error

Issue poll/return response Max 250 bytes 2 4x0510

error

Issue poll/return response Max 250 bytes 3 4x0520

error

Issue poll/return response Max 250 bytes 4 4x0530

error

Issue poll/return response Max 250 bytes 5 4x0540

error

Issue poll/return response Max 250 bytes 6 4x0550

error

Issue poll/return response Max 250 bytes 7 4x0560

error

Issue poll/return response Max 250 bytes 8 4x0570

error

Issue poll/return response Max 250 bytes 9 4x0580

error

Issue poll/return response Max 250 bytes 10 4x0590

error

5 Troubleshooting and FAQ

5.1 My ASCII is showing up funny; “Stop the Press” becomes “tSpoT
ehP erss.”

This is controlled by the packing parameter (“packing=direct” in CLI example). The settings are
referred to as direct, swap, ch_pad, and pad_ch. Because of the nature of big versus little-
endian designs—and because some protocols or applications treat text differently—there is no
absolute way to define this packing.

So if you have “packing=direct” and you see this problem, set “packing=swap” or vice-versa.
These two settings are the byte-swap of each other.

If you have “packing=ch_pad” and you see this problem, set “packing=pad_ch” or vice-versa.
These two are the byte-swap of each other.

5.2 Can I use the Modbus function 23 to read/write in a single
command?

No. The Digi One IAP currently does not support this function.

http://www.digi.com/

	1 Introduction
	1.1 Abstract
	1.2 Sample application
	1.3 Overview of ASCII Import function
	1.3.1 ASCII Import as receive-only
	1.3.2 ASCII Import as transmit-only
	1.3.3 ASCII Import as half-duplex (poll/response)

	2 Setting up the Digi One IAP
	2.1 Overview
	2.2 By web wizard, release E
	2.2.1 Select the Industrial Automation Wizard
	2.2.2 Create a new group and reset all IA settings
	2.2.3 Limit this group to any protocol that supports mapping
	2.2.4 Define Modbus Ethernet/IP as the master or message source
	2.2.5 Message source protocol settings
	2.2.6 Define timeouts for the incoming Modbus/TCP connection
	2.2.7 Master summary
	2.2.8 Define first message destination (serial port #1)
	2.2.9 Set the protocol and port number
	2.2.10 Set the serial port settings
	2.2.11 Set the ASCII Import-specific protocol settings
	2.2.12 Set the serial port settings
	2.2.13 Repeat for second destination (serial port #2)
	2.2.14 Review the summary

	2.3 Reboot the Digi One IAP
	2.4 By telnet, release E PN

	3 Programming the Momentum MSTR block
	3.1 MSTR read using Modbus/TCP from an ASCII device
	3.1.1 Create the MSTR read block trigger
	3.1.2 Suggested MSTR read network including exception response abort

	3.2 MSTR write using Modbus/TCP to an ASCII device
	3.2.1 Create the MSTR write block trigger
	3.2.2 Suggested MSTR write network including exception response abort

	3.3 MSTR write using Modbus/TCP to load the half-duplex poll
	3.3.1 Create the MSTR Reload block trigger
	3.3.2 Suggested MSTR write network including exception response abort

	4 Application examples: Putting it all together
	4.1 Using Modbus/TCP for receive-only from an ASCII device
	4.1.1 Digi One IAP
	4.1.2 Modicon MSTR block
	4.1.3 Modbus register offsets to use

	4.2 Using Modbus/TCP for transmit-only to an ASCII device
	4.2.1 Digi One IAP
	4.2.2 Modicon MSTR block
	4.2.3 Modbus register offsets to use (preformed strings)

	4.3 Using Modbus/TCP for half-duplex to an ASCII device
	4.3.1 Digi One IAP
	4.3.2 Modicon MSTR block
	4.3.3 Modbus register offsets to use (preformed poll strings)
	4.3.4 Modbus register offsets to use (for Digi One IAP forming of strings)

	5 Troubleshooting and FAQ
	5.1 My ASCII is showing up funny; “Stop the Press” becomes “tSpoT ehP erss.”
	5.2 Can I use the Modbus function 23 to read/write in a single command?

