
NET+Works with Green
Hills BSP Porting Guide

Operating system/version: 6.3
Part number/version: 90000724_B
Release date: March 2006
www.digi.com

NET+Works with Green Hills
BSP Porting Guide

©2006 Digi International Inc.

Printed in the United States of America. All rights reserved.

Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a
Digi International Company, NET+, NET+OS and NET+Works are trademarks or registered
trademarks of Digi International, Inc. in the United States and other countries worldwide. All
other trademarks are the property of their respective owners.

Information is this document is subject to change without notice and does not represent a
committment on the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of, fitness or merchantability
for a particular purpose. Digi may make improvements and/or changes in this manual or in
the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made
periodically to the information herein; these changes may be incorporated in new editions
of the publication.

Contents
C h a p t e r 1 : I n t r o d u c t i o n ... 1

Overview .. 2

Application development... 2

What is the board support package?.. 3

Why does the target BSP need to change from
the NET+ARM development board BSP? 3

What are the benefits of following the NET+ARM reference design? 4

What’s the best way to add my target hardware BSP platform? 4

NET+OS tree structure .. 5

bsp .. 6

examples ... 6

bin... 6

h ... 7

ghssrc ... 7

smicng .. 8

arm7 .. 8

arm9 .. 8

debugger_ files.. 8

docs ... 8
 v

C h a p t e r 2 : N E T + O S B S P f o r A R M 7 ... 9

Overview ... 10

Platforms... 10

Initialization... 11

Initializing hardware .. 11

Initialization sequence.. 11

C library startup ... 11

NABoardInit ... 12

ROM bootloader .. 12

BSP tree structure .. 13

Top-level directory .. 13

bootloader subdirectory .. 13

devices directory .. 14

platforms directory.. 14

Customizing the BSP for application hardware 15

Follow the reference design ... 16

Verify the features your hardware supports................................. 16

Task 1: Purchase and assign Ethernet MAC addresses...................... 16

Task 2: Create a new platform subdirectory 17

Task 3: Build and modify the BSP build file 17

Task 4: Modify the linker scripts .. 17

Task 5: Modify BSP configuration files.. 19

Task 6: Modify the new BSP to start up the required drivers 23

Task 7: Modify the format of BSP arguments in NVRAM 25

Task 8: Modify error and exception handlers................................ 26

Task 9: Verify the debugger initialization files 27

Task 10: Debug the initialization code 28

Debug the Ethernet driver startup .. 31

Task 11: Modify the startup dialog.. 31

Task 12: Modify the POST .. 32

Task 13: Modify the ACE .. 32
vi

Other BSP customizing ... 33

BSP_NVRAM_DRIVER ... 33

TCP/IP stack.. 34

File system.. 35

C h a p t e r 3 : N E T + O S B S P f o r A R M 9 ... 39

Overview ... 40

Supported platforms ... 40

Initialization ... 40

Initializing hardware .. 40

Initialization sequence.. 41

C library startup ... 42

NABoardInit ... 42

ROM bootloader... 42

BSP tree structure .. 43

Top-level directory .. 43

bootloader subdirectory .. 43

devices directory .. 44

platforms directory.. 45

Customizing the BSP for application hardware 45

Follow the reference design ... 46

Verify the features your hardware supports................................. 46

Task 1: Purchase and assign Ethernet MAC addresses...................... 47

Task 2: Create a new platform subdirectory 47

Task 3: Add your platform to the central build system.................... 47

Task 4: Modify the linker scripts .. 47

Task 5: Modify BSP configuration files.. 49

Task 6: Modify the new BSP to start up the required drivers 55

Task 7: Modify the format of BSP arguments in NVRAM 58

Task 8: Modify error and exception handlers................................ 59

Task 9: Verify the debugger initialization files 60

Task 10: Debug the initialization code 61
 v i i

Task 11: Modify the startup dialog.. 64

Task 12: Modify the POST .. 65

Task 13: Modify the ACE .. 65

Other BSP customizing ... 66

BSP_NVRAM_DRIVER ... 66

TCP/IP stack.. 66

File system.. 68

C h a p t e r 4 : L i n k e r F i l e s ... 71

Overview ... 72

Linker files provided for sample projects... 72

Basic Green Hills section of the linker files 73

NET+OS section of the linker files... 73

Address mapping (ARM9 only) .. 74

NET+OS memory map (ARM9 only) .. 76

Memory aliasing in NET+OS (ARM7 only) .. 77

C h a p t e r 5 : A d d i n g F l a s h .. 79

Overview ... 80

Flash table data structure.. 80

Adding new flash.. 82

Supporting larger flash.. 83

C h a p t e r 6 : D e v i c e D r i v e r s .. 85

Overview ... 86

Adding devices .. 86

deviceInfo structure... 86

Device driver functions ... 87

Return values.. 97

NET+OS device drivers .. 99

Device driver interface ..100
viii

C h a p t e r 7 : H a r d w a r e D e p e n d e n c i e s
f o r A R M 7 - b a s e d P l a t f o r m s 101

Overview ..102

DMA channels...102

Ethernet PHY ...103

ENI controller ..103

Serial ports ...103

Software watchdog ..104

Endianness ..104

System clock..104

BSP_CLOCK_SOURCE..105

XTAL1_FREQUENCY ...105

CRYSTAL_OSCILLATOR_FREQUENCY..105

PLL Control Register setting ..105

System timers ..106

Timer 1 ...106

Timer 2 ...106

Interrupts ...107

Memory map..108

C h a p t e r 8 : H a r d w a r e D e p e n d e n c i e s
f o r A R M 9 - b a s e d P l a t f o r m s 109

Overview ..110

DMA channels...110

Ethernet PHY ...110

Endianness ..111

General purpose timers...111

System timers ...111

All other general purpose timers...112

Interrupts ...112

System clock..113

Chip selects...113

Memory map..114
 i x

C h a p t e r 9 : P o r t i n g N E T + O S v 6 . 0 A p p l i c a t i o n s
t o N E T + O S v 6 . 3 ..115

Overview ..116

BSP build file ...116

Application build files...116

Linker scripts ...117

Bootloader files ..117

Cache API ...117

Embedded Networking Interface ..118

ISR API ...118

RAM API ...118

Real Time Clock driver..118

SYSCLK API ..119

GPIO configuration ..119

SPI API ...120

Stack sizes for exception handlers..120

Interrupt priorities ..120

C h a p t e r 1 0 : P o r t i n g N E T + O S v 6 . 1 A p p l i c a t i o n s
t o N E T + O S v 6 . 3 ...121

Overview ..122

BSP build file ...122

Application build files...122

Linker scripts ...123

Bootloader files ..123

Client parallel driver..123

I2C driver ...124

Interrupt Service Routine (ISR) API ...124

MMU API ...125

PLL functions ...125

Real time clock driver ..126
x

GPIO configuration ..126

Timer driver ..126

SPI API ...127

Network heap caching ..127

USB host API ..127

C h a p t e r 1 1 : C o n v e r t i n g S t a n d a l o n e L e g a c y
M U L T I P r o j e c t s .. 131

Overview ..132

Converting the image.gpj file ...132

Editing project.gpj files ..134

Editing image.gpj files..136

A p p e n d i x A : U s i n g C e n t r a l B u i l d ..139

A p p e n d i x B : C u s t o m i z i n g t h e S P I B o o t l o a d e r 153

A p p e n d i x C : C u s t o m i z i n g t h e R O M B o o t l o a d e r 171

A p p e n d i x D : C u s t o m i z i n g A C E ...187

A p p e n d i x E : P r o c e s s o r M o d e s a n d E x c e p t i o n s 193

A p p e n d i x F : M e m o r y U s a g e i n N e t w o r k e d A p p l i c a t i o n s 207
 x i

Using This Guide
Review this section for basic information about this guide, as well as for general
support contact information.

About this guide

This guide describes NET+OS 6.3 and how to use it as part of your development
cycle. Part of the NET+Works integrated product family, NET+OS is a network
software suite optimized for the NET+ARM.

Software release

This guide supports NET+OS 6.3. By default, this software is installed in the
C:/netos63_ghs/ directory.

Who should read this guide

This guide is for software engineers and others who use NET+Works for NET+OS.

To complete the tasks described in this guide, you must:

Be familiar with installing and configuring software.

Have sufficient user privileges to do these tasks.

Be familiar with network software and development board systems.
 xv

Conventions used in this guide

This table describes the typographic conventions used in this guide:

What’s in this guide

This table shows where you can find information this guide:

This convention Is used for

italic type Emphasis, new terms, variables, and document titles.

bold, sans serif type Menu commands, dialog box components, and other items that
appear on-screen.

Select menu option Menu commands. The first word is the menu name; the words that
follow are menu selections.

monospaced type File names, pathnames, and code examples.

To read about See

An overview of the board support package Chapter 1, “Introduction”

Using the board support package to create a
platform for your customized hardware for
ARM7-based platforms

Chapter 2, “NET+OS BSP for ARM7”

Using the board support package to create a

platform for your customized hardware for

ARM9-based platforms

Chapter 3, “NET+OS BSP for ARM9”

The linker files that are provided for sample
projects

Chapter 4, “Linker Files”

How to update flash memory Chapter 5, “Adding Flash”

Device drivers and device definition Chapter 6, “Device Drivers”

NET+OS hardware dependencies for platforms
that use the NS7520 and NET+50 processor

Chapter 7, “Hardware Dependencies for
ARM7-based Platforms”

NET+OS hardware dependencies for platforms
that use the NS9360 and NS9750 processors

Chapter 8, “Hardware Dependencies for
ARM9-based Platforms”

The differences between the APIs in NET+OS
6.0 and NET+OS 6.3

Chapter 9, “Porting NET+OS v6.0 Applications
to NET+OS v 6.3”
x v i NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

In addition, a series of appendixes provide information about:

The central build system

Customizing the SPI bootloader, the ROM bootloader, and the Address
Configuration Executive (ACE)

Processor modes and exceptions

Memory usage

Related documentation

NET+Works Quick Installation Guide describes how to install the hardware.

Green Hills MULTI 2000 IDE Licensing Information describes how to get a
license key.

NET+Works with Green Hills Tutorial provides a brief, hands-on exercise.

NET+Works with Green Hills Programmer’s Guide describes how to use
NET+OS to develop programs for your application and hardware.

The NET+Works online help describes the application program interfaces
(APIs) that are provided with NET+OS.

For information about third-party products and other components, review
the documentation CD-ROM that came with your development kit.

For information about the processor you are using, see your NET+Works
hardware documentation.

Documentation updates

Digi occasionally provides documentation updates on the Web site.

Be aware that if you see differences between the documentation you received in
your NET+Works package and the documentation on the Web site, the Web site
content is the latest version.

The differences between the APIs in NET+OS
6.1 and NET+OS 6.3

Chapter 10, “Porting NET+OS v6.1
Applications to NET+OS v 6.3”

Converting legacy projects Chapter 11, “Converting Standalone Legacy
MULTI Projects”

To read about See
www.d i g i . c om xv i i

Customer support

To get help with a question or technical problem with this product, or to make
comments and recommendations about our products or documentation, use this
contact information:

United State telephone: 1 877 912-3444

International telephone: 1 952 912-3444

email: digi.info@digi.com

Web site: http://digi.com
x v i i i NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Introduction
C H A P T E R 1

This chapter provides an overview of the board support package (BSP) software,
describes how this software is segmented from higher-layer application software,
and provides hardware design guidelines to minimize the cost of the software effort.
In addition, this chapter describes the NET+OS tree structure.
 1

Ove r v i ew
Overview

After you complete a system analysis that includes data throughput, I/O and
processing requirements and select the NET+ARM processor as the target processor,
you can begin two efforts: hardware design and software development.

Hardware design might require a complete new board design, reusing or modifying
a previous design, or using an off-the-shelf NET+ARM module. Target hardware
often is unavailable to software developers for weeks — and sometimes even
months. To minimize product time-to-market, you can begin software development
immediately by partitioning the effort into two distinct tasks: application
development and the board support package (BSP).

Application development

Application development involves piecing together hardware-independent, high-
level software components, while the BSP provides hardware-specific services along
a standardized application programming layer (API) to the application software.

By using a NET+ARM development board and its associated BSP, you can begin
software development immediately. NET+OS is delivered with BSPs to support all
NET+ARM development board platforms and all DIGI Connect products. Each BSP is
tailored to support the development board’s specific target processor (for example,
the NS9360 or NS7520) and the components that surround the processor (memory
and PHY).

The development board is ideal for prototyping general network services, including
Web pages, private management information bases (MIBs), FTP servers, SMTP clients,
or network startup characteristics such as DHCP or Auto IP. In addition, you can pro-
totype non-volatile system configuration, I/O protocols, field upgrade mechanisms,
or file system requirements effectively with a NET+ARM development board.

Alternatively, the BSP enables you to create the platform-specific software needed
to support a hardware platform. Because the BSP is hardware-specific, completing
this software requires the target hardware – and so must wait until the target
hardware is debugged and available.
2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

I n t r o duc t i on
When the hardware target becomes available, you can create the BSP and port the
application to the target hardware. Because application software maintains the
BSP standardized API, it reduces the effort required to port the application to the
new target hardware and BSP. Minimizing software development cost and time-to-
market is an important design goal.

This guide describes best practices for modifying a standard NET+ARM development
board BSP platform to support your target hardware needs and operational
characteristics.

Note that throughout this document, the terms BSP and platform are used
interchangeably.

What is the board support package?

The BSP consists of the hardware-dependent parts of the real-time operating
system (RTOS), which are responsible for:

Initializing the hardware after a hard reset or software restart

Handling processor exceptions

Device drivers

Starting the ThreadX kernel

Starting the Transmission Control Protocol/Internet Protocol (TCP/IP)
network stack

The BSP provides the hardware services in a standardized application programming
layer (API) to the application software, allowing the application software to maintain
hardware platform independence.

Why does the target BSP need to change from the NET+ARM development board BSP?

The NET+ARM development boards are generic designs that contain a broad range
of hardware, including RAM, flash, serial line drivers, and an Ethernet PHY, and the
circuitry needed to support the specific target processor peripherals (such as PCI
clock circuitry or a USB PHY). Overall, the NET+ARM development boards were
designed to maximize the range of applications that can be prototyped, and not to
minimize cost or maximize performance.
www.d i g i . c om 3

What i s t h e boa r d suppo r t p a ckage?
Most commercial products would not need all the parts options on a NET+ARM
development board or might require changes to the development board design. For
example, the development board might include an unnecessarily large (and more
expensive) flash, or the application might need special processing that requires a
larger SDRAM. Alternatively, different components can be used, such as faster
SDRAMs for higher performance, or slower SDRAMs for lower cost. Some
applications might require more extensive modifications that include special
peripherals, such as a wireless compact flash or a cryptographic accelerator.

All modifications to the development board require special BSP software support.

What are the benefits of following the NET+ARM reference design?

The NET+ARM processors have many possibilities for connecting addressable
peripherals; a good example is the use of chip selects and memory. When board
designers connect SDRAM to a NET+ARM processor, they can use any chip select that
supports dynamic RAM. From a hardware perspective, any chip select is as good as
another, and the choice might even be arbitrary. From a software perspective,
however, not all chip selects are equal, and an arbitrary board design decision
might have major implications on software.

To reduce the software development cost of modifying and maintaining a BSP, and
to reduce the cost of future upgrades to NET+OS, Digi strongly recommends that
you follow the NET+ARM development board reference design.

What’s the best way to add my target hardware BSP platform?

Digi recommends that you use a preexisting functional BSP as a template for new
target system BSPs. For best results, use these general steps:

1 Determine the closest matching NET+ARM development board BSP.

2 Copy the BSP platform that best matches your target platform, and paste it in
your platforms directory.

For example, to create a new ns9360 platform, copy the ns9360_a
platform and paste it in custom9360.

3 Update the BSP build file to support the new platform.

4 Build the new BSP platform.

5 Compile and link an application using the new BSP.
4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

I n t r o duc t i on
6 Test the debugger with an application using the new BSP.

7 Test flash-based images using the new BSP.

8 Apply custom hardware modifications to the new BSP.

This procedure provides the most reliable set of instructions needed to create a new
BSP platform. Use these steps to create a template for porting BSPs from previous
versions of NET+OS.

How does the NET+OS structure support multiple BSP platforms?

In previous releases of NET+OS, the tree could support only one version of a BSP.
This version, however, can support multiple BSPs. This has been achieved by
providing better fanning out of the lib (library) tree, including an arm7 and arm9
sub-tree, and by fanning out individual BSP directories under these sub-trees.

Additionally, previous releases could support only one compilation of the
bootloader because this folder was located under the BSP sub-tree. The rom.bin
bootloader image has been moved to the BSP platforms folder.

NET+OS tree structure

The NET+OS tree structure is divided into subdirectories, with netos63_ghs as the
root directory. This figure shows how the tree is set up:

netos62_ghs

ghssrc smicng docs debugger_files h libsrc bin

arm7 arm9bsp examples
www.d i g i . c om 5

NET+OS t r e e s t r u c t u r e
The next sections describes the subdirectories under netos63_ghs:

bsp

examples

bin

h

ghssrc

smicng

arm7

arm9

debugger_files

docs

bsp

The BSP is located in netos63_ghs/src/bsp. All the initialization code, device
drives, and platform-specific configuration files are stored in subdirectories under
the BSP directory.

examples

The sample applications are located in netos63_ghs/src/examples. These
applications demonstrate how to use the APIs for the NET+OS software libraries.

Be aware that some of the sample applications require platform-specific hardware
and will not compile if the required hardware is not available. For example, the
USB-related sample application compiles and works only for NS9750 and NS9360
processors.

bin

The binary files that are executable on a PC and used by NET+OS are located in
netos63_ghs/src/bin. Some of the most commonly used files are:

spiboothdr.exe – Uses the netos63_ghs/src/bsp/platforms/"my
platform"/spibootldr.dat configuration file for SPI devices.

smicng.exe - MIB compiler for SNMP MIBs written in either the SMI v1 or
SMI v2 formats.
6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

I n t r o duc t i on
compress.exe - Compresses the application image’s .bin file to save memory
in flash.

boothdr.exe - Inserts a header at the beginning of the image based on
information read from the netos63_ghs/src/bsp/platforms/my_platform/
boothdr.dat configuration file.
This program calculates a CRC32 checksum for the entire image, including
the header, and places it at the end of the updated file.

These are the fields in the boothdr.dat:

h

The public API header files are located in netos63_ghs/h. When an application calls
an API function from a NET+OS library, the respective C file must include the header
file for the API routines.

ghssrc

These files allow interfacing the GHS C library I/O functions to the file systems and
the C library time functions to the real time clock driver. The S I/O and time driver
interface functions are located in netos63_ghs/ghssrc.

Field Description

WriteToFlash Used by the bootloader when it downloads a file from a network
server to determine whether to write the file to flash.

Set to either yes or no.

Compressed Indicates whether the file should be compressed

Set to either yes or no.

ExecuteFromRom Specifies where the bootloader executes the application:

 To execute directly from flash, set to yes.

 To decompress the file to RAM, set to no.

flashOffset Indicates where in flash the file should be written to.

Set to a hexadecimal value.

ramAddress Indicates where in RAM to copy the application to decompress it.

Set to a hexadecimal value.

MaxFileSize Indicates the maximum size of the file in bytes.

Set to a hexadecimal value.
www.d i g i . c om 7

NET+OS t r e e s t r u c t u r e
smicng

smicng subdirectories consist of MIBS that are written in either the SNMP v1 or
SNMP v2 formats. The files are located in netos63_ghs/smicng.

arm7

The netos libraries and the BSPs for ARM7 devices are located in subdirectories of
netos63_ghs/lib/arm7.

arm9

The netos libraries and the BSPS for ARM9 devices are located in subdirectories of
netos63_ghs/lib/arm9.

debugger_ files

This file contains sample gdb initialization scripts and configuration setting files for
the Raven. In addition, the file contains the gdbThreadX script, which sets up macros
to view ThreadX structures. This file is located in netos63_ghs/debugger_files.

docs

All the NET+OS hardware- and software-related documentation is located in
netos63_ghs/docs. This directory contains the online help for the NET+OS APIs
and PDF versions of the hardware and software guides.
8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP for ARM7
C H A P T E R 2

This chapter describes how to create a platform for your customized hardware
using the NET+OS board support package (BSP) for ARM7-based platforms such as
the NET+50 and NS7520.
 9

Ove r v i ew
Overview

The board support package (BSP) contains the drivers, board-specific software,
and a customizable directory for each supported platform. When you port a new
platform to NET+OS 6.3, you typically need to modify the files in the platforms
directory. If you are using a standard development kit, you can use one of the
existing platforms with no modifications.

This chapter describes the overall structure of the NET+OS BSP, how to add in a
new platform, and how to debug a new platform.

Platforms

This table shows the list of supported platforms provided with NET+OS 6.3. If you are
adding a new platform to NET+OS, start with a platform that is similar to yours.

For a description of your platform, see the hardware reference for the processor you
are using and the jumpers and components guide for your development board.

Platform CPU type

net50bga_a NET+50

net50_d NET+50

ns7520_a NS7520

connectme NS7520

connectem NS7520

connectwime NS7520

connectwiem NS7520

connectsp NS7520
1 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
Initialization

This section describes the power-up and initialization of NET+OS. In general, you do
not need to modify the initialization code.

Initializing hardware

The hardware initialization code is located in src/bsp/init/arm7. The main routine
is located in src/bsp/common/main.c.

Initialization sequence

The Reset_Handler routine is the first routine that is executed when the processor
is first powered on. This routine is located in the INIT.s file. Reset_Handler must
perform these steps:

1 Initialize supervisor mode and disable interrupts.

2 Initialize the PLL (NET+50 only).

3 Execute a software reset to get the hardware into a known state.

4 Put the DMA controller into test mode so the DMA context RAM can be used
as a temporary stack.

5 Jump to the ncc_init routine (located in NCC_INIT.c).

6 Set up the system control register.

7 Initialize the GPIO pins.

8 Set up the chip selects.

9 Run the memory test.

10 Verify that the application will fit into RAM and return.

11 Set up the stacks for the different processor modes.

12 Jump to the C library startup routine.

C library startup

After hardware initialization, the C library START routine is called by the
Reset_Handler, which is located in the INIT.s file.
www.d i g i . c om 11

I n i t i a l i z a t i o n
The size of the stack for the C library is specified in the customize.lx file. The
default stack size for the C library is 12K. If you are not using C++, you can reduce
this size to 8K. The main routine is located in src/bsp/common/main.c.

The main routine must perform these steps:

1 If the power-on self-test (POST) is enabled, execute it.

2 Set up the vector table.

3 Call NABoardInit (described in the next section).

4 Perform the first level device driver initialization.

This step performs low-level device driver initialization and is executed
before the OS is loaded.

5 If C++ is enabled, initialize the C++ libraries.

6 Start ThreadX.

NABoardInit

This routine completes the hardware initialization that was started in INIT.s.

The NABoardInit routine must do these steps:

1 Read the chip revision and store it in g_NAChipRevision.

2 Initialize the low level flash interface.

3 Set up non-volatile random access memory (NVRAM).

ROM bootloader

The NET+OS ROM bootloader is a small program that is programmed into ROM. The
application also is programmed into flash in a compressed format. At power-up, the
bootloader decompresses the application into RAM, and then executes it from RAM.

The advantage of using the ROM bootloader is twofold:

Less flash memory is required because the application image is compressed.

The applications generally run faster from SDRAM.

The bootloader is built as part of the BSP. The ROM image for the bootloader is in the
specific platform’s directory and is called rom.bin. For details about the bootloader,
see Appendix C, “Customizing the ROM Bootloader.”
1 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
BSP tree structure

These sections describe and illustrate the BSP tree structure.

Top-level directory

The NET+OS BSP is located in the src/bsp directory. The top level directory
contains the build file for the BSP and the build file for the bootloader.

This figure shows the top level directory:

bootloader subdirectory

The bootloader subdirectory contains the source code for the SPI and ROM-based
bootloaders. This figure shows the bootloader subdirectory:

The bootloader has two parts: the ROM image and the RAM image.

Because the bootloader size is kept to less than 64K, the libs directory contains
the libraries that are linked into the bootloader. The bootloader does not link in
the standard NET+OS libraries.

src/bsp

bootloader common devices h init objs profilerplatforms

bootloader

libs net ramImage romImage spiBootRamImage spiBootRomImage
www.d i g i . c om 13

BSP t r e e s t r u c t u r e
The bootloader directory has six subdirectories:

libs – Contains libraries that are specific to the bootloader

net – Contains the network-related code for the BSP

ramImage – Contains the code and build file for the portion of the bootloader
that runs from RAM

romImage – Contains the build file and code for the portion of the bootloader
that runs from ROM

spiBootRamImage and spiBootRomImage – Contain the SPI bootloader

devices directory

The devices directory, which contains all the NET+OS device drivers, is shown here:

The device drivers are separated into three directories:

common — Contains the device drivers that are common to all processors, such
as serial and Ethernet

net_50_20 — Contains the drivers for the NS7520 and the NET+50

ns9xxx — Contains the drivers for the NS9360 and NS9750

platforms directory

The platforms directory contains all the supported platforms. This is where you
add your platform. This figure shows only some of the supported platforms:

devices

common net_50_20 ns9xxx
1 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
When you create a new platform, you copy an existing platform and create a new
subdirectory in this tree.

Customizing the BSP for application hardware

This section describes how to customize the NET+OS (BSP) for your application
hardware. This section also provides general information about the BSP and
presents the tasks for porting the BSP to a new hardware platform.

This table lists and briefly describes the basic tasks for porting the BSP to your
application hardware. You may find it helpful to print this table and use it as a
checklist as you port the BSP.

platforms

connectem connectme net50_d net50bga_a additional platforms....

Task Action

1 Purchase Ethernet media access controller (MAC) addresses from the IEEE.

2 Create a new platform directory.

3 Add your platform to the central build.

4 Modify the linker scripts.

5 Modify the BSP configuration files to support your application hardware.

6 Modify the BSP to start up the required drivers.

7 Modify the format of BSP arguments in NVRAM.

8 Modify the error and exception handlers.

9 Verify the debugger initialization files.

10 Debug the initialization code.

11 Modify the startup dialog.
www.d i g i . c om 15

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Follow the reference design

When you design your application hardware, follow the NET+Works reference
design as closely as possible. This practice allows you to reduce the amount of
modification to the BSP and reduces your risk during board bring-up.

In addition, use the same parts as used on the NET+Works development board,
especially memory peripherals and Ethernet PHY devices.

Verify the features your hardware supports

Make sure your hardware supports these features:

Flash at CS0

RAM (32-bit wide) at CS1

NVRAM at CS3

A JTAG port, which allows you to use an in-circuit emulator (ICE) to debug the
hardware and software. This feature is essential when you are bringing up a
new board.

Extra serial port to send diagnostic messages for debugging.

Enough RAM to run your entire application, even if your product runs out of
ROM. Being able to run an application from RAM greatly simplifies debugging.

A way to disable flash ROM. This feature is necessary because flash can be
accidentally overwritten; in this situation, the NET+ARM CPU executes
garbage instructions when you start it up.

Task 1: Purchase and assign Ethernet MAC addresses

Each device on a network needs a unique Ethernet MAC address. Your company
must purchase its own block of addresses from the IEEE, and then you must assign
an address to each board.

12 Modify the power-on self-test (POST) routines.

13 Modify the Address Configuration Executive (ACE), which controls TCP/IP
configuration on startup. (For details about ACE, see the online help.)

Task Action
1 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
The addresses are stored in either NVRAM or flash ROM. Digi provides an Ethernet
MAC address with each development board, but you need a unique address for each
of your own boards.

Task 2: Create a new platform subdirectory

To support your application hardware, you need to modify code in the BSP. See
Appendix A, “Using Central Build.”

Task 3: Build and modify the BSP build file

The next step is to build the BSP. See Appendix A, “Using Central Build.”

Task 4: Modify the linker scripts

The customize.lx file declares a set of constants used to generate the linker
scripts. These constants control the size and location of the program sections.

Constants you might need to change

This table lists the constants you might need to change for most applications:

Constant Description

RAM_SIZE The size of the RAM part on the board.

The linker generates an error if the application is too large to
fit in RAM.

FLASH_SIZE The size of the flash part on the board.

The linker generates an error if a ROM-based application is too
large to fit in ROM.

FLASH_START The starting address of flash. For the NS7520 and NET+50
processors, this address is typically 0x2000000.

RAM_START The starting address of RAM.

FILE_SYSTEM_SIZE The number of bytes to be allocated for the file system in
flash.
www.d i g i . c om 17

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Bootloader considerations

The bootloader utility, which is executed on startup, decompresses the application
image in flash to RAM and executes it. The bootloader must:

Know where in RAM to decompress the application image to. The bootloader
creates the application header from information in the bootldr.dat file.

BOOTLOADER_SIZE_IN_FLASH The amount of flash ROM to be reserved for the bootloader.
You also can use this constant to calculate where the
application image starts in flash. The bootloader shipped with
NET+OS fits into one sector of flash, typically 64 K. It is
important that this is large enough to fit the bootloader ROM
image, which is in the src/bsp/platforms/your
platform/rom.bin directory.

MAX_CODE_SIZE The largest possible size of the uncompressed application
image. Use this constant to reserve enough RAM to hold the
application image.

The bootloader uses this constant to reserve a section of
memory to hold the application.

When you create your application, use MAX_CODE_SIZE to
reserve memory in uncached memory so that the alias of the
application does not collide with RAM used for data storage.

The compression algorithm used by the bootloader generally
achieves 2:1 compression. A good rule of thumb is to set this
constant to twice the amount of flash available to hold the
compressed application image.

The linker generates an error if an application image is larger
than this value.

INIT_DATA_START Determines where the init data is stored in RAM.

The init data section stores information read by the
initialization code that needs to be accessed later. Enough
space must be left from the start of RAM to hold the vector
table, and possibly a FIQ routine, if you decide to write one.

INIT_DATA_SIZE The size of the memory area used to hold the start of switches
and buttons read at powerup.

CODE_START The start of ROM code.

NVRAM_FLASH_SIZE Determines how much flash ROM is reserved for NVRAM
storage. Set this constant to 0 if flash is not used for NVRAM.

Constant Description
1 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
Included in bootldr.dat is a ramAddress field, whose value determines the
load address of the application in memory. When the header is generated, it is
“tacked on” the beginning of the application image. To determine where to
decompress the application to, the bootloader reads the ramAddress field in
the application's header.

Be positioned in RAM where it will not overwrite itself when it decompresses
the application.

You must set the ramAddress in the bootldr.dat to the value of
BOOTLOADER_CODE_START in the customize.lx file.

Task 5: Modify BSP configuration files

You need to configure the BSP for your platform. The BSP configuration settings are
stored in files in the platforms directory. The online help and comments within the
files describe the content of the configuration files. Modify the configuration
settings to support your application hardware.

The next sections describe the files you must modify to support your hardware. You
may find it helpful to review the Memory Controller information in the hardware
reference for the processor you are using.

Phase Lock Loop (PLL)

The PLL generates a clock when a crystal is used instead of an external oscillator.

The PLL must be configured to generate the correct clock speed. On the NS7520,
the PLL is configured through pull-up and pull-down resistors; on the NET+50, the
PLL is configured by the BSP. The PLL settings are stored in a table in bsp.c in the
platforms directory. The default settings in the table configure the NET+50 PLL to
run at 44 MHz and assume an 18.432 MHz crystal input. Modify the values in this
table if your platform is different.

For more information on this table, see the online help.

Note: The NS7520 development board BSP assumes that an external oscillator will
be used. To configure the BSP to use the PLL, see the online help.
www.d i g i . c om 19

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
bsp.c file

The NANetarmInitData array in bsp.c in the platforms directory holds the
timing settings for the memory parts. The timing settings control the number of
wait states and idle cycles. The default values in the table work for commonly
used parts.

Verify that the settings are correct for the memory parts on your board, and make
any necessary adjustments.

Interrupt tables

You change the system interrupt priority by updating the NAInterruptPriority
array. This allows flexible prioritization for all the NET+ARM interrupts that drive the
ARM processor IRQ. The table prioritization requires lower priority interrupts early in
the array and higher priority interrupts toward the end of the array.

For example, the NAInterruptPriority array defaults to bit 0, PORTC PC0, as the
system’s lowest priority interrupt, and bit 31, DMA1, as the system’s highest
priority interrupt.

Chip select settings

The next table lists the customization hooks in cs.c. This file contains the routines
that configure the NET+ARM chip selects to support memory parts. You need to
modify the code in these routines to support your application hardware.
2 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
Customization
hooks

Hardware feature and default values set

customizeGetRamSize Returns the total amount of RAM on the system. The default
implementation does this by examining the configuration set for
CS1 and CS2. It therefore assumes that RAM is connected to CS1
and optionally, CS2.

customizeGetScr Returns the value to write to the System Control register (SCR). The
return value must leave the CACHE, CINIT, DMATST, LENDIAN, and
SMARST bits unchanged.

These hardware features are set by customizeGetScr:

 Bus speed. Default is to run at full bus speed.
 Bus Monitor Timer. Enabled and set for 128 clocks.
 User mode access to ASIC registers. Enabled.
 External bus master access to ASIC registers. Disabled.
 Internal/External System Bus Arbiter. Internal.
 DMA test mode. Must leave enabled during initialization.
 Use of TEA pin. Use only for error indications.
 Misaligned bus transfer abort. Do not generate an abort

exception for misaligned transfers.
 TA input synchronization. One-state synchronization.

customizeSetupCS0 Configures CS0. The default implementation configures it to
support a flash part. The timing parameters are set according to
values in NANetarmInitData. The processor will be executing
code in flash when this function is called after a power-on reset.
Therefore, you must carefully write this function so that the chip
select remains valid at all times while the function configures it.

customizeSetupCS1 Configures CS1.The default implementation assumes that RAM
will be connected to this chip select. It automatically detects the
RAM type and size and sets up the chip select accordingly. The
default implementation sets the timing parameters according to
the values in NANetarmInitData and generates a fatal error if no
RAM is detected on this chip select.

customizeSetupCS2 Configures CS2. The default implementation assumes that RAM
may be connected to this chip select. It automatically detects the
RAM type and size and sets up the chip select accordingly. The
default implementation sets the timing parameters according to
the values in NANetarmInitData and disables the chip select if no
RAM is detected.
www.d i g i . c om 21

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
gpio.h file

The NS7520 has 16 pins that are multiplexed with various functions including
GPIO functionality. These pins can be rapidly configured using the definitions in
this file. The functions multiplexed include serial, DMA, Ethernet CAM, external
IRQs, and GPIO.

By selecting options other than BSP_GPIO_MUX_INTERNAL_USE_ONLY, you can define,
set up, and program groups of pins at system startup to functions other than GPIO.

For information about how pins are multiplexed, see the gpio.h file and the
hardware reference for the processor you are using. The gpiomux_def.h public
header contains definitions used by the gpio.h file.

For a detailed description of the GPIO customization, see the online help.

customizeSetupCS3 Configures CS3. On development boards that support EEPROM,
the default implementation sets up the chip select to support an
8K EEPROM. Otherwise, the default implementation disables the
chip select.

customizeSetupCS4 Configures CS4. The default implementation disables the chip
select.

customizeSetupMMCR Sets up the Memory Management Control register (MMCR).

The MMCR controls the dynamic RAM (DRAM) refresh timing and
special functions for pins A25, A26, and A27.

Default functionality for A26 and A27 is set by the hardware
through pull-down resistors on pins A23 and A24.

Usually, the software leaves the powerup settings for these
pins alone.

 DRAM refresh rate. The default is to refresh at 67 KHz.
 Use of pins A25, A26, and A27. The default is to use A25 as an

address line, and leave pins A26 and A27 as configured by
hardware at powerup.
 Address multiplexor. The default setting is to use the internal

address multiplexor and not to use GPIO port C3 to support
the DRAM RAS/CAS signals.

Customization
hooks

Hardware feature and default values set
2 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
mii.c file

The Ethernet PHY driver is located in the mii.c file in the platforms directory. If your
hardware does not use a supported PHY, you must modify the driver to support it.

For information about the routines in the mii.c file, see the online help.

customizeLed.c file

The customizeLed.c file contains the structure NALedTable global data table,
which the NET+OS LED driver uses to determine how to turn LEDs on and off. The
LEDs are connected to GPIO pins. For more information, see the section “gpio.h
file” and the information about programming GPIO inputs in the hardware
reference for the processor you are using.

customizeReset.c file

This file contains the customizeRestart and customizeReset functions.

These functions determine what the system should do in case of a reset or restart
request. This is where you place application-specific code just before resetting
the device.

Simple serial driver

A simple serial driver is provided for debugging the BSP before the main serial driver
is loaded. The driver assumes that serial port 1 will be used at 9600 baud. To use a
different port or baud rate, you modify this driver.

The driver is located in the simpleSerial.c file in the devices/net_50_20/serial
directory.

Task 6: Modify the new BSP to start up the required drivers

You must configure the bsp.h file to enable the drivers that you want to run with
your application. The default configuration works with a development board. Note
that drivers that use the same GPIO pins cannot properly function at the same
time. For details on all the defines in bsp.h, see the online help.

Be sure to review the bsp.h file carefully.
www.d i g i . c om 23

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
1284 controller

The BSP is configured by default to disable support of the 1284 peripheral device.
To enable the 1284 controller, use either of these methods:

Recommended method. Define BSP_INCLUDE_PARALLEL_DRIVER in the
bsp.h file.

Alternate method. Add the 1284 driver entries from the device driver table
in the devices.c file.

In addition, you must modify the development board to support the 1284 controller.
For information about modifying the board to support this interface, see the jumpers
and components guide for the board you are using.

To set up all the necessary GPIO settings, see the instructions in the ReadMe file of
the naparaclient example.

Serial ports

The BSP is designed to support two serial ports. In the standard NET+OS release,
however, the BSP sets up one serial port to support asynchronous RS-232 style
communications and one SPI interface.

To set a serial port to a mode other than those already set up by the standard
NET+OS release (such as SPI or HDLC), modify the gpio.h file to ensure that correct
GPIO pins are set to the correct value.

To disable the RS-232 serial peripheral interface controller, use either of these
methods:

Recommended method. Undefine BSP_SERIAL_PORT_X where x is 1 or 2 in the
bsp.h file.

Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

You do not need to disable the serial driver to use the HDLC driver; however, in the
appconf.h file for each example, you must set up the correct serial port number for
each function.
2 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
Task 7: Modify the format of BSP arguments in NVRAM

The BSP stores some configuration arguments in NVRAM. The configuration values
are read and written by way of customization hooks in boardParams.c.

You must modify these customization hooks to support your application:

Customization hook Description

customizeGetMACAddress Determines the Ethernet MAC address used to
communicate on the network.

Each device on the network needs a unique Ethernet
MAC address. You must purchase a block of Ethernet
MAC addresses from the IEEE and modify this routine
to return an address from this block. The default
implementation returns a value that was stored in
NVRAM.

customizeGetSerialNumber Returns the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used by
the API libraries or in any part of the BSP except the
dialog.

If you rewrite the dialog, you can omit this routine. The
default implementation returns a 9-character serial
number read from NVRAM. Many developers use the
Ethernet MAC address as the unit's serial number.

customizeSaveSerialNumber Sets the serial number for the unit.

The serial number is used only in some sample
applications and the startup dialog. It is not used by the
API libraries or in any part of the BSP except the dialog.

If you rewrite the dialog, you can omit this routine. The
default implementation stores a 9-character serial
number in NVRAM.

customizeSetMACAddress Sets the Ethernet MAC address for the unit.

The default implementation stores the MAC address as a
6-byte array in NVRAM.

customizeUseDefaultParameters Determines default configuration values and returns
them in a buffer.

The default implementation determines the default
values through constants set in appconf.h. You must
modify this routine to support your application.
www.d i g i . c om 25

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Task 8: Modify error and exception handlers

The errhndlr.c file in the platforms directory contains customization hooks for an
error handler and an exception handler.

Error handler

Code in the BSP calls the error handler, customizeErrorHandler, when fatal
errors occur. Using constants in bsp.h, you can configure the default error
handler to either:

Report the error by blinking LEDs in a pattern.

Reset the unit when a fatal error occurs.

You may need to modify the error handler if you want to report the error in some
other way or take some other action.

Exception handler

The unexpected exception handler, customizeExceptionHandler, is called when
these exceptions occur:

Undefined instruction

Software interrupt

Prefetch abort

Data abort

Fast interrupt

customizeReadDevBoardParams Reads the configuration from NVRAM into a buffer. You
must modify this routine to support your application.

customizeWriteDevBoardParams Writes the configuration to NVRAM.

The default implementation accepts the current
configuration as a buffer and writes the buffer into
NVRAM.

customizeGetIPParameters Reads the IP-related configuration values from NVRAM.

customizeSaveIPParameters Writes the IP-related configuration values to NVRAM.

Customization hook Description
2 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
Using constants in bsp.h, you can configure the exception handler to:

Handle these exceptions by resetting the unit.

Blink an error code on LEDs.

Continue execution at the point at which the exception returned.

Digi does not recommend that you try to continue execution. You may need to
modify the exception handler to better support your application.

For details about error and exception handlers, see Appendix E, “Processor Modes
and Exceptions.”

Task 9: Verify the debugger initialization files

When you use the debugger, you must initialize hardware registers on the board
that the BSP ROM startup code would normally set up. You use debugger
initialization scripts for this task. The script contains commands that are executed
by the debugger before the application is downloaded and executed.

NET+OS ships with debugger scripts that initialize the supported development
boards. You must create one to initialize your application hardware.

NET+Works supports the Macraigor Raven.

To create a debugger initialization file:

1 Copy the debugger script for the development board that is closest to your
hardware platform, and give it an appropriate name.

The debugger scripts are located in the debugger_files directory.

2 Edit the debugger script with a text editor. You see several sequences of
commands like these:
monitor long ffc00020 = 0x0

monitor long ffc00024 = 0xf3000070

monitor long ffc00020 = 0x0000022d

monitor long ffc00028 = 0x00000001

These commands write values to registers in the NET+ARM.

3 Modify the script so that the NET+ARM is properly set up for your application
hardware:

– Set up the communications port for the Raven.

– Configure the PLL on the NET+50 to the correct clock speed by setting
PLLCR.
www.d i g i . c om 27

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
– Configure the System Control register to set the correct bus speed and
endianess, and disable the watchdog timer.

– Set the valid bit in the CS0 chip select to 0. The BSP checks this bit to
determine whether a debugger is being used. This is important because
the BSP has to know whether to configure the RAM chip selects, perform
a memory test, and turn on cache.

Set up the memory controller to perform the synchronous dynamic RAM
(SDRAM) refresh functions.

Set up the chip selects used for RAM, because the application code will be
loaded into RAM.

The debugger initialization scripts, which are in the debugger files directory, are
labeled gdbns7520.raven for the NS7520 and gdbnet50.raven for the NET+50.
The debugger reads these scripts when you start to download code to the board
using gdb.

If you are using a different type of SDRAM, you must modify the settings in these
scripts. The debugger script programs the registers in the memory controller. For a
detailed description of these registers, see the hardware reference for the
processor you are using.

Task 10: Debug the initialization code

After you complete the modifications and create the debugger initialization scripts
for your application hardware, you may need to debug the initialization code.

To debug code from RAM, you use the Raven and download the code through the
MULTI 2000 debugger into the RAM on your board. The next sections describe this
procedure.

Preparing to debug the initialization code

Before you start debugging the initialization code, complete these tasks:

1 Rebuild the BSP with your changes. See Appendix A, “Using Central Build.”

2 Disable the POST by setting the APP_POST constant in the root.c file to 0.

Carefully review all the settings in the appconf.h file. Make sure that
stdio is directed to the correct serial port. The default is com/0.
2 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
3 Build the application. See Appendix A, “Using Central Build.”

4 Load the image. See Appendix A, “Using Central Build.”

5 Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter (PC) at the beginning of the
startup code.

6 Verify that the debugger initialization file has configured the application
board such that:

– The Chip Select registers for ROM and RAM are set up to support the parts
and memory map.

– All interrupts are masked off.

– The PLL registers are properly programmed for the crystal on your
application hardware. The PLL should be set by the debugger script on
NET+50 processors, and by pull-up and pull-down resistors on the NS7520.

– You can read and write RAM on your application board.

7 Debug the initialization code by stepping through it, as described in the
next section.

Debugging the initialization code

Debug the initialization code in stages, using the same order of the steps presented
in this section:

1 INIT.s file

2 ncc_init routine

3 NABoardInit routine

4 Ethernet driver startup

Be aware that this section describes debugging from RAM. You also may need to step
through the INIT.s code when it runs from ROM.

Debug the INIT.s file

The src/bsp/init/arm7/INIT.s file performs initialization functions. Step through
the code in INIT.s, and verify that it works correctly. You usually do not need to
change the code to support custom hardware boards.

The code in INIT.s must perform this process:

1 Set the processor mode and disable all interrupts.
www.d i g i . c om 29

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
2 Initialize the PLL (NET+50 only).

3 Set the BSPEED field in the System Control register to enable full bus speed.

4 Execute a soft reset.

5 Place the DMA controller into test mode.

This action causes the on-chip static RAM (normally used to store DMA
context information and register values) to become available as RAM.

6 Set the SVC stack pointer to point to the DMA RAM.

7 Call the ncc_init routine to continue the initialization process.

8 Set up stacks for all processor modes.

9 Release the DMA controller from test mods.

10 Call the C library startup routines.

The routines do not return.

Debug the ncc_init routine

The ncc_init routine performs most of the board-specific hardware setup by
calling a set of functions that you customize to support your specific board. After
you customize these routines (described in task 6), you need to check ncc_init and
your customized routines to verify that they are working correctly. The NCC_INIT.c
file is in bsp/init/arm7.

The ncc_init routine must perform this process:

1 Set up the Memory Management Control register by calling
customizeSetupMMCR.

2 Set up the System Control register by calling customizeGetScr.

3 Determine whether a software restart has occurred by examining the contents
of UNDEF mode R14.

The Restart function sets this register when the system is restarted.

4 Determine whether a debugger is attached.

The debugger script files indicate the presence of a debugger by clearing
the valid bit for chip select 0 (CS0).

5 Set up the GPIO ports by calling the customizeSetupPortX routines.

6 Set up CS0 by calling customizeSetupCS0.
3 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
7 If a debugger is detected, call customizeSetupCS3 to set up CS3, and call
customizeGetRamSize to determine the amount of RAM on the system.

8 Call the customizeReadPowerOnButtons function to read and save the state of
buttons and jumpers.

9 Verify that the application can fit in the available RAM.

10 Set flags in memory, which is now set up, to indicate whether a debugger is
present and whether a software restart has occurred.

Debug the NABoardInit routine

The NABoardInit routine, which is located in src/bsp/init/arm7/narmbrd.c,
provides some low- level initialization routines for flash and NVRAM. Step through
the initialization code in the narmbrd.c file to verify that the NVRAM APIs are
initialized to support the NVRAM on your application hardware. You can configure
the board to use a flash sector as NVRAM.

Debug the Ethernet driver startup

To debug the Ethernet driver startup:

1 Put a breakpoint on the eth_reset routine (in eth_reset.c) and let the
program run until you reach the breakpoint.

2 Step into the customizeMiiReset routine (in the mii.c file) and then into
customizeMiiIdentifyPhy.

3 Verify that:

– customizeMiiIdentifyPhy returns a value not equal to 0xffff.

– mii_reset returns 0.

– customizeMiiIdentifyPhy identifies the PHY on your application hardware.

4 Step into customizeMiiNegotiate and verify that customizeMiiCheckSpeed
determines whether you are connected to a 100 Base-T network.

5 Step into customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.

Task 11: Modify the startup dialog

The BSP prompts you to change configuration settings after a reset. The dialog
implemented for the development boards prompts you to set the board's serial
www.d i g i . c om 31

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
number, Ethernet MAC address, and IP networking parameters. The dialog code is in
the dialog.c file in the platforms directory.

If you plan to use the dialog in your product, change it to support your application.
The customizeDialog function calls the NAGetAppDialogPort, NAOpenDialog, and
NACloseDialog functions to determine which port to use for the dialog and to open
and close it. If you do not want a dialog, replace the code in dialog.c with an
empty version of customizeDialog that just returns.

Generally, you do not need to customize these functions. To support your
application, however, you usually need to completely rewrite the other functions
called by customizeDialog to display the current configuration settings and prompt.
The I/O port for the dialog is set by the APP_DIALOG_PORT constant in your
application's appconf.h file.

Task 12: Modify the POST

If the APP_POST constant is set, the BSP automatically runs the POST from the
main.c, which is located in src/bsp/common.

You may want to create other POST routines that test additional hardware on
your board.

Task 13: Modify the ACE

The Address Configuration Executive (ACE) is an API that runs at startup to
acquire an IP address. You need to customize the contents of two files in the
platforms directory — aceCallbacks.c and aceParams.c — that contain
information the ACE uses.

aceCallbacks.c

The aceCallbacks.c file contains a set of callback functions that the ACE invokes
at different points in the startup process. You need to customize these callbacks for
your application.

For example, the customizeAceLostAddress routine is called when the lease for an IP
address has expired. The default implementation resets the unit. You could customize
customizeAceLostAddress to notify your application of the problem so that your
application can try to recover by closing and restarting network connections.
3 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
aceParams.c

The aceParams.c file contains the code that reads and writes ACE configuration
information in NVRAM. Generally, the only parts of the aceParams.c file you need
to customize are these definitions:

The dhcp_desired_params array. Contains a list of the Dynamic Host
Configuration Protocol (DHCP) options that you want the client to request
from the server.
Add any other DHCP options you want the client to request from the server.

NADefaultEthInterfaceConfig. Contains the configuration that ACE uses if
none is stored in NVRAM. This configuration controls which protocols are used
to get an IP address and the options used with them. The default configuration
uses all protocols to get an IP address. Customize this configuration as needed.

For details about these functions, see the online help.

Other BSP customizing

This section describes additional customizing you may want to do.

BSP_NVRAM_DRIVER

The BSP_NVRAM_DRIVER constant in bsp.h defines the non-volatile memory type
used to store the configuration information. This table describes the settings:

Constant Description

BSP_NVRAM_DRIVER This constant in bsp.h defines the non-volatile memory type used to
store the configuration information. Here are the settings:

 BSP_NVRAM_NONE – No NVRAM driver is to be built
 BSP_NVRAM_LAST_FLASH_SECTOR – The last sector of flash

memory to be used for NVRAM
 BSP_NVRAM_SEEPROM – The serial EEPROM driver is to be built
 BSP_NVRAM_SEEPROM_WITH_SEMAPHORES – The serial EEPROM

driver with semaphore protection is built
 BSP_NVRAM_LAST_SFLASH_SECTOR – The last sector of serial

flash is to be used for NVRAM
www.d i g i . c om 33

Othe r BSP cu s t om i z i n g
TCP/IP stack

The TCP/IP stack is the software module that handles networking functionality and
is started as part of the BSP initialization process. These functions and constants
are used for configuring the TCP/IP stack.

Function or constant Description

BSP_LOW_INTERRUPT_LATENCY This constant in bsp.h determines how the TCP/IP stack implements its
critical section:

 To use a semaphore for the TCP/IP critical section, set
BSP_LOW_INTERRUPT_LATENCY to TRUE.
 To disable processor interrupts to implement the TCP/IP critical

section, set BSP_LOW_INTERRUPT_LATENCY to FALSE.

BSP_ENABLE_FAST_IP This constant in bsp.h enables Fast IP:

 To enable Fast IP, set BSP_ENABLE_FAST_IP to TRUE.
 To disable Fast IP, set BSP_ENABLE_FAST_IP to FALSE.

Fast IP is not supported for low interrupt latency.

BSP_WAIT_FOR_IP_CONFIG This constant in bsp.h determines whether the BSP waits for the stack
to be configured before starting the application by calling the
applicationStart() function. Previous versions of NET+OS always
waited for the stack to be configured.

Your application should not use any network resources until the stack has
been configured by setting an IP address on at least one interface. You can
use the customizeAceGetInterfaceAddrInfo() function to determine
whether an IP address has been assigned to an interface.

 To cause the BSP to wait for an IP address to be configured on at
least one interface before calling applicationStart, set
BSP_WAIT_FOR_IP_CONFIG to TRUE.
 To call applicationStart without waiting for an IP address to be

assigned, set BSP_WAIT_FOR_IP_CONFIG to FALSE

BSP_ENABLE_ADDR_CONFLICT_DETECTION This constant in bsp.h enables IP address conflict detection, during
initial IP address configuration.

If BSP_ENABLE_ADDR_CONFLICT_DETECTION is defined to TRUE, the
ACE subsystem sends ARP probes to detect IP address conflict for
BOOTP, RARP, Ping ARP, and static IP address protocols. IP address
conflict detection must also be enabled on a network device. You can
retrieve the device configuration for IP address conflict detection by
using the NAGetAddrConflictData function.

NAIpSetKaInterval This function in naip_global.c overrides the default value for the TCP
keepalive interval, which by default is 2 hours (7200 seconds). If
ka_interval == 0, keepalive is turned off.
3 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
File system

The BSP can be configured to interface the C library file I/O functions to the file
systems. NET+OS currently supports two file systems:

Native file system. Used to create RAM volumes on RAM memory and flash
volumes on non-removable flash memory.

FAT file system. Used to create FAT volumes on removable media such as USB
flash memory sticks.

Use these constants to configure the file systems:

NAIpSetDefaultIpTtl This function in naip_global.c sets the default value for the time-to-
live field of outgoing packets. This value is used unless overridden on a
particular socket by the IP_TTL socket option.

NAIpSetTcpMsl This function in naip_global.c overrides the default value for the TCP
MSL and TCP TIME_WAIT interval. The default value of TCP MSL is 120
seconds. The TIME_WAIT interval will be set to (tcp_msl * 2).

APP_NET_HEAP_SIZE This constant in appconf.h sets the TCP/IP stack heap size for dynamic
allocations. The TCP/IP stack allocates all packet buffers from this piece
of memory.

Function or constant Description

Constant Description

BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY Set this constant in bsp.h to TRUE to include the native file
system in the C library and create a RAM and flash volume as part
of the BSP initialization process.

BSP_NATIVE_FS_MAX_INODE_BLOCK_LIMIT When the BSP creates a native file system volume, this constant
in bsp.h specifies the percentage of the maximum number of
inode blocks that can be allocated to store inodes for a volume.
This constant allows specifying the upper limit of the number of
blocks reserved to store inodes. Valid values are from 1 to 100.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.
www.d i g i . c om 35

Othe r BSP cu s t om i z i n g
BSP_NATIVE_FS_MAX_OPEN_DIRS When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open directories
that the file system will track. A directory is considered open
if there are open files in the directory. Valid values are from 1
to 64.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_MAX_OPEN_FILES_PER_DIR When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open files per
directory that the file system will track. Valid values are from 1
to 64.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_BLOCK_SIZE When the BSP creates a native file system volume, this constant
in bsp.h specifies the block size used for the volume. Valid
values are:

 NAFS_BLOCK_SIZE_512

 NAFS_BLOCK_SIZE_1K

 NAFS_BLOCK_SIZE_2K

 NAFS_BLOCK_SIZE_4K

BSP_NATIVE_FS_RAM0_VOLUME_SIZE When the BSP creates the native file system RAM volume, this
constant specifies the size of the RAM volume in bytes.

Constant Description
3 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM7
BSP_NATIVE_FS_FLASH0_OPTIONS When the BSP creates the native file system flash volume, this
constant specifies the advanced options to use. Valid values are
the bitwise ORing of these options:

NAFS_MOST_DIRTY_SECTOR — Uses the default sector transfer
algorithm that selects the sector with the most dirty blocks. If no sector
transfer algorithm is specified, or if multiple sector transfer algorithms
are specified, the default algorithm is used.

NAFS_RANDOM_DIRTY_SECTOR — Uses the alternative
sector transfer algorithm that randomly selects a sector
with dirty blocks.

NAFS_TRACK_SECTOR_ERASES — Enables tracking the number of
sector erases for each sector of a flash volume.

NAFS_BACKGROUND_COMPACTING — Enables the background
sector compacting thread. This feature automatically reclaims
the dirty blocks in the flash volumes and converts them to
erased blocks.

For more information, see the NAFSinit_volume_cb native file
system API function in the online help.

BSP_NATIVE_FS_FLASH0_COMPACTING_THRESHOLD If the BSP_NATIVE_FS_FLASH0_OPTIONS constant includes
NAFS_BACKGROUND_COMPACTING, this constant specifies the
percentage of erased blocks in a flash sector to gain to trigger
the sector compacting process. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API function in the online help.

Constant Description
www.d i g i . c om 37

Othe r BSP cu s t om i z i n g
3 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP for ARM9
C H A P T E R 3

This chapter describes how to create a platform for your customized hardware
using the NET+OS board support package (BSP) for ARM9-based platforms such as
the NS9750 and NS9360.
 39

Ove r v i ew
Overview

The board support package (BSP) contains the drivers, board-specific software,
and a customizable directory for each supported platform. When you port a new
platform to NET+OS 6.3, you typically need to modify the platform directory. If
you are using a standard development kit, you can use one of the existing
platforms with no modifications.

This chapter describes the overall structure of the NET+OS BSP, how to add in a
new platform, and how to debug a new platform.

Supported platforms

This table shows the list of supported platforms provided with NET+OS 6.3. If you
are adding a new platform to NET+OS, start with a platform that is similar to yours.

For a description of your platform, see the jumpers and components guide for your
development board.

Initialization

This section describes the power-up and initialization of NET+OS. In general, you
do not need to modify the initialization code. Instructions about how to modify
customizable parameters on your board are provided in the next section.

Initializing hardware

The hardware initialization code is contained in src/bsp/init/arm9 for ARM9-based
CPUs. The main routine is src/bsp/common/main.c.

Platform name CPU type Description

ns9360_a ARM9 NS9360 development board

ns9750_a ARM9 NS9750 development board
4 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Initialization sequence

The Reset_Handler is the first routine that is executed when the processor is
powered on. This routine is located in the INIT.arm file. Reset_Handler must
perform these steps:

1 Determine whether the application is booting from SPI:

– If the application is booting from SPI, the initialization code sets a flag
that is read later. This skips over the code that initializes the memory
controller, because this in already done during the SPI boot.

– If the application is not booting from SPI, the initialization code initializes
the memory controller so the application can run from SDRAM.

2 Take the BBUS out of reset.

3 Test a section of RAM that will be used as a stack for the rest of the
initialization code.

4 Jump to the nccInit routine in the NCC_INIT.c file, which contains the rest
of the hardware initialization routines in the nccInit routine.

5 Read and save registers that tell whether the application is in the debugger or
this is a software restart. If either of these is true, the application can skip
over some sections of the hardware initialization.

6 Set up the SimpleSerialDriver.

This allows you to use the mprintf routine, which you can use to print
debug information during bootup.

7 Set up the GPIO pins.

8 Enable the instruction cache

9 Set up the chip selects.

10 Initialize PCI, if it is enabled (NS9750 only).

11 Read power-on buttons.

12 Run the memory test.

13 Verify that the application will fit into RAM and return.

14 Set up the stacks for the different processor modes.

15 Jump to the C library startup routine.
www.d i g i . c om 41

ROM boo t l o ade r
C library startup

After hardware initialization, the C library START routine is called by the
Reset_Handler, which is located in the INIT.arm file. The size of the stack for the
C library is specified in the customize.lx customizable file. The default stack size
for the C library is 12K. If you are not using C++, you can reduce this size to 8K. The
main routine is located in src/bsp/common/main.c.

The main routine must perform these steps:

1 If the power-on self-test (POST) is enabled, execute it.

2 Set up the vector table.

3 Enable the Memory Management Unit (MMU).

4 Call NABoardInit (described in the next section).

5 Perform the first level device driver initialization.

This step performs low-level device driver initialization and is executed
before the OS is loaded.

6 If C++ is enabled, initialize the C++ libraries.

7 Start ThreadX.

NABoardInit

This routine completes the hardware initialization that was started in INIT.arm.

The NABoardInit routine must do these steps:

1 Read the chip revision and stores it in g_NAChipRevision.

2 Initialize the low level flash interface.

3 Set up non-volatile random access memory (NVRAM).

ROM bootloader

The NET+OS ROM bootloader is a small program that is programmed into ROM. The
application image is stored in flash in a compressed format. At start up, the
bootloader decompresses it to RAM, and executes it from RAM.
4 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
The advantage of using the ROM bootloader is twofold:

Less flash memory is required because the application image is compressed.

Applications generally run faster from SDRAM.

The ROM bootloader is built as part of the BSP. The ROM image for the bootloader is
contained in the platforms directory and is called rom.bin. When you run from the
debugger, the bootloader is not use. For details about the ROM bootloader, see
Appendix C, “Customizing the ROM Bootloader.”

BSP tree structure

These sections describe and illustrate the BSP tree structure.

Top-level directory

The NET+OS BSP is located in the src/bsp directory. The top level directory, shown
next, contains the build file for the BSP and the build file for the bootloader:

bootloader subdirectory

The bootloader subdirectory contains the source code for the SPI and ROM-based
bootloaders. This figure shows the bootloader subdirectory:

src/bsp

bootloader common devices h init objs profilerplatforms
www.d i g i . c om 43

BSP t r e e s t r u c t u r e
The bootloader has two parts: the ROM image and the RAM image.

Because the bootloader size is kept to less than 64K, the libs directory contains
the libraries that are linked into the bootloader. The bootloader does not link in the
standard NET+OS libraries.

The bootloader directory has six subdirectories. This table lists the subdirectories
and their contents:

devices directory

The devices directory, which contains the NET+OS device drivers, is shown here:

Subdirectory Contents

libs Libraries that are specific to the bootloader

net Network-related code for the BSP

ramImage The code and build file for the portion of the bootloader that
runs from RAM

romImage The build file and code for the portion of the bootloader that
runs from ROM

spiBootRamImage and
spiBootRomImage

The SPI bootloader

bootloader

libs net ramImage romImage spiBootRamImage spiBootRomImage

devices

common net_50_20 ns9xxx
4 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
The device drivers are separated into three directories:

common — Contains the device drivers that are common to all processors, such
as serial and Ethernet

net_50_20 — Contains the drivers for the NS7520 and the NET+50

ns9xxx — Contains the drivers for the NS9360 and NS9750

platforms directory

The platforms directory contains all the supported platforms. This is where you
add your platform. Only some of the supported platforms are shown in this figure:

When you create a new platform, you copy an existing platform and create a new
subdirectory in this tree.

Customizing the BSP for application hardware

This section describes how to customize the NET+OS board support package
(BSP) for your application hardware. In addition, this section provides general
information about the BSP and presents the tasks for porting the BSP to a new
hardware platform.

This table lists and briefly describes the basic tasks for porting the BSP to your
application hardware. You may find it helpful to print this table and use it as a
checklist as you port the BSP.

platforms

connectem connectme net50_d net50bga_a additional platforms....

Task Action

1 Purchase Ethernet media access controller (MAC) addresses from the IEEE.

2 Create a new platform directory.
www.d i g i . c om 45

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Follow the reference design

When you design your application hardware, follow the NET+Works reference
design as closely as possible. This practice allows you to reduce the amount of
modification to the BSP and reduces your risk during board bring-up.

In addition, use the same parts as used on the NET+Works development board,
especially memory peripherals and Ethernet PHY devices.

Verify the features your hardware supports

Make sure your hardware supports these features:

Flash at CS1. The NS9750 and the NS9360 boot from this flash on powerup.

RAM (32-bit wide) at CS4. If you are using multiple chip selects for SDRAM,
you must put the largest SDRAM on CS4. CS4 is mapped to address 0 after the
Memory Controller is enabled.
The BSP autodetects and configures additional SDRAM memory on the
other chip selects.

3 Add your platform to the central build.

4 Modify the linker scripts.

5 Modify the BSP configuration files to support your application hardware.

6 Modify the BSP to start up the required drivers.

7 Modify the format of BSP arguments in NVRAM.

8 Modify the error and exception handlers.

9 Verify the debugger initialization files.

10 Debug the initialization code.

11 Modify the startup dialog.

12 Modify the power-on self-test (POST) routines.

13 Modify the Address Configuration Executive (ACE), which controls TCP/IP
configuration on startup.

For details about ACE, see the online help.

Task Action
4 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
JTAG port. This port, which allows you to debug the hardware and software,
is essential for bringing up a new board.

Extra serial port. This port is used to display standard out messages for
debugging. You can easily communicate diagnostic information to the
debugging engineer using the standard I/O printf.

Enough RAM to run your entire application, even if your product runs from
ROM. Running an application from RAM greatly simplifies debugging.

Task 1: Purchase and assign Ethernet MAC addresses

Each device on a network needs a unique Ethernet MAC address. Your company
must purchase its own block of addresses from the IEEE. After you purchase a block
of addresses, you must assign an address to each board.

The addresses are stored in either NVRAM or flash ROM. Digi provides an Ethernet
MAC address with each development board, but you need a unique address for your
own boards.

Task 2: Create a new platform subdirectory

To support your application hardware, you need to modify code in the BSP. For
instructions, see Appendix A, “Central Build.”

Task 3: Add your platform to the central build system

The next step is to build the BSP. For instructions, see Appendix A, “Central Build.”

Task 4: Modify the linker scripts

The customize.lx file declares a set of constants used to generate the linker
scripts. These constants control the size and location of the program sections.
This file is located in the my_platform directory.
www.d i g i . c om 47

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Constants you may need to change

This table lists the constants you may need to change for most applications:

Constant Description

RAM_SIZE The size of the RAM part on the board.

The linker generates an error if the application is too large to
fit in RAM.

FLASH_SIZE The size of the flash part on the board.

The linker generates an error if a ROM-based application is
too large to fit in ROM.

FLASH_START The starting address of flash. For the NS9750 and NS9360
processors, this address is typically 0x50000000.

RAM_START The starting address of RAM.

FILE_SYSTEM_SIZE The number of bytes to be allocated for the file system
in flash.

BOOTLOADER_SIZE_IN_FLASH The amount of flash ROM to be reserved for the bootloader.
You also can use this constant to calculate where the
application image starts in flash. The bootloader shipped
with NET+OS fits into one sector of flash that is typically 64
K. It is important that this is large enough to fit the
bootloader ROM image, which is in the src/bsp/
platforms/my_platform/rom.bin directory.

MAX_CODE_SIZE The largest possible size of the uncompressed application
image. Use this constant to reserve enough RAM to hold the
application image.

The bootloader uses this constant to reserve a section of
memory to hold the application.

The compression algorithm used by the bootloader generally
achieves 2:1 compression. A good rule of thumb is to set this
constant to twice the amount of flash available to hold the
compressed application image.

The linker generates an error if an application image is larger
than this value.

INIT_DATA_START Determines where the init data is stored in RAM.

The init data section stores information read by the
initialization code that needs to be accessed later. Enough
space must be left from the start of RAM to hold the vector
table, and possibly a FIQ routine, if you decide to write one.
4 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Bootloader considerations

The bootloader utility, which is executed on startup, decompresses the application
image in flash to RAM and executes it. The bootloader must:

Know where in RAM to decompress the application image to. The bootloader
creates the application header from information in the bootldr.dat file.
Included in bootldr.dat is a ramAddressfield whose value determines the load
address of the application in memory. When the header is generated, it is
“tacked on” the beginning of the application image. To determine where to
decompress the application to, the bootloader reads the ramAddress field in
the application's header.

Be positioned in RAM where it will not overwrite itself when it decompresses
the application.

You must set the ramAddress field to the value of BOOTLOADER_CODE_START in the
customize.lx file.

Task 5: Modify BSP configuration files

You need to configure the BSP for your platform. The BSP configuration settings are
stored in files in the platforms directory. The online help and comments in the
files describe the content of the configuration files. Modify the configuration
settings to support your application hardware.

The next sections describe the files you must modify to support your hardware. You
may find it helpful to review the Memory Controller information in the hardware
reference for the processor you are using.

INIT_DATA_SIZE The size of the memory area used to hold the start of
switches and buttons read at powerup.

CODE_START The start of ROM code.

NVRAM_FLASH_SIZE Determines how much flash ROM is reserved for NVRAM
storage. Set this constant to 0 if flash is not used for NVRAM.

Constant Description
www.d i g i . c om 49

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
sysclock.h file

The value for the external oscillator or crystal that supplies the input frequency
defined in the sysclock.h platforms file. This line defines the input frequency for
the ns9750 platform:

#define NA_ARM9_INPUT_FREQUENCY 398131200

The value 398131200 is the input frequency to the NS9750 development boards and
29491200 for the NS9360 development boards. If your input frequency is different,
you must modify this value.

bsp.c file

The bsp.c file contains tables you must update:

Static memory table. The MCStaticMemoryTable array in the bsp.c file in
the platforms directory holds the timing settings for the SRAM (flash)
memory parts. The values in the table correspond to the SRAM register
settings for the NS9750/NS9360 memory controller.

For more information, see the hardware reference for the processor you are using.
The data structure that corresponds to this table is defined in the bsp.h
header file and described in the online help. The values in the table
correspond to the SRAM part supplied on the development board. The
online help also has a description of this table.
If you are using a flash part that is different from what's on the standard
NS9750/NS9360 development boards, you may need to modify this table.

Interrupt tables. When you change the system interrupt priority, you must
update these tables:

– NABbusPriorityTab — This array in the bsp.c file in the platforms
directory contains the priority of each interrupt in the Bbus. The
NABbusPriorityTab allows flexible prioritization for all BBUS interrupts
in the NET+ARM that drive the BBUS_AGGREGATE_INTERRUPT in the
NAAhbPriorityTab table.
The NABbusPriorityTab table is configured with interrupts of higher
priority at the beginning and interrupts of lower priority at the end of the
array.

– NAAhbPriorityTab — This array in the bsp.c file in the platforms
directory contains the priority of each interrupt in the AHB Bus. The
NAAhbPriorityTab allows flexible prioritization for all the AHB interrupts
in the NET+ARM that drive the ARM processor IRQ.
5 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
The table is configured with interrupts of higher priority at the beginning
and interrupts of lower priority toward the end of the table.

For more information about interrupts, see the “AHB interrupts” and
“Bbus interrupts” sections in the hardware reference.

init_settings.h file

The init_settings.h file contains the SDRAM settings used to program CS4 (the
RAM at address 0). You need to configure these settings before accessing SDRAM,
which is done in the Reset_Handler routine. You also need to verify that the
memory settings in this file are correct for your SDRAM.

The register settings supplied in the NS9750/NS9360 platforms are for the PC133
parts supplied on the development board. The register settings in this file are
described in detail the hardware reference. For a description of these settings,
see the online help. It is important you verify that these values are correct for
your memory type.

cs.c file

The BSP_MPMC_REFRESH_RATE define contains the value for the SDRAM refresh rate.
This define is used to calculate the value for the Dynamic Memory Refresh Timing
register in the memory controller. You must modify this define to match the refresh
rate for the memory parts you are using.

The next table lists the customization hooks in the cs.c file, which contains the
routines that configure the NET+ARM chip selects to support memory parts. You
need to modify the code in these routines to support your application hardware.
Note that CS4 is already programmed in the initialization code with the parameters
in init_settings.h. CS1 is connected to flash.

Customization hook Hardware feature/default values set

customizeGetRamSize Returns the total amount of RAM on the system and calls the
customizeable customizeGetCSSize routine.

customizeGetCSSize Returns the total number of bytes of memory the chip select
is configured to support by examining the address mask in
the CS mask register.
www.d i g i . c om 51

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
customizeSetupCS0 CS0 has its power up value when this function is called.
The table in the bsp.c file is used to set the registers in
the Memory Controller. CS0 has an optional SRAM device
connected to it.

customizeSetupCS1 Sets up CS1 (flash ROM). CS1 contains the flash code, which
the processor initially starts executing on bootstrap. CS1 is
preconfigured through the use of strapping pins and must
always be connected to flash. The size and starting address
of flash come from the linker directive file that is created
from customize.lx.

customizeSetupCS2 Sets up CS2 (Static Memory). The table in the bsp.c file is
used to set the registers in the Memory Controller.

customizeSetupCS3 Must set up CS3 (Static Memory). CS3 has its powerup
value when this function is called. The table in bsp.c is
used to set the registers in the Memory Controller for this
chip select.

customizeSetupCS4 Called to customize CS4 (SDRAM). CS4 is initially set up in
init.s with the parameters from init_settings.h. The
size of the RAM on CS4 must be specified in the
customize.lx file. CS4 gets mapped to address zero
after the memory controller is enabled.

customizeSetupCS5 Must set up CS5 (optional SDRAM) and fill in the size of the
amount of RAM detected on this chip select. This is then
used to create the memory map.

customizeSetupCS6 Must set up CS6 (optional SDRAM) and fill in the size of the
amount of RAM detected on this chip select. This is then
used to create the memory map.

customizeSetupCS7 Must set up CS7 (RAM) and fill in the size of the amount of
RAM detected on this chip select. This is then used to create
the memory map.

Customization hook Hardware feature/default values set
5 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Because the routines in cs.c execute before RAM is set up and before the C library is
initialized, the routines cannot use:

Global variables

Static variables

Constants created with the C const keyword

A small amount (512 bytes) of SDRAM is used to support a stack. The routines can
create local variables on this stack if the variables are small enough to fit.

gpio.h file

The NS9750 has 50 pins and the NS9360 has 73 GPIO pins that are multiplexed with
functions that include GPIO functionality. You can quickly configure these pins using
the definitions in the gpio.h file. The multiplexed functions include serial, LCD,
Timers, DMA, 1284, USB, Ethernet, external IRQs, and GPIO.

By selecting options other than BSP_GPIO_MUX_INTERNAL_USE_ONLY, you can define,
set up, and program groups of pins at system startup to functions other than GPIO.

For information about how pins are multiplexed, see the gpio.h file and the
hardware reference for the processor you are using. The gpiomux_def.h public
header contains definitions used by the gpio.h file.

For a detailed description of the GPIO customization, see the online help.

customizeSetupMMCR Sets up the memory management control register (MMCR),
which controls the SDRAM refresh timing.This routine sets up
the MMCR for the NET+OS development board. The refresh
rate is calculated from the BSP_MPMC_REFRESH_RATE define
in cs.c.

You need to adjust this value to equal the refresh rate of the
SDRAM part you are using. A default refresh rate already has
been set up, but you may want to optimize this value.

customizeGetRamSize Returns the total amount of RAM on the system and calls the
customizeable customizeGetCSSize routine.

Customization hook Hardware feature/default values set
www.d i g i . c om 53

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
mii.c file

The Ethernet PHY driver is located in the mii.c file in the platforms directory. If
your hardware does not use a supported PHY, you must modify the driver to support
it. For more information about supported Ethernet PHYs, see either Chapter 7,
“Hardware Dependencies for ARM7-based Platforms” or Chapter 8, “Hardware
Dependencies for ARM9-based Platforms.”

For information about the routines in the mii.c file, see the online help.

customizeCache.c file

The customizeCache.c file contains the mmuTable, which determines the cache
setup for each section of the processor's address map and the access level (read-
only, read-write, or no-access) for each region.

You must update this table if:

Your application uses a different amount of RAM or flash.

Your application uses memory mapped devices.

You want to change the cache mode or access level for a region.

For details about how to update mmuTable, see the online help.

By default, NET+OS uses write back cache. If you are writing NET+OS drivers, you
need to make sure that they can handle cache coherency.

pci.c file

The pci.c file contains customizePCIStartup, which is called by
pciVeryEarlyInitialization and expects a return pointer to a pci_init_t
structure that contains user-specific data needed for PCI configuration space.

You must customize the values in the returned pci_init_t structure to suit your
application. For more information about the pci_init_t structure, see the pci.h
public header file.

customizeButtons.c file

This file contains the customizeReadPowerOnButtons call, which can be used to
sense external inputs at powerup. The initialization code can use this information
to run special memory tests or system diagnostics.
5 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
customizeLed.c file

The customizeLed.c file contains the NALedTable table global data structure,
which the NET+OS LED driver uses to determine how to turn LEDs on and off. The
LEDs are connected to GPIO pins. For more information, see the section “gpio.h
file” and the section about programming GPIO inputs in the hardware reference for
the processor you are using.

customizeReset.c file

This file contains the customizeRestart and customizeReset functions.

These functions determine what the system should do in case of a reset or restart
request. This is where you place your application-specific code just before you
reset the device.

Task 6: Modify the new BSP to start up the required drivers

You must configure the bsp.h file to enable the drivers that you want to run with
your application. The default configuration works with a development board. Note
that drivers that use the same GPIO pins cannot properly function at the same
time. For details on all the defines in bsp.h, see the online help.

Be sure to review the bsp.h file carefully.

USB device controller

The BSP is configured by default to support the USB device. You must modify the
development board to support this interface. For information about modifying the
board, see the hardware reference for the processor you are using.

To disable the USB device, use either of these methods:

Recommended method. Undefine BSP_INCLUDE_USB_DRIVER in the bsp.h file.

Alternate method. Remove all USB driver entries from the device driver table
in the devices.c file.

To test USB device functionality on the NS9750 board, use the instructions in the
development board’s jumpers and components guide. To modify the development
board, see the ReadMe file in the nausbdevapp example. The USB device example
uses GPIO pin 17 to set up plug-and-play (pnp) functionality. Your system uses this
pin to detect whether the device is active and ready to receive commands.
www.d i g i . c om 55

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
To test USB device functionality on the NS9360 board, see the ReadMe file in the
nausbdevapp example.

1284 controller

The BSP is configured by default to disable support of the 1284 peripheral device.
To enable the 1284 controller, use either of these methods:

Recommended method. Define BSP_INCLUDE_PARALLEL_DRIVER in the
bsp.h file.

Alternate method. Add the 1284 driver entries from the device driver table
in the devices.c file.

Edit the 1284.h file in your platforms directory to set the number and size of
the receive and transmit buffers the 1284 driver uses. The default values usually
are sufficient unless you want to tune your application for performance or
memory usage.

In addition, you must modify the development board to support the 1284 controller.
For information about modifying the board to support this interface, see the
hardware reference for the processor you are using.

To configure the GPIO MUX to support the parallel port, set BSP_GPIO_MUX_1284 to
BSP_GPIO_USE_PRIMARY_INTERFACE. Be aware that those pins are shared by several
other functions, and you will need to disable those functions in gpio.h. If conflicts
occur, the BSP build file will output compiler errors that tell you which functions
you need to disable.

I2C controller

The BSP is configured by default to enable support of the I2C peripheral device. To
disable the I2C controller, use either of these methods:

Recommended method. Undefine BSP_INCLUDE_ITC_DRIVER in the
bsp.h file.

Alternate method. Remove the I2C driver entries from the device driver table
in the devices.c file.

You do not need to modify any specific GPIO settings for the I2C device because the
device has its own I/O lines.
5 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
LCD controller

The BSP is configured by default to enable support of the LCD peripheral devices.
To disable the LCD controller, use either of these methods:

Recommended method. Undefine BSP_INCLUDE_LCD_DRIVER in the bsp.h file.

Alternate method. Remove the LCD driver entries from the device driver
table in the devices.c file.

The LCD, timer, serial port C, serial port D, and 1284 share some of the GPIO pins.
If you modify the LCD GPIO configuration, you must verify each GPIO pin setting.

PCI driver

The BSP is configured by default to enable support of the PCI peripheral device. To
disable the PCI device driver, use either of these methods:

Recommended method. Undefine BSP_INCLUDE_PCI_DRIVER in the bsp.h file.

Alternate method. Remove the PCI driver entries from the device driver table
in the devices.c file, and enable code in the BSP_INCLUDE_PCI_DRIVER
definition in the NCC_INIT.c file that disables the PCI module.

Serial ports

The BSP is designed to support four serial ports. In the standard NET+OS release,
however, the BSP sets up one serial port to support asynchronous RS-232 style
communications and one SPI interface.

To set a serial port to a mode other than those already set up by the standard
NET+OS release (such as SPI), modify the gpio.h file to ensure that correct GPIO
pins are set to the correct value. Set BSP_SERIAL_PORT_X to one of these values
in bsp.h:

BSP_SERIAL_NO_DRIVER

BSP_SERIAL_UART_DRIVER

BSP_SERIAL_SPI_DRIVER

BSP_SERIAL_SPI_SLAVE_DRIVER
www.d i g i . c om 57

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
To disable the RS-232 serial peripheral interface controller, use either of these
methods:

Recommended method. Undefine BSP_SERIAL_PORT_X where x is 1, 2, 3, or 4
in the bsp.h file.

Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

RTC

The BSP supports a real time clock on NS9360 board platforms:

To enable the real time clock, set the BSP_INCLUDE_RTC_DRIVER define to
TRUE.

To disable the RTC set the BSP_INCLUDE_RTC_DRIVER define to FALSE.

Task 7: Modify the format of BSP arguments in NVRAM

The BSP stores some configuration arguments in NVRAM. The configuration values
are read and written by way of customization hooks in boardParams.c.

You must modify these customization hooks to support your application:

Customization hook Description

customizeGetMACAddres Determines the Ethernet MAC address used to
communicate on the network.

Each device on the network needs a unique Ethernet
MAC address. You must purchase a block of Ethernet MAC
addresses from the IEEE and modify this routine to return
an address from this block. The default implementation
returns a value that was stored in NVRAM.

customizeGetSerialNumber Returns the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used
by the API libraries or in any part of the BSP except
the dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation returns a 9-character serial
number read from NVRAM. Many developers use the
Ethernet MAC address as the unit's serial number.
5 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Task 8: Modify error and exception handlers

The errhndlr.c file in the platforms directory contains customization hooks for an
error handler and an exception handler.

Error handler

Code in the BSP calls the error handler, customizeErrorHandler, when fatal errors
occur. Using constants in bsp.h, you can configure the default error handler to either:

Report the error by blinking LEDs in a pattern.

Reset the unit when a fatal error occurs.

customizeSaveSerialNumber Sets the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used
by the API libraries or in any part of the BSP except
the dialog.

If you rewrite the dialog, you can omit this routine. The
default implementation stores a 9-character serial
number in NVRAM.

customizeSetMACAddress Sets the Ethernet MAC address for the unit.

The default implementation stores the MAC address as
a 6-byte array in NVRAM.

customizeUseDefaultParameters Determines default configuration values and returns
them in a buffer.

The default implementation determines the default
values through constants set in appconf.h. You must
modify this routine to support your application.

customizeReadDevBoardParams Reads the configuration from NVRAM into a buffer. You
must modify this routine to support your application.

customizeWriteDevBoardParams Writes the configuration to NVRAM.

The default implementation accepts the current
configuration as a buffer and writes the buffer into
NVRAM.

customizeGetIPParameters Reads the IP-related configuration values from NVRAM.

customizeSaveIPParameters Writes the IP-related configuration values to NVRAM.

Customization hook Description
www.d i g i . c om 59

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
You may need to modify the error handler if you want to report the error in some
other way or take some other action.

Exception handler

The unexpected exception handler, customizeExceptionHandler, is called when
these exceptions occur:

Undefined instruction

Software interrupt

Prefetch abort

Data abort

Fast interrupt

Using constants in bsp.h, you can configure the exception handler to:

Handle these exceptions by resetting the unit.

Blink an error code on LEDs.

Continue execution at the point at which the exception returned.

Digi does not recommend that you try to continue execution. You may need to
modify the exception handler to better support your application.

For details about error and exception handlers, see Appendix E, “Processor Modes
and Exceptions.”

Task 9: Verify the debugger initialization files

This section provides instructions for both the Raven and the MAJIC debuggers.

Using the MAJIC/MAJICO probe

When you use the EPI MAJIC/MAJICO probe, you must initialize hardware registers
on the board that the BSP ROM startup code normally sets up. Debugger initializa-
tion scripts are set up as part of the installation procedure for NET+OS 6.3. The
scripts contain commands that the debugger executes before the application is
downloaded and executed.

During the Green Hills connection setup procedure, described in the NET+Works
with Green Hills Tutorial, you are prompted for the name of this directory to copy
6 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
the debugger scripts into. The MULTI debugger reads these debugger scripts when
you start to download code to the board.

This table shows the debugger initialization files:

The debugger script initializes SDRAM and sets a bit in a register to indicate that the
application is executing in the debugger.

If you are using a different type of SDRAM, you must modify the settings in the
ns9xxx.cmd file. This file programs the registers in the memory controller.

For a detailed description of these registers, see the hardware reference for the
processor you are using.

Raven debugger

When you use the Raven debugger, you must initialize hardware registers on the
board that the BSP ROM startup code would normally set up. The scripts contain
commands that the debugger executes before the application is downloaded and
executed. The debugger initialization scripts are contained in the debugger_files
directory and are labeled my_platforform_ravenmbs. The debbuger reads these
scripts when you start to download code to the board using MULTI 2000.

If you are using a different type of SDRAM, you must modify the settings in these
scripts. The debugger scripts program the registers in the memory controller. For a
detailed description of these registers, see the hardware reference for the
processor you are using.

Task 10: Debug the initialization code

After you complete the modifications and create the debugger initialization scripts
for your application hardware, you may need to debug the code.

File name Contents

startice.cmd The JTAG settings and reads in the ns9xxx.cmd file to initialize
the target board

ns9xxx.cmd The sequence of commands to initialize SDRAM

epimdi.cfg MAJIC settings, including the network parameters
www.d i g i . c om 61

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
To debug code from RAM, you use the EPI MAJIC/MAJICO or the Raven and download
the code through the MULTI 2000 debugger into the RAM on your board. The next
sections describe this procedure.

Instructions are provided for the MAJIC/MAJICO probes and the Raven debugger.

Preparing to debug the initialization code

The instructions in this section apply to both the MAJIC and the MAJICO probes.

Before you start debugging the initialization code, complete these tasks:

1 If you are using the MAJIC for the first time, verify its Ethernet connection by
pinging the IP address of the MAJIC. From either the bash shell or a DOS
window, enter:
ping IP_ADDR

where IP_ADDR is the IP address of the MAJIC.

If you do not get a response, verify that the Ethernet cable is connected
to the MAJIC and that the status light on the MAJIC is green.

2 Rebuild the BSP with your changes. See Appendix A, “Using Central Build.”

3 Disable the POST by setting the APP_POST constant in the root.c file to 0.

Carefully review all the settings in the appconf.h file. Make sure that
stdio is directed to the correct serial port. The default is com/0.

4 Build the application. See Appendix A, “Using Central Build.”

5 Load the application.See Appendix A, “Using Central Build.”

6 Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter at the beginning of the
startup code.

7 Verify that the debugger initialization file has configured the application
board such that:

– The Chip Select registers for ROM and RAM are set up to support the
parts and memory map.

– You can read and write RAM on your application board.

8 Debug the initialization code by stepping through it, as described in the
next section.
6 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Debugging the initialization code

Debug the initialization code in stages, using the same order of the steps presented
in this section:

1 INIT.arm file

2 nccInit routine

3 NABoardInit routine

4 Ethernet driver startup

Note: This section describes debugging from RAM. You also may need to step
through the INIT.arm code when it runs from ROM.

Debug the INIT.arm file

The INIT.arm file, located in src/bsp/init/arm9, performs initialization functions.
Step through the code in INIT.arm, and verify that it works correctly. You usually
do not need to change the code to support custom hardware boards.

The first function executed in NET+OS is the Reset_Handler routine in the INIT.arm
file. If your board is not working, set a breakpoint on the Reset_Handler routine
and step through it.

Debug the nccInit routine

The nccInit routine, located in bsp/init/arm9/NCC_INIT.c, performs most of the
board-specific hardware setup by calling a set of functions that you customize to
support your board. After you customize these routines (described in Task 5), you
need to check nccInit and your customized routines to verify that they are
working correctly.

If you have difficulty starting the development board, you can use these
diagnostic tools:

A simple serial driver that is loaded in nccInit.

mprintf, a special printf routine. A prototype of this routine is located in
h/ncc_init.h. You can use mprintf to display diagnostic information before
the serial driver is loaded in netosStartup.

A NETOS_DEBUG flag, in the NCC_INIT.c file. This flag can provide useful
information.
www.d i g i . c om 63

Cus t om i z i n g t h e BSP f o r a pp l i c a t i o n h a r dwa r e
Debug the NABoardInit routine

The NABoardInit routine, which is located in src/bsp/init/arm9, provides some
low-level initialization routines for flash and NVRAM. Step through the initialization
code in the narmbrd.c file to verify that the NVRAM APIs are initialized to support
the NVRAM on your application hardware. You can configure the board to use a
flash sector as NVRAM.

Debug the Ethernet driver startup

To debug the Ethernet driver startup:

1 Put a breakpoint on the eth_reset routine (in eth_reset.c), and let the
program run until you reach the breakpoint.

2 Step into the customizeMiiReset routine (in the mii.c file) and then into
customizeMiiIdentifyPhy.

3 Verify that:

– customizeMiiIdentifyPhy returns a value not equal to 0xffff.

– mii_reset returns 0.

– customizeMiiIdentifyPhy identifies the PHY on your application
hardware.

4 Step into customizeMiiNegotiate and verify that customizeMiiCheckSpeed
determines whether you are connected to a 100 Base-T network.

5 Step into customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.

Task 11: Modify the startup dialog

The BSP prompts you to change configuration settings after a reset. The dialog
implemented for the development boards prompts you to set the board's serial
number, Ethernet MAC address, and IP networking parameters. The dialog code is in
the dialog.c file in the platforms directory.

If you plan to use the dialog in your product, change it to support your application.
The customizeDialog function calls the NAGetAppDialogPort, NAOpenDialog, and
NACloseDialog functions to determine which port to use for the dialog and to open
and close it.

If you do not want a dialog, replace the code in dialog.c with an empty version of
customizeDialog that just returns.
6 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Generally, you do not need to customize these functions. To support your
application, however, you usually need to completely rewrite the other functions
called by customizeDialog to display the current configuration settings and prompt.
The I/O port for the dialog is set by the APP_DIALOG_PORT constant in your
application's appconf.h file.

Task 12: Modify the POST

If the APP_POST constant is set, the BSP automatically runs the POST from the
main.c, which is located in src/bsp/common.

The POST routines that ship with NET+OS test the NS9750 /NS9360 processor. You
may want to create other POST routines that test additional hardware on your board.

Task 13: Modify the ACE

The Address Configuration Executive (ACE) is an API that runs at startup to acquire
an IP address.

You need to customize the contents of two files in the platforms directory —
aceCallbacks.c and aceParams.c — that contain information the ACE uses.

aceCallbacks.c

The aceCallbacks.c file contains a set of callback functions that the ACE invokes
at different points in the startup process. You need to customize these callbacks for
your application.

For example, the customizeAceLostAddress routine is called when the lease for an IP
address has expired. The default implementation resets the unit. You could customize
customizeAceLostAddress to notify your application of the problem so that your
application can try to recover by closing and restarting network connections.

aceParams.c

The aceParams.c file contains the code that reads and writes ACE configuration
information in NVRAM. Generally, the only parts of the aceParams.c file that you
need to customize are these definitions:
www.d i g i . c om 65

Othe r BSP cu s t om i z i n g
The dhcp_desired_params array. Contains a list of the Dynamic Host
Configuration Protocol (DHCP) options you want the client to request from the
server. Add any other DHCP options you want the client to request from the server.

NADefaultEthInterfaceConfig. Contains the configuration that ACE uses if none
is stored in NVRAM. This configuration controls which protocols are used to get
an IP address and the options used with them. The default configuration uses all
protocols to get an IP address. Customize this configuration as needed.

For details about these functions, see the online help.

Other BSP customizing

This section describes additional BSP customizing you may want to do.

BSP_NVRAM_DRIVER

The BSP_NVRAM_DRIVER constant in bsp.h defines the non-volatile memory type
used to store the configuration information. Here are the settings:

TCP/IP stack

The TCP/IP stack, which is started as part of the BSP initialization process, is the
software module that handles networking functionality. These functions and
constants are used for configuring the TCP/IP stack:

Constant Description

BSP_NVRAM_DRIVER This constant in bsp.h defines the non-volatile memory type used
to store the configuration information. Here are the settings:

 BSP_NVRAM_NONE — No NVRAM driver is to be built.

 BSP_NVRAM_LAST_FLASH_SECTOR — The last sector of flash is
to be used for NVRAM.

 BSP_NVRAM_SEEPROM — The serial EEPROM driver is to be
built.

 BSP_NVRAM_SEEPROM_WITH_SEMAPHORES — The serial
EEPROM driver with semaphore protection is to be built.

 BSP_NVRAM_LAST_FLASH_SECTOR — The last sector of serial
flash is to be used for NVRAM.
6 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
Function or constant Description

BSP_LOW_INTERRUPT_LATENCY This constant in bsp.h determines how the TCP/IP stack implements its
critical section:

 To use a semaphore for the TCP/IP critical section, set
BSP_LOW_INTERRUPT_LATENCY to TRUE.

 To disable processor interrupts to implement the TCP/IP critical
section, set BSP_LOW_INTERRUPT_LATENCY to FALSE.

BSP_ENABLE_FAST_IP This constant in bsp.h enables Fast IP:

 To enable Fast IP, set BSP_ENABLE_FAST_IP to TRUE.

 To disable Fast IP, set BSP_ENABLE_FAST_IP to FALSE.

Fast IP is not supported for low interrupt latency.

BSP_WAIT_FOR_IP_CONFIG This constant in bsp.h determines whether the BSP waits for the stack to
be configured before starting the application by calling the
applicationStart() function. Previous versions of NET+OS always waited
for the stack to be configured.

Your application should not use any network resources until the stack has
been configured by setting an IP address on at least one interface. You can
use the customizeAceGetInterfaceAddrInfo() function to determine
whether an IP address has been assigned to an interface.

 To cause the BSP to wait for an IP address to be configured on at least
one interface before calling applicationStart, set
BSP_WAIT_FOR_IP_CONFIG to TRUE.

 To call applicationStart without waiting for an IP address to be
assigned, set BSP_WAIT_FOR_IP_CONFIG to FALSE

BSP_ENABLE_ADDR_CONFLICT_DETECTION This constant in bsp.h enables IP address conflict detection, during initial
IP address configuration.

If BSP_ENABLE_ADDR_CONFLICT_DETECTION is defined to TRUE, the ACE
subsystem sends ARP probes to detect IP address conflict for BOOTP,
RARP, Ping ARP, and static IP address protocols. IP address conflict
detection also must be enabled on a network device. You can retrieve
the device configuration for IP address conflict detection with the
NAGetAddrConflictData function.

NAIpSetKaInterval This function (n naip_global.c overrides the default value for the TCP
keepalive interval, which by default is 2 hours (7200 seconds).

If ka_interval == 0, keepalive is turned off.

NAIpSetDefaultIpTtl This function in naip_global.c sets the default value for the time-to-live
field of outgoing packets. This value is used unless it is overridden on a
socket by the IP_TTL socket option.
www.d i g i . c om 67

Othe r BSP cu s t om i z i n g
File system

The BSP can be configured to interface the C library file I/O functions to the file
systems. NET+OS currently supports two file systems:

Native file system. Used to create RAM volumes on RAM memory and flash
volumes on non-removable flash memory.

FAT file system. Used to create FAT volumes on removable media such as USB
flash memory sticks.

Use these constants to configure the file systems:

NAIpSetTcpMsl This function in naip_global.c overrides the default value for the TCP
MSL and TCP TIME_WAIT interval. The default value of TCP MSL is 120
seconds. The TIME_WAIT interval is set to (tcp_msl * 2).

APP_NET_HEAP_SIZE This constant in appconf.h sets the TCP/IP stack heap size for dynamic
allocations. The TCP/IP stack allocates all packet buffers from this piece of
memory.

Function or constant Description

Constant Description

BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY Set this constant in bsp.h to TRUE to include the native file
system in the C library and create a RAM and flash volume as part
of the BSP initialization process.

BSP_NATIVE_FS_MAX_INODE_BLOCK_LIMIT When the BSP creates a native file system volume, this constant
in bsp.h specifies the percentage of the maximum number of
inode blocks that can be allocated to store inodes for a volume.
This constant allows specifying the upper limit of the number of
blocks reserved to store inodes. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API.

BSP_NATIVE_FS_MAX_OPEN_DIRS When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open directories that
the file system will track. A directory is considered open if the
directory has open files. Valid values are from 1 to 64.

For more information, see the NAFSinit_volume_cb native file
system API.
6 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NET+OS BSP f o r ARM9
BSP_NATIVE_FS_MAX_OPEN_FILES_PER_DIR When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open files per
directory that the file system will track. Valid values are from 1
to 64.

For more information, see the NAFSinit_volume_cb native file
system API in the online help.

BSP_NATIVE_FS_BLOCK_SIZE When the BSP creates a native file system volume, this constant
in bsp.h specifies the block size used for the volume. Valid
values are:

 NAFS_BLOCK_SIZE_512

 NAFS_BLOCK_SIZE_1K

 NAFS_BLOCK_SIZE_2K

 NAFS_BLOCK_SIZE_4K

BSP_NATIVE_FS_RAM0_VOLUME_SIZE When the BSP creates the native file system RAM volume, this
constant specifies the size of the RAM volume in bytes.

BSP_NATIVE_FS_FLASH0_OPTIONS When the BSP creates the native file system flash volume, this
constant specifies the advanced options to use. Valid values are
the bitwise ORing of the following:

 NAFS_MOST_DIRTY_SECTOR — Uses the default sector
transfer algorithm that selects the sector with the most
dirty blocks. If no sector transfer algorithm is specified or if
multiple sector transfer algorithms are specified, the
default algorithm is used.

 NAFS_RANDOM_DIRTY_SECTOR — Uses the alternative
sector transfer algorithm that randomly selects a sector
with dirty blocks.

 NAFS_TRACK_SECTOR_ERASES — Enables tracking the
number of sector erases for each sector of a flash volume.

 NAFS_BACKGROUND_COMPACTING — Enables the background
sector compacting thread. This feature automatically
reclaims the dirty blocks in the flash volumes and converts
them to erased blocks.

For more information, see the NAFSinit_volume_cb native file
system API function.

Constant Description
www.d i g i . c om 69

Othe r BSP cu s t om i z i n g
BSP_NATIVE_FS_FLASH0_COMPACTING_THRESHOLD If the BSP_NATIVE_FS_FLASH0_OPTIONS constant includes
NAFS_BACKGROUND_COMPACTING, this constant specifies the
percentage of erased blocks in a flash sector to gain to trigger the
sector compacting process. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API in the online help.

BSP_INCLUDE_FAT_FILESYSTEM_FOR_CLIBRARY Set this constant to TRUE to include the FAT file system in C
library. The FAT file system is supported only on the NS9360 and
NS9750 platforms.

Constant Description
7 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Linker Files
C H A P T E R 4

This chapter describes the linker files that are provided for sample projects and the
corresponding memory map.
 71

Ove r v i ew
Overview

The Green Hills linker combines one or more object modules into a single
executable output module. Executable programs are divided into several sections
that contain the code and data parts of the application. Commands in the linker
files that are supplied with NET+OS determine where to map the sections of
applications in memory.

The linker must position sections in an application where actual ROM and RAM will
reside. Therefore, the linker file that is used to create images that execute from
flash ROM is different from the one that executes from RAM.

The rest of this chapter describes the linker files for the sample projects.

For more information about the Green Hills linker, see your Green Hills Tools
documentation.

Linker files provided for sample projects

Linker files, which are provided in src/bsp/platforms/my_platform, are used to link
the sample applications. Most projects use the image.lx and rom.lx linker files to
create applications that execute from RAM or ROM, respectively. These linker scripts
are generated when applications are built by the bsp.gpj file.

The source files for the linker scripts are stored in the C:/netos63_ghs/bsp/init/
arm9 and C:/netos63_ghs/bsp/init/arm7 directories. When the BSP is built, these
files, along with customize.lx, are used to generate the linker files in the
platforms directory, which is then used by the image.gpj and rom.gpj application
build files.

These linker files are provided:

Linker file Description

customize.lx The customization file for linker scripts

image.lx Generates an executable file for debugging and for the image.bin image

rom.lx Generates an executable file for the rom.bin image
7 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

L i n k e r F i l e s
Some sections in applications are defined for all Green Hills applications, and some
are specific to NET+OS.

Basic Green Hills section of the linker files

This table summarizes the Green Hills section of the linker files:

NET+OS section of the linker files

This table summarizes the NET+OS section of the linker files:

The ThreadX library is hard-coded to call tx_application_define (void
*first_unused_memory) after the kernel has been loaded and just before the
kernel scheduler starts. The free_mem address is passed to this function, which
creates the root thread that is responsible for starting NET+OS and the IP stack.

Section Description

reset Vector code section

text Text section, including code

data Initialized writable data section

bss Zeroed data section

rodata Read-only data

Section Description

initdata Stores jumper and button settings read at startup.

heap Heap; grows upward.

ncc_initdata Stores NET+OS settings determined at startup.

stack System stack; grows downward.

netosstack Stack for each processing mode; grows downward.

free_mem Used for the kernel to create the timer thread and root thread.

Do not use this section for any other purpose.

ttb Stores the mmuTTB table at the end of RAM.

Initially is set up by the bootloader. Note that if you change ttb_size,
you also must change SECOND_LEVEL_TABLE_SIZE in the mmu utility

Do not overwrite this table.
www.d i g i . c om 73

Add r e s s mapp i ng (ARM9 on l y)
Do not pass any other address to create the root thread. The first_unused_memory
argument points to a global variable that the kernel sets up.

Address mapping (ARM9 only)

The linker command files that are generated for each application set up an address
map and or cache data. You enable or disable the instruction cache by changing
BSP_AUTOMATICALLY_ENABLE_INSTRUCTION_CACHE in the bsp.h file. Instruction cache
is turned on by default.

The NS9360_a development board currently has:

16 MB SDRAM on CS4, mapped at 0X0000000

2 MB flash on CS1, mapped at 0X50000000

In NET+OS, the netos63_ghs/src/bsp/platforms/my_platform/customizeCache.c
file contains the table used to set up the MMU translation tables. A sample of the
table is shown next. In this table:

The starting and ending virtual addresses are the addresses software can read.

The cache mode defines whether the memory region is buffered, write
through, or write back.

The user access defines the access permissions for the region. If an access
violation occurs, the CPU raises an exception. The user access allows the MMU
to set up address ranges that are invalid for the software to write to, which is
a useful in debugging rogue pointers.

Starting
virtual address

Ending virtual
address

Page
size

Cache mode User
access

Physical
address

0x0000000 0x00FFFFFF SIZE_1M MMU_WRITE_BACK RW 0x00000000-
0x00FFFFFF

0XA0000000 0xA00FFFFF SIZE_1M MMU_BUFFERED RW 0XA0000000-
0xA00FFFFF

0xC0000000 0xC0FFFFFF SIZE_1M MMU_BUFFERED RW 0x000000-
0x00FFFFFF
7 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

L i n k e r F i l e s
This is what the rows in the table specify:

Top row. Specifies that the virtual address 0x0000000-0x00FFFFFF is write
back, is readable and writable and maps to the physical memory at
0x00000000-0x00FFFFFF.

Second row. Specifies that the address 0xA000000 to 0xA00FFFFF is set up to
be a buffered region of memory with read/write access; this is the section of
memory used for PCI I/O. The possible values for the cache mode are shown in
the next table.

Third row. Shows that the address range 0xC0000000-0xC0FFFFFF is mapped to
the physical address range 0x000000-0x00FFFFFF and is buffered but not
cached. The 0xC0000000 is the address range that the software can use to
access memory as non-cached; all reads and writes go directly to main memory.

For more information, see the online help.

The ARM processor has a 16-word write buffer that performs burst writes to memory
to increase efficiency. NET+OS sets up the non-cached regions as bufferable; this
does not cause any coherency problems because writes are always performed
through the write buffer. So if you are using the DMA, by the time the F (full) bit is
set the data written before it would have been flushed from the write buffer.

For more information about cache flush routines, see the MMU section of the
online help.

The cache flush routines are described in the MMU section of the online help.

Cache mode Description

MMU_NONBUFFERED Disable all caching and buffering.

MMU_BUFFERED Disable caching, but allow writes to be buffered.

MMU_WRITE_THROUGH Cache reads, but do not cache writes. Allow writes to be
buffered.

MMU_WRITE_BACK Cache both reads and writes, and allow writes to be buffered.
www.d i g i . c om 75

Add r e s s mapp i ng (ARM9 on l y)
NET+OS memory map (ARM9 only)

The NET+OS memory map for the ARM9 based development boards is shown next.
Note that the NS9360 does not have the PCI address space.

In this diagram:

The top half shows the virtual address space seen by the CPU and the software.

The bottom half shows the actual physical address space.

The first gigabyte of memory is set up as a cached region of memory; this is
the address space in which all applications run (stack, bss data, heap).

The 3 GB-4 GB range is set up for non-cached memory and is mapped to the
0-1 GB of physical memory. The end of the 4GB range is set up as invalid
because these are the addresses of registers in the NET+50 and the NS7520
processors that no longer exist. PCI memory also is mapped to a cached and
non-cached region.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Virtual address space

Physical address space

Cached
SDRAM

SDRAM
CS4

SDRAM
CS5

SDRAM
CS6

SDRAM
CS7

SDRAM
CS0

SDRAM
CS1
flash

SDRAM
CS2

SDRAM
CS3

PCI
memory

Processor
registers

Reserved for processor
registers in future processors

Uncached
SDRAM

Uncached
SRAM

Uncached
peripherals

In
va

lidUncached
PCI
memory

Uncached
processor
registers

Cached
PCI
memory

Un
us

ed
 u

nc
ac

he
d

m
em

or
y
sp

ac
e

1 GB
40000000

2 GB
80000000

3 GB
C0000000

4 GB
FFFFFFFF

1 GB
40000000

2 GB
80000000

3 GB
C0000000

4 GB
FFFFFFFF

Uncached
flash
7 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

L i n k e r F i l e s
All applications use the 0GB-1GB range of addresses, which is set up as write-back
cache; NET+OS drivers typically use the 3GB-4GB to store DMA buffer descriptors that
should not be cached. You usually need to access the uncached region only if you are
writing drivers that use DMA; typical applications never need to use this region.

Memory aliasing in NET+OS (ARM7 only)

NET+OS aliases physical memory to four locations in the address map, so each
physical word of memory appears at four addresses. The aliasing is done on all
platforms. NET+OS configures one aliased copy of memory for instruction cache on
platforms that support cache. Code is executed from this area of the address map
to improve performance. NET+OS uses uncached areas for general data storage.

The next figure shows the NET+OS memory map with cache enabled. In the figure:

Physical memory is mapped four times in logical memory.

The NET+ARM internal registers appear once.

Logical page 2 is used for instruction cache.

All addresses are in hexadecimal notation.
www.d i g i . c om 77

Memo ry a l i a s i ng i n NET+OS (ARM7 on l y)
Page 0 contains a slot for up to 32 MB of RAM (using CS1 and CS2) at addresses
0x0 through 0x1ffffff.

Either 1 or 2 MB of flash ROM on CS0 begin at 0x2000000, and 8 KB of NVRAM
starts at 0x3000000.

The ROM and RAM spaces are remapped on pages 1, 2, and 3. For example:

Physical address Which is Can be accessed at

0x100 RAM 0x4000100, 0x8000100, and 0xC000100

0x20000100 Flash ROM 0x6000100, 0xA000100, and 0xE000100

0x3000100 NVRAM Only at 0x3000100

RAM: 32 MB
ROM: 1 or 2 MB

NVRAM: 8 KB

ROM: 1 or 2 MB
RAM: 32 MB

ROM: 1 or 2 MB
RAM: 32 MB

ROM: 1 or 2 MB
RAM: 32 MB

Overlays

ROM: 1 or 2 MB

RAM: 32 MB

NET+ARM internal
registers

NET+ARM internal
registers

NVRAM: 8 KB

Page 0

3000000

2000000

0

Physical memory Logical memory

f0000000

Page 3

10000000

Cacheable region 1

Cacheable region 2

Page 2

Page 1

40000000

80000000

c0000000
7 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Adding Flash
C H A P T E R 5

This chapter describes how to update flash memory.
 79

Ove r v i ew
Overview

NET+OS includes application program interface (API) functions for reading,
writing, and erasing flash memory. The internals of the flash memory API rely on
flash_id_table in the naflash.c file (located in C:/netos63_ghs/src/flash)
to define the known flash parts. The flash API is guaranteed to function only with
parts that are defined in the flash_id_table. If the part is not recognized, you
need to update the flash_id_table.

The rest of this chapter describes the flash_id_table and the procedures for
updating flash. For details about the flash API functions, see the online help.

NET+OS 6.3 supports these flash ROM parts:

Flash table data structure

The flash_id_table_t data structure, defined in the flash.h file, is shown here.
The tables that follow the code list the structure's data types and fields.

Manufacturer Part number

AMD AM29F800B

AMD AM29DL323DB

AMD AM29LV16

Atmel AT29C040A

Atmel AT49BV8011

Atmel AT49BV8011T

Atmel AT49BV1614A

Fujitsu 29LV800BA

Macronix MX28F4000

Sharp H28F800SG

SST 28SF040

SST 9VF800

STM M29W800AB

STM M29W160DB

STM M29W320DB
8 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Add i ng F l a sh
typedef struct

{

WORD8 ccode;

WORD32 ccode_addr;

} flash_cmd_t;

typedef struct

{

WORD16 mcode;

WORD16 mcode_addr;

WORD16 dcode;

WORD16 dcode_addr;

WORD16 total_sector_number;

WORD32 sector_size;

WORD16 prog_size;

WORD16 access_time;

flash_cmd_t *id_enter_cmd;

WORD16 id_enter_len;

flash_cmd_t *id_exit_cmd;

WORD16 id_exit_len;

flash_cmd_t *erase_cmd;

WORD16 erase_len;

flash_cmd_t *write_cmd;

WORD16 write_len;

flash_cmd_t *sector_erase_cmd;

WORD 32 *sector_size_array;

} flash_id_table_t;

This table lists the data types used in the flash_id_table_t structure:

Data type Description

WORD8 Unsigned byte

WORD16 Unsigned short

WORD32 Unsigned long
www.d i g i . c om 81

Add i ng n ew f l a s h
This table summarizes the fields in the flash_id_table_t data structure:

Adding new flash

When you add support for new flash ROM, you need to provide definitions for the
new flash device, such as the number of flash sectors, the flash sector size, and the
program load size. You also need to modify the ROM type value in the
flash_id_table definition.

Field Description

mcode Manufacturer's code

mcode_addr Address of manufacturer's code

dcode Device code

dcode_addr Address of device code

total_sector_number Total number of sectors

sector_size Size of sector (in bytes)

prog_size Program load size (in bytes)

access_time Access time (in nanoseconds)

id_enter_cmd Pointer to the enter identify flash command

Id_enter_len Number of cycles for the enter identify flash command

id_exit_cmd Pointer to the exit identify flash command

id_exit_len Number of cycles for the exit identify flash command

erase_cmd Pointer to the erase flash command

erase_len Number of cycles for the erase flash command

write_cmd Pointer to the write flash command

write_len Number of cycles for the write flash command

sector_erase_cmd For AMD only

sector_size_array For non-uniform sector sizes
8 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Add i ng F l a sh
For example, to add support for ST Micro M29W800AB flash ROM, you would edit
the flash.h file as shown here:

/* ST Micro M29W800AB*/

#define STM_M29W800AB_FLASH_SECTORS 0x013U

/* We are using block instead of sector */

#define STM_M29W800AB_FLASH_SECTOR_SIZE VARIABLE_SECTOR_SIZE

#define STM_M29W800AB_PROG_SECTOR_SIZE 0x0002U

To add support for new flash ROM:

1 In the flash.h file, add the definitions for the new flash device.

2 (Optional step for keeping track of supported devices.) In flash.h, modify
the ROM type value; for example:

#define STM_29W800AB 0x0D

3 In the naflash.c file, modify the flash_id_table definition. Add the new
flash part entries to the start of the table to allow faster software
identification of the flash part.

4 Modify other command sequences such as id_enter_cmd, id_exit_cmd,
and so on.

See the documentation supplied by the manufacturer of the flash device
you are using.

5 To rebuild the driver, see Appendix A, “Using Central Build.”

Supporting larger flash

If you are adding larger flash, you need to perform additional steps, described
next.

To support larger flash configurations:

1 Increase these three constants in flash.h:

– MAX_SECTORS — The maximum number of flash sectors supported

– MAX_SECTOR_SIZE — The maximum sector size supported

– MAX_FLASH_BANKS — The maximum number of flash banks supported

2 To rebuild the flash library in the top-level directory, see Appendix A, “Using
Central Build.”
www.d i g i . c om 83

Device Drivers
C H A P T E R 6

This chapter describes device driver functions.
 85

Ove r v i ew
Overview

NET+OS integrates device drivers with the low-level I/O functions provided in the
Cygwin standard C library. Each entry in the deviceTable array of the devices.c
file defines a device that the system supports.

The rest of this chapter describes the deviceTable array and the device driver
functions.

Adding devices

To add a device, you add an entry to the deviceTable array. Application software
can then access the device through the standard C programming language I/O
routines — open, read, write, ioctl, and close.

deviceInfo structure

The entries in deviceTable are deviceInfo structures. The ddi.h file defines the
deviceInfo structure. The fields in this structure define the device driver’s
interface to NET+OS.

The deviceInfo structure is defined as shown here:
typedef struct

{

char *name;
int channel;
devEnterFnType *deviceEnter;

devInitFnType *deviceInit;
devOpenFnType *deviceOpen;
devCloseFnType *deviceClose;

devReadFnType *deviceRead;
devWriteFnType; *deviceWrite;
devIoctlFnType *deviceIoctl;

unsigned flags;
} deviceInfo;
8 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
This table defines the fields in the deviceInfo structure:

Device driver functions

This table provides a summary of the device driver functions in the deviceInfo
structure. The next sections describe each function. For details, see the online help.

Field Description

name Pointer to a null-terminated string that is the device channel’s name.
The name must be unique for each device.

channel Channel number for the device name. This number is passed to the
device driver for all I/O requests.

deviceEnter Pointer to the driver’s first-level initialization routine for the channel.
DDIFirstLevelInitialization calls this routine once, during
initialization, when the C library initializes its I/O library. Kernel
services are not available at this point.

deviceInit Pointer to the driver’s second-level initialization routine for the
channel. DDISecondLevelInitialization calls this routine once,
at startup, after the kernel has been loaded.

deviceOpen Pointer to the device’s open routine for the channel. This routine is
called whenever an application opens the channel to indicate that a
new session is starting.

The flags field indicates whether the channel:

 Was opened for read, write, or read/write mode

 Operates in blocking or non-blocking mode

deviceClose Pointer to the driver’s close routine for the channel. This routine is
called at the end of every session.

deviceRead Pointer to the driver’s read routine for the channel.

deviceWrite Pointer to the driver’s write routine for the channel.

deviceIoctl Pointer to the driver’s I/O control routine for the channel.

flags Bit field that indicates which bits are valid in the flags field of an
open call to the device.

A bit set in this field indicates that the bit also can be set in the driver’s
open routine.
www.d i g i . c om 87

Add i ng d ev i c e s
The return values for the functions are in a table in the section “Return values,”
later in this chapter.

Function Description

deviceEnter First-level initialization function for a device table

deviceInit Second initialization function for the device channel

deviceOpen Informs the device driver that a new session is starting on the channel
and which I/O mode will be used during the session

deviceClose Informs the device driver that the application is closing its session

deviceRead Reads data from the device to the caller’s buffer

deviceWrite Writes a buffer of data to a device

deviceIoctl Sends commands to the device
8 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
deviceEnter
First-level initialization function for a device table.

When the C library initializes its I/O functions, deviceEnter is called for each entry
in the device table. This routine is called only once for each channel and performs
the basic initialization that the device driver needs.

Because this routine is called before the kernel has started, kernel services are not
available at this time. C library functions, however, are available.

Format

int deviceEnter (int channel);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
www.d i g i . c om 89

Add i ng d ev i c e s
deviceInit
Second initialization routine for the device channel.

After the kernel has loaded, the device driver table is scanned, and the deviceInit
routines for each channel are called. The deviceInit routine is called once for
each channel and completes any additional initialization needs for the device
driver. Kernel services are available, and interrupts are enabled.

Format

int deviceInit (int channel);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
9 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
deviceOpen
Notifies the device driver that a new session is starting on the channel and tells the
driver which I/O mode will be used during the session. This routine is called when
the application calls the open system call.

When deviceOpen is called, the driver performs these steps:

1 Checks that the channel number is valid, the channel is open, and the flags are
appropriate.

If an error condition is detected, the driver returns an error without
sending any information.

2 Sets an internal flag to indicate that a session is in progress on the channel.

3 Performs any other initialization tasks required by the device.

4 Returns a value.

Format

int deviceOpen (int channel, unsigned flags);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry

flags Bit field formed by ORing together one or more of these values:

 O_RDONLY

 O_WRONLY

 O_RDWR

 O_NONBLOCK
www.d i g i . c om 91

Add i ng d ev i c e s
deviceClose
Informs the device driver that the application is closing its session. This routine
is called when the application calls the close system call.

When deviceClose is called, the driver performs these steps:

1 Checks that the channel is open and the configuration is valid for the device.

If an error condition is detected, the driver returns an error without
sending any information.

2 Either sets the channel semaphore or returns EBUSY if the semaphore is
already set.

3 Updates internal flags to indicate that the session has been closed.

4 Performs any other processing tasks as necessary.

5 Clears the channel semaphore.

6 Returns EXIT_SUCCESS.

Format

int deviceClose (int channel);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
9 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
deviceRead
Reads data from the device to the caller’s buffer. This routine is called when
the application calls the read system call.

When deviceRead is called, the driver performs these steps:

1 Sets bytesRead to 0.

2 Checks that the arguments are correct and the channel is open.

3 Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

4 Either sets the channel semaphore or returns EBUSY if the semaphore already
is set.

5 If no data is available, performs one of these steps:

– Blocking mode. Waits until some data is received.

– If an error condition is detected, the driver aborts the transmission and
returns an appropriate completion code.

– Non-blocking mode. Releases the semaphore and returns EAGAIN.

6 Copies the data from the driver buffers until either all the data has been
copied or the caller’s buffer has been filled.

7 Updates bytesRead.

8 Releases the channel semaphore.

9 Returns a completion code.

Format

int deviceRead (int channel, void *buffer, int length,
 int *bytesRead);
www.d i g i . c om 93

Add i ng d ev i c e s
Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry

buffer Pointer to caller’s receive buffer

length Length of caller’s receive buffer (number of bytes)

bytesRead Pointer to the number of bytes actually read
9 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
deviceWrite
Writes a buffer of data to a device. This routine is called when the application calls
the write system call.

When deviceWrite is called, the driver performs these steps:

1 Sets bytesWritten to 0.

2 Checks that the arguments are correct and the channel is open.

3 Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

4 Either sets the channel semaphore or returns EBUSY if the semaphore already
is set.

5 Opens a transmit buffer and fills it with data from the caller’s buffer.

6 Starts the transmit operation for the transmit buffer.

7 This step applies to blocking mode only. If an error condition is detected,
aborts the transmission and returns an appropriate completion code.

8 If there is more data in the caller’s buffer, repeats steps 5 through 7 until
there is no more data.

9 Updates bytesWritten to indicate the number of bytes transmitted.

10 Releases the channel semaphore.

11 Returns a completion code.

Format

int deviceWrite (int channel, void *buffer, int length,
 int *bytesWritten);
www.d i g i . c om 95

Add i ng d ev i c e s
Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry

buffer Pointer to caller’s buffer; not necessarily aligned

length Length of caller’s receive buffer (number of bytes)

bytesWritten Pointer to int to load with number of bytes actually written
9 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
deviceIoctl
Sends commands to the device. This routine is called when the application calls the
ioctl system call.

When deviceIoctl is called, the driver performs these steps:

1 Checks that the arguments are correct and that the channel is open.

If an error condition is detected, the driver returns an error without
sending any commands.

2 Either sets the channel semaphore or returns EBUSY if the semaphore is
already set.

3 Executes the command.

4 Releases the channel semaphore.

5 Returns EXIT_SUCCESS.

Format

int deviceIoctl (int channel, int request, char *arg);

Arguments

You can define your own return values.

For this routine’s return values, see the table in the next section “Return values.”

Return values

The NET+OS low level device driver interface (DDI) routines map to the DDI
application layer calls as shown in this table:

Argument Description

channel Channel number as set in the channel’s device table entry

request Commands encoded as integers

arg Pointer to any extra information needed or to a buffer to return
information
www.d i g i . c om 97

Re t u r n va l u e s
All the DDI functions return 0 on success and an error number value otherwise. The
C library interprets this value and passes it up to the application that is calling the
functions.

The application return values fall into one of two categories:

Data passing functions. The read and write function calls.

Setup functions. The open, close, and ioctl function calls.

The deviceRead and deviceWrite data passing functions use the arguments
*bytesRead and *bytesWritten, respectively, to pass the data size information
back to the application read and write function calls. The application call returns
the data size if the low level function succeeds.

For example, if deviceRead returns 0, and the *bytesRead argument is set to 100,
the read function returns 100. Alternatively, when deviceRead returns a non-zero,
the read function returns –1 regardless of what's loaded into the *bytesRead
argument.

The setup functions are similar, but they do not communicate any data size up.
When a DDI function succeeds (for example, deviceIoctl returns 0), the
application function also returns 0 (in this case ioctl returns 0). Alternatively,
when deviceIoctl returns a non-zero, the ioctl function returns –1.

When any low level DDI function returns a non-zero value, the value is loaded into
the system error numbers and causes the application layer call to return –1. System
error numbers can be checked by a call to getErrno.

Values and definitions for error numbers are in the errno.h system error header file.
The system error header file is in the /cygwin/user/arm-elf/include/sys folder.

The next table includes common error number return values with a typical
description. In general, the values that are returned are specific to the driver that
is being accessed. For more information, see the online help for the driver.

DDI routine DDI application layer call

deviceOpen open

deviceClose close

deviceIoctl ioctl

deviceRead read

deviceWrite write
9 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Dev i c e D r i v e r s
NET+OS device drivers

This table lists the device drivers that are supported as part of NET+OS:

Value Description

EBUSY Device is busy.

EINVAL Invalid argument.

ENOENT No such file or directory.

EAGAIN Unable to complete operation now; try again later.

EBADF Bad file number.

EIO I/O error.

ENOMEM Out of memory.

EROFS Read-only file system.

ENXIO Invalid device.

ETIMEDOUT Operation timed out.

ERANGE An argument has an invalid range.

EACCESS Permission denied.

EFAULT Bad address.

ENOSPC No space available on device.

ENODEV No such device.

ENOMEM Memory allocation failure.

EXIT_SUCCESS Call completed successfully.

Driver Description Supported platforms

Ethernet Ethernet All

SPI master SPI master All

SPI slave SPI slave All

Serial Serial All

NVRAM Non- volatile RAM All

System clock System clock interface routines All

Timer Timer All
www.d i g i . c om 99

Re t u r n va l u e s
Device driver interface

NET+OS device drivers are based on the standard Device Driver Interface (DDI) and
use a layered model to implement device drivers. Within this model, all API calls
are made through the DDI interface.

Some drivers (such as Timer and GPIO) do not use the DDI interface. Because they
cannot fit into a read/write type of model, they have a separate interface.

HDLC High level data link control All

MMU Memory Management Unit All

gpio General purpose I/O All

Parallel Parallel driver All

I2c Inter-IC All

LCD LCD routines All

USB device USB device All

USB host USB Host All

PWM Pulse Width Modulator NS9360

RTC Real Time Clock NS9360

PCI PCI Bus NS9750

Ethernet Ethernet All

Driver Description Supported platforms
1 0 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Hardware Dependencies for
ARM7-based Platforms
C H A P T E R 7

This chapter describes the NET+OS hardware dependencies for platforms that use the
NS7520 and NET-50 processors.
 101

Ove r v i ew
Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

 DMA channels

 Ethernet PHY

 ENI controller

 Serial ports

 Software watchdog

 Endianness

 System clock and timers

 Interrupts

The rest of the sections in this chapter describe these hardware dependencies.

DMA channels

This table describes how each of the 13 DMA channels is used in porting NET+OS:

Channel Used by What it does

1 Ethernet driver Moves data from the Ethernet receiver to
memory. The Ethernet driver code is in the
bsp/devices/ethernet directory.

2 Ethernet driver Moves data from memory to the Ethernet
transmitter.

3 through 6 Parallel ports (NET+50) For the NET+50 only. Moves data between the
parallel port and memory.

External peripherals
(NS7250)

For the NS7250 only. Only two channels —
either 3 and 5 or 4 and 6 — can be configured
at one time.

7 and 8 HDLC/serial/SPI driver Receives data
1 0 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i d e

Ha rdwa r e Dependenc i e s f o r ARM7 -ba sed P l a t f o rms
Ethernet PHY

NET+OS supports PHYs that use the MII interface. The PHY driver, which is
implemented in the mii.c file, supports these PHYs:

You can modify the mii.c file to support additional PHYs.

ENI controller

The BSP configures the ENI controller for IEEE 1284 host port mode, which supports
four parallel ports.

Serial ports

The BSP normally sets up both serial ports to support asynchronous RS-232-style
communications.

To use the serial peripheral interface (SPI) controller, disable the serial driver, using
either of these methods:

9 and 10 HDLC/serial/SPI driver Transmits data.

11 through 13 Moves data from memory to memory (NS7520
only)

Channel Used by What it does

PHY Manufacturer

FastCat (also known as the 3-volt enable PHY) Lucent Technologies

LXT970 Level One

 LXT971A and LXT972A Intel

AM79C874 and AM79C875 AMD
www.d i g i . c om 103

So f twa r e wa t chdog
Recommended method. Undefine BSP_INCLUDE_SERIAL_DRIVER1 and
BSP_INCLUDE_SERIAL_DRIVER2 in the bsp.h file.

 Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

You do not need to disable the serial driver to use the HDLC driver.

Software watchdog

The watchdog device driver uses the internal watchdog if BSP_WATCHDOG_TYPE is set
to BSP_WATCHDOG_INTERNAL in bsp.h.

The NAReset routine in the nareset.c file uses the software watchdog to reset
the system. NAReset is called by the default implementation of customizeReset
in gpio.c.

Endianness

The BSP supports big endian mode only.

System clock

The BSP system clock depends on whether you are using an external crystal or an
external oscillator. The external PLLTST* signal indicates the choice. The frequency
of the selected source affects the BSP timing.

The PLL setting for the NS7520 is determined by the pull-up and pull-down resistors
tied to pins on the NS7520.

The rest of this section describes the constants you need to set for the system clock
in the bsp.h file.
1 0 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i d e

Ha rdwa r e Dependenc i e s f o r ARM7 -ba sed P l a t f o rms
BSP_CLOCK_SOURCE

The value of BSP_CLOCK_SOURCE in bsp.h determines the clock source to be used.
BSP_CLOCK_SOURCE indicates the input to the SYSCLK signal multiplexer, which has
two possible sources:

 TTL clock input applied to the XTAL1 pin

 Crystal oscillator and PLL circuit

Set BSP_CLOCK_SOURCE to either of these:

 SELECT_THE_XTAL1_INPUT

 SELECT_THE_CRYSTAL_OSCILLATOR_INPUT

XTAL1_FREQUENCY

XTAL1_FREQUENCY and XTAL1_FREQUENCY_20UM indicate the frequency of the TTL
clock input to the XTAL1 pin on the NET+50 and NS7520 platforms, respectively. If
BSP_CLOCK_SOURCE is set to SELECT_THE_XTAL1_INPUT, this value determines the
frequency of SYSCLK.

CRYSTAL_OSCILLATOR_FREQUENCY

This setting indicates the frequency of the crystal oscillator. If BSP_CLOCK_SOURCE is
set to SELECT_THE_CRYSTAL_OSCILLATOR_INPUT, the crystal oscillator is input to the
PLL, and in conjunction with PLL_CONTROL_REGISTER_N_VALUE, determines the
frequency of the internal SYSCLK signal.

PLL Control Register setting

This setting indicates the N factor used in the divide-by circuits of the NET+ARM
clock generation section. The N factor multiplies or divides clock sources. The
value is stored in the PLLCNT field in the PLL Control register.

For more information, see the hardware reference for the processor you are using.
www.d i g i . c om 105

Sys t em t ime r s
The range of values is 0 through 15; the suggested values are based on device type
and revision:

For NET+50-based platforms, the value is determined by entries in the
NA_PLL_TABLE table in bsp.h.

For NS7520-based platforms, the value is determined by hardware
bootstrap settings.

System timers

The code that supports the system timers is in the bsptimer.c file. The two timers
are described next.

Timer 1

The BSP uses Timer 1 as the system heartbeat clock. The kernel uses the system
heartbeat clock for timing and pre-emption of tasks.

The frequency of the system heartbeat clock is controlled by the
BSP_TICKS_PER_SECOND constant in the bsp.h file. This value, which determines the
heartbeat rate, should be between 1 and 1000. A value of 100, for example,
provides a heartbeat rate of one tick every ten milliseconds.

Timer 2

The BSP uses Timer 2 to support the parallel driver. If this timer is disabled, or if its
frequency is changed, the parallel driver code in the narmpara.c file is affected.
Timer 2 normally is programmed to have a period of 217 microseconds.

If BSP_SERIAL_FAST_INTERRUPT is set in bsp.h, Timer 2 is used by the serial driver.
1 0 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i d e

Ha rdwa r e Dependenc i e s f o r ARM7 -ba sed P l a t f o rms
Interrupts

This table describes how interrupt levels are used in the BSP:

Interrupt level Use

31 (DMA 1) Ethernet driver receive packet interrupt

30 (DMA 2) Ethernet driver packet done interrupt

29 (DMA 3) ENI FIFO receive packet interrupt

28 (DMA 4) ENI FIFO transmit packet interrupt

27 and 26 (DMA 5 and 6) Not used

25 (DMA 7) HDLC driver channel 1 receive frame interrupt
 Serial/SPI 1 DMA mode receive interrupt

24 (DMA 8) HDLC driver channel 1 receive frame interrupt
 Serial/SPI 1 DMA mode receive interrupt

23 (DMA 9) HDLC driver channel 2 receive frame interrupt
 Serial/SPI 2 receive interrupt

22 (DMA 10) HDLC driver channel 2 transmit frame interrupt
 Serial/SPI 2 transmit interrupt

21-17 (ENI ports 1-4 and ENET RX) Not used

16 (ENET TX) Ethernet driver transmit interrupt

15 (SER 1 RX) Serial/SPI driver port 1 receive interrupt

14 (SER 1 TX Serial/SPI driver port 1 transmit interrupt

13 (SER 2 RX) Serial/SPI driver port 2 receive interrupt

12 (SER 2 TX) Serial/SPI driver port 2 transmit interrupt

11 through 6 Not used

5 (Timer 1) System clock tick interrupt

4 (Timer 2) Not used

3 through 0 (PORTC) Not used
www.d i g i . c om 107

Memo ry map
Memory map

The NET+50 and NS7520 platforms have the same memory map:

 Addresses from 0xf0000000 to 0xffffffff are reserved for devices internal to
the NET+ARM.

 RAM on CS1 and CS2 is mapped from address 0x0 to 0x01ffffff.

 ROM on CS0 is mapped from address 0x02000000 to 0x021fffff.

 NVRAM on CS3 is mapped from address 0x03000000 to 0x03001fff.

The BSP assumes that RAM is located at address 0x0, and it dynamically writes the
exception vector table to this location.
1 0 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i d e

Hardware Dependencies for
ARM9-based Platforms
C H A P T E R 8

This chapter discusses NET+OS hardware dependencies for platforms that use
the NS9360 and NS9750 processors.
 109

Ove r v i ew
Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

Direct Memory Access (DMA) channels

Ethernet PHY

Endianness

Timers

Interrupts

Memory map

The rest of the sections in this chapter describe these hardware dependencies.

DMA channels

The NS9750 and NS9360 use three DMA controllers. Two of them exist on Bbus, and
one exists in the Bbus Bridge module. (For detailed information, see the NS9750
Hardware Reference and the NS9360 Hardware Reference.)

One of the Bbus DMA controllers supports all Bbus peripherals except the USB
device, and the other is dedicated to the USB device interface. The AHB DMA has
two DMA channels. These channels can be used for memory-to-memory transfers on
both the NS9750 and NS9360, and for transfers between memory and an external
device on the NS9360. NET+OS does not use these channels. Your application can
use the AHB DMA channels.

Ethernet PHY

NET+OS supports PHYs that use the MII interface. The PHY driver for the ns9750_a
platform, which is implemented in the mii.c file, supports the LXT971A PHY by
Intel. The PHY driver for the ns9360_a platform supports the ICS ICS1893AF and ICS
1893BF PHYs.
1 1 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Ha rdwa r e Dependenc i e s f o r ARM9 -ba sed P l a t f o rms
The PHY driver also supports these PHYs:

To support additional PHYs, you modify your platform's mii.c file.

To use the PHY interrupt to monitor the Ethernet link, set BSP_USE_PHY_INTERRUPT to
TRUE in the bsp.h file. Do not set BSP_USE_PHY_INTERRUPT to TRUE if your PHY or
platform does not support PHY interrupts. If you do not set BSP_USE_PHY_INTERRUPT
to TRUE, the ThreadX timer is used to monitor the Ethernet link.

The NS9750 series of NET+ARM processors uses Interrupt ID 6 for the Ethernet PHY
interrupt, implemented as a level interrupt. If PHY interrupt is enabled, make sure
customizeIsMiiInterruptActiveLow returns the correct value.

Endianness

The BSP supports big endian mode only.

General purpose timers

This section describes how the general purpose timers are used.

System timers

NET+OS uses the first four of the 16 general purpose timers.

PHY Manufacturer

FastCat (also known as the 3-volt enable PHY) Lucent Technologies

LXT970 Level One

 LXT971A and LXT972A Intel

AM79C874 and AM79C875 AMD
www.d i g i . c om 111

I n t e r r u p t s
This table shows how timers 0-3 are used:

All other general purpose timers

Any custom application can use the rest of the general purpose timers.

Interrupts

The interrupt priorities are specified in the bsp.c file in the platforms directory.
You can modify the priority of the interrupts by editing the NAAhbPriorityTab and
NABbusPriorityTab tables in bsp.c.

Timer How used by NET+OS

0 As the system heartbeat clock. The kernel uses the system heartbeat
clock for timing and pre-emption of tasks.

The BSP_TICKS_PER_SECOND constant in the bsp.h file controls the
frequency of the system heartbeat clock. This value, which
determines the heartbeat rate, should be between 1 and 1000. A
value of 100, for example, provides a heartbeat rate of one tick
every ten milliseconds.

1 Used by NAuWait and NAWait, which the flash driver uses to:
 Provide delays needed for programming flash,
 Provide the reads that are needed to verify that a flash was

properly programmed.

2 To support the statistical profiler that is included with NET+OS.
You use the profiler to understand trends of execution.

The profiler records the location of an application using two
resources — the FIQ interrupt and Timer 2 — that normally are
not used.

3 To support the USB device DMA timeout function. Used by the USB
device driver to close out a DMA transfer when the received size
matches a multiple of the endpoint packet size. For example, if the
packet size is 64, this timer is needed to close out the DMA buffer
when the data received is 64,128, or nx64.

If you do not plan to use a particular feature, you can shut it off, and
use the timer in your application. This applies only to the timers that
NET+OS uses.
1 1 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Ha rdwa r e Dependenc i e s f o r ARM9 -ba sed P l a t f o rms
The Bbus peripherals — all four serial ports, the USB device, and the 1284 —
combine their interrupts into one Bbus Aggregate interrupt. The Bbus interrupt
priorities are set by the table NABbusPriorityTab in bsp.c. All Bbus interrupts are
multiplexed into a single AHB interrupt, the BBus Aggregate Interrupt.

For a description of interrupts in NET+OS, see Appendix E, "Processor Modes and
Exceptions."

For information about the interrupt controller, see the NS9750 Hardware Reference
and the NS9360 Hardware Reference.

System clock

The constant NA_ARM9_INPUT_FREQUENCY in sysClock.h must be set to the
frequency of the signal input to the X1_SYS_OSC pin. This is the clock source to the
PLL when the PLL is used. If the PLL is bypassed, this signal is divided by 2 to
generate the ARM9 CPU clock.

The processor automatically determines the PLL divisor values from hardware
bootstrap settings when the PLL is used.

Chip selects

NET+OS requires the flash ROM to be connected to CS1, and RAM to be connected to
CS4. The exception to this is if SPI flash is used. In that case, nothing needs to be
connected to CS1. RAM on CS4 is mapped to the physical address range from 0x0 to
0x0fffffff. ROM on CS4 is mapped to the physical address range from 0x50000000
to 0x507fffff.

The chip selects are configured by functions you write in your platform's cs.c file.
Each chip select has a function named customizeSetupCSX (X is replaced by the
chip select number), which the initialization code calls to set up the chip select.
The chip selects supplied for the NET+OS development board platforms set up CS1
and CS4 for the development boards. You must update these functions for your
application hardware.
www.d i g i . c om 113

Memo ry map
When a debugger is used, the debugger must configure the RAM chip select before
it loads your application. The commands to do this are inside of a script file that
the debugger executes whenever it prepares to download an application. The script
C:\Program Files\EPITools\edta22a\targets\ns9xxx\ns9xxx.cmd sets up CS4 to
support the RAM on the NET+OS development board. You must create your own
debugger script that sets up the chip selects for your application hardware.

Memory map

The NS9360 and NS9750 have an embedded MMU. The MMU allows physical
addresses to be remapped to virtual addresses. NET+OS sets up the address map
shown next. The BSP assumes that all processor CSRs are mapped to their physical
addresses.

The address map is set up in the netos/src/bsp/platforms/CustomizeCache.c file.
1 1 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Porting NET+OS v6.0
Applications to NET+OS v6.3
C H A P T E R 9

This chapter describes the differences between the APIs in NET+OS 6.0 and
NET+OS 6.3
 115

Ove r v i ew
Overview

This chapter describes the differences between the APIs in NET+OS 6.0 and
NET+OS 6.3

The NET+OS 6.0 and NET+OS 6.1 releases supported the ARM7 and ARM9 platforms,
respectively. NET+OS 6.3 merges the two API sets. In addition, some of the NET+OS
6.0 APIs have been deprecated or changed in the NET+OS 6.3 release.

This chapter lists these APIs and describes the replacements for them.

BSP build file

These are the changes to the BSP build file:

NET+OS 6.0 built a single BSP library that you needed to delete and rebuild
whenever you changed platforms.

NET+OS 6.3 builds separate libraries for each BSP platform.

To build for a specific platform, see Appendix A, “Using Central Build.”

NET+OS 6.0 build files send the compiler and linker output to the console.

By default, NET+OS 6.3 build files discard this output.

Application build files

In NET+OS 6.0, the build files in the sample applications attempted to build the
application for any platform, even for platforms that did not support the application.

In NET+OS 6.3, sample applications that cannot run on all platforms determine the
platform on which they are being built and will terminate if they are being built on
an unsupported platform. If you create a new platform, you must modify these
build files to build the applications under the new platform.
1 1 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .0 App l i c a t i on s t o NET+OS v6 .3
Linker scripts

In NET+OS 6.0, the BSP build file generated a set of linker scripts that were
stored in the netos63_ghs/src/linkerscripts directory.

In NET+OS 6.3, these scripts have been moved to the platforms directory.
For example, the linker script for the net50bga_a platform is stored in the
netos63_ghs/src/bsp/platforms/net50bga_a directory.

In NET+OS 6.0, the NET+OS libraries were specified in the linker scripts.

In NET+OS 6.3, the libraries are specified in each application’s build file.

Bootloader files

In NET+OS 6.0, the bootloader rom.bin file was stored in netos63_ghs/src/bsp/
bootloader/romimage.

In NET+OS 6.3, the bootloader rom.bin file is stored in the platforms directory. For
example, the bootloader rom.bin file for the net50bga_a platform is stored in the
netos63_ghs/src/bsp/platforms/net50bga_a directory.

Cache API

Significant hardware differences exist between the cache implementations on the
NET+50 processor (there is no cache on the NS7520) and the ARM9-based processor.

Because of these differences, the NET+OS 6.0 cache API, which supports cache on
the NET+50, is not supported on the ARM9 platforms. When you port your
application to an NS9750 or NS9360, you must rewrite your code to use the ARM9
MMU API.

The NET+OS 6.0 cache API is still supported on the NET+50 platforms.
www.d i g i . c om 117

Embedded Ne two r k i n g I n t e r f a c e
Embedded Networking Interface

The Embedded Networking Interface (ENI) API is no longer supported.

ISR API

These functions in the Interrupt Service Routine (ISR) API have been renamed:

NADisableIsr has been renamed naInterruptDisable.

NAEnableIsr has been renamed naInterruptEnable.

NAInstallIsr has been renamed naIsrInstall.

NAUninstallIsr has been renamed naIsrUninstall.

RAM API

These functions have been deprecated and are not supported on the NS9360 and
NS9750 processors:

nccCopyCSSetup

nccDetermineRamType

Real Time Clock driver

NET+OS 6.0 had a Real Time Clock (RTC) driver that supported an external RTC
chip. This driver was never implemented on any NET+OS development board, and
the NET+OS 6.0 RTC driver has been dropped.

NET+OS 6.3 implements a new RTC driver that supports the RTC built into the
NS9360 processor.
1 1 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .0 App l i c a t i on s t o NET+OS v6 .3
These functions defined in the NET+OS 6.0 RTC driver are no longer supported:

NAinstallRealTimeClockTime

rtcGet

rtcInitialize

rtcSet

SYSCLK API

These functions in the SYSCLK API have been deprecated:

NAgetSysClkFreq. Use NAgetCpuClkFreq or NAgetBbusClkFreq instead.

NAgetXtalFreq. Use NAgetSysOscFreq instead.

GPIO configuration

NET+OS 6.0 supplied a set of functions that you, the developer, customized to
configure the General Purpose I/O (GPIO) pins for your application.

In NET+OS 6.3, you configure GPIO by setting constants in the platform’s gpio.h file.

These customization hooks are no longer supported.

customizeSetupPortA

customizeSetupPortB

customizeSetupPortC

customizeSetupPortD

customizeSetupPortF

customizeSetupPortG

customizeSetupPortH
www.d i g i . c om 119

SP I AP I
SPI API

The NET+OS 6.0 SPI API is deprecated and has been replaced by the NET+OS SPI
master driver in NET+OS 6.3.

Write new applications to use the new SPI master driver.

Because the old driver will be discontinued in a future release, Digi strongly
recommends that you port old applications to the new driver.

Stack sizes for exception handlers

In NET+OS 6.0, the stack sizes for the exception handlers were set in the
settings.s file in the platforms directory.

In NET+OS 6.3, these values are set in the init_settings.h file.

Interrupt priorities

On the NET+50 and NS7520 platforms, interrupt priorities are determined by the
NAInterruptPriority table in the platform’s bsp.c file.

If you port your application to the NS9360 or NS9750, be aware that interrupt
priorities on these platforms are determined by the NAAhbPriorityTab and
NABbusPriorityTab tables in the platform’s bsp.c file.
1 2 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Porting NET+OS v6.1
Applications to NET+OS v6.3
C H A P T E R 1 0

This chapter describes the differences between the APIs in NET+OS 6.1 and
NET+OS 6.3.
 121

Ove r v i ew
Overview

The two previous releases of NET+OS, 6.0 and 6.1, supported the ARM7 and ARM9
platforms respectively. NET+OS 6.3 merges the two API sets. Some of the NET+OS
6.1 APIs have been deprecated or changed in the 6.3 release. This chapter lists
these APIs and describes the replacements for them.

BSP build file

The BSP build file has changed:

NET+OS 6.1 built a single BSP library that needed to be deleted and rebuilt
whenever you changed platforms.
NET+OS 6.3 builds separate libraries for each BSP platform.
To build for a specific platform, see Appendix A, “Using Central Build.”

NET+OS 6.1 build files send the compiler and linker output to the console.
By default, NET+OS 6.3 build files discard this output.

Application build files

In NET+OS 6.1, the build files in the sample applications attempted to build the
application for any platform, even for platforms that did not support the application.

In NET+OS 6.3, sample applications that cannot run on all platforms determine the
platform on which they are being built and will terminate if they are being built on
an unsupported platform. If you create a new platform, you must modify these
build files to build the applications under the new platform.
1 2 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .1 App l i c a t i on s t o NET+OS v6 .3
Linker scripts

In NET+OS 6.1, the BSP build file generated a set of linker scripts that were
stored in the netos63_ghs/src/linkerscripts directory.

In NET+OS 6.3, these scripts have been moved into the platforms directory.
For example, the linker scripts for the ns9750_a platform is stored in the
netos63_ghs/src/bsp/platforms/ns9750_a directory.

In NET+OS 6.1, the NET+OS libraries were specified in the linker scripts.
In NET+OS 6.3, libraries are now specified in each application's build file.

Bootloader files

In NET+OS 6.1, the rom.bin bootloader file was stored in netos63_ghs/src/bsp/
bootloader/romimage.

In NET+OS 6.3, the rom.bin bootloader file is stored in the platforms directory. For
example, the bootloader rom.bin file for the ns9750_a platform is stored in the
netos63_ghs/src/bsp/platforms/ns9750_a directory.

Client parallel driver

The client parallel driver has been simplified.

The 6.1 PCM_SET_RX_BUFFER and PCM_GET_TX_BUFFER ioctl commands, which
the application used to send empty receive buffers to the driver and get empty
transmit buffers from the driver, have been dropped.
The 6.3 driver does its own buffer management.

The 6.1 PCM_SET_TX_CHANNEL and PCM_SET_RX_CHANNEL ioctl commands,
which selected between data and command channels, are no longer
supported. The underlying hardware does not support this functionality.
www.d i g i . c om 123

I 2C d r i v e r
The 6.1 PCM_SET_SUPPORTED_MODE and PCM_GET_SUPPORTED_MODE ioctl
commands have been eliminated. The parallel port hardware automatically
negotiates the interface mode with the host. The application can use the
PCM_SET_CHANGE_CALLBACK ioctl command to install a callback function that will
be called with the newly selected interface mode whenever the mode changes.

The 6.1 PCM_SET_RX_BUFLEN, PCM_GET_RX_RING_SIZE, and
PCM_GET_TX_RING_SIZE ioctl commands have been eliminated. The size and
number of receive and transmit buffers are now set in the 1284.h file in the
platforms directory.

The 6.1 PCM_GET_CHANGE_CALLBACK ioctl command has been dropped.

I2C driver

The MCI2cBuildMsg function has been renamed NAI2CBuildMsg.

The MC_I2C_MESSAGE_TYPE data type has been renamed NA_I2C_MESSAGE_TYPE.

The MC_I2C_BUFFER_STATE data type has been renamed NA_I2C_BUFFER_STATE.

The NAI2CInit and NAI2COperation functions have been added to support
easier I2C Master operation without the use of I/O function calls.

Interrupt Service Routine (ISR) API

MCDisableIsr has been renamed naInterruptDisable.

MCEnableIsr has been renamed naInterruptEnable.

MCInstallIsr has been renamed naIsrInstall. The MCInstallIsr function
takes four parameters, but naIsrInstall takes only three. The fourth
parameter to MCInstallIsr is a flag word that uses two bits. One bit
determines whether the interrupt request line is high or low active when
installing an ISR for an external interrupt. In NET+OS 6.3, you do this by
setting the appropriate BSP_GPIO_MUX_IRQ_X_CONFIG constant in the platform's
gpio.h file. The other bit determines whether interrupt is the Fast Interrupt
Request (FIQ). In NET+OS 6.3, you do this by calling the naIsrSetFiq function.
MCUninstallIsr has been renamed naIsrUninstall.
1 2 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .1 App l i c a t i on s t o NET+OS v6 .3
MMU API

The 6.1 nonCachedMalloc and nonCachedFree functions have been deprecated.
They should not be used. Current applications that use them should be rewritten to
use the 6.3 functions.

Use the NAVaToUncachedVa function to translate the Virtual Address (VA) of a
cached buffer to its uncached equivalent. The buffer can be dynamically or
statically allocated. Use the NACleanBuffer function before reading or writing
to the uncached VA. Use the NAInvalidateBuffer function after writing to the
uncached VA.

Use the NAVaToPhys function to get the physical address of a buffer given its
VA. The buffer can be dynamically or statically allocated.

Always use the NABeforeDMA and NAAfterDMA macros on DMA buffers before
and after a DMA transfer.

PLL functions

Several PLL functions have been renamed. This table shows the NET+OS 6.1 names
and the new NET+OS 6.3 names:

This NET+OS 6.1 name Has been changed to this NET+OS 6.3 name

MCReadPLLNDSW NAReadPLLNDSW

MCSetPLLNDSW NASetPLLNDSW

MCReadPLLNDStatus NAReadPLLNDStatus

MCReadPLLISStatus NAReadPLLISStatus

MCReadPLLBypassStatus NAReadPLLBypassStatus

MCSetSWChange NASetSWChange

MCSetPLLBypassSW NASetPLLBypassSW

MCReadPLLBypassSW NAReadPLLBypassSW

MCReadCPUSpeedGrade NAReadCPUSpeedGrade
www.d i g i . c om 125

Rea l t ime c l o c k d r i v e r
Real time clock driver

NET+OS 6.1 had a real time clock (RTC) driver that supported an external RTC chip.
This driver was never implemented on any NET+OS development board, and the
NET+OS 6.1 RTC driver has been dropped.

NET+OS 6.3 implements a new RTC driver that supports the RTC built into the
NS9360 chip.

These functions that were defined in the NET+OS 6.1 RTC driver are no longer
supported:

NAinstallRealTimeClockTime

rtcGet

rtcInitialize

rtcSet

GPIO configuration

In NET+OS 6.1, the external interrupts were configured to be high active or low
active by the MCInstallIsr function.

In NET+OS 6.3, this is determined by the value of the external interrupt line's
BSP_GPIO_MUX_IRQ_X_CONFIG constant in the platform's gpio.h file, where X
indicates which external IRQ line. You can use this configuration setting to select
between level sensitive high active, level sensitive low active, rising edge, and
falling edge interrupt triggers.

Timer driver

The NET+OS 6.1 timer driver has been replaced. These functions are no longer
supported:

MCDisableTimer. Use NATimerStop to stop a timer.

MCEnableTimer. Use NATimerStart to start a timer.

MCSetTimerClockSelect. Use NATimerConfigure to select the clock input to
a timer.
1 2 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .1 App l i c a t i on s t o NET+OS v6 .3
MCSetTimerMode. Use NATimerConfigure to select the timer's mode.

MCSetTimerInterruptSelect. Use NATimerInterruptEnable to enable a timer's
interrupt, and NATimerInterruptDisable to disable a timer's interrupt.

MCSetTimerUpDownSelect. Use NATimerConfigure to select whether a timer
counts up or down.

MCSetTimerBit. Use NATimerOpen to set the size of a timer.

MCSetTimerReloadEnable. Use NATimerConfigure to determine whether a
timer should automatically reload.

MCReloadTimerCounter. Use NATimerConfigure to set the reload count.

MCGetTimerCounter. Use NATimerRead to read the current timer value.

MCClearTimerInterrupt. Use NATimerInterruptAck to acknowledge a timer
interrupt.

SPI API

The NET+OS 6.1 SPI API is deprecated. This API has been replaced by the NET+OS
SPI master driver in NET+OS 6.3. New applications should be written to use the new
SPI master driver. You should port old applications to the new driver since it will be
discontinued in a future release.

Network heap caching

The NET+OS 6.1 BSP_CACHE_NETWORK_HEAP configuration constant has been dropped.

The network heap is always cached in NET+OS 6.3.

USB host API

The NET+OS 6.1 USB host API and USB host header files have been changed. USB
host applications written under NET+OS 6.1 must be ported to use the NET+OS 6.3
USB host API. All the existing USB host device class drivers use the NET+OS 6.3 USB
host API.
www.d i g i . c om 127

USB hos t AP I
The usbHost.h USB host header file has been renamed to usbHostApi.h. Within the
file, some of data structures have been changed. Therefore, USB host-related
compiler errors require referring to the specific data structures in this file.

These USB host API functions have been replaced:

usbHostInit. Use usb_host_init to initialize the USB host.

usbRegister. Use usb_register to register a device class driver.

usbDeregister. Use usb_deregister to de-register a device class driver.

usbBulkOut and usbBulkIn — Use usb_bulk_transfer to perform bulk data
transfers.

usbGetString. Use usb_get_string to retrieve USB device string data.

usbGetDeviceDescriptor. Use usb_get_device_descriptor to retrieve USB
device descriptor data.

usbGetStatus. Use usb_get_status to retrieve USB device status data.

usbClearFeature. Use usb_clear_feature to send a clear feature command to
the USB device.

usbSetFeature. Use usb_set_feature to send a set feature command to the
USB device.

usbClearEndpointFeature. Use usb_clear_endpoint_feature to send a clear
endpoint feature to the USB device.

usbSetConfiguration. Use usb_set_configuration to enable device
configuration in the USB device.

usbSetInterface. Use usb_set_interface to select an interface in the USB
device.

usbGetConfiguration. Use usb_get_configuration to retrieve the device
configuration from the USB device.

usbRequestIrq. Use usb_request_interrupt_transfer to request interrupt
transfers from the USB device.

The NET+OS 6.1 USB host API functions that are device class requests have been
moved to the respective device class drivers in the netosxxx\src\usb_host_drivers
directory. netosxxx is your NET+OS installation directory.
1 2 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Po r t i n g NET+OS v6 .1 App l i c a t i on s t o NET+OS v6 .3
These USB hub-related API functions have been replaced.

usbHubInit. Use usb_hub_init to initialize the USB hub driver.

usbGetHubDescriptor. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_get_hub_descriptor in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_hub_descriptor to
retrieve the USB Hub device descriptor data.

usbClearPortFeature. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_clear_port_feature in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_clear_port_feature to
send a clear port feature command to the USB hub device.

usbSetPortFeature. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_set_port_feature in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_set_port_feature to
send a set port feature command to the USB hub device.

usbGetHubStatus. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_get_hub_status in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_hub_status to
retrieve send a clear port feature command to the USB hub device.

usbGetPortStatus. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_get_port_status in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_port_status to
retrieve the port status of the USB Hub device.

These USB keyboard related API functions have been replaced. netosxxx is your
NET+OS installation directory.

usbKeyboardIni. Use usb_keyboard_init to initialize the USB Keyboard driver.

usbSetReport. This function is in the NET+OS 6.1 USB host API and is replaced
by usb_keyboard_set_report in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_reportto
send a set report command to the USB device.

usbGetReport. This function is in the NET+OS 6.1 USB host library and is
replaced by usb_keyboard_get_report in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_get_reportto
send a get report command to the USB device.
www.d i g i . c om 129

USB hos t AP I
usbSetIdle. This function is in the NET+OS 6.1 USB host API and is replaced by
usb_keyboard_set_idle in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_idle to
send a set idle command to the USB device.

usbSetProtocol. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_keyboard_set_protocol in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_protocol
to send a set protocol command to the USB device.

usbGetProtocol. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_keyboard_get_protocol in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_get_protocol
to send a get protocol command to the USB device.

These USB mouse-related API functions have been replaced. netosxxx is your NET+OS
installation directory.

usbMouseInit. Use usb_mouse_init to initialize the USB Mouse driver.

usbGetHidDescriptor. This function is in the NET+OS 6.1 USB host API and is
replaced by usb_mouse_get_hid_descriptor in usbMouse.c in
netosxxx\src\usb_host_drivers\mouse.
Use usb_mouse_get_hid_descriptor to request the descriptor for an HID
(Human Interface Device).

This USB printer related API functions has been replaced:

usbPrinterInit. Use usb_printer_init to initialize the USB printer driver.
1 3 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Converting Standalone
Legacy MULTI Projects
C H A P T E R 1 1

This chapter describes how to convert legacy .bld files to .gpj files.
 131

Ove r v i ew
Overview

The MULTI Builder configures and builds your software projects. You can use the MULTI
Builder to maintain file dependencies, such as Makefiles, and to set driver options.

The legacy MULTI Builder builder is deprecated in this release of NET+Works. To be
able to use your legacy projects with NET+Works 6.3, you must convert them from
the .bld file format to new style .gpj format.

Here are the basic steps for converting legacy files:

Converting image.gpjfiles
Editing project.gpj files
Editing image.gpj files

The next sections describe these steps.

Converting the image.gpj file

To convert the image.gpj file:

1 Copy your legacy example to src/examples.

Be aware that if you place the example elsewhere, the relative paths
shown in this procedure may change.

2 Double-click the MULTI icon on your desktop.
The MULTI Launcher opens:

3 Select Config Convert Legacy Projects.
1 3 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Conve r t i n g S t anda l o ne Legacy MULT I P r o j e c t s
4 Select File Open Project Builder.
The Choose Project File dialog box opens:

5 From the Files of Type pulldown menu (at the bottom of the dialog box),
select Legacy Project (*.bld).

6 Navigate to your applications directory, select the image.gpj file, and
click Choose.
The Convert Legacy Projects dialog box opens:

7 Click Convert.
This dialog box opens:

8 Click OK.
www.d i g i . c om 133

Ed i t i n g p r o j e c t . g p j f i l e s
The Target Selector dialog box opens:

9 Do these steps:
– Under Target, select ARM ThreadX.

– Under Board name, select either Generic-ARM ARM 9E (for ARM9
platforms) or Generic-ARM ARM 7tm (for ARM7 platforms)

Then click OK.
MULTI opens your converted image.gpj file.

Editing project.gpj files

To edit a project.gpj file:

1 Right-click project.gpj, and select Edit.

2 Rename the libraries, using the names and formats shown in the next table. All
the NET+OS library names use the format libname.a
Be aware that MULTI requires the ThreadX library to use the name tx.a.

Old name New name

posix.lib libposix.a

flash.lib libflash.a

snmpd.lib libsnmpd.a

manapi.lib libmanapi.a

manapi.lib libmanapi.a

ftpsvr.lib libftpsvr.a
1 3 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Conve r t i n g S t anda l o ne Legacy MULT I P r o j e c t s
3 Add libaddp.a to project.jpg.
(The ADDP library is turned on by default.)
After you edit your project.gpj file, it looks similar to this one:

4 Save and close your file.

emailc.lib libemailc.a

telnsvr.lib libtelnsvr.a

dnsclnt.lib libdnsclnt.a

fastip.lib libfastip.a

fsock.lib libfsock.a

bsp.a libbsp.a

tcpip.a libtcpip.a

snmp.lib libsnmp.a

sntp.a libsntp.a

Old name New name
www.d i g i . c om 135

Ed i t i n g image . gp j f i l e s
Editing image.gpj files

To edit your image.gpj file:

1 Right-click the image.gpj file, and select Edit.

2 Because the directory structure has changed in this version of NET+OS to
accommodate multiple CPU types, you need to change the location of the
linker scripts directory.
Replace my_platform with the name of your platform (for example, ns9360_A).
– Change this directory:

.\..\..\..\linkerScripts\customize.lx

to this:

..\..\..\bsp\platforms\my_platform\customize.lx
1 3 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Conve r t i n g S t anda l o ne Legacy MULT I P r o j e c t s
– Change this directory:
.\..\..\..\linkerScripts\image.lx

to this:
..\..\..\bsp\platforms\my_platform\image.lx

3 Add these lines to the image.gpj file:

– -L.\..\..\..\..\lib\arm9\32b\ghs

– -L.\..\..\..\..\lib\arm9\32b\ghs\bsp\my_platform

– :sourceDir=.\..\..\..\..\lib\arm9\32b\ghs

– :sourceDir=.\..\..\..\..\lib\arm9\32b\ghs\bsp\my_platform

4 If the -cpu flag appears twice, delete the one with the incorrect CPU type.
The MULTI conversion tool looks for the -cpu flag on the third after
[Program].
Here is a correctly modified image.gpj file:

5 When you finish making changes, save and exit from the file.
www.d i g i . c om 137

Ed i t i n g image . gp j f i l e s
Now that you have converted your .bld files to .gpj files, you can start to build
your project.

Be aware that if you are converting from an old version of NET+OS, you may have
compiler and linker issues related to the changes in NET+OS. For more information,
see the NET+Works with Green Hills Porting Guide.
1 3 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Appendix A: Using Central
Build
 139

Ove r v i ew
Overview

The central build system is a set of build files that operate under the Green Hills
MULTI 2000 environment. This system uses one build file for each platform as the
main access point for building all the libraries, the BSP, and the applications you
need for a NET+OS project.

Design

The design of the central build system gives you access to the NET+OS platform
under one central location in the Green Hills environment, allowing you to navigate
the build environment easily.

In addition, with this design, your application can inherit build defines and
compiler options from the top-level project, which is the platform. This chapter
uses the ns9360_a platform throughout the procedures.

Each supported platform has a template build file that controls the options that are
used during the build process. The template build file is called template.gpj. The
parent build file is ns9360_a.gpj. Each platform is structured by the definition of
a system, which consists of a platform, library, and application template build file
that define the options for the entire platform.

Structure

When you build a platform, always open the parent build file for that platform.
From that point, you can either build the entire system or navigate to your
application’s build file.

The parent build file includes template.gpj, which is a platform-specific template
build file. This file contains the master build options that the lower-level build files
inherit.

The lower-level build files are divided into three component types — library,
platform, and application — as shown next.
1 4 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Lower-level build files

The library.gpj builds all libraries that are not shipped as object code.

The platform.gpj builds the BSP.

The application.gpj builds all applications.

The system recognizes the files used by the BSP, the libraries, and applications by
accessing these predefined sub-build files:

Libraries:

– standard_lib.gpj. Contains the posix, flash, and SNMPD library build files.

– standard_dbg_lib.gpj. Contains the posix, flash, and SNMPD library
builds files with the NETOS_DEBUG define. This define generally is used to
add informational printfs to posix, flash, and SNMPD libraries.

– custom_lib.gpj. Customer-added libraries.

Platform BSP:

– standard_bsp.gpj. Builds the BSP and bootloader.

– standard_dbg_bsp.gpj. Builds files with the NETOS_DEBUG define.
This define generally is used to add informational printfs to the BSP
and bootloader.

– custom_bsp.gpj. Contains customer BSPs.
www.d i g i . c om 141

Ove r v i ew
Applications:

– standard_app.gpj. All the standard applications that ship with NET+OS.

– custom_appp.gpj. Customer applications.

Build files

File name Description Location Content

ns9360_a.gpj Top-level project.

Open this file when
you want to build.

.\netos63_ghs template.gpj

template.gpj Defines a specific
platform with options
such as Endian, CPU
type, optimization,
and debug level

.\netos63_ghs\build
\ns9360_a\32b

system.gpj

system.gpj Defines the system’s
platform BSP, library,
and applications

.\netos63_ghs\build platform.gpj

 library.gpj
 application.gpj
1 4 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Application files

The standard applications are those that ship with NET+OS, such as the examples
for the Web server and the FTP server.

These applications, listed under
ns9360_a.gpj template.gpj system.gpj application.gpj

standard_app.gpj, are shown here:

platform.gpj Standard and custom
BSPs

./netos63_ghs/build standard_bsp.gbj
 standard_dbg_bsp.gp

j
 custom_bsp.gpj

library.gpj Standard, custom,
and in-house libraries

./netos63_ghs/build standard_lib.gbj
 standard_dbg_lib.gpj
 custom_lib.gpj

File name Description Location Content
www.d i g i . c om 143

Bu i l d i n g w i t h n s9360_a . gp j
Building with ns9360_a.gpj

This section describes how to build using the ns9360_a build environment.

To build the library, BSP, and examples for the ns9360_a platform

1 Open Green Hills MULTI 2000 v4.0.5.

The MULTI launcher opens.

2 Select File Open Project Builder ns9360_a.gpj.

3 Select Build Rebuild ns9360_a.gpj.

You see the build take place, as shown:

When the build completes, you will have built the BSP, libraries and all the sample
applications. You can then download and run an example.

Building a single application

After you build the ns9360_a platform, you can build an individual application by
selecting the application and selecting Build, as shown in this example of building
the cpptest application.
1 4 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

To navigate to the cpptest application from the ns9360_a platform:

1 Double-click system.gpj.

2 Double-click application.gpj standard_app.gpj.

3 Click cpptest\32b\image.gpj.

4 Select Build Rebuild image.

You see this in the window:

Adding a new application

To add a new application:

1 Using Windows Explorer, copy an existing application directory and its entire
contents to use as a template for your application.

For example, copy c:\netos63_ghs\src\examples\Cpptest to
c:\netos63_ghs\src\examples\newApp.

2 Add your source files to your new applications directory.

3 Using a text editor, open project.gpj from your new application directory,
c:\netos63_ghs\src\examples\newApp.

Then add the libraries and source files needed for your application.
www.d i g i . c om 145

Bu i l d i n g w i t h n s9360_a . gp j
4 Using a text editor, add your new build commands to
c:\netos63_ghs\build\ns9360_a\32b\custom_app.gpj:

Your application is now added into the ns9360_a build.

5 Reload ns9360_a.gpj and navigate to your new application.

6 Click either image.gpj (for a debug image) or rom.gpj (for ROM image), as
shown here:
1 4 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

7 In the newApp window, select Build Build Program image.

When the build finishes, you can run your application.

8 For information about downloading the application binary image to the target
board, see the NET+Works with Green Hills Tutorial.

Adding a custom BSP

To insert a new BSP platform into the central build system:

1 Verify that your new BSP directory is created for the new platform in
netos63_ghs\src\bsp\platform\newPlatform.

2 Create a new directory for the platform’s build environment in this location:
mkdir \netos63_ghs\build\newPlatform

3 Add the template build file (template.gpj) to the platform’s build
environment directory by copying the entire contents of an existing platform
(ns9360_a) to the new platform newPlatform.

Note that this example uses an ARM9 platform. If you are using ARM7,
copy an ARM7 platform.

4 Modify the template build files
(netos63_ghs\build\newPlatform\template.gpj) with your editor:

a Define the name of the new platform.

-DBSP_PLATFORM=”newPlatform”

:sourceDir=..\..\ newPlatform\32b

-I..\..\..\src\bsp\platforms\ newPlatform

:sourceDir=..\..\..src\bsp\platforms\ newPlatform

b Configure the build options, if necessary. These options include CPU,
endian, optimization, warning, debug, and defines.

5 Link the template build file for the new platform to the central build system:

a Copy \netos63_ghs\ns9360_a.gpj to \netos63_ghs\newPlatform.gpj.

b Replace all occurrences of ns9360_a with newPlatform, as shown here:
www.d i g i . c om 147

Bu i l d i n g w i t h n s9360_a . gp j
6 Modify \netos63_ghs\src\bsp\platforms\newPlatform\32b\templates.gpj in
your new platform directory to specify the new platform path. Replace all
occurrences of ns9360_a with newPlatform.

Now when you load newPlatform.gpj, this is what you see:
1 4 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Setting options

In the central build system, all options such as the CPU type, Endianness, debug
level, and optimization settings are centralized. As a result, each build file no
longer needs to define these options.

A child build file inherits the options set of the parent, providing flexibility and
easier maintenance for new features in future platforms. All options are centralized
in the template.gpj build file. You can override the options in the other sub-build
files such as platform.gpj, library.gpj, or application.gpj.

These options are defined in template.gpj:

Platform

CPU type

Endianness

Warnings

Optimizations

Debug

Define

Platform

This option defines the base options used in template.gpj. The defined source path
directs MULTI 2000 to the correct BSP directory for a specific platform.

-DBSP_PLATFORM=”ns9360_a”

:sourceDir=..\..\ ns9360_a \32b

-I..\..\..\src\bsp\platforms\ ns9360_a

:sourceDir=..\..\..src\bsp\platforms\ ns9360_a

CPU type

This option controls the CPU type. These are the choices:

-cpu=arm7tm

-cpu=arm9e
www.d i g i . c om 149

Se t t i ng op t i on s
Endianness

This option controls the endianness. These are the choices:

-bigendian

-littleendian

Warnings

This option controls the assembler code warnings generated by the Green Hills
compiler. Currently, all assembler code warnings are disabled.

-noasmwarn

Optimization

This option optimizes the code that the Green Hills compiler generates. You can
optimize code for either performance or size. Currently, optimization is disabled at
the top level.

To open the Build options window, right-click the build (.gpj) file within the MULTI
2000 GUI. Set this option to one of these values for files that require optimization:

Optimization Strategy=”none”: no optimization

Optimization Strategy=”speed”: optimized for speed

Optimization Strategy=”space”: optimized for size

Optimization strategy=””: optimized for general use

Currently optimization is set to optimized for general use.

Debug

This option defines the debug level. Source level debugging information can be
either disabled or generated for MULTI 2000 during compile time. Currently, source
level debugging information is disabled.

To open the Build options window, right-click the build (.gpj) file within the MULTI
2000 GUI. Then set the debugging level to one of these:

Debugging Level=none – Source level debugging information off

Debugging level=multi – Source level debugging information on
1 5 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Define flags

This option defines the variables used in this system.

If you want to set up defines that could be used as compiler directives (for
example, to be able to define some options in your application), define them here:

-DMY_OPTION1

-DMY_OPTION2

Build option macros

Green Hills 4.0 has added support for build option macros. You can define macros
to replace commonly used strings. For example, PLATFORM, PROCESSOR, and
end_type are defined in ns9360_gpj. As with setting options, a child build file
inherits the macros set by the parent.

The template.gpj file uses these:

-L..\..\..\lib\$PROCESSOR\32b\ghs\bsp\$PLATFORM

Adding paths

Depending on the command used, path definitions are referenced either from the
location of the current build file (child) or the main build file (parent). In the
central build system, ns9360_a.gpj is a parent build file.

These rules define the use of paths:

Commands that are relative to the directory of the current build file:
– --sys_include_directory
– :sourceDir

Commands that are relative to the directory of the parent build file:
– :object_dir
– :outputDir

– :preexecShell
– :postexecShell

Example: Relative to the local build file

This include header path is defined for the library build file located in
netos63_ghs\build\ns9360_a\32b:

--sys_include_directory ..\..\..\src\bsp\devices\common\ethernet
www.d i g i . c om 151

Se t t i ng op t i on s
Example: Relative to the parent build file

This path is defined for the image build file in the
./netos63_ghs\src\examples\naParaClient\32b directory:

“:postexecShell=del.\\src\\examples\\naParaClient\\32b\\compressed”

Directory path

When you add source files to the system, make sure the build system contains the
directory path of the file.

The path searches the source to be built on MULTI 2000. You configure the directory
paths with these files:

Library.gpj
Platform.gpj

Application.gpj

File hooks

When you add or remove entries in a specific section of the build system, you need
to modify these file hooks:

library:
– standard_lib.gpj

– standard_dbg_lib.gpj

– custom_lib.gpj

platform:
– standard_bsp.gpj

– standard_dbg_bsp.gpj

– custom_bsp.gpj

application:
– standard_appb.gpj

– custom_app.gpj
1 5 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Appendix B: Customizing
the SPI Bootloader
 153

Ove r v i ew
Overview

To recover after a flash download of new firmware fails, or to boot from the
network, you use the SPI bootloader. When the download fails, the SPI
bootloader automatically downloads a new image from a network server.

You enable SPI-EEPROM boot logic by strapping off the boot_cfg pins to the boot
from the SDRAM setting in the Miscellaneous System Configuration and Status
register. When boot logic is enabled, it copies the contents of SPI serial flash (or
SPI-EEPROM) to system memory, allowing you to boot from low-cost serial memory.
The CPU is held in reset while the data is copied. The boot logic works by
interfacing to serial port B using the BBus to perform the transactions that are
required to copy the boot code from SPI serial flash (or SPI-EEPROM) to external
memory. For details about SDRAM settings, see the “SPI Bootloader Overview” in
the online help.

The SPI bootloader is copied from ROM to RAM at powerup through the SPI-
boot_logic hardware. The image can be compressed to save space in serial flash.
In normal operation, the RAM image verifies that the application image stored in
serial flash is correct, decompresses it to RAM, and executes it. The application
image also has a boot image header, which determines where, in RAM, to
decompress it.

For the NS9750 and NS9360 processors, SPI serial flash (or SPI-EEPROM) must be
connected to serial port B because the boot logic does not communicate with any
other serial port.

Digi recommends that you use the SPI bootloader to run your application.

The SPI bootloader utility consists of two application images:

ROM image. A small application that is copied from SPI flash to RAM by
hardware and executed in RAM

RAM image. Your large application, which runs from RAM

The RAM image verifies that the application image stored in flash is correct,
decompresses it to RAM, and executes it.

The rest of this chapter describes these images and provides details about how the
SPI bootloader utility functions.
1 5 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

SPI bootloader application images

This section provides a description of the ROM and RAM application images that the
SPI bootloader utility uses.

ROM image

The ROM image is located in the first (and possibly the second) sector of SPI serial
flash (or SPI EEPROM). The processor automatically copies the ROM image to RAM
after a reset and immediately starts to execute the SPI bootloader ROM image. The
SPI bootloader uses the BSP initialization code to configure the hardware.

The ROM image initializes the hardware. After the hardware is initialized, the ROM
image decompresses the RAM image section of the SPI bootloader to a different
location in RAM and executes it.

You build the ROM image with the SPI bootloader utility, which is located in /bin.

RAM image

The RAM image is stored as an application image in SPI serial flash (SPI EEPROM).
Like other applications, the RAM image has a boot image header. Information in the
header determines where, in RAM, to decompress the image. The RAM image runs
after it is decompressed to RAM.

The RAM image has these requirements:

Sufficient RAM must be available to hold the RAM image portion of the SPI
bootloader (about 128 KB), the compressed application image downloaded
from the network, and the decompressed version of the application image.

The maximum sizes of both the compressed and decompressed versions of the
application image are set in the linker script customization file.

The application image must be built with the boothdr utility, which is located
in /bin.

If the application image fails the checksum test, the RAM image attempts to
recover by:

Downloading a replacement for it using TFTP

Using the DHCP/BOOTP server to get the network/ and file name to download
information
www.d i g i . c om 155

App l i c a t i o n image s t r u c t u r e
The RAM image uses these steps to perform the recovery:

1 Initializes the Ethernet driver.

2 Initializes the UDP stack.

3 Downloads the application image from a network server to RAM.

4 Validates the downloaded application image by performing a CRC32 checksum.

5 Stores the image into flash.

6 Resets the unit, which restarts the process.

The application image, which this procedure replaces, passes the checksum
test and is executed.

Application image structure

An application image consists of:

An application image header, which has two parts:

– A NET+OS header

– An optional custom header

The application itself

A checksum, which is computed over the entire image, including the headers

The next section describes each component of the application image header.

Application image header

The application image header has two sections of variable length. The first part
contains data that the SPI bootloader uses, and the second part contains
application-specific data that you define. Fields at the start of a section determine
the size of the two sections.
1 5 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

This data structure defines the application image header:

typedef struct

{

WORD32 headerSize;

WORD32 naHeaderSize;

char signature[8];

WORD32 version;

WORD32 flags;

WORD32 flashAddress;

WORD32 ramAddress;

WORD32 size;

} blImageHeaderType;

This table describes how the fields are used:

Field Description

headerSize Set to indicate the size of the complete header, including the
application-specific section. The application starts immediately
after the end of the header.

naHeaderSize Set to indicate the size of the NET+OS portion of the image header
in bytes, including this field.

signature Set to the ASCII string bootHdr to identify this header as a valid
image header.

version Set to 0 for this version of the image header.

flags A bit field of flags.

For details about bit values, see the next table.

flashAddress If the image is to be written to flash, set this field to the address
to which the image will be written. The entire image, including
the header, is written to flash.

ramAddress Holds the image's destination address in RAM. When an image is
written to RAM to be executed, only the application part of the
image, without the header, is written.

size Holds the size of the image (not including the header)
in bytes.
www.d i g i . c om 157

App l i c a t i o n image s t r u c t u r e
These bit values are defined for the flags field:

boothdr utility

The boothdr utility converts a binary image into an application image by:

1 Inserting a header at the beginning of the image.

The data to place inside the header is read from a configuration file.

2 Inserting a customer header.

You specify this action at the command line by providing the name of a
file that contains the custom header.

3 Calculating a CRC32 checksum for the entire image, including the header, and
placing it at the end of the file.

The boothdr utility takes this command line:

boothdr config-file input-file output-file [custom-header-file]

Arguments

Bit value Description

BL_WRITE_TO_FLASH If this bit is set, the image is written to the address in flash specified
in the flashAddress field.

If this bit is clear, the image is run immediately without writing it to
flash. The image is moved or decompressed to the address in the
ramAddress field before it is executed.

BL_LZSS_COMPRESSED If this bit is set, the application portion of the image is compressed.
It is decompressed to the address in the ramAddress field before it
is executed.

BL_EXECUTE_FROM_ROM If this bit is set, the application is executed from ROM. The
application must not be compressed.

If this bit is not set, the application is decompressed or moved to the
address in the ramAddress field before it is executed.

Argument Description

config-file The name of the configuration file

input-file The name of the bin file to convert
1 5 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

spibootldr utility

The SPI bootldr utility inserts a SPI boot header at the beginning of the ROM image.
The SPI boot header is needed because the memory controller exits the reset
state in non-operational mode, requiring the SPI-EEPROM boot logic to configure
the memory controller as well as the external SDRAM before any memory access.
The information required to configure the memory controller and the external
SDRAM must be stored in a configuration header in the SPI serial flash (or SPI-
EEPROM) in a contiguous block that starts at address 0. Each entry in the header,
with the exception of the pad entry, must be 4 bytes long.

The size of the configuration header varies from 128 bytes to 130 bytes because of
the variable length nature of the SPI serial flash (or SPI-EEPROM) read command.

The spibootldr utility takes this command line:

spibootldr config_file input_file output_file

These are the arguments for the spibootldr utility:

For more information about the SPI boot header, see the “SPI Bootloader Overview”
in the online help.

For information about SPI-EEPROM boot logic, see the hardware documentation for
your processor.

output-file The name of the file to create

custom-header-file The name of a file that contains your custom header as binary data

Argument Description

Argument Description

config_file The name of the SDRAM configuration file. NET+OS 6.3 uses
bsp/platforms/my_platform/init_settings.h.

input_file The name of the bin file to convert.

output_file The name of the file to create.
www.d i g i . c om 159

Gene r a t i n g an image
Generating an image

The template and sample build files in the apps and examples directories use these
steps to create application images when you build an application:

1 The build file is compiled and linked.

The application is linked for its execution address in RAM (image.bin) or
ROM (rom.bin), but is linked as a ROM application. Normally, this image is
set up for debugging.

2 The compression program that ships with NET+OS compresses the image.

3 The bootldr creates an application image that the bootloader supports.

Configuration file

The configuration file contains configuration information in the form of several
keyword/value pairs. The default configuration file, bootldr.dat, is stored in the
bsp/platforms/my_platform directory.

This table describes the keyword/value pairs:

Keyword Value description

WriteToFlash Set to one of these options:
 Yes. Sets the BL_WRITE_TO_FLASH bit in the flags
field of the header.
 No. The bit is left clear.

Compressed Set to one of these options:
 Yes. Sets the BL_LZSS_COMPRESSED bit in the flags
field of the header.
 No. The bit is left clear.

ExecutedFromRom Set to one of these options:
 Yes. Sets the BL_EXECUTE_FROM_ROM bit in the flags
field of the header.
 No. The bit is left clear.

FlashOffset Specifies the offset from the beginning of flash where the image is to
be written.

Set to a hexadecimal value preceded by 0x.
1 6 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Here is an example of a configuration file that uses keyword/value pairs:

General bootloader limitations

Be aware of these general limitations about the bootloader:

The bootloader’s DHCP/BOOTP client is limited. The client supports options
for getting the IP address, subnet mask, gateway address, boot image file
name, and boot image size only. You cannot use the client to get other
options.

The bootloader's User Datagram Protocol (UDP) stack supports a limited
implementation of UDP and IP that supports only those features needed to
support DHCP/BOOTP and Trivial FTP (TFTP).

The TFTP client supports only file downloads.

The TFTP server and the DHCP/BOOTP server must be located on the same
machine; that is, they must have the same IP address.

RamAddress Specifies the absolute address in RAM at which to execute the
application. The application is copied or decompressed to this
location.

Set to a hexadecimal value preceded by 0x.

MaxFileSize Specifies the maximum size of the image in bytes. The application
terminates in error if the combination of the image, header, and
checksum is larger than this value.

Set to a hexadecimal value preceded by 0x.

WriteToFlash Yes

Compressed Yes

ExecuteFromRom No

FlashOffset 0x20000

RamAddress 0x4000

MaxFileSize 0xD0000

Keyword Value description
www.d i g i . c om 161

Cus t om i z i n g t h e SP I boo t l o ade r u t i l i t y
Customizing the SPI bootloader utility

You can modify a set of functions in the default bootloader to support your specific
applications and environments. These functions, referred to as customization hooks,
are in the spi_blmain.c and blerror.c files in the platforms directory.

The code in spi_blmain.c is like a template bootloader. If the current application
image is corrupt, the code uses the bootloader application program interface (API)
to download a new application image. To add new functionality to the bootloader,
you modify the template.

The rest of the chapter describes the functions in the spi_blmain.c file. For
details about each function, see the online help.

Customization hooks

This table provides a summary of the functions in the spi_blmain.c file, which is in
the platforms directory:

Function Description

NABlReportError Called whenever an error occurs

getMacAddress Gets the Ethernet MAC address that the bootloader
should use

isImageValid Determines whether an image is valid

shouldDownloadImage Determines whether the bootloader should download a new image

getDefaultFilename Determines the name of the file to download

downloadImage Downloads a new application image
1 6 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

NABlReportError

Called when an error is detected.

The error is reported to the user.

Format

void NABlReportError (errorCode);

Arguments

Return values

None

Implementation

The default implementation reports an error by blinking the LEDs on the
development board in a pattern and then returns. The errorCode value determines
the pattern.

Because this implementation relies on hardware (LEDs) that may not be present on
customer boards, it is valid for only the NET+ARM development board.

You can customize the function in a number of ways, depending on the features in
the target hardware; for example, by:

Writing an error message out the serial port

Blinking the LEDs in a loop, which effectively forces users to reset the device
manually after correcting the problem

Argument Description

errorCode Identifies the error type
www.d i g i . c om 163

Cus t om i z i n g t h e SP I boo t l o ade r u t i l i t y
getMacAddress

Returns a pointer to the Ethernet MAC address that the bootloader uses.

Format

char *getMacAddress;

Arguments

None

Return values

Returns the Ethernet MAC address as an array of characters

Implementation

The default implementation uses the customizeGetMACAddress function to read the
Ethernet MAC address from NVRAM. You can use the default implementation if the
customizeGetMACAddress function has been ported to the application hardware.

You may need to modify the default implementation if you want to get the MAC
address in a different way. Do not hard-code the MAC address; doing so prevents
more than one unit from operating on the network.
1 6 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

isImageValid

Determines whether a downloaded image is valid.

Format

int isImageValid (blImageInfoType *imageInfo, int imageIsInRAM)

Arguments

Return values

Implementation

The default implementation validates the image by checking the signature in the
header and performing a cyclic redundancy check (CRC) on the image. If the image
is not in RAM, this routine first reads the image in serial flash into RAM.

You can extend the default implementation to determine whether the application
can and should be run on the hardware; for example, by:

Encoding information in the custom section of the image header that
identifies the application's hardware requirements and features

Encoding the hardware capabilities into the GEN_ID and GPIO bits

Verifying that the hardware has the features needed to run the application

Value Description

imageInfo Pointer to the image header

imageIsInRam Either of these:
 Non-zero. The image is currently in RAM.
 Zero. The image is currently in serial flash.

Value Description

TRUE Image is valid.

FALSE Image is not valid.
www.d i g i . c om 165

Cus t om i z i n g t h e SP I boo t l o ade r u t i l i t y
Verifying that the end user is allowed to run the application on this unit; in
other words, making sure the user is not trying to upgrade a low-end unit with
the firmware for a high-end unit

If the application is to be written into flash, verifying that it fits

Verifying that the destination address specified in the image header is valid
1 6 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

shouldDownloadImage

Determines whether to download an application image from the network.

Format

int shouldDownloadImage(void);

Arguments

None

Return values

Implementation

To help debug the bootloader, the default implementation returns TRUE if the
image is invalid.

static BOOLEAN shouldDownloadImage(void)

{

#if (BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY == TRUE)

return TRUE;

#else

int result = TRUE;

blImageHeaderType imageInfo;

memset(&imageInfo, 0, sizeof(blImageHeaderType));

if (blReadFromSFlash(NAAppOffsetInSFlash, (char *)&dlBuffer[0], sizeof

(blImageHeaderType), 0)

!= BL_SUCCESS)

NABlReportError(SIMPLE_SPI_EEPROM_READ_FAIL);

Value Description

TRUE Downloads the image from the network

FALSE Executes the image in flash
www.d i g i . c om 167

Cus t om i z i n g t h e SP I boo t l o ade r u t i l i t y
fmemcpy(&imageInfo, &dlBuffer[0], sizeof (blImageHeaderType));

result = (isImageValid(&imageInfo, 0/*image is in EEPROM*/) ==
FALSE);

return result;

#endif

}

You may want the bootloader to download a new image even if the current image is
valid. For example, you may want to let end users force a download by either
pushing a button at powerup or selecting an option from a configuration menu.

To boot from the network only, set BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY to
TRUE. The function will always return TRUE without checking whether the image in
flash is valid.
1 6 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

getDefaultFilename

The Dynamic Host Configuration Protocol (DHCP) client gets the name of the
application image from the DHCP or Bootstrap Protocol (BOOTP) server. The client
can pass the server the name of the file when the server requests this information,
allowing the server to determine which file is appropriate for the client.

How the server uses the information depends on the implementation. If no file
name is specified, the server returns the name of the default image file.

This function sets the name of the file that is passed to the DHCP/BOOTP server.
The function returns a zero-length string if it wants the default file.

Format

char *getDefaultFilename(void);

Arguments

None

Return values

A null-terminated ASCII string that is the name of the file that the DHCP client will
request from the DHCP/BOOTP server

Implementation

The default implementation returns a pointer to an empty string, which has the
effect of requesting the default boot image on the Trivial File Transfer Protocol
(TFTP) server.

You will probably want to modify the default implementation to pass a file name to
the DHCP/BOOTP server. Some possibilities are:

Hard-coding a file name that identifies the product

Determining the features supported by the hardware and generating a file
name that has this information encoded in it

Generating a file name that identifies the features purchased by the user
www.d i g i . c om 169

Cus t om i z i n g t h e SP I boo t l o ade r u t i l i t y
downloadImage

Downloads an application image from the network into a memory buffer.

Format

int downloadImage (char *destination, int maxLength)

Arguments

Return values

Implementation

The default implementation uses DHCP to get an IP address and TFTP to download
load the image. After the image is downloaded, it is validated.

You can use the default implementation in many applications. For example, you
may want to extend the default implementation by:

Using information in NVRAM to determine:

– The unit's IP address

– The IP address of the TFTP server

– The name of the application image to download

Passing a vendor class identifier (option 60) to the DHCP server

Receiving vendor information (option 43) from the DHCP server

Downloading the image over a serial or parallel port

Argument Description

destination Pointer to the memory buffer that will hold the image

maxLength Size of the memory buffer in bytes

Return value Description

BL_SUCCESS Image successfully downloaded

otherwise Error code that identifies the failure
1 7 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Appendix C: Customizing
the ROM Bootloader
 171

Ove r v i ew
Overview

To recover after a flash download of new firmware fails, you use the bootloader.
When the download fails, the bootloader automatically downloads a new image
from a network server.

The bootloader runs from ROM and links in an image that is copied to RAM and
executed. The image may be compressed to save ROM space. In normal operation,
the RAM image verifies that the application image stored in flash is correct,
decompresses it to RAM, and executes it. The application image also has a boot
image header, which determines where, in RAM, to decompress it.

Digi recommends that you use the bootloader to run your application.

The bootloader utility consists of two application images:

ROM image. A small application that runs from ROM

RAM image. Your large application, which runs from RAM.
The RAM image verifies that the application image stored in flash is
correct, decompresses it to RAM, and executes it.

The rest of this chapter describes these images and provides details about how the
bootloader utility functions.

Bootloader application images

This section provides a description of the ROM and RAM application images that the
bootloader utility uses.

ROM image

The ROM image is located in the first sector of flash. The processor automatically
starts to execute code from the beginning of flash after a reset, and so immediately
starts to execute the bootloader ROM image. The bootloader uses the BSP
initialization code to configure the hardware.

The ROM image initializes the hardware. After the hardware is initialized, the
ROM image decompresses the RAM image section of the bootloader to RAM and
executes it.
1 7 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

RAM image

The RAM image is stored as an application image in flash. Like other applications,
the RAM image has a boot image header. Information in the header determines
where, in RAM, to decompress the image. The RAM image runs after it is
decompressed to RAM.

The RAM image has these requirements:

Sufficient RAM must be available to hold the RAM image portion of the
bootloader (about 128 KB), the compressed application image downloaded
from the network, and the decompressed version of the application image.
The maximum sizes of both the compressed and decompressed versions of
the application image are set in the linker script customization file.

The application image must be built with the boothdr utility, which is located
in /bin.

If the application image fails the checksum test, the RAM image attempts to
recover by:

Downloading a replacement for it using TFTP

Using the DHCP/BOOTP server to get the network/file name to download
information

The RAM image uses these steps to perform the recovery:

1 Initializes the Ethernet driver.

2 Initializes the UDP stack.

3 Downloads the application image from a network server to RAM.

4 Validates the downloaded application image by performing a CRC32 checksum.

5 Stores the image into flash.

6 Resets the unit, which restarts the process.

The application image, which this procedure replaces, passes the
checksum test and is executed.
www.d i g i . c om 173

App l i c a t i o n image s t r u c t u r e
Application image structure

An application image consists of:

An application image header, which has two parts:

– A NET+OS header

– An optional custom header

The application itself

A checksum, which is computed over the entire image, including the headers

The next section describes each component of the application image header.

Application image header

The application image header has two sections of variable length. The first part
contains data that the bootloader uses, and the second part contains application-
specific data that you define. Fields at the start of a section determine the size of
the two sections.

This data structure defines the application image header:

typedef struct

{

WORD32 headerSize;

WORD32 naHeaderSize;

char signature[8];

WORD32 version;

WORD32 flags;

WORD32 flashAddress;

WORD32 ramAddress;

WORD32 size;

} blImageHeaderType;
1 7 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

This table describes how the fields are used:

These bit values are defined for the flags field:

Field Description

headerSize Set to indicate the size of the complete header, including the
application-specific section. The application starts immediately
after the end of the header.

naHeaderSize Set to indicate the size of the NET+OS portion of the image header
in bytes, including this field.

signature Set to the ASCII string bootHdr to identify this header as a valid
image header.

version Set to 0 for this version of the image header.

flags A bit field of flags.

See the next table for details about bit values.

flashAddress If the image is to be written to flash, set this field to the address to
which the image will be written. The entire image, including the
header, is written to flash.

ramAddress Holds the image's destination address in RAM. When an image is
written to RAM to be executed, only the application part of the
image, without the header, is written.

size Holds the size of the image (not including the header) in bytes.

Bit value Description

BL_WRITE_TO_FLASH If this bit is set, the image is written to the address in flash
specified in the flashAddress field.

If this bit is clear, the image is run immediately without writing it
to flash. The image is moved or decompressed to the address in the
ramAddress field before it is executed.

BL_LZSS_COMPRESSED If this bit is set, the application portion of the image is
compressed. It is decompressed to the address in the ramAddress
field before it is executed.

BL_EXECUTE_FROM_ROM If this bit is set, the application is executed from ROM. The
application must not be compressed.

If this bit is not set, the application is decompressed or moved to
the address in the ramAddress field before it is executed.
www.d i g i . c om 175

boo t hd r u t i l i t y
boothdr utility

The boothdr utility converts a binary image into an application image by:

1 Inserting a header at the beginning of the image.

The data to place inside the header is read from a configuration file.

2 Inserting a customer header.

You specify this action at the command line by providing the name of a
file that contains the custom header.

3 Calculating a CRC32 checksum for the entire image, including the header, and
placing it at the end of the file.

Format

boothdr config-file input-file output-file [custom-header-file]

Arguments

Generating an image

The template and sample build files in the apps and examples directories use these
steps to create application images when you build an application:

1 The build file compiles and links the image.

The application is linked for its execution address in RAM (image.bin) or ROM
(rom.bin), but is linked as a ROM application. Normally, this image is set up
for debugging.

2 The compression program that ships with NET+OS compresses the image.

3 The bootldr creates an application image that the bootloader supports.

Argument Description

config-file The name of the configuration file

input-file The name of the bin file to convert

output-file The name of the file to create

custom-header-file The name of a file that contains your custom header as binary data
1 7 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Configuration file

The configuration file contains configuration information in the form of several
keyword/value pairs. The default configuration file, bootldr.dat, is stored in the
bsp/platforms/my_platform directory.

This table describes the keyword/value pairs:

Keyword Value description

WriteToFlash Set to one of these options:
 Yes. Sets the BL_WRITE_TO_FLASH bit in the flags
field of the header.
 No. The bit is left clear.

Compressed Set to one of these options:
 Yes. Sets the BL_LZSS_COMPRESSED bit in the flags
field of the header.
 No. The bit is left clear.

ExecutedFromRom Set to one of these options:
 Yes. Sets the BL_EXECUTE_FROM_ROM bit in the flags
field of the header.
 No. The bit is left clear.

FlashOffset Specifies the offset from the beginning of flash where the image is to
be written.

Set to a hexadecimal value preceded by 0x.

RamAddress Specifies the absolute address in RAM at which to execute the
application. The application is copied or decompressed to this
location.

Set to a hexadecimal value preceded by 0x.

MaxFileSize Specifies the maximum size of the image in bytes. The application
terminates in error if the combination of the image, header, and
checksum is larger than this value.

Set to a hexadecimal value preceded by 0x.
www.d i g i . c om 177

Gene r a l boo t l o ade r l im i t a t i o n s
Here is an example of a configuration file that uses keyword/value pairs:

General bootloader limitations

Keep in mind these general limitations about the bootloader:

The bootloader’s DHCP/BOOTP client is limited. The client supports options
for getting the IP address, subnet mask, gateway address, boot image file
name, and boot image size only. You cannot use the client to get other
options.

The bootloader's User Datagram Protocol (UDP) stack supports a limited
implementation of UDP and IP that supports only those features needed to
support DHCP/BOOTP and Trivial FTP (TFTP).

The TFTP client supports only file downloads.

The TFTP server and the DHCP/BOOTP server must be located on the same
machine (that is, must have the same IP address).

Overview of customizing

You can modify a set of functions in the default bootloader to support your specific
applications and environments. These functions, referred to as customization hooks,
are in the blmain.c and blerror.c files in the platforms directory.

WriteToFlash Yes

Compressed Yes

ExecuteFromRom No

FlashOffset 0x20000

RamAddress 0x4000

MaxFileSize 0xD0000
1 7 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

The code in blmain.c is like a template bootloader. If the current application
image is corrupt, the code uses the bootloader application program interface (API)
to download a new application image. To add new functionality to the bootloader,
you modify the template.

The rest of the chapter describes the functions in the blmain.c file. For details
about each function, see the online help.

Customization hooks

This table provides a summary of the functions in the blmain.c file, which is in the
platforms directory:

Function Description

NABlReportError Called whenever an error occurs

getMacAddress Gets the Ethernet MAC address that the bootloader should use

isImageValid Determines whether an image is valid

shouldDownloadImage Determines whether the bootloader should download a new
image

getDefaultFilename Determines the name of the file to download

downloadImage Downloads a new application image
www.d i g i . c om 179

Cus t om i z a t i o n hook s
NABlReportError

Called when an error is detected.

The error is reported to the user.

Format

void NABlReportError (errorCode);

Arguments

Return values

None

Implementation

The default implementation reports an error by blinking the LEDs on the
development board in a pattern and then returns. The errorCode value
determines the pattern.

Because this implementation relies on hardware (LEDs) that may not be present on
customer boards, it is valid for only the NET+ARM development board.

You can customize the function in a number of ways, depending on the features in
the target hardware; for example, by:

Writing an error message out the serial port

Blinking the LEDs in a loop, which effectively forces users to reset the device
manually after correcting the problem

Argument Description

errorCode Identifies the error type
1 8 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

getMacAddress

Returns a pointer to the Ethernet MAC address that the bootloader uses.

Format

char *getMacAddress,(void);

Arguments

None

Return values

Returns the Ethernet MAC address as an array of characters

Implementation

The default implementation uses the customizeGetMACAddress function to read the
Ethernet MAC address from NVRAM. You can use the default implementation if the
customizeGetMACAddress function has been ported to the application hardware.

You may need to modify the default implementation if you want to get the MAC
address in a different way. Do not hard-code the MAC address; doing so prevents
more than one unit from operating on the network.
www.d i g i . c om 181

Cus t om i z a t i o n hook s
isImageValid

Determines whether a downloaded image is valid.

Format

int isImageValid (blImageInfoType *imageInfo)

Arguments

Return values

Implementation

The default implementation validates the image by checking the signature in the
header and performing a cyclic redundancy check (CRC) on the image.

You should extend the default implementation to determine whether the
application can and should be run on the hardware; for example, by:

Encoding information in the custom section of the image header that
identifies the application's hardware requirements and features.

Encoding the hardware capabilities into the GEN_ID and GPIO bits.

Verifying that the hardware has the features needed to run the application.

Verifying that end users are allowed to run the application on this unit; in
other words, making sure users are not trying to upgrade a low-end unit with
the firmware for a high-end unit.

If the application is to be written into flash, verifying that it fits.

Verifying that the destination address specified in the image header is valid.

Value Description

imageInfo Pointer to the image header

Value Description

TRUE Image is valid.

FALSE Image is not valid.
1 8 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

shouldDownloadImage

Determines whether to download an application image from the network.

Format

int shouldDownloadImage(void);

Arguments

None

Return values

Implementation

To help debug the bootloader, the default implementation returns TRUE if the
image is invalid.

BOOLEAN shouldDownloadImage(void)

{

int result = TRUE;

blImageHeaderType *imageInfo = (blImageHeaderType *)

BSP_APPLICATION_ADDRESS;

result = (isImageValid(imageInfo) == FALSE);

return result;

}

You may want the bootloader to download a new image even if the current image
is valid. For example, you may want to let end users force a download by either
pushing a button at powerup or selecting an option from a configuration menu.

Value Description

TRUE Downloads the image from the network.

FALSE Executes the image in flash.
www.d i g i . c om 183

Cus t om i z a t i o n hook s
getDefaultFilename

The Dynamic Host Configuration Protocol (DHCP) client gets the name of the
application image from the DHCP or Bootstrap Protocol (BOOTP) server. The client
can pass the server the name of the file when the server requests this information,
allowing the server to determine which file is appropriate for the client.

How the server uses the information depends on the implementation. If no file
name is specified, the server returns the name of the default image file.

This function sets the name of the file that is passed to the DHCP/BOOTP server.
The function returns a zero-length string if it wants the default file.

Format

char *getDefaultFilename(void);

Arguments

None

Return values

A null-terminated ASCII string that is the name of the file that the DHCP client will
request from the DHCP/BOOTP server

Implementation

The default implementation returns a pointer to an empty string, which has the
effect of requesting the default boot image on the Trivial File Transfer Protocol
(TFTP) server.

You will probably want to modify the default implementation to pass a file name to
the DHCP/BOOTP server. Some possibilities are:

Hard-coding a file name that identifies the product

Determining the features supported by the hardware and generating a file
name that has this information encoded in it

Generating a file name that identifies the features purchased by the user
1 8 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

downloadImage

Downloads an application image from the network into a memory buffer.

Format

int downloadImage (char *destination, int maxLength)

Arguments

Return values

Implementation

The default implementation uses DHCP to get an IP address and TFTP to download
load the image. After the image is downloaded, it is validated.

You can use the default implementation in many applications. For example, you
may want to extend the default implementation by:

Using information in NVRAM to determine:

– The unit's IP address

– The IP address of the TFTP server

– The name of the application image to download

Passing a vendor class identifier (option 60) to the DHCP server

Receiving vendor information (option 43) from the DHCP server

Downloading the image over a serial or parallel port

Argument Description

destination Pointer to the memory buffer that will hold the image

maxLength Size of the memory buffer in bytes

Return value Description

BL_SUCCESS Image successfully downloaded

otherwise Error code that identifies the failure
www.d i g i . c om 185

Appendix D: Customizing
ACE
 187

Ove r v i ew
Overview

The Address Configuration Executive (ACE) controls the process of acquiring an IP
address and other IP configuration settings, and configures the IP stack.

ACE provides built-in support for using static IP addresses and for these protocols:

DHCP

BOOTP

Ping ARP

RARP

Auto IP

ACE invokes a set of callback functions at various points in the process of acquiring
an address. The ACE API consists of a series of functions that the callbacks can use to
get more information.

This appendix describes how to program changes for ACE. This document is not
intended to provide knowledge of the Address Resolution Protocols; rather, it
describes how some of these protocols can be managed in the ACE configuration.

Configuring ACE

To add or remove a protocol from ACE, you must change the NVRAM parameters
(ACE Configuration).

These functions store the protocol–specific configuration to NVRAM for the
interface identified in the call. customizeAceSetInterfaceConfig writes all the
protocol-specific ACE configurations, or the ACE configuration for an interface and
customizeAceSetConfig writes the entire ACE configuration into NVRAM.)

These APIs are available to applications for this purpose:
customizeAceSetConfig

customizeAceSetInterfaceConfig

customizeAceSetStaticConfig

customizeAceSetRarpConfig
1 8 8 NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

customizeAceSetDhcpConfig

customizeAceSetBootpConfig

customizeAceSetAutoipConfig

After you set up the configuration information you want and save it to NVRAM, you
can restart ACE. At that point, ACE reads the configuration parameters from NVRAM.

Setting the static IP configuration

To change the static IP configuration, you set the values in a structure of type
configAceStaticInfo.

When the members isConfigValid and isEnabled are set to TRUE, the
configuration can be processed by ACE (that is, it turns static IP on).

These are the arguments for static IP configuration:

auto_assign:

– When set to true, causes this configuration to take precedence over other
protocols and runs with the startup delay 0.

– When set to false, static IP is invoked after its startup delay, like any
other protocol.

ip_address, subnet_mask and gateway. Required parameters that are not
described in this document.

name_server_address. Can be specified. This is an IP address expressed as a
32-bit value.

startInfo structure

This member of the configAceStaticInfo structure contains these required
parameters:

protocol — A number defined in ace_params.h identifying that identifies the
protocol (ACE_PROT_STATIC in this case).

priority — A non-negative number. Priority granted to the protocol is
inversely proportional to this number (0 is highest priority). Priority applies
when several protocols acquire the IP address at the same time.
www.d i g i . c om 189

Con f i gu r i n g ACE
delay_before_start — Number of seconds to delay starting this protocol.

shutdown_type — One of three choices:
– ACE_ALWAYS_SHUTDOWN

– ACE_CONT_IF_GOT_ADDRESS
– ACE_NEVER_SHUTDOWN

For static configuration shutdown, the type must be ACE_ALWAYS_SHUTDOWN.

Setting DHCP configuration

Note that in this section, all IP address parameters are 32- bit words in network
byte order.

To change the DHCP configuration, set the values in a structure of type
configAceDhcpInfo.

When the members isConfigValid and isEnabled are set to TRUE, the
configuration can be processed by ACE (that is, turns on DHCP).

These are the parameters in the DHCP configuration:

suggested_ip_address — Optionally provided.

server_ip_address — For ACE_RESTART_DHCP_REUSE.

gateway. Default gateway address.

suggested_lease_time — time_t structure.

number_of_retries — Must be 4.

lease_start_time — Time recorded at start of lease.

dhcp_restart_type — DHCP restart type; only ACE_RESTART_DHCP_DISCOVER
is supported.

need_bcast_response — Sets broadcast flag in DHCP message.

do_init_delay — Enables initial random delay before sending Discover message.

arp_reply_timeout — Reply timeout for ARP probe.

desired_params — Array of DHCP options to send to the DHCP server.

num_desired_params — Number of valid DHCP options)

startInfo – Same structure as above. (See “Setting the static IP
configuration,” earlier in this chapter.)

– protocol — ACE_PROT_DHCP.

– SHUTDOWN_TYPE — Must be either ACE_CONT_IF_GOT_ADDRESS or
ACE_NEVER_SHUTDOWN for DHCP to renew the lease.
1 9 0 NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

AUTOIP configuration

To change the AutoIP configuration, you set the values in a structure of type
configAceAutoipInfo().

When the members isConfigValid and isEnabled are set to TRUE, this
configuration can be processed by ACE (that is, turns AUTOIP on).

These are the parameters in the AUTOIP Configuration:

autoip_local_addr — IP address that AutoIP initially uses when trying to
configure an address.

startInfo — Same structure as above.

See “Setting the static IP configuration,” earlier in this chapter.

protocol — ACE_PROT_AUTOIP.

shutdown_type — Must be either ACE_CONT_IF_GOT_ADDRESS or
ACE_NEVER_SHUTDOWN.

Stopping ACE

Stopping the service is necessary to make changes in the protocols that ACE uses to
manage address events.

To stop ACE, call aceStop. The only parameter passed in this call is the interface
name (for example, eth0).
www.d i g i . c om 191

Appendix E: Processor
Modes and Exceptions
 193

Ove r v i ew
Overview

This appendix describes the modes in which NET+OS operates and how NET+OS
handles interrupts.

The ARM processor supports seven modes. This table lists the modes and describes
how they are used:

Hardware interrupts cause the processor to switch to IRQ mode.

The IRQ handler switches back to SVC mode before it calls the device's service
routine, allowing higher priority devices to interrupt the service routine, if
necessary.

Vector table

An exception occurs when the normal flow of a program halts temporarily; for
example, to service an interrupt. Each exception causes the ARM processor to save
some state information and then jump to a location in low memory. This location in
memory is referred to as the vector table.

Mode Used for

User Normal user code

SVC (supervisor) Processing software interrupts
 NET+OS
 All threads
 The kernel scheduler

Abort Processing memory faults

System Running privileged operating system tasks

Undef (undefined) Handling undefined instruction traps

IRQ (interrupt) Processing standard interrupts
 NET+OS

FIQ (fast interrupt) Processing fast interrupts
1 9 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

A vector table is stored from 0x00000000 to 0x0000001f. Each vector consists of a
32-bit word that is a single NET+ARM instruction. The instruction loads the program
counter with the contents of a memory location, which implements a 32-bit jump
to an interrupt service routine (ISR).

This table shows the vector address for each exception type:

NET+OS treats these exception types as fatal errors:

Prefetch aborts

Data aborts

Undefined instructions

Fast interrupts

Software interrupts

The handler for these exception types is located in src/bsp/arm9init/init.s.

The default FIQ handler and the exception types in the table call the
customizeExceptionHandler routine.

Although ARM9-based processors (such as the NS9360 and NS9750) allow external
interrupts to trigger a fast interrupt, ARM7-based processors do not. Applications
for both ARM7- and ARM9-based processors always can program the watchdog timer
and the general-purpose timer to trigger a fast interrupt.

The default FIQ handler normally calls customizeExceptionHandler. For more
information about FIQs, see "ARM7 FIQ handlers” or " ARM9 FIQ handlers,” later
in this chapter.

Exception Vector address

Reset 0x00000000

Undefined instruction 0x00000004

Software interrupt (SWI) 0x00000008 (not used by NET+OS)

Prefetch abort 0x0000000c

Data abort 0x00000010

Interrupt (IRQ) 0x00000018

Fast interrupt (FIQ) 0x0000001c
www.d i g i . c om 195

I RQ hand l e r
IRQ handler

An interrupt request is generated when one or more devices assert their interrupt
signal. For ARM9-based processors, the BSP provides an IRQ handler, which reads
the Interrupt Service Routine Address register (ISRADDR) and the Active Interrupt
Level Status register to determine which devices need to be serviced.

The IRQ signal is multiplexed by the interrupt controller built into the NET+ARM to
support 32 signals:

26 interrupt signals support AHB devices that are internal to the NS9750 and
NS9360.

1 interrupt signal supports Bbus devices that are internal to the NS9750. In the
NS9360, several of the BBus signals are moved up to the AHB interrupt vector
table, including USB device, USB host, BBUS DMA and I2C. These changes
speed up the interrupt response from those peripherals.
Several timer interrupts that are supported in the AHB interrupt vector
table in the NS9750 have been combined in the NS9360 to make room for
the BBus interrupts described in the previous paragraph.

4 interrupt signals support external devices.

1 interrupt signal is not used and is considered reserved.
ARM7-based processors have different interrupt signals. For more
information, see the bsp.c file and the hardware reference for the
processor you are using.

Application software can selectively Install, uninstall, enable, or disable any of
the interrupt signals with naIsrinstall, naIsrUninstall, naInterruptEnable,
and naInterruptDisable, respectively.

In the ARM9-based processors, the IRQ handler for Bbus uses a prioritized interrupt
scheme. If more than one device requests service, the handler determines which
device has higher priority and services that device first. Interrupts for higher priority
devices are enabled before the device's service routine is called, allowing the device's
service routine to be interrupted if a higher priority device requests service.
1 9 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Servicing AHB interrupts in ARM9 based NET+ARM processor.

The NET+OS IRQ handler uses this procedure to service an AHB interrupt:

1 A device requests service by asserting its interrupt signal.

2 The NET+ARM latches the request into the ISR Address register (ISRADDR).

3 After the signal has been latched, and if the interrupt pin is edge-triggered,
the NET+ARM generates the interrupt, even if the device stops asserting its
interrupt line.

4 When one of the corresponding interrupts configured in the Interrupt Configu-
ration register is invoked, the NET+ARM asserts the IRQ signal to the ARM CPU.

5 If interrupts are enabled when the IRQ signal is asserted, the ARM CPU switches
to IRQ mode and jumps to the IRQ handler.

6 The IRQ handler saves the context of the interrupted thread and switches to
SVC mode to service the interrupt.

7 The IRQ handler calls NAIrqHandler in the NA_isr.c file, which reads the
ISRADDR register to determine which device interrupt to process.

8 NAIrqHandler saves the current interrupt mask word and then enables inter-
rupts from higher priority devices.

9 NAIrqHandler calls the ISR that was registered for the device with the
naIsrInstall routine.

10 The ISR services the device and acknowledges the interrupt.

11 Control returns to NAIrqHandler, which restores the interrupt mask word and
returns.

When all pending interrupts have been serviced, NET+OS restores the context of the
interrupted thread and resumes processing the thread.

Servicing Bbus interrupts in ARM9 based NET+ARM processor

The Bbus IRQ handler uses this procedure to service an interrupt:

1 A Bbus device requests service by asserting its interrupt signal with Bbus
Aggregate Interrupt.

2 The NAIrqHandler in mc_isr.c calls BBUS_IrqHandler, which is installed as an
ISR, to service the BBUS interrupt.
www.d i g i . c om 197

Chang i ng i n t e r r u p t p r i o r i t y
3 In a loop, Bbus_IrqHandler masks all lower priority interrupts, enables
interrupts, and calls the function registered during the NAInstallIsr call.

After the handler completes this procedure, it disables the interrupts that are lower
priority than the one currently being processed. The loop repeats until the handler
services all interrupt levels. When all pending interrupts have been serviced, control
is returned back to NAIrqHandler.

Changing interrupt priority

You can change the interrupt priority level by changing the order of the
NAAhbPriorityTab and NABbusPriorityTab arrays in the bsp.c file. The tables in
the next sections, "AHB interrupts in ARM9-based processors" and "Bbus interrupts
in ARM9-based processors," show the contents of the arrays, ordered from lowest to
highest priority. You can specify each priority only once.

NET+OS treats incorrect ordering as a fatal error; that is, NET+OS calls
customizeErrorHandler.

AHB interrupts: ARM9-based processors

The priority of each interrupt in the AHB Bus is controlled by software. The priority
is set by the order configured in the Interrupt Configuration register. When an
interrupt occurs:

Its handler is stored in the ISR Address register.

Its priority level is stored in the Active Interrupt Level Status register.

The driver executes the interrupt handler, with the priority level passed as a
parameter. An interrupt with a higher priority can preempt the current interrupts.
After the call of the interrupt handler is completed, the interrupt driver
automatically clears the interrupt to be reused.

Interrupt sources with a higher-numbered priority level can interrupt the service
routines of devices with lower-numbered priority levels.

The priority for each AHB source interrupt is specified in the NAAhbPriorityTab
array in the bsp.c file.
1 9 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

This table lists the supported interrupt sources in the AHB Bus and the associated
software directives for the NS9750:

AHB interrupt source Software directive

External 3 EXTERNAL3_INTERRUPT

External 2 EXTERNAL2_INTERRUPT

External 1 EXTERNAL1_INTERRUPT

External 0 EXTERNAL0_INTERRUPT

Timer 14 and 15 BUS AGGREGATE_INTERRUPT

Timer 12 and 13 TIMER12-13_INTERRUPT

Timer 10 and 11 TIMER10-11_INTERRUPT

Timer 8 and 9 TIMER8-9_INTERRUPT

Timer 7 TIMER7_INTERRUPT

Timer 6 TIMER6_INTERRUPT

Timer 5 TIMER5_INTERRUPT

Timer 4 TIMER4_INTERRUPT

Timer 3 TIMER3_INTERRUPT

Timer 2 TIMER2_INTERRUPT

Timer 1 TIMER1_INTERRUPT

Timer 0 TIMER0_INTERRUPT

Reserved AHB_PERIPH15_INTERRUPT

I2C 12C_INTERRUPT

PCI External 3 PCI_EXTERNAL3_INTERRUPT

PCI External 2 PCI_EXTERNAL2_INTERRUPT

PCI External 1 PCI_EXTERNAL1_INTERRUPT

PCI External 0 PCI_EXTERNAL9_INTERRUPT

PCI Arbiter PCI_ARBITER_INTERRUPT

PCI Bridge PCI_BRIDGE_INTERRUPT

LCD CD_INTERRUPT

Ethernet PHY ETH_PHY_INTERRUPT

Ethernet Transmit ETH_TRANSMIT_INTERRUPT
www.d i g i . c om 199

Chang i ng i n t e r r u p t p r i o r i t y
This table lists the supported interrupt sources in the AHB Bus and the associated
software directives for the NS9360:

Ethernet Receive ETH_RECEIVE_INTERRUPT

Reserved N/A

Bbus Aggregate TIMER14-15_INTERRUPT

AHB Bus Error AHB_BUS_ERROR_INTERRUPT

Watchdog WATCHDOG_INTERRUPT

AHB Interrupt source Software directive

External 3 EXTERNAL3_INTERRUPT

External 2 EXTERNAL2_INTERRUPT

External 0 EXTERNAL0_INTERRUPT

IEEE_1284 IEEE_1284_INTERRUPT

USB_DEVICE USB_DEVICE_INTERRUPT

USB_HOST USB_HOST_INTERRUPT

RTC RTC_INTERRUPT

Timer 7 TIMER7_INTERRUPT

Timer 6 TIMER6_INTERRUPT

Timer 5 TIMER5_INTERRUPT

Timer 4 TIMER4_INTERRUPT

Timer 3 TIMER3_INTERRUPT

Timer 2 TIMER2_INTERRUPT

Timer 1 TIMER1_INTERRUPT

Timer 0 TIMER0_INTERRUPT

BBUS_DMA BBUS_DMA_INTERRUPT

I2C I2C_INTERRUPT

SER3TX SER3TX INTERRUPT

SER3RX SER3RX INTERRUPT

SER2TX SER2TX_INTERRUPT

AHB interrupt source Software directive
2 0 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Bbus interrupts: ARM9-based processors

The priority in the Bbus is controlled by the logic in the Bbus interrupt handler.
Each device on the Bbus shares the Bbus Aggregate interrupt, a common interrupt
on the AHB bus. When a device signals an interrupt, these steps occur:

1 The hardware sets bits in the Bbus Bridge Interrupt Status register to indicate
which device on the Bbus is signaling the event.

2 If the device's interrupt level is not masked off, the hardware generates an IRQ
exception, causing the NET+OS interrupt driver to be executed.

3 The Bbus Interrupt Handler determines which device is signaling the interrupt
condition and calls the ISR that is registered to it.

4 The ISR processes the interrupt and then returns.

5 The interrupt driver checks for more pending interrupts. If any interrupts are
found, their ISRs are called as well.

6 When all pending interrupts have been processed, the NET+OS interrupt driver
returns control to the application.

SER2RX SER2RX_INTERRUPT

SER1TX SER1TX_INTERRUPT

SER1RX SER1RX_INTERRUPT

LCD LCD_INTERRUPT

Ethernet PHY ETH_PHY_INTERRUPT

Ethernet Transmit ETH_TRANSMIT_INTERRUPT

Ethernet Receive ETH_RECEIVE_INTERRUPT

Reserved N/A

BBUS Aggregate ANY BBUS INTERRUPT DIRECTIVE

AHB Bus Error AHB_BUS_ERROR_INTERRUPT

Watchdog WATCHDOG_INTERRUPT

AHB Interrupt source Software directive
www.d i g i . c om 201

Chang i ng i n t e r r u p t p r i o r i t y
This table lists the supported interrupt sources in the Bbus and the associated
software directives. The priority for each Bbus interrupt source is specified in the
NABbusPriorityTab array in the bsp.c file. Interrupt sources with a higher-
numbered priority level can interrupt the service routines of devices with lower-
numbered priority levels.

Bbus interrupt source Software directive

IEEE 1284 IEEE_1284_INTERRUPT

Bbus DMA 16 BBUS_DMA16_INTERRUPT

Bbus DMA 15 BBUS_DMA15_INTERRUPT

BBUS_DMA14_INTERRUPT BBUS_DMA14_INTERRUPT

Bbus DMA 13 BBUS_DMA13_INTERRUPT

Bbus DMA 12 BBUS_DMA12_INTERRUPT

Bbus DMA 11 BBUS_DMA11_INTERRUPT

Bbus DMA 10 BBUS_DMA10_INTERRUPT

Bbus DMA 9 BBUS_DMA09_INTERRUPT

Bbus DMA 8 BBUS_DMA08_INTERRUPT

Bbus DMA 7 BBUS_DMA07_INTERRUPT

Bbus DMA 6 BBUS_DMA06_INTERRUPT

Bbus DMA 5 BBUS_DMA05_INTERRUPT

Bbus DMA 4 BBUS_DMA04_INTERRUPT

Bbus DMA 3 BBUS_DMA03_INTERRUPT

Bbus DMA 2 BBUS_DMA02_INTERRUPT

Bbus DMA 1 BBUS_DMA01_INTERRUPT

AHB DMA 2 AHB_DMA02_INTERRUPT

AHB DMA 1 AHB_DMA01_INTERRUPT

Utility UTIL_INTERRUPT

Bbus peripheral BBUS_PERIPH10_INTERRUPT

Serial 1 receive SER1RX_INTERRUPT

Serial 2 receive SER2RX_INTERRUPT

Serial 3 receive SER3RX_INTERRUPT
2 0 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

System interrupts: ARM7-based platforms

The priority for interrupts is set by the NAInterruptPriority table in the bsp.c
file of its corresponding platform.

When a device signals an interrupt, these steps occur:

1 The hardware sets bits in the Interrupt Status Register.

2 If the device's interrupt level is not masked off, the hardware generates an IRQ
exception, causing the NET+OS interrupt driver to be executed.

3 The Interrupt Handler determines which device is signaling the interrupt condi-
tion and calls the ISR that is registered to it.

4 The ISR processes the interrupt and then returns.

5 At this point, the interrupt driver checks for more pending interrupts. If any
interrupts are found, their ISRs are called as well.

6 When all pending interrupts have been processed, the NET+OS interrupt driver
returns control to the application.

This table lists the supported interrupt sources in the ARM7 based NET+ARM
processor. Interrupt sources with a higher-numbered priority level can interrupt
the service routines of devices with lower-numbered priority levels.

Serial 4 receive SER4RX_INTERRUPT

Serial 4 transmit SER4TX_INTERRUPT

Serial 3 transmit SER3TX_INTERRUPT

Serial 2 transmit SER2TX_INTERRUPT

Serial 1 transmit SER2TX_INTERRUPT

USB USB_INTERRUPT

Bbus DMA BBUS_DMA_INTERRUPT

Bbus interrupt source Software directive

Interrupt source Software directive

DMA1 DMA1_INT

DMA2 DMA2_INT

DMA3 DMA3_INT
www.d i g i . c om 203

Chang i ng i n t e r r u p t p r i o r i t y
DMA4 DMA4_INT

DMA5 DMA5_INT

DMA6 DMA6_INT

DMA7 DMA7_INT

DMA8 DMA8_INT

DMA9 DMA9_INT

DMA10 DMA10_INT

ENI/PORT1 ENI/PC_PORT1_INT

ENI/PORT2 ENI/PC_PORT2_INT

ENI/PORT3 ENI/PC_PORT3_INT

ENI/PORT4 ENI/PC_PORT4_INT

ENETRX ENETRX_INT

ENETTX ENETTX_INT

SER1RX SER1RX_INT

SER1TX SER1TX_INT

SER2RX SER2RX_INT

SER2TX SER2TX_INT

11 – 7 Reserved

WATCHDOG WATCHDOG_INT

TIMER1 TIMER1_INT

TIMER2 TIMER2_INT

PCPC3 PCPC3_INT

PCPC2 PCPC3_INT

PCPC1 PCPC1_INT

PCPC0 PCPC0_INT

Interrupt source Software directive
2 0 4 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Interrupt service routines

The IRQ handler calls Interrupt Service Routines (ISRs) to service interrupts that
external devices generate. You can implement ISRs as standard C functions. The
ISRs must clear the interrupt condition — usually by acknowledging it — and service
the interrupt. Then the ISRs can return as standard C functions.

Because interrupts are enabled for higher priority interrupt levels when the ISR is
called, an ISR with a higher priority can interrupt the processing of one with a
lower priority.

Installing an ISR

You install an ISR by calling NAInstallIsr. After this routine returns, the ISR is
installed, and the interrupt associated with the ISR is enabled.

Disabling and removing an ISR

To disable and remove an ISR, call NAUninstallIsr. This routine disables the
interrupt and uninstalls the ISR handler.

ARM9 FIQ handlers

Because a fast interrupt (FIQ) is a higher priority interrupt than an IRQ, it can
interrupt an IRQ at any time.

The default handler installed by the BSP treats a FIQ exception as an error (that is,
it calls customizeExceptionHandler).

Use the naIsrSetFiq function to program an interrupt source to generate an FIQ
interrupt, and then call naIsrInstall to install the interrupt handler for the FIQ.

For ARM9-based processors only:

Unlike an IRQ, only one interrupt can be configured for an FIQ, and it must be
the first one in the NAAhbPriorityTab array.

To disable and remove a FIQ, call NAUninstallIsr.
www.d i g i . c om 205

ARM7 F IQ hand l e r s
ARM7 FIQ handlers

On ARM7 based-processors, the watchdog timer and the two general-purpose
timers can be configured to generate a FIQ interrupt. To enable these interrupts,
set the corresponding bits in the Interrupt Enable register. For descriptions of the
System Control register, Timer 1 and Timer 2 Control registers, and the Interrupt
Enable register, see the hardware reference for the processor you are using.

To install an ARM7 FIQ handler:

1 Write the address of the application FIQ handler to memory location
0x0000003C.

2 Enable the FIQs bit in the Interrupt Configuration register for the specific
source interrupt.

3 Modify the IRQ handler routine to exclude the FIQs from being dispatched with
the IRQs.

The IRQ handler code is in these files:

na_isr.c

reset.s

init.s

Be aware that NET+OS normally does not use FIQs. The statistical profiler utility,
however, which helps you identify system bottlenecks so you can improve system
performance, does use FIQs.

For an example of how to install and use FIQs, see bsp/profiler/profilerAPI.c.
2 0 6 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Appendix F: Memory Usage
in Networked Applications
 207

Ove r v i ew
Overview

An aspect of TCP/IP networking that is often misunderstood is memory requirements
and usage. For clarification, the term network heap refers to the memory used
exclusively for the NET+OS TCP/IP stack. All NET+OS networking applications require
a segment of network heap. This space is the initial block of memory allocated from
the C library heap. It is used for initial static and dynamic allocation of TCP/IP
memory needs and managed independently from the C library heap.

Two standard approaches to memory management used in TCP/IP stacks are byte
pools and block pools, each with its own benefits and consequences.

Block pools

Block pools (allocation of fixed sized buffers) are beneficial because no search is
needed to allocate a block. If one exists, it is merely allocated. The drawback,
however, is the wasted space that is not used because of the fixed-size blocks.

For example, suppose all requests for blocks greater than 64 bytes but less than 128
bytes always receive a 128 byte buffer. Requests for 64 bytes would result in 50%
wasted space.

Byte pools

Alternatively, a byte pool, which is a large block of bytes, is managed by a linked
list to available blocks within the pool, and separated (or fragmented) by already
allocated blocks. Traversing this list to find the best fit can become time
consuming, and in the worst case, cause allocation failures when fragmentation is
excessive. On the other hand, allocation utilization is 100% because the caller
receives exactly what was requested. For example, when an application requests
64 bytes, the manager traverses its linked list until a 64 byte block is located.

These examples illustrate a time tradeoff compared with a memory tradeoff:

A block pool is faster but wastes space.

A byte pool takes longer to search and find the best fit block, but enables
better use of the block.

The NET+OS network heap is, by default, a byte pool. A portion of the heap can be
converted to a block pool.
2 0 8 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Network heap application tuning

The NET+OS TCP/IP network heap is defined by parameters in appconf.h. The total
memory (in bytes) allocated for the heap is defined by APP_NET_HEAP_SIZE, and as
mentioned above, the heap is, by default, a byte pool.

To allocate portions of the network heap as a block pool, you can add these
definitions to appconf.h and adjust them as needed:

#define APP_TCPIP_16BYTE_BLOCK_COUNT 60

#define APP_TCPIP_32BYTE_BLOCK_COUNT 60

#define APP_TCPIP_64BYTE_BLOCK_COUNT 100

#define APP_TCPIP_128BYTE_BLOCK_COUNT 20

#define APP_TCPIP_256BYTE_BLOCK_COUNT 10

#define APP_TCPIP_540BYTE_BLOCK_COUNT 200

#define APP_TCPIP_1836BYTE_BLOCK_COUNT 200

The network heap can be split into a byte pool and seven block pools of size 16, 32,
64, 128, 256, 540, and 1836. These block sizes were chosen based on needs of the
TCP/IP stack. When a block pool runs out, a block from the next highest pool is used.
When the pools run out, or when the size exceeds the largest block, memory is taken
from the byte pool.

Memory usage in TCP connections

The total memory required, MTotal, of an active TCP/IP connection can be
calculated as:

MTotal = MStatic + MRecv + MTransmit

where

MStatic is a fixed constant that is required for socket data structures and state.

MRecv is the reserved buffer required for receiving data.

MTransmit is the buffer needed to store transmit data that might be needed for
retransmission.
www.d i g i . c om 209

Ac t i v e c l o s e o f a TCP connec t i o n
Other dynamic memory needs for TCP/IP stated timers and configuration are ignored
at this time.

The value of MRecv and MTransmit can be computed directly from the socket options
for SO_RCVBUF and SO_SNDBUF, respectively. So as the TCP window size grows,
MStatic << MRecv , MTransmit, and the size of MTotal can easily be approximated by:

MTotal ˜ MRecv + MTransmit

For example, on a high throughput connection, where the TCP window is set to the
maximum on both send and receive (64K), a connection will require a total of 128K
bytes. Additionally, if this service requires the ability to service eight simultaneous
connections, this service alone will require 1MByte of network heap, not including
the heap needed for ARP, the passive listener, spare Ethernet buffers, or any other
socket memory requirement.

When you design client-server systems, it is critical to consider and test for the
worst-case usage models.

Another source memory usage, but more subtle, is the cost of maintaining a closed
TCP/IP connection. When a client-server calls closesocket, it does not necessarily
mean the memory associated with the connection is immediately freed up, and it’s
crucial which side closes first.

This aspect of TCP/IP is extremely sensitive to which party in the client-server pair
closes first.

Active close of a TCP connection

An active close occurs when a TCP client-server first calls closesocket, which
causes the unit to send a FIN segment. The unit’s TCP connection state enters the
FIN_WAIT_1 state after sending the FIN and then enters the FIN_WAIT_2 state after
receiving the ACK to the sent FIN.

The unit’s TCP connection state remains in the FIN_WAIT_2 state until it receives a
FIN segment from its peer half-opened connection. There is no TCP/IP timer to
terminate from the FIN_WAIT_2 state, and its possible for connections to remain
half-opened indefinitely, if, for example the peer has crashed, network
connectivity is lost, or the client-server protocol is poorly designed.
2 1 0 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

To protect against sockets remaining in the FIN_WAIT_2 state, the socket option
SO_KEEPALIVE is recommended. This option actively probes the peer for
disconnections or crashes and terminates the half-opened connections if the keep-
alive timeout interval is exceeded. The keep-alive timeout interval is globally set;
you can change the interval with the NAIpSetKaInterval API call.

Time wait state of a TCP connection

The TCP connection state transitions to the TIME_WAIT state (from the FIN_WAIT_1
or FIN_WAIT_2 states) after acknowledging the FIN from the peer. However, the TCP
connection remains in TIME_WAIT state for 2*TCP_MSL seconds. Note the default
TCP MSL is 120 seconds, and therefore, the default TIME_WAIT interval is four
minutes.

You can change the global per-system TCP MSL value using the NAIpSetTcpMsl API
call. The value of TCP MSL can be set between 15 and 120 seconds, reducing the
time memory and available sockets are tied up after the connection is closed.

The TIME-WAIT state is 2 * MSL and can be reduced using NAlpSetTcpMsl.

Using a connection reset instead of an orderly close

Another way to keep memory and sockets from lingering after connections are
closed is to use the connection reset mechanism instead of an orderly close.

This example uses the connection reset mechanism:

struct linger op;

op.l_linger = 0;

op.l_onoff = 1;

setsockopt(fd, SOL_SOCKET, SO_LINGER, (char*)&op, sizeof op);

closesocket(fd);

In this example, instead of sending a FIN segment at the closesocket() call, a RST is
sent instead. The drawback of this mechanism is that any remaining data in the send
queue is discarded.
www.d i g i . c om 211

Max imum numbe r o f s o cke t s
Maximum number of sockets

The maximum number of active sockets is fixed at 128 and cannot be changed.

Additionally, the socket descriptor 0 cannot be used, so the maximum number of
open sockets is limited to 127 (MAX_SOCKETS – 1).
2 1 2 NET+Works w i t h G r e en H i l l s BSP Po r t i n g Gu i de

Index
A
adding devices 86
AM79C874 and AM79C875 PHYs 103, 111
AMD PHY 103, 111
application image

components of 156, 174
header 157, 174, 175
structure 156, 174

B
blerror.c file 162, 178
blmain.c file 162, 178
boothdr utility 155, 158, 173, 176
boothdr.exe 7
bootldr.dat file 160, 177
bootloader utility

limitations of 161, 178

C
central build system

described 140
close function 86

compress.exe 7
configuration file 160, 177
customization hooks 162, 179
customizeGetMACAddress function 164
Cygwin standard C library

and device drivers 86

D
data passing functions 98
ddi.h file 86
DDIFirstLevelInitialization 87
DDISecondLevelInitialization 87
default configuration file 160, 177
design of the central build system 140
device

adding 86
device driver

interface (DDI) functions 97
device driver routines

deviceClose 92
deviceEnter 89
deviceInit 90
deviceIoctl 97
I - I n d e x - 1

deviceOpen 91
deviceRead 93
deviceWrite 95

deviceClose routine 92
deviceEnter routine 89
deviceInfo structure 86
deviceInfo structures 86
deviceInit routine 90
deviceIoctl routine 97
deviceOpen routine 91
deviceRead routine 93
devices.c file 86
deviceTable array 86
deviceWrite routine 95
DHCP/BOOTP client 161, 178
downloadImage routine 162, 170, 185

F
FastCat PHY 103, 111

G
generating

an image 160, 176
getDefaultFilename routine 162, 169, 184
getMacAddress routine 162, 164, 181

H
hard-coding the MAC address 164, 181
hooks, customization 162, 178, 179

I
image, generating 160, 176
Intel PHY 103, 110, 111
ioctl function 86
isImageValid routine 162, 165, 182

K
keyword/value pairs in configuration

file 161, 178

L
Level One PHY 103, 111
limitations of the bootloader utility 161,

178
Lucent Technologies PHY 103, 111
LXT970 PHY 103, 111
LXT971A PHY 110
LXT971A PHY and LXT972A PHY 103, 111

M
MAC address 162, 179

and hard-coding 164, 181
mii.c file 103, 111

N
NABIReportError routine 163
NABlReportError routine 162, 179
NET+OS

device driver interface (DDI) 97
I n d e x - 2

O
open function 86

P
parent build file 140

R
RAM image and bootloader utility 155, 173
rammain.c file 178
read function 86
reportError routine 180
return values for NET+OS DDI routines 97
ROM image and bootloader utility 155,

172

S
setup functions 98
shouldDownloadImage routine 162, 167,

183
smicng.exe 6
spi_blmain.c file 162
spiboothdr.exe 6

T
TFTP client and bootloader utility 161,

178

U
User Datagram Protocol (UDP) stack and

bootloader utility 161, 178

W
write function 86
I - I n d e x - 3

	Contents
	Introduction
	Overview
	Application development
	What is the board support package?
	Why does the target BSP need to change from the NET+ARM development board BSP?
	What are the benefits of following the NET+ARM reference design?
	What’s the best way to add my target hardware BSP platform?

	NET+OS tree structure
	bsp
	examples
	bin
	h
	ghssrc
	smicng
	arm7
	arm9
	debugger_ files
	docs

	NET+OS BSP for ARM7
	Overview
	Platforms
	Initialization
	Initializing hardware
	Initialization sequence
	C library startup
	NABoardInit
	ROM bootloader

	BSP tree structure
	Top-level directory
	bootloader subdirectory
	devices directory
	platforms directory

	Customizing the BSP for application hardware
	Follow the reference design
	Verify the features your hardware supports
	Task 1: Purchase and assign Ethernet MAC addresses
	Task 2: Create a new platform subdirectory
	Task 3: Build and modify the BSP build file
	Task 4: Modify the linker scripts
	Task 5: Modify BSP configuration files
	Task 6: Modify the new BSP to start up the required drivers
	Task 7: Modify the format of BSP arguments in NVRAM
	Task 8: Modify error and exception handlers
	Task 9: Verify the debugger initialization files
	Task 10: Debug the initialization code
	Debug the Ethernet driver startup
	Task 11: Modify the startup dialog
	Task 12: Modify the POST
	Task 13: Modify the ACE

	Other BSP customizing
	BSP_NVRAM_DRIVER
	TCP/IP stack
	File system

	NET+OS BSP for ARM9
	Overview
	Supported platforms
	Initialization
	Initializing hardware
	Initialization sequence
	C library startup
	NABoardInit

	ROM bootloader
	BSP tree structure
	Top-level directory
	bootloader subdirectory
	devices directory
	platforms directory

	Customizing the BSP for application hardware
	Follow the reference design
	Verify the features your hardware supports
	Task 1: Purchase and assign Ethernet MAC addresses
	Task 2: Create a new platform subdirectory
	Task 3: Add your platform to the central build system
	Task 4: Modify the linker scripts
	Task 5: Modify BSP configuration files
	Task 6: Modify the new BSP to start up the required drivers
	Task 7: Modify the format of BSP arguments in NVRAM
	Task 8: Modify error and exception handlers
	Task 9: Verify the debugger initialization files
	Task 10: Debug the initialization code
	Task 11: Modify the startup dialog
	Task 12: Modify the POST
	Task 13: Modify the ACE

	Other BSP customizing
	BSP_NVRAM_DRIVER
	TCP/IP stack
	File system

	Linker Files
	Overview
	Linker files provided for sample projects
	Basic Green Hills section of the linker files
	NET+OS section of the linker files

	Address mapping (ARM9 only)
	NET+OS memory map (ARM9 only)

	Memory aliasing in NET+OS (ARM7 only)

	Adding Flash
	Overview
	Flash table data structure

	Adding new flash
	Supporting larger flash

	Device Drivers
	Overview
	Adding devices
	deviceInfo structure
	Device driver functions

	Return values
	NET+OS device drivers
	Device driver interface

	Hardware Dependencies for ARM7-based Platforms
	Overview
	DMA channels
	Ethernet PHY
	ENI controller
	Serial ports
	Software watchdog
	Endianness
	System clock
	BSP_CLOCK_SOURCE
	XTAL1_FREQUENCY
	CRYSTAL_OSCILLATOR_FREQUENCY
	PLL Control Register setting

	System timers
	Timer 1
	Timer 2

	Interrupts
	Memory map

	Hardware Dependencies for ARM9-based Platforms
	Overview
	DMA channels
	Ethernet PHY
	Endianness
	General purpose timers
	System timers
	All other general purpose timers

	Interrupts
	System clock
	Chip selects
	Memory map

	Porting NET+OS v6.0 Applications to NET+OS v6.3
	Overview
	BSP build file
	Application build files
	Linker scripts
	Bootloader files
	Cache API
	Embedded Networking Interface
	ISR API
	RAM API
	Real Time Clock driver
	SYSCLK API
	GPIO configuration
	SPI API
	Stack sizes for exception handlers
	Interrupt priorities

	Porting NET+OS v6.1 Applications to NET+OS v6.3
	Overview
	BSP build file
	Application build files
	Linker scripts
	Bootloader files
	Client parallel driver
	I2C driver
	Interrupt Service Routine (ISR) API
	MMU API
	PLL functions
	Real time clock driver
	GPIO configuration
	Timer driver
	SPI API
	Network heap caching
	USB host API

	Converting Standalone Legacy MULTI Projects
	Overview
	Converting the image.gpj file
	Editing project.gpj files
	Editing image.gpj files
	Overview
	Design
	Structure

	Building with ns9360_a.gpj
	Building a single application
	Adding a new application
	Adding a custom BSP

	Setting options
	Platform
	CPU type
	Endianness
	Warnings
	Optimization
	Debug
	Define flags
	Build option macros
	Adding paths
	Directory path
	File hooks

	Overview
	SPI bootloader application images
	ROM image
	RAM image

	Application image structure
	Application image header
	boothdr utility
	spibootldr utility

	Generating an image
	Configuration file
	General bootloader limitations

	Customizing the SPI bootloader utility
	Customization hooks

	Overview
	Bootloader application images
	ROM image
	RAM image

	Application image structure
	Application image header

	boothdr utility
	Generating an image
	Configuration file

	General bootloader limitations
	Overview of customizing
	Customization hooks
	Overview
	Configuring ACE
	Setting the static IP configuration
	Setting DHCP configuration
	AUTOIP configuration
	Stopping ACE

	Overview
	Vector table
	IRQ handler
	Servicing AHB interrupts in ARM9 based NET+ARM processor.
	Servicing Bbus interrupts in ARM9 based NET+ARM processor

	Changing interrupt priority
	AHB interrupts: ARM9-based processors
	Bbus interrupts: ARM9-based processors
	System interrupts: ARM7-based platforms

	Interrupt service routines
	Installing an ISR
	Disabling and removing an ISR

	ARM9 FIQ handlers
	ARM7 FIQ handlers
	Overview
	Block pools
	Byte pools

	Network heap application tuning
	Memory usage in TCP connections
	Active close of a TCP connection
	Time wait state of a TCP connection
	Using a connection reset instead of an orderly close
	Maximum number of sockets

	Appendix A: Using Central Build
	Appendix B: Customizing the SPI Bootloader
	Appendix C: Customizing the ROM Bootloader
	Appendix D: Customizing ACE
	Appendix E: Processor Modes and Exceptions
	Appendix F: Memory Usage in Networked Applications

