1@&

NET+Works with GNU
Tools BSP Porting Guide

“DEVCENETWORKNG

NET+Works with GNU Tools
BSP Porting Guide

Operating system/version: 6.3
Part number/version: 90000726 B
Release date: March 2006
www.digi.com

©2006 Digi International Inc.
Printed in the United States of America. All rights reserved.

Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a
Digi International Company, NET+, NET+0S and NET+Works are trademarks or registered
trademarks of Digi International, Inc. in the United States and other countries worldwide. All
other trademarks are the property of their respective owners.

Information is this document is subject to change without notice and does not represent a
committment on the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of, fitness or merchantability
for a particular purpose. Digi may make improvements and/or changes in this manual or in
the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made
periodically to the information herein; these changes may be incorporated in new editions of
the publication.

Contents

Chapter 1: Introduction ... 1

L0 TV 2

Application development....c..uueiiiiiiiiiiiiiiiiiiii i ieeeaneeeees 2

What is the board support package?.......ccvveieiiiiiiiiiieiiiiriieieeneerenes 3
Why does the target BSP need to change from

the NET+ARM development board BSP?cceiiiiiiiiiiiiiiiiiiieeennnnns 3

What are the benefits of following the NET+ARM reference design? 4

What’s the best way to add my target hardware BSP platform?.......... 4

NET+OS tree strUCTUrE ... eee it r e e e reneeeaans 5

07 o PP 6

122 1301 0] (=N 6

0 6

PN 7

o 11] o 7

£ 1.1 [= PP 8

L 0 17N 8

L 101 N 8

[1= oT0 Lo (=T o = PP 8

o o o 8

Chapter 2: NET+0S BSP for ARM7 ..., 9

OV VIBW ettt ettt ettt e et e et e eeaateeenesennnesanaeesannesannnesannsssnnnns 10

o =L 0T 1 1= 10

[0} 10 F=1 R 2= 1 4 (o] 1 I 11

INTtializing hardwareccoviiiiiiiiiiiiii i it re e e aenaees 11
Initialization SEQUENCE .. vt iiit it eiiei et reeeeeenneeannes 11
Clibrary startup cooveeeeeiiiiiiiiii it it et e e e e 11
N\ To T Uta 111 1 12
({01 W T o] d o Ta /=] (PP PO 12
BSP £ree STrUCTUIE . vttt e et e reneeeeeeeranneenans 13
o) o B (V= Wa 1] ¢ =Tet o] o A PP PP 13
bootloader subdirectoryccvviiiiiiiiiiiiiiii i 13
o [V (=i || =Tt (o] o VA PP PPN 14
Platforms dir€CtOrY . .cviiiiit i eeiiieteeeeiiieeeeeaenrnneeeenanns 14
Customizing the BSP for application hardwarecc.cooviiiiiiiiiiininne. 15
Follow the reference designcccvviiiiiiiiiiiiiiiiiiiiiiiiiii e, 16
Verify the features your hardware supports......cccoovvveeeiiiiiinnnennnn. 16
Task 1: Purchase and assign Ethernet MAC addresses...................... 16
Task 2: Create a new platform subdirectoryccccoovvvvviiiiiinnnnna.. 17
Task 3: Building and modifying the BSP Makefile.........ccccevvvnnnnen.n. 17
Task 4: Modify the linker sCriptsoovviiiiiiiiiiiiiiiiiiiiii e, 18
Task 5: Modify BSP configuration files........ccoveiiiiiiiiiiiiiiinnn.. 20
Task 6: Modify the new BSP to start up the required drivers............. 24
Task 7: Modify the format of BSP arguments in NVRAM 25
Task 8: Modify error and exception handlers.......cc.ccovveviiiiiinnnnnn... 27
Task 9: Verify the debugger initialization filescccevvviviiinnn..n. 28
Task 10: Debug the initialization codeccovviiiiiiiiiiiiiiiinnnennn. 29
Task 11: Modify the startup dialog......cccovviiiiiiiiiiiiiiiiiiiiiiiiieen, 34
Task 12: Modify the POSTuriiiiiiiiiiii e eeenrnaeeeens 34
Task 13: Modify the ACEeeriiiiiiiiii it eeeeaaeeeees 34
Other BSP CUSTOMIZING . .uvviiiiiiiiiiiiiiii i eiiiieeeeeiiieeeeeaaniaeeeeeaanns 35
BSP_NVRAM_DRIVER ...ttt vt eeeee e eneenaes 35
TCP/IP SEACK 1. vt eeietteeeeit ettt e et e ee e eenteaneeeneeenaanns 36

B R =11 | P PP PP 37

Chapter 3: NET+0S BSP for ARMY9 ..., 41

L0 YT Y 1 PP 42
Supported pPlatformseeiiiiiiii i it ririr e erirr e aaraaes 42
INTtIAlIZAtION « et e 42
Initializing hardwarecooiiiiiiiiiiii it ere e 42
INitialization SEQUENCE....ciiiiiii it ieiieeeeeiineeeeeeaannaeeens 43
O Vo] - T V] &= T U] I PPN 44
VYo T |11 | S P P PP PP 44
(2007138 o o Yo (o =T /= 44
BSP tree StrUCTUre . .vii i e e 45
TOP-level dir@CtOrY «.uue ittt e ere e eereeaanaes 45
bootloader subdireCtorycovvviiiiiiiiiiiiiiiiiiiiiiiieiieeeiieeeaennnas 45
(o[(o= e | =T (] VA N 46
Platforms dir@CtOry . .ouvi it e e eeeeeeaas 47
Customizing the BSP for application hardwarecooeeviiiiiiiiiiiiininnnne. 47
Follow the reference designcveveiiiiieiiiiiiiiiiiiiiiieieeeneenenns 48
Verify the features your hardware supports.......ccccvevviieeeeieennnnnenn. 48
Task 1: Purchase and assign Ethernet MAC addresses...........c.ceeueeens 49
Task 2: Create a new platform subdirectorycccoovvvvviiiiiiinnnn.n. 49
Task 3: Building and modifying the BSP Makefile...........c..coeveininns 50
Task 4: Modify the linker SCripts «vvvvveiieiiiiiiiiiiiiiieiiiieeeeeieeeees 51
Task 5: Modify BSP configuration files.........cocviieiiiiiiiiiiiiiiiinn.. 53
Task 6: Modify the new BSP to start up the required drivers............. 58
Task 7: Modify the format of BSP arguments in NVRAM 61
Task 8: Modify error and exception handlers........ccccovvviiiiiiiinnn.... 62
Task 9: Verify the debugger initialization filescccoevvvviiviinnn... 63
Task 10: Debug the initialization codecoovviiiiiiiiiiiiiiiiiiiinn... 65
Task 11: Modify the startup dialog.......cccvvviiiiiiiiiiiiiiiiiiiiiinneens 69
Task 12: Modify the POST ...t eeeraaeee 70
Task 13: Modify the ACEeennieiiiiiiiiii e e eeeaeeees 70
Other BSP CUSTOMIZING ..vviiiiiiiitiiiiiie e ieiiieeeeeeeaieeeeeeeinneaeeesannnes 71
BSP_NVRAM_DRIVER ...t et et e e neeeeaae 71
RO 1] ¥ T PP 71
Y =11 | P PP 73

vii

Chapter 4: Linker Files . 75

L0 1T T 1T N 76
Linker files provided for sample projects.....cccveiieiiiieiiieiiieneereninnneenns 76
Basic GNU Tools section of the linker filesccoviiiiiiiiiiiiiiiia, 77

NET+OS section of the linker files.......coveiiiiiiiiiiiiiiiiiiiiiiiiiens 77

Address mapping (ARM9 ONlY) c..uuuieiiiiiiiiiiiiiiiiieeeiireeeeeeennnaneeenns 78
NET+OS memory map (ARMO ONly) ..cvvennnniiiiiiiiiiiiiiiiiiiiiieieeennnnes 80

Memory aliasing in NET+OS (ARM7 ONlY) c.vviiniiiiiiiiiiiiiiieniieenieenneen 81
Chapter 5: Adding Flash ... 83
Flash table data structure........ccooeiiiiiiiiiiiiiiii e eeaes 84
Supporting larger flash.........cooiiiiiiiiiiiiiiiiiii e 88
Chapter 6: Device Drivers . 89
OV VIBW ettt ettt ettt et et e et et et et et e e aaaans 90
AdAING AEVICES .. ettt e it eeeeteetesrenannneeeseeannnneesees 90
devicelnfo StrUCTUNE...ue i ei e e e e e e eeaneens 90

Device driver fUNCLIONSuuiii i r e e e raes 91

REEUMN VaAlUES. . .c et e eees 100
Modifications to Cygwin’s standard C library and startup file.................. 101
Modifying the libc.a library and crt0.o startup filecccceeenneee... 102

NET+0S deVice driVErs ..o.ueiiieiiiiiiiii it eeeieeeaas 103

Device driver iNterfaCe ..oo.vvieiiiiiiiiiiieiiieieerreeeeeenneeanns 103

Chapter 7: Hardware Dependencies for
ARM7-based Platforms 105

L0 10T T 1 N 106
DMA Channels. . .ceneeiitieei e e ettt e e e et eene e eeeneeeaneeeannnanan 106
Ethernet PHY ... e et eees 107
2 NI ele] a4 go] L= S PP 107
Y=T = o o] o S PPN 107
Software WatChdoguviiiiiiiiiii i e e e e e eannneeeaanns 108

viii

|2 gTe) =TT TS P 108

SYSTEM CLOCK. .t tetttiiiiiieiiii e eetieeeereernaeeeeesannanessessnnneessaonnes 108
BSP_CLOCK_SOURCE. .. utttittiiitteeeteeanteeenneeeaneeeenneeeeneeennneeens 108
XTALT_FREQUENCY ..eiitiiitiiiiiiieieiitinteneenneeaneeneeeneenneeaneenns 109
CRYSTAL_OSCILLATOR_FREQUENCY.....utiirtreeiiniinnernnenneenneeannenns 109
PLL Control register Settingccccevvuiiiiiiiiiiiiiiiiiiiiiiiiieiienee, 109

Y =] 1 TR 1111 PP PPN 110

MEIMONY MIAP .« .+t ttteeneeeeereeeeereeeeeeeeeeeeeessessesssssssssesssssssssssssnnsnnnnnnnns 111

Chapter 8: Hardware Dependencies for ARM9-based

P latf O mMs oo e 113
L0 T 114
DMA Channels.....eeneiiiiiiii i e e e e e eeieeeeeeeeanaeeaanaens 114
L = g1 A o 114
8 T} = g T3 P 115
General PUrPOSE LIMEIS. ..euuiiniiiiiitii ettt eeiteeteeeeeaaanns 115

SYSEEM LIMEES et iiiiiieeeeeeeeeeeeeeeeeeeeeeeeseesesasasannnns 115
All other general purpose timMers.....oeeeieetiiieiiieeerreneieeeeeeennnnes 116
0 = U0 e 116
)Y L] .1 ol Lo Yol P PPN 117
(00} TR =] (=T ot oS PPN 117
JA=] 13T 2 1 - o J 118

Chapter 9: Porting NET+0S v6.0 Applications

to NET+0S V6.3 e 119
OVOIVIBW ettt ettt et 120
5] ol T 1 1 = 120
Application MaKefiles ..uuuuriiiiiiiiiiii it riii e reiiee et eennnneaeens 121
[]3] T ol 410 & PP 121
BOoOtloader files ..uvenneeieit e e 121
08T 3T Y = 122
Embedded Networking Interfaceccvviiiiiiiiiniiiiiiiiiiiiieiiiieereennnnns 122
1] R o N 122

RAMAPI

Real Time CloCK AriVer. . uu e ittt iiieee e eeeennnnnnnns

SYSCLK API.........
GPIO configuration
SPI API..............

Stack sizes for exception handlers..........cooeiiiiiiiiiiiiiiiiiiiiiiiiiiins

Interrupt priorities

Chapter 10: Porting NET+0S v6.1 Applications
to NET+0S V6.3 e

Overview...........
BSP Makefile.......

Application MaKefilescovuuiiiiiiiiiiiiiii e e e e eaaas

Linker scripts......
Bootloader files...
Client parallel driv
12C driver

Real time clock dri
GPIO configuration
Timer driver
SPI API..............

[

T [P

Network heap cachingveiiiiiiiiiiiiiiiiii i e e e e eeeeees

USB host API

Library Makefile
Overview...........
Makefile hierarchy

Building all li

SYSTEM e

[T = 1 (<3

Building individual librariesc.ceiviiiiiiiiiiiiiiiiiiiiiiiiieeieeeans

Library directory structure.......coooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieens

Library Makefile variablesccoueiiiiiiiiiiiiiiiiiiii i 139

Adding a new libraries to the system......ccccvviiiiiiiiiiiiiiiiiiinennnnes 140
Cleaning librariesoo.eeeeeiiiiiiiiiiii e eeeeeas 140
Bootloader MaKefileo.urereniiiiiiieii e e e e et eeeeeaaees 140
Example: using the Makefileovvviiiiiiiiiiiii e eeaees 142
Appendix B: Application Makefile ..., 143
Building appliCations ..c..ueeeeietieiiteeiieiieiieeeneeeeineeeanaeeenneeeannees 144
Application MaKefiles ...cueiiiiiiiiiiii it i ettt ee e ereee e 144
Sections of the Makefilec.viviniiiii e 145
Makefile hierarChycc.oeiiiiiiiiiiii i i s 147
MaKefile TargetS . ittt i et i e e it eeeeiaaaeeas 148
Building an appliCationcievvieeiiiiiiiieieiieiiieeeeernnneeeeenennnnes 148
Cleaning an appliCation......coeveiiiiiiiiiiiiiii i eeeaeas 148
Porting an application to a new platform..........cccoiiiiiiiiiiiiniinnn, 149
Appendix C: Customizing the SPl Bootloadercccc.c...... 151
L0 TP 152
SPI bootloader application IMagesoouvvieiiieiiiiiiiiiiiiiiiieiieeaeene, 153
ROM Mg e ettt it ittt ettt e e eieteeeaeenneeeeeaannaeas 153

RAM MG .« iiiiiiiiiiiiii e eeiiieteeeeiineeeeeeennnanessassnneeeessennnnes 153
Application iMage StrUCTUIe ...ocuviiiiti i eiieeieeeeeeanneenas 154
Application image headerc.vviiiiiiiiiii e 154

oo To)da e [T | 4] 1 VO PP 156

(0] s eTo)d e | ¥ 4141 4V PP 157
GeNErating AN IMAGE . uuueiiiiiiiiteitiiiiteeeeeeiieeeeeeeaaiaeeeeeeenineseseennnns 158
Configuration fileeeiiiiiiiiiiiiiiiiii i e re i eeeieeeeeaans 158
General bootloader limitations.........ccevviiiiiiiiiiiiiiiiiiiiiiinnnee., 159
Customizing the SPI bootloader utilityccovviiiiiiiiiiiiiiiiiiiiiiiiens 160
Customization hOOKSeeeinnieriiiiiii i e e e eeeeens 160

Xi

Appendix D: Customizing the ROM Bootloader 169

OV VIBW ettt ettt ettt ettt et e e et e e eraeeaaaneranaeeeanees 170
Bootloader application imageseveeeirieiiiiiiniieiiieeieeeeieeeaaneens 170
ROM Mg e ettt iieiiit e ieeiiteeeeeerneeeeeeenrnaneeeessnnnseeeesannnes 170
2 N 13- T L 171
Application image StrUCTUIEcc.uviiiiiiiiiiii i e eeieeeeeaas 172
Application image headervviiiiiiiiiiiiiiiiiiiiiiiiiiiiieereeennaees 172
07T o Vo | U 11§ 1 Y25 P 174
GeNErating an IMaZE .. uuie ittt teeeiieeeeeeeaieteeeeesnnaeeeesanns 174
Configuration fileeeiiiiiiiiiiiiiii it e eeiie e e e eneeeeeaes 175
General bootloader limitations......ccvveieiiiiieiiiiiiiiiiiiriiiriieeneeenees 176
Overview Of CUSTOMIZING ..vvviiiiiii it ieiiiieeeeeenineeeerennnnneeeenns 176
Customization hOOKSc.uviiieiiiiiiiiiiii i 177

Appendix E: Customizing the Address Configuration

EXE@CULTIVE .o 185

L0 10T T 1 N 186
CoNfiguring ACE ...eiiiiiiitt ittt teiiieteereeeaeeeeeearnneeeeessnnnseseennnes 186
Setting the static IP configurationcooviiiiiiiiiiiiiiiiiiiinnnn. 187
Setting DHCP configurationcoeveiiiiiiiiiiiiiiiiiiieeeeiinnneeennns 188
AUTOIP configurationeeevieiiieiiiiiieiiiiiiiiiiiiiiiiieineenaaenns 189
SEOPPING ACE ittt e eii e eeeieeeeaannnneeeeraananaeeenns 189
Appendix F: Processor Modes and Exceptions ... 191
L0 1T T 1 PN 192
Rt o g = o] (P 192
|0 3 F=1 2 Ve | (=] o 194
Servicing AHB interrupts in ARM9 based NET+ARM processor. 195
Servicing Bbus interrupts in ARM9 based NET+ARM processor 195
Changing interrupt Priority cooveeeiiiiiiiii i ieeiiie e eeninaeeeeanns 196
INterrupt Service roULINESoiiiiii it eeeeaaeees 203
INStAlliNg AN ISR ..t e e e e eerie e e eennaes 203
Disabling and removing an ISRcccoiiiiiiiiiiiiiiiiiiiiiiicaeaens 203

F N (O F=Va Lo [(=] - N 203
ARM7 FIQ handlers......uuiinneiiiiiiiiiiiii i et reeeas 204

Xii

Appendix G: Memory Usage in Networked Applications 205

OVEIVIEW 1ttt ettt e e eeneeaaes 206

BLOCK POOLS. ..ttt e 206

33 = o o Yo £ PP 206
Network heap application tuNiNgcceiiiiiiiiiiiiiiiiiiii i eeiaees 207
Memory usage in TCP connectionscovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieene, 207
Active close of @ TCP CONNECLION ..vvuueiriiieiiitereieeeeieereneereneeeaaneenns 208
Time wait state of @ TCP connection.......ccccvviiiiiiiiiiiiiiiiiiiiiiinnnenn, 209
Using a connection reset instead of an orderly close.........c..cevveeieenne.n. 209
Maximum number of SOCKEES.veiintiriiieiiriiieeieii e eeeneennns 210

Xiii

Using This Guide

Review this section for basic information about this guide, as well as for general

support contact information.

About this guide

This guide describes NET+0S 6.3 and how to use it as part of your development
cycle. Part of the NET+Works integrated product family, NET+OS is a network
software suite optimized for the NET+ARM.

Software release

This guide supports NET+O0S 6.3. By default, this software is installed in the
C:/netos63_gnu/ directory.

Who should read this guide

This guide is for software engineers and others who use NET+Works for NET+OS.
To complete the tasks described in this guide, you must:

m Be familiar with installing and configuring software.

m Have sufficient user privileges to do these tasks.

m Be familiar with network software and development board systems.

XV

Conventions used in this guide

This table describes the typographic conventions used in this guide:

This convention Is used for

italic type Emphasis, new terms, variables, and document titles.

bold, sans serif type Menu commands, dialog box components, and other items that
appear on-screen.

Select menu — option Menucommands. The first word is the menu name; the words that
follow are menu selections.

monospaced type File names, pathnames, and code examples.

What's in this guide

This table shows where you can find information this guide:

To read about See

An overview of the board support package Chapter 1, “Introduction”

Using the board support package to create a Chapter 2, “NET+0S BSP for ARM7”
platform for your customized hardware for
ARM7-based platforms

Using the board support package to create a Chapter 3, “NET+OS BSP for ARM9”
platform for your customized hardware for
ARM9-based platforms

The linker files that are provided for sample Chapter 4, “Linker Files”

projects
How to update flash memory Chapter 5, “Adding Flash”
Device drivers and device definition Chapter 6, “Device Drivers”

NET+OS hardware dependencies for platforms Chapter 7, “Hardware Dependencies for
that use the NS7520 and NET+50 processor ARM7-based Platforms”

NET+OS hardware dependencies for platforms Chapter 8, “Hardware Dependencies for
that use the NS9360 and NS9750 processors ARM9-based Platforms”

The differences between the APIs in NET+OS Chapter 9, “Porting NET+OS v6.0 Applications
6.0 and NET+0S 6.3 to NET+OS v 6.3”

The differences between the APIs in NET+OS Chapter 10, “Porting NET+OS v6.1
6.1 and NET+O0S 6.3 Applications to NET+OS v 6.3”

XVi NET + Works with GNU Tools BSP Porting Guide

In addition, a series of appendixes provide information about:

m Customizing the SPI bootloader, the ROM bootloader, and the Address
Configuration Executive (ACE)

m BSP Makefiles and application Makefiles
m Processor modes and exceptions

m Memory usage

Related documentation

m NET+Works Quick Installation Guide describes how to install the hardware.

m NET+Works with GNU Tools Getting Started Guide provides a brief, hands-
on exercise.

m NET+Works with GNU Tools Programmer’s Guide describes how to use
NET+OS to develop programs for your application and hardware.

m The NET+Works online help describes the application program interfaces
(APIs) that are provided with NET+0S. The online help is located in
C:\netos63_gnu\Documentation.

For information about third-party products and other components, review
the documentation CD-ROM that came with your development kit.

For information about the processor you are using, see your NET+Works
hardware documentation.

Documentation updates
Digi occasionally provides documentation updates on the Web site.

Be aware that if you see differences between the documentation you received in
your NET+Works package and the documentation on the Web site, the Web site
content is the latest information.

www.digi.com XVii

Customer support

To get help with a question or technical problem with this product, or to make
comments and recommendations about our products or documentation, use this
contact information:

m United State telephone: 1 877 912-3444
m International telephone: 1 952 912-3444
m email: digi.info@digi.com

m Web site: http://digi.com

XViii NET + Works with GNU Tools BSP Porting Guide

Introduction

C HAPTER 1

This chapter provides an overview of the Board Support Package (BSP) software,
describes how this software is segmented from higher layer application software, and
provides hardware design guidelines to minimize the cost of the software effort. In
addition, this chapter describes the NET+OS tree structure.

Overview

Overview

After you complete a system analysis that includes data throughput, 1/0 and
processing requirements and select the NET+ARM processor as the target processor,
you can begin two efforts: hardware design and software development.

Hardware design might require a complete new board design, reusing or modifying
a previous design, or using an off-the-shelf NET+ARM module. Target hardware
often is unavailable to software developers for weeks - and sometimes even
months. To minimize product time-to-market, you can begin software development
immediately by partitioning the effort into two distinct tasks: application
development and the board support package (BSP).

Application development

Application development involves piecing together hardware-independent, high-
level software components, while the BSP provides hardware-specific services along
a standardized application programming layer (API) to the application software.

By using a NET+ARM development board and its associated BSP, you can begin
software development immediately. NET+OS is delivered with BSPs to support all
NET+ARM development board platforms and all DIGI Connect products. Each BSP is
tailored to support the development board’s specific target processor (for example,
the NS9360 or NS7520) and the components that surround the processor (memory
and PHY).

The development board is ideal for prototyping general network services, including

Web pages, private management information bases (MIBs), FTP servers, SMTP clients,
or network startup characteristics such as DHCP or Auto IP. In addition, you can pro-
totype non-volatile system configuration, 1/0 protocols, field upgrade mechanisms,

or file system requirements effectively with a NET+ARM development board.

Alternatively, the BSP enables you to create the platform-specific software needed
to support a hardware platform. Because the BSP is hardware-specific, completing
this software requires the target hardware - and so must wait until the target
hardware is debugged and available.

2 NET + Works with GNU Tools BSP Porting Guide

Introduction

When the hardware target becomes available, you can create the BSP and port
the application to the target hardware. Because application software maintains
the BSP standardized API, it reduces the effort required to port the application
to the new target hardware and BSP. Minimizing software development cost and
time-to-market is an important design goal.

This guide describes best practices for modifying a standard NET+ARM
development board BSP platform to support your target hardware needs and
operational characteristics.

Note that throughout this document, the terms BSP and platform are used
interchangeably.

What is the board support package?

The BSP consists of the hardware-dependent parts of the real-time operating
system (RTOS), which are responsible for:

[Initializing the hardware after a hard reset or software restart

[Handling processor exceptions

m Device drivers

m Starting the ThreadX kernel

m Starting the Transmission Control Protocol/Internet Protocol (TCP/IP)
network stack

The BSP provides the hardware services in a standardized application programming
layer (API) to the application software, allowing the application software to maintain
hardware platform independence.

Why does the target BSP need to change from the NET+ARM development board BSP?

The NET+ARM development boards are generic designs that contain a broad range
of hardware, including RAM, flash, serial line drivers, and an Ethernet PHY, and the
circuitry needed to support the specific target processor peripherals (such as PCI
clock circuitry or a USB PHY). Overall, the NET+ARM development boards were
designed to maximize the range of applications that can be prototyped, and not to
minimize cost or maximize performance.

www.digi.com 3

What is the board support package?

Most commercial products would not need all the parts options on a NET+ARM
development board or might require changes to the development board design. For
example, the development board might include an unnecessarily large (and more
expensive) flash, or the application might need special processing that requires a
larger SDRAM. Alternatively, different components can be used, such as faster
SDRAMs for higher performance, or slower SDRAMs for lower cost. Some
applications might require more extensive modifications that include special
peripherals, such as a wireless compact flash or a cryptographic accelerator.

All modifications to the development board require special BSP software support.

What are the benefits of following the NET+ARM reference design?

The NET+ARM processors have many possibilities for connecting addressable
peripherals; a good example is the use of chip selects and memory. When board
designers connect SDRAM to a NET+ARM processor, they can use any chip select that
supports dynamic RAM. From a hardware perspective, any chip select is as good as
another, and the choice might even be arbitrary. From a software perspective,
however, not all chip selects are equal, and an arbitrary board design decision
might have major implications on software.

To reduce the software development cost of modifying and maintaining a BSP, and
to reduce the cost of future upgrades to NET+OS, Digi strongly recommends that
you follow the NET+ARM development board reference design.

What’s the best way to add my target hardware BSP platform?

Digi recommends that you use a preexisting functional BSP as a template for new
target system BSPs. For best results, use these general steps:

1 Determine the closest matching NET+ARM development board BSP.

2 Copy the BSP platform that best matches your target platform, and paste it
in your platforms directory.

For example, to create a new ns9360 platform, copy the ns9360_a
platform and paste it in custom9360.

Update the BSP Makefile to support the new platform.
Build the new BSP platform.

Compile and link an application using the new BSP.

4 NET + Works with GNU Tools BSP Porting Guide

Introduction

6 Test the debugger with an application using the new BSP.

7 Test flash-based images using the new BSP.

8 Apply custom hardware modifications to the new BSP.

This procedure provides the most reliable set of instructions needed to create a new

BSP platform. Use these steps to create a template for porting BSPs from previous
versions of NET+OS.

How does the NET + OS structure support multiple BSP platforms?

In previous releases of NET+OS, the tree could support only one version of a BSP.
This version, however, can support multiple BSPs. This has been achieved by
providing better fanning out of the 1ib (library) tree, including an arm7 and arm9
sub-tree, and by fanning out individual BSP directories under these sub-trees.

Additionally, previous releases could support only one compilation of the
bootloader because this folder was located under the BSP sub-tree. The rom.bin
bootloader image has been moved to the BSP platforms folder.

NET+OS tree structure

The NET+OS tree structure is divided into subdirectories, with netos63_gnu as the
root directory. This figure shows how the tree is set up:

netos62_gnu

src bin gnusrc smicng docs debugger_files h lib

bsp examples arm7 arm9

www.digi.com 5

NET + OS tree structure

bsp

examples

bin

The next sections describes the subdirectories under netos63_gnu:

] bsp

] examples
] bin

= h

[gnusrc
[smicng

] arm7/

] arm9

[debugger_files

[| docs

The BSP is located in netos63_gnu/src/bsp. All the initialization code, device
drives, and platform-specific configuration files are stored in subdirectories under
the BSP directory.

The sample applications are located in netos63_gnu/src/examples. These
applications demonstrate how to use the APIs for the NET+OS software libraries.

Be aware that some of the sample applications require platform-specific hardware
and will not compile if the required hardware is not available. For example, the USB-
related sample application compile and work only for NS9750 and NS9360 processors.

The binary files that are executable on a PC and used by NET+0S are located in
netos63_gnu/src/bin. Some of the most commonly used files are:

[] spiboothdr.exe - Uses the netos63_gnu/src/bsp/platforms/"my
platform"/spibootldr.dat configuration file for SPI devices.

[smicng.exe - MIB compiler for SNMP MIBs written in either the SMI v1 or
SMI v2 formats.

NET + Works with GNU Tools BSP Porting Guide

Introduction

[compress.exe - Compress the application image’s .bin file to save memory
in flash.

[boothdr.exe - Inserts a header at the beginning of the image based on
information read from the netos63_gnu/src/bsp/platforms/my_platform/
boothdr.dat configuration file.

This program calculates a CRC32 checksum for the entire image, including
the header, and places it at the end of the updated file.

These are the fields in the boothdr.dat:

Field Description

WriteToFlash Used by the bootloader when it downloads a file from a network
server to determine whether to write the file to flash.

Set to either yes or no.

Compressed Indicates whether the file should be compressed

Set to either yes or no.

ExecuteFromRom Specifies where the bootloader executes the application:

m To execute directly from flash, set to yes.
m To decompress the file to RAM, set to no.

flashOffset Indicates where in flash the file should be written to.

Set to a hexadecimal value.

ramAddress Indicates where in RAM to copy the application to decompress it.

Set to a hexadecimal value.

MaxFileSize Indicates the maximum size of the file in bytes.

Set to a hexadecimal value.

h
The public API header files are located in netos63_gnu/h. When an application calls
an API function from a NET+OS library, the respective C file must include the header
file for the API routines.

gnusrc

These files allow interfacing the GNU C library /0 functions to the file systems and
the C library time functions to the real time clock driver. The GNU I/0 and time
driver interface functions are located in netos63_gnu/gnusrc.

www.digi.com 7

NET + OS tree structure

smicng
smicng subdirectories consist of MIBS that are written in either the SNMP v1 or
SNMP v2 formats. The files are located in netos63_gnu/smicng.

arm7
The netos libraries and the BSPs for ARM7 devices are located in subdirectories of
netos63_gnu/1ib/arm7.

arm9

The netos libraries and the BSPS for ARM9 devices are located in subdirectories of
netos63_gnu/1ib/arm9.

debugger_ files

This file contains sample gdb initialization scripts and configuration setting files for
the Raven. In addition, the file contains the gdbThreadX script, which sets up macros
to view ThreadX structures. This file is located in netos63_gnu/debugger_files.

docs

All the NET+0OS hardware- and software-related documentation is located in
netos63_gnu/docs. This directory contains the online help for the NET+OS APIs
and PDF versions of the hardware and software guides.

8 NET + Works with GNU Tools BSP Porting Guide

NET+0OS BSP for ARM?7

C HAPTER 2

This chapter describes how to create a platform for your customized hardware
using the NET+OS board support package (BSP) for ARM7-based platforms such as
the NET+50 and NS7520.

Overview

Overview

The board support package (BSP) contains the drivers, the board-specific software,
and a customizable directory for each supported platform. When you port a new
platform to NET+OS 6.3, you typically need to modify the files in the platforms
directory. If you are using a standard development kit, you can use one of the
existing platforms with no modifications.

This chapter describes the overall structure of the NET+OS BSP, how to add in a new
platform, and how to debug a new platform.

Platforms

This table shows the list of supported platforms provided with NET+0S 6.3. If you are
adding a new platform to NET+0S, start with a platform that is similar to yours.

Platform CPU type
net50bga_a NET+50
net50_d NET+50
ns7520_a NS7520
connectme NS7520
connectem NS7520
connectwime NS7520
connectwiem NS7520
connectsp NS7520

For a description of your platform, see the hardware reference for the processor you
are using and the jumpers and components guide for your development board.

10 NET + Works with GNU Tools BSP Porting Guide

Initialization

NET + OS BSP for ARM7

This section describes the powerup and initialization of NET+OS. In general, you do
not need to modify the initialization code.

Initializing hardware

The hardware initialization code is located in src/bsp/init/arm7. The main()
routine is located in src/bsp/common/main.c.

Initialization sequence

The Reset_Handler routine is the first routine that is executed when the processor
is first powered on. This routine is located in the INIT.s file. Reset_Handler must
perform these steps:

1

A WN

0 N O O

9

10
11
12

C library startup

Initialize supervisor mode and disable interrupts.
Initialize the PLL (NET+50 only).
Execute a software reset to get the hardware into a known state.

Put the DMA controller into test mode so the DMA context RAM can be used
as a temporary stack.

Jump to the ncc_init routine (located in NCC_INIT.c).
Set up the system control register.

Initialize the GPIO pins.

Set up the chip selects.

Run the memory test.

Verify that the application will fit into RAM and return.
Set up the stacks for the different processor modes.

Jump to the C library startup routine.

After hardware initialization, the C library START routine is called by the
Reset_Handler, which is located in the INIT.S file.

www.digi.com 11

Initialization

The size of the stack for the C library is specified in the customize.1dr file. The
default stack size for the C library is 12K. If you are not using C++, you can reduce
this size to 8K. The main() routine is located in src/bsp/common/main.c.

The main() routine must perform these steps:

1 If the power-on self-test (POST) is enabled, execute it.
2 Set up the vector table.

3 Call NABoardInit (described in the next section).

4 Perform the first level device driver initialization.

This step performs low-level device driver initialization and is executed
before the OS is loaded.

If C++ is enabled, initialize the C++ libraries.
6 Start ThreadX.

(3]

NABoardInit
This routine completes the hardware initialization that was started in INIT.s.
The NABoardInit routine must do these steps:
1 Read the chip revision and store it in g_NAChipRevision.
2 |Initialize the low level flash interface.

3 Set up non-volatile random access memory (NVRAM).

ROM bootloader

The NET+0S ROM bootloader is a small program that is programmed into ROM. The
application also is programmed into flash in a compressed format. At power-up, the
bootloader decompresses the application into RAM, and then executes it from RAM.

The advantage of using the ROM bootloader is twofold:
(] Less flash memory is required because the application image is compressed.

m The applications generally run faster from SDRAM.

The bootloader is built as part of the BSP. The ROM image for the bootloader is in the
specific platform’s directory and is called rom.bin. For details about the bootloader,
see Appendix D, “Customizing the ROM Bootloader.”

12 NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

BSP tree structure

These sections describe and illustrate the BSP tree structure.

Top-level directory

The NET+QOS BSP is located in the src/bsp directory. The top level directory
contains the Makefile for the BSP and the Makefile for the bootloader.

This figure shows the top level directory:

src/bsp

bootloader common devices h init objs platforms profiler

bootloader subdirectory

The bootloader subdirectory contains the source code for the SPI and ROM-based
bootloaders. This figure shows the bootloader subdirectory:

bootloader

libs net ramlmage romlmage spiBootRamimage spiBootRomimage

The bootloader has two parts: the ROM image and the RAM image.

Because the bootloader size is kept to less than 64K, the 1ibs directory contains
the libraries that are linked into the bootloader. The bootloader does not link in
the standard NET+OS libraries.

www.digi.com 13

BSP tree structure

The bootloader directory has six subdirectories:
[Tibs - Contains libraries that are specific to the bootloader
[net - Contains the network-related code for the BSP

[ramImage - Contains the code and Makefile for the portion of the bootloader
that runs from RAM

[romImage - Contains the Makefile and code for the portion of the bootloader
that runs from ROM

= spiBootRamImage and spiBootRomImage - Contain the SPI bootloader

devices directory

The devices directory, which contains all the NET+OS device drivers, is shown here:

devices

common net_50_20 NsS9Xxx

The device drivers are separated into three directories:

(] common - Contains the device drivers that are common to all processors, such
as serial and Ethernet

[net_50_20 - Contains the drivers for the NS7520 and the NET+50
[ns9xxx - Contains the drivers for the NS9360 and NS9750

platforms directory

The platforms directory contains all the supported platforms. This is where you
add your platform. This figure shows only some of the supported platforms:

14 NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

platforms

connectem connectme net50_d net50bga_a additional platforms

When you create a new platform, you copy an existing platform and create a new
subdirectory in this tree.

Customizing the BSP for application hardware

This section describes how to customize the NET+OS (BSP) for your application
hardware. This section also provides general information about the BSP and
presents the tasks for porting the BSP to a new hardware platform.

This table lists and briefly describes the basic tasks for porting the BSP to your
application hardware. You may find it helpful to print this table and use it as a
checklist as you port the BSP.

Task Action

_

Purchase Ethernet media access controller (MAC) addresses from the IEEE.

Create a new platform directory.

Modify the BSP Makefile.

Modify the linker scripts.

Modify the BSP configuration files to support your application hardware.

Modify the BSP to start up the required drivers.

Modify the format of BSP arguments in NVRAM.

Modify the error and exception handlers.

O | 0| N[O || MN|] W|N

Verify the debugger initialization files.

_
o

Debug the initialization code.

_
_

Modify the startup dialog.

www.digi.com 15

Customizing the BSP for application hardware

Task Action

12

Modify the power-on self-test (POST) routines.

13

Modify the Address Configuration Executive (ACE), which controls TCP/IP
configuration on startup. (For details about ACE, see the online help.)

Follow the reference design

When you design your application hardware, follow the NET+Works reference
design as closely as possible. This practice allows you to reduce the amount of
modification to the BSP and reduces your risk during board bring-up.

In addition, use the same parts as used on the NET+Works development board,
especially memory peripherals and Ethernet PHY devices.

Verify the features your hardware supports

Make sure your hardware supports these features:

Flash at €S0
RAM (32-bit wide) at CS1
NVRAM at CS3

A JTAG port, which allows you to use an in-circuit emulator (ICE) to debug the
hardware and software. This feature is essential when you are bringing up a
new board.

Extra serial port to send diagnostic messages for debugging.

Enough RAM to run your entire application, even if your product runs out of
ROM. Being able to run an application from RAM greatly simplifies debugging.

A way to disable flash ROM. This feature is necessary because flash can be
accidentally overwritten; in this situation, the NET+ARM CPU executes
garbage instructions when you start it up.

Task 1: Purchase and assign Ethernet MAC addresses

Each device on a network needs a unique Ethernet MAC address. Your company
must purchase its own block of addresses from the IEEE, and then you must assign
an address to each board.

16

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

The addresses are stored in either NVRAM or flash ROM. Digi provides an Ethernet
MAC address with each development board, but you need a unique address for each
of your own boards.

Task 2: Create a new platform subdirectory
To support your application hardware, you need to modify code in the BSP.

The src/bsp/platforms directory contains a set of subdirectories for each
supported platform. Each subdirectory contains all the code for a particular
development board. For example, the ns7520_a subdirectory contains the code
needed to support the NS7520 development board.

You need to create a new subdirectory to hold the platform-specific code for your
application hardware. In this document, the new subdirectory is referred to as the
platform directory.

P To create the new platform subdirectory:

1 Determine which development board platform is closest to your application
hardware.

2 Copy the platform's subdirectory and all its contents to src/bsp/platforms/
my_platform.

Modify the subdirectory to interoperate with your hardware.

Be aware that it is unusual to modify any code outside the platform tree
unless you are adding your own drivers or modifying existing devices.

If you believe you must modify files outside the platform tree, contact Digi
technical support for confirmation.

Task 3: Building and modifying the BSP Makefile
The next step is to build the BSP.

» To build the BSP:
1 Double-click the X-Tools icon on your desktop.

2 Change to the directory in which you installed NET+OS.

www.digi.com 17

Customizing the BSP for application hardware

3 Add these lines to the Makefile.inc file:

ifeq “$(PLATFORM)” “my_platform”
CHIP=NS7520

PROCESSOR=arm7

endif

- If you are using a ns7520_a, enter:
CHIP=NET50
ifeq '$(PLATFORM)"' 'my_platform’
CROSS_DEFS_PROCESSOR += -DNS7520
endif

- if you are using a net50bga_a, enter:
CHIP=NET50
ifeq '$(PLATFORM)' 'my_platform
CROSS_DEFS_PROCESSOR += -DNET50
endif

4 Do one:

- Either enter:
make PLATFORM=platform

- Orenter:
export PLATFORM=platform
make

where you replace piatform with the name of your platform's subdirectory.
This builds the new BSP and the bootloader.

Task 4: Modify the linker scripts

18

The customize.ldr file declares a set of constants used to generate the linker
scripts. These constants control the size and location of the program sections.

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

Constants you might need to change

This table lists the constants you might need to change for most applications:

Constant Description

RAM_SIZE The size of the RAM part on the board.
The linker generates an error if the application is too large to
fit in RAM.

FLASH_SIZE The size of the flash part on the board.

The linker generates an error if a ROM-based application is
too large to fit in ROM.

FLASH_START

The starting address of flash. For the N57520 and NET+50
processors, this address is typically 0x2000000.

RAM_START

The starting address of RAM.

FILE_SYSTEM_SIZE

The number of bytes to be allocated for the file system in
flash.

BOOTLOADER_SIZE_IN_FLASH

The amount of flash ROM to be reserved for the bootToader.
You also can use this constant to calculate where the
application image starts in flash. The bootloader shipped
with NET+OS fits into one sector of flash, typically 64 K. It is
important that this is large enough to fit the bootloader ROM
image, which is in the src/bsp/platforms/your
platform/rom.bin directory.

MAX_CODE_SIZE

The largest possible size of the uncompressed application
image. Use this constant to reserve enough RAM to hold the
application image.

The bootloader uses this constant to reserve a section of
memory to hold the application.

When you create your application, use MAX_CODE_SIZE to
reserve memory in uncached memory so that the alias of the
application does not collide with RAM used for data storage.

The compression algorithm used by the bootloader generally
achieves 2:1 compression. A good rule of thumb is to set this
constant to twice the amount of flash available to hold the
compressed application image.

The linker generates an error if an application image is larger
than this value.

www.digi.com 19

Customizing the BSP for application hardware

Constant Description

INIT_DATA_START Determines where the init data is stored in RAM.

The init data section stores information read by the
initialization code that needs to be accessed later. Enough
space must be left from the start of RAM to hold the vector
table, and possibly a FIQ routine, if you decide to write one.

INIT_DATA_SIZE The size of the memory area used to hold the start of
switches and buttons read at powerup.

CODE_START The start of ROM code.

NVRAM_FLASH_SIZE Determines how much flash ROM is reserved for NVRAM

storage. Set this constant to 0 if flash is not used for NVRAM.

Bootloader considerations

The bootloader utility, which is executed on startup, decompresses the application
image in flash to RAM and executes it. The bootToader must:

m Know where in RAM to decompress the application image to. The bootloader
creates the application header from information in the boot1dr.dat file.
Included in bootldr.dat is a ramAddress field whose value determines the
load address of the application in memory. When the header is generated, it is
“tacked on” the beginning of the application image. To determine where to
decompress the application to, the bootloader reads the ramAddress field in
the application's header.

[Be positioned in RAM where it will not overwrite itself when it decompresses
the application.

You must set the ramAddress in the boot1dr.dat to the value of
BOOTLOADER_CODE_START in the customize.1dr file.

Task 5: Modify BSP configuration files

20

You need to configure the BSP for your platform. The BSP configuration settings are
stored in files in the platforms directory. The online help and comments within the
files describe the content of the configuration files. Modify the configuration
settings to support your application hardware.

The next sections describe the files you must modify to support your hardware. You
may find it helpful to review the Memory Controller information in the hardware
reference for the processor you are using.

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

Phase Lock Loop (PLL)
The PLL generates a clock when a crystal is used instead of an external oscillator.

The PLL must be configured to generate the correct clock speed. On the NS7520,
the PLL is configured through pull-up and pull-down resistors; on the NET+50, the
PLL is configured by the BSP. The PLL settings are stored in a table in bsp.c in the
platforms directory. The default settings in the table configure the NET+50 PLL to
run at 44 MHz and assume an 18.432 MHz crystal input. Modify the values in this
table if your platform is different.

For more information on this table, see the online help.

Note: The NS7520 development board BSP assumes that an external oscillator will
be used. To configure the BSP to use the PLL, see the online help.

bsp.c file

The NANetarmInitData array in bsp.c in the platforms directory holds the timing
settings for the memory parts. The timing settings control the number of wait
states and idle cycles. The default values in the table work for commonly used
parts. Verify that the settings are correct for the memory parts on your board, and
make any necessary adjustments.

Interrupt tables

You change the system interrupt priority by updating the NAInterruptPriority
array. This allows flexible prioritization for all the NET+ARM interrupts that drive
the ARM processor IRQ. The table prioritization requires lower priority interrupts
early in the array and higher priority interrupts toward the end of the array. For
example, the NAInterruptPriority array defaults to bit 0, PORTC PCO, as the
system’s lowest priority interrupt, and bit 31, DMA1, as the system’s highest priority
interrupt.

Chip select settings

The next table lists the customization hooks in cs.c. This file contains the routines
that configure the NET+ARM chip selects to support memory parts. You need to
modify the code in these routines to support your application hardware.

www.digi.com 21

Customizing the BSP for application hardware

22

Customization hooks

customizeGetRamSize

Hardware feature and default values set

Returns the total amount of RAM on the system. The default
implementation does this by examining the configuration set
for CS1 and CS2. It therefore assumes that RAM is connected
to CS1 and, optionally, CS2.

customizeGetScr

Returns the value to write to the System Control register
(SCR). The return value must leave the CACHE, CINIT,
DMATST, LENDIAN, and SMARST bits unchanged.

These hardware features are set by customizeGetScr:
Bus speed. Default is to run at full bus speed.

Bus Monitor Timer. Enabled and set for 128 clocks.
User mode access to ASIC registers. Enabled.
External bus master access to ASIC registers. Disabled.
Internal/External System Bus Arbiter. Internal.

DMA test mode. Must leave enabled during
initialization.

Use of TEA pin. Use only for error indications.

m Misaligned bus transfer abort. Do not generate an abort
exception for misaligned transfers.

m TA input synchronization. One state synchronization.

customizeSetupCSO

Configures CS0O. The default implementation configures it to
support a flash part. The timing parameters are set
according to values in NANetarmInitData. The processor
will be executing code in flash when this function is called
after a power-on reset. Therefore, you must carefully write
this function so that the chip select remains valid at all times
while the function configures it.

customizeSetupCS1

Configures CS1.The default implementation assumes
that RAM will be connected to this chip select. It
automatically detects the RAM type and size and sets up
the chip select accordingly. The default implementation
sets the timing parameters according to the values in
NANetarmInitData and generates a fatal error if no
RAM is detected on this chip select.

customizeSetup(CS2

Configures CS2. The default implementation assumes that
RAM may be connected to this chip select. It automatically
detects the RAM type and size and sets up the chip select
accordingly. The default implementation sets the timing
parameters according to the values in NANetarmInitData
and disables the chip select if no RAM is detected.

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

Customization hooks Hardware feature and default values set

customizeSetupCS3 Configures CS3. On development boards that support
EEPROM, the default implementation sets up the chip select
to support an 8K EEPROM. Otherwise, the default
implementation disables the chip select.

customizeSetup(CS4 Configures CS4. The default implementation disables the
chip select.
customizeSetupMMCR Sets up the Memory Management Control register (MMCR).

The MMCR controls the dynamic RAM (DRAM) refresh timing
and special functions for pins A25, A26, and A27.

Default functionality for A26 and A27 is set by the hardware
through pull-down resistors on pins A23 and A24.

Usually, the software leaves the powerup settings for these
pins alone.

m DRAM refresh rate. The default is to refresh at 67 KHz.
m Use of pins A25, A26, and A27. The default is to use

A?25 as an address line, and leave pins A26 and A27 as
configured by hardware at powerup.

m Address multiplexor. The default setting is to use the
internal address multiplexor and not to use GPIO port
C3 to support the DRAM RAS/CAS signals.

gpio.h file

The NS7520 has 16 pins that are multiplexed with various functions including
GPIO functionality. These pins can be rapidly configured using the definitions in
this file. The functions multiplexed include serial, DMA, Ethernet CAM, external
IRQs, and GPIO.

By selecting options other than BSP_GPI0_MUX_INTERNAL_USE_ONLY, you can define,
set up, and program groups of pins at system startup to functions other than GPIO.

For information about how pins are multiplexed, see the gpio.h file and the
hardware reference for the processor you are using. The gpiomux_def.h public
header contains definitions used by the gpio.h file.

For a detailed description of the GPIO customization, see the online help.

www.digi.com 23

Customizing the BSP for application hardware

mii.c file
The Ethernet PHY driver is located in the mii.c file in the platforms directory. If

your hardware does not use a supportedm PHY, you must modify the driver to
support it.

For information about the routines in the mii.c file, see the online help.

customizelLed.c file

The customizeled.c file contains the structure NALedTable global data table,
which the NET+OS LED driver uses to determine how to turn LEDs on and off. The
LEDs are connected to GPIO pins. For more information, see the section “gpio.h
file” and the information about programming GPIO inputs in the hardware
reference for the processor you are using.

customizeReset.c file

This file contains the customizeRestart and customizeReset functions.

These functions determine what the system should do in case of a reset or restart
request. This is where you place application-specific code just before resetting the
device.

Simple serial driver

A simple serial driver is provided for debugging the BSP before the main serial driver
is loaded. The driver assumes that serial port 1 will be used at 9600 baud. To use a
different port or baud rate, you modify this driver.

The driver is located in the simpleSerial.c file in the devices/net_50_20/serial
directory.

Task 6: Modify the new BSP to start up the required drivers

You must configure the bsp.h file to enable the drivers that you want to run with
your application. The default configuration works with a development board. Note
that drivers that use the same GPIO pins cannot properly function at the same
time. For details on all the defines in bsp.h, see the online help.

Be sure to review the bsp.h file carefully.

24 NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

1284 controller

The BSP is configured by default to disable support of the 1284 peripheral device.
To enable the 1284 controller, use either of these methods:

u Recommended method. Define BSP_INCLUDE_PARALLEL_DRIVER in the
bsp.h file.

u Alternate method. Add the 1284 driver entries from the device driver table
in the devices.c file.

In addition, you must modify the development board to support the 1284 controller.
For information about modifying the board to support this interface, see the jumpers
and components guide for the board you are using.

To set up all the necessary GPIO settings, see the instructions in the ReadMe file of
the naparaclient example.

Serial ports

The BSP is designed to support two serial ports. In the standard NET+OS release,
however, the BSP sets up one serial port to support asynchronous RS-232 style
communications and one SPI interface.

To set a serial port to a mode other than those already set up by the standard
NET+OS release (such as SPI or HDLC), modify the gpio.h file to ensure that correct
GPIO pins are set to the correct value.

To disable the RS-232 serial peripheral interface controller, use either of these
methods:

n Recommended method. Undefine BSP_SERIAL_PORT_X where x is 1 or 2 in the
bsp.h file.

n Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

You do not need to disable the serial driver to use the HDLC driver; however, in the
appconf.h file for each example, you must set up the correct serial port number for
each function.

Task 7: Modify the format of BSP arguments in NVRAM

The BSP stores some configuration arguments in NVRAM. The configuration values
are read and written by way of customization hooks in boardParams.c.

www.digi.com 25

Customizing the BSP for application hardware

You must modify these customization hooks to support your application:

Customization hook

customizeGetMACAddress

Description

Determines the Ethernet MAC address used to
communicate on the network.

Each device on the network needs a unique Ethernet
MAC address. You must purchase a block of Ethernet
MAC addresses from the IEEE and modify this routine
to return an address from this block. The default
implementation returns a value that was stored in
NVRAM.

customizeGetSerialNumber

Returns the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used by
the API libraries or in any part of the BSP except the
dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation returns a 9-character
serial number read from NVRAM. Many developers use
the Ethernet MAC address as the unit's serial number.

customizeSaveSerialNumber

Sets the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used by
the API libraries or in any part of the BSP except the
dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation stores a 9-character serial
number in NVRAM.

customizeSetMACAddress

Sets the Ethernet MAC address for the unit.

The default implementation stores the MAC address as
a 6-byte array in NVRAM.

customizeUseDefaultParameters

Determines default configuration values and returns
them in a buffer.

The default implementation determines the default
values through constants set in appconf.h. You must
modify this routine to support your application.

customizeReadDevBoardParams

Reads the configuration from NVRAM into a buffer. You
must modify this routine to support your application.

26 NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

Customization hook Description

customizeWriteDevBoardParams Writes the configuration to NVRAM.

The default implementation accepts the current
configuration as a buffer and writes the buffer into

NVRAM.
customizeGetIPParameters Reads the IP-related configuration values from NVRAM.
customizeSavelPParameters Writes the IP-related configuration values to NVRAM.

Task 8: Modify error and exception handlers

The errhndir.c file in the platforms directory contains customization hooks for an
error handler and an exception handler.

Error handler

Code in the BSP calls the error handler, customizeErrorHandler, when fatal
errors occur. Using constants in bsp.h, you can configure the default error
handler to either:

m Report the error by blinking LEDs in a pattern.
n Reset the unit when a fatal error occurs.

You may need to modify the error handler if you want to report the error in some
other way or take some other action.

Exception handler

The unexpected exception handler, customizeExceptionHandler, is called when
these exceptions occur:

m Undefined instruction

m Software interrupt

m Prefetch abort

m Data abort

[Fast interrupt

Using constants in bsp.h, you can configure the exception handler to:

(] Handle these exceptions by resetting the unit.

www.digi.com 27

Customizing the BSP for application hardware

n Blink an error code on LEDs.

m Continue execution at the point at which the exception returned.

Digi does not recommend that you try to continue execution. You may need to
modify the exception handler to better support your application.

For details about error and exception handlers, see Appendix F, “Processor Modes
and Exceptions.”

Task 9: Verify the debugger initialization files

When you use the debugger, you must initialize hardware registers on the board
that the BSP ROM startup code would normally set up. You can use debugger
initialization scripts for this task. The script contains commands that are executed
by the debugger before the application is downloaded and executed.

NET+OS ships with debugger scripts that initialize the supported development
boards. You must create one to initialize your application hardware.

NET+Works supports the Macraigor Raven.

P To create a debugger initialization file:

1 Copy the debugger script for the development board that is closest to your
hardware platform, and give it an appropriate name.

The debugger scripts are located in the debugger_files directory.
2 Edit the debugger script with a text editor. You see several sequences of
commands like these:
monitor long ffc00020 0x0
monitor long ffc00024 = 0xf3000070
monitor long ffc00020 0x0000022d
monitor Tong ffc00028 0x00000001
These commands write values to registers in the NET+ARM.

28 NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

3 Modify the script so that the NET+ARM is properly set up for your application
hardware:

- Set up the communications port for the Raven.

- Configure the PLL on the NET+50 to the correct clock speed by setting
PLLCR.

- Configure the System Control register to set the correct bus speed and
endianess, and disable the watchdog timer.

- Set the valid bit in the €S0 chip select to 0. The BSP checks this bit to
determine whether a debugger is being used. This is important because
the BSP has to know whether to configure the RAM chip selects, perform
a memory test, and turn on cache.

m Set up the memory controller to perform the synchronous dynamic RAM
(SDRAM) refresh functions.

m Set up the chip selects used for RAM, because the application code will be
loaded into RAM.

The debugger initialization scripts, which are in the debugger files directory, are
labeled gdbns7520.raven for the NS7520 and gdbnet50.raven for the NET+50.
The debugger reads these scripts when you start to download code to the board
using gdb.

If you are using a different type of SDRAM, you must modify the settings in these
scripts. The debugger script programs the registers in the memory controller. For a
detailed description of these registers, see the hardware reference for the
processor you are using.

Task 10: Debug the initialization code

After you complete the modifications and create the debugger initialization scripts
for your application hardware, you may need to debug the initialization code.

To debug code from RAM, you use the Raven and download the code through the gdb
debugger into the RAM on your board. The next sections describe this procedure.

www.digi.com 29

Customizing the BSP for application hardware

30

Preparing to debug the initialization code

Before you start debugging the initialization code, complete these tasks:

1

From either the root directory or the bsp directory, rebuild the BSP with your
changes.

a Change to the BSP directory:
cd src/bsp
b Enter this command:
make PLATFORM=my_platform
where my_platform is the name of your platform.

(Instead of entering make PLATFORM=my_platform, you can set the
bash shell variable by entering export PLATFORM=my_pTlatform; then
you can build the BSP by entering just make.)

Disable the POST by setting the APP_POST constant in the root.c file to 0.

Carefully review all the settings in the appconf.h file. Make sure that stdio is
directed to the correct serial port. The default is /com/0.

Build the application:

a Copy the template application, which is located in:
src/apps/template.

b Inthe src/apps/template/32b directory, enter:

make clean
make all

Copy the debugger file that corresponds to your processor into the src/apps/
template/32b and name it .gdbinit. This is read by gdb when it starts.

For example, if you are using the ns7520, copy the debugger_files/
gdbns7520.raven file.

Click ocdRemote for ARM7TDMI.

From the /src/apps/template/32b directory, enter this command:
gdbtk -se image.elf

To load your image, from the gdb console window, enter:

lo image.elf

NET + Works with GNU Tools BSP Porting Guide

10

11

NET + OS BSP for ARM7

Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter (PC) at the beginning of the
startup code.

Verify that the debugger initialization file has configured the application
board such that:

- The Chip Select registers for ROM and RAM are set up to support the parts
and memory map.

- All interrupts are masked off.

- The PLL registers are properly programmed for the crystal on your
application hardware. The PLL should be set by the debugger script on
NET+50 processors, and by pull-up and pull-down resistors on the N57520.

- You can read and write RAM on your application board.

Debug the initialization code by stepping through it, as described in the next
section.

Debugging the initialization code

Debug the initialization code in stages, using the same order of the steps presented
in this section:

1
2
3
4

INIT.s file

NCC_INIT() routine
NABoardInit routine
Ethernet driver startup

Be aware that this section describes debugging from RAM. You also may need to step
through the INIT.s code when it runs from ROM.

Debug the INIT.s file

The src/bsp/init/arm7/INIT.s file performs initialization functions. Step through
the code in INIT.s, and verify that it works correctly. You usually do not need to
change the code to support custom hardware boards.

www.digi.com 31

Customizing the BSP for application hardware

32

The code in INIT.s must perform this process:

1

a » W N

= O 0 N O

Set the processor mode and disable all interrupts.

Initialize the PLL (NET+50 only).

Set the BSPEED field in the System Control register to enable full bus speed.
Execute a soft reset.

Place the DMA controller into test mode.

This action causes the on-chip static RAM (normally used to store DMA
context information and register values) to become available as RAM.

Set the SVC stack pointer to point to the DMA RAM.

Call the ncc_init routine to continue the initialization process.
Set up stacks for all processor modes.

Release the DMA controller from test mods.

Call the C library startup routines.

The routines do not return.

Debug the ncc_init routine

The ncc_init routine performs most of the board-specific hardware setup by
calling a set of functions that you customize to support your specific board. After
you customize these routines (described in task 6), you need to check ncc_init and
your customized routines to verify that they are working correctly. The NCC_INIT.c
file isin bsp/init/arm7.

The ncc_init routine must perform this process:

1

Set up the Memory Management Control register by calling
customizeSetupMMCR.

Set up the System Control register by calling customizeGetScr.

Determine whether a software restart has occurred by examining the contents
of UNDEF mode R14.

The Restart function sets this register when the system is restarted.
Determine whether a debugger is attached.

The debugger script files indicate the presence of a debugger by clearing
the valid bit for chip select 0 (CS0).

Set up the GPIO ports by calling the customizeSetupPortX routines.
Set up CSO by calling customizeSetupCSO0.

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

7 If a debugger is detected, call customizeSetupCS3 to set up €S3, and call
customizeGetRamSize to determine the amount of RAM on the system.

8 Call the customizeReadPowerOnButtons function to read and save the state
of buttons and jumpers.

9 Verify that the application can fit in the available RAM.

10 Set flags in memory, which is now set up, to indicate whether a debugger is
present and whether a software restart has occurred.

Debug the NABoardInit routine

The NABoardInit routine, which is located in src/bsp/init/arm7/narmbrd.c,
provides some low- level initialization routines for flash and NVRAM. Step through
the initialization code in the narmbrd.c file to verify that the NVRAM APIs are
initialized to support the NVRAM on your application hardware. You can configure
the board to use a flash sector as NVRAM.

Debug the Ethernet driver startup

To debug the Ethernet driver startup:

1 Put a breakpoint on the eth_reset routine (in eth_reset.c) and let the
program run until you reach the breakpoint.

2 Step into the customizeMiiReset routine (in the mii.c file) and then into
customizeMiildentifyPhy.

3 Verify that:
- customizeMiildentifyPhy returns a value not equal to Oxffff.
- mii_reset returns 0.
- customizeMiildentifyPhy identifies the PHY on your application hardware.

4 Stepinto customizeMiiNegotiate and verify that customizeMiiCheckSpeed
determines whether you are connected to a 100 Base-T network.

5 Stepinto customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.

www.digi.com 33

Customizing the BSP for application hardware

Task 11: Modify the startup dialog

The BSP prompts you to change configuration settings after a reset. The dialog
implemented for the development boards prompts you to set the board's serial
number, Ethernet MAC address, and IP networking parameters. The dialog code is in
the dialog.c file in the platforms directory.

If you plan to use the dialog in your product, change it to support your application.
The customizeDialog function calls the NAGetAppDialogPort, NAOpenDialog, and
NACloseDialog functions to determine which port to use for the dialog and to open
and close it.

If you do not want a dialog, replace the code in dialog.c with an empty version of
customizeDialog that just returns.

Generally, you do not need to customize these functions. To support your
application, however, you usually need to completely rewrite the other functions
called by customizeDialog to display the current configuration settings and prompt.
The 1/0 port for the dialog is set by the APP_DIALOG_PORT constant in your
application’'s appconf.h file.

Task 12: Modify the POST

If the APP_POST constant is set, the BSP automatically runs the POST from the
main.c, which is located in src/bsp/common.

You may want to create other POST routines that test additional hardware on
your board.

Task 13: Modify the ACE

34

The Address Configuration Executive (ACE) is an API that runs at startup to acquire
an IP address.

You need to customize the contents of two files in the platforms directory -
aceCallbacks.c and aceParams.c - that contain information the ACE uses.

aceCallbacks.c

The aceCallbacks.c file contains a set of callback functions that the ACE invokes
at different points in the startup process. You need to customize these callbacks for
your application.

NET + Works with GNU Tools BSP Porting Guide

NET + OS BSP for ARM7

For example, the customizeAcelostAddress routine is called when the lease for
an IP address has expired. The default implementation resets the unit. You could
customize customizeAcelostAddress to notify your application of the problem so

that your application can try to recover by closing and restarting network
connections.

aceParams.c

The aceParams.c file contains the code that reads and writes ACE configuration
information in NVRAM. Generally, the only parts of the aceParams.c file you need
to customize are these definitions:

m The dhcp_desired_params array. Contains a list of the Dynamic Host
Configuration Protocol (DHCP) options that you want the client to request
from the server.

Add any other DHCP options you want the client to request from the server.

n NADefaultEthInterfaceConfig. Contains the configuration that ACE uses if
none is stored in NVRAM. This configuration controls which protocols are used
to get an IP address and the options used with them. The default configuration
uses all protocols to get an IP address. Customize this configuration as needed.

For details about these functions, see the online help.

Other BSP customizing

This section describes additional customizing you may want to do.
BSP_NVRAM_DRIVER

The BSP_NVRAM_DRIVER constant in bsp.h defines the non-volatile memory type
used to store the configuration information. The next table describes the settings:

www.digi.com 35

Other BSP customizing

Constant Description

BSP_NVRAM_DRIVER This constant in bsp.h defines the non-volatile memory type used to

store the configuration information. Here are the settings:

m BSP_NVRAM_NONE - No NVRAM driver is to be built

m BSP_NVRAM_LAST_FLASH_SECTOR - The last sector of flash
memory to be used for NVRAM
BSP_NVRAM_SEEPROM - The serial EEPROM driver is to be built
BSP_NVRAM_SEEPROM_WITH_SEMAPHORES - The serial EEPROM
driver with semaphore protection is built

m BSP_NVRAM_LAST_SFLASH_SECTOR - The last sector of serial flash
is to be used for NVRAM

TCP/IP stack

The TCP/IP stack is the software module that handles networking functionality and
is started as part of the BSP initialization process. These functions and constants
are used for configuring the TCP/IP stack.

Function or constant Description

BSP_LOW_INTERRUPT_LATENCY This constant in bsp.h determines how the TCP/IP stack implements its
critical section:

m To use a semaphore for the TCP/IP critical section, set
BSP_LOW_INTERRUPT_LATENCY to TRUE.

m To disable processor interrupts to implement the TCP/IP critical
section, set BSP_LOW_INTERRUPT_LATENCY to FALSE.

BSP_WAIT_FOR_IP_CONFIG This constant in bsp.h determines whether the BSP waits for the stack
to be configured before starting the application by calling the
applicationStart() function. Previous versions of NET+OS always
waited for the stack to be configured.

Your application should not use any network resources until the stack has
been configured by setting an IP address on at least one interface. You
can use the customizeAceGetInterfaceAddrInfo() function to
determine whether an IP address has been assigned to an interface.

m To cause the BSP to wait for an IP address to be configured on at
least one interface before calling applicationStart, set
BSP_WAIT_FOR_IP_CONFIG to TRUE.

m Tocall applicationStart without waiting for an IP address to be
assigned, set BSP_WAIT_FOR_IP_CONFIG to FALSE

36 NET + Works with GNU Tools BSP Porting Guide

Function or constant

BSP_ENABLE_FAST_IP

NET + OS BSP for ARM7

Description

This constant in bsp.h enables Fast IP:

m To enable Fast IP, set BSP_ENABLE_FAST_IP to TRUE.
m To disable Fast IP, set BSP_ENABLE_FAST_IP to FALSE.
Fast IP is not supported for low interrupt latency.

BSP_ENABLE_ADDR_CONFLICT_DETECTION This constant in bsp.h enables IP address conflict detection, during

initial IP address configuration.

If BSP_ENABLE_ADDR_CONFLICT_DETECTION is defined to TRUE, the
ACE subsystem sends ARP probes to detect IP address conflict for
BOOTP, RARP, Ping ARP, and static IP address protocols. IP address
conflict detection must also be enabled on a network device. You can
retrieve the device configuration for IP address conflict detection by
using the NAGetAddrConflictData function.

NAIpSetKalnterval

This functionin naip_global.c overrides the default value for the TCP
keepalive interval, which by default is 2 hours (7200 seconds). If
ka_interval == 0, keepalive is turned off.

NAIpSetDefaultlIpTtl

This function in naip_global.c sets the default value for the time-to-
live field of outgoing packets. This value is used unless overridden on a
particular socket by the TP_TTL socket option.

NAIpSetTcpMsT

This functionin naip_global.c overrides the default value for the TCP
MSL and TCP TIME_WAIT interval. The default value of TCP MSL is 120
seconds. The TIME_WAIT interval will be set to (tcp_ms1 * 2).

APP_NET_HEAP_SIZE

This constant in appconf.h sets the TCP/IP stack heap size for dynamic
allocations. The TCP/IP stack allocates all packet buffers from this piece
of memory.

File system

The BSP can be configured to interface the C library file 1/0 functions to the file
systems. NET+OS currently supports two file systems:

Native file system. Used to create RAM volumes on RAM memory and flash
volumes on non-removable flash memory.

FAT file system. Used to create FAT volumes on removable media such as USB
flash memory sticks.

www.digi.com 37

Other BSP customizing

Use these constants to configure the file systems:

Constant

BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY

Description

Set this constant in bsp.h to TRUE to include the native file
system in the C library and create a RAM and flash volume as part
of the BSP initialization process.

BSP_NATIVE_FS_MAX_INODE_BLOCK_LIMIT

When the BSP creates a native file system volume, this constant
in bsp.h specifies the percentage of the maximum number of
inode blocks that can be allocated to store inodes for a volume.
This constant allows specifying the upper limit of the number of
blocks reserved to store inodes. Valid values are from 1 to 100.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_MAX_OPEN_DIRS

When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open directories

that the file system will track. A directory is considered open if
there are open files in the directory. Valid values are from 1 - 64.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_MAX_OPEN_FILES_PER_DIR

When the BSP creates a native file system volume, this constant
in bsp.h specifies the maximum number of open files per
directory that the file system will track. Valid values are from 1
to 64.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_BLOCK_SIZE

When the BSP creates a native file system volume, this constant
in bsp.h specifies the block size used for the volume. Valid
values are:

NAFS_BLOCK_SIZE_512

NAFS_BLOCK_SIZE_1K

m NAFS_BLOCK_SIZE_2K

m NAFS_BLOCK_SIZE_4K

BSP_NATIVE_FS_RAMO_VOLUME_SIZE

When the BSP creates the native file system RAM volume, this
constant specifies the size of the RAM volume in bytes.

38 NET + Works with GNU Tools BSP Porting Guide

Constant

BSP_NATIVE_FS_FLASHO_OPTIONS

NET + OS BSP for ARM7

Description

When the BSP creates the native file system flash volume, this
constant specifies the advanced options to use. Valid values are
the bitwise ORing of these options:

NAFS_MOST_DIRTY_SECTOR - Uses the default sector transfer
algorithm that selects the sector with the most dirty blocks. If no sector
transfer algorithm is specified, or if multiple sector transfer algorithms
are specified, the default algorithm is used.

NAFS_RANDOM_DIRTY_SECTOR - Uses the alternative sector
transfer algorithm that randomly selects a sector with dirty
blocks.

NAFS_TRACK_SECTOR_ERASES - Enables tracking the number of
sector erases for each sector of a flash volume.

NAFS_BACKGROUND_COMPACTING - Enables the background
sector compacting thread. This feature automatically reclaims
the dirty blocks in the flash volumes and converts them to
erased blocks.

For more information, see the NAFSinit_volume_cb native file
system API function in the online help.

BSP_NATIVE_FS_FLASHO_COMPACTING_THRESHOLD

If the BSP_NATIVE_FS_FLASHO_OPTIONS constant includes
NAFS_BACKGROUND_COMPACTING, this constant specifies the
percentage of erased blocks in a flash sector to gain to trigger
the sector compacting process. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API function in the online help.

www.digi.com 39

NET+0OS BSP for ARM9

C HAPTEIR 3

This chapter describes how to create a platform for your customized hardware
using the NET+OS board support package (BSP) for ARM9-based platforms such as
the NS9750 and NS9360.

41

Overview

Overview

The board support package (BSP) contains the drivers, board-specific software,
and a customizable directory for each supported platform. When you port a new
platform to NET+OS 6.3, you typically need to modify the platform directory. If
you are using a standard development kit, you can use one of the existing
platforms with no modifications.

This chapter describes the overall structure of the NET+OS BSP, how to add in a new
platform, and how to debug a new platform.

Supported platforms

This table shows the list of supported platforms provided with NET+QOS 6.3. If you
are adding a new platform to NET+QOS, start with a platform that is similar to yours.

Platform name CPU type Description
ns9360_a ARM9 NS9360 development board
ns9750_a ARM9 NS9750 development board

For a description of your platform, see the jumpers and components guide for your
development board.

Initialization

This section describes the power-up and initialization of NET+0S. In general, you
do not need to modify the initialization code. Instructions about how to modify
customizable parameters on your board are provided in the next section.

Initializing hardware

The hardware initialization code is contained in src/bsp/init/arm9 for ARM9-based
CPUs. The main() routine is src/bsp/common/main.c.

42 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Initialization sequence

The Reset_Handler is the first routine that is executed when the processor is
powered on. This routine is located in the INIT.arm file. Reset_Handler must
perform these steps:

1

10
11
12
13

Determine whether the application is booting from SPI:

- If the application is booting from SPI, the initialization code sets a flag
that is read later. This skips over the code that initializes the memory
controller, because this in already done during the SPI boot.

- If the application is not booting from SPI, the initialization code initializes
the memory controller so the application can run from SDRAM.

Take the BBUS out of reset.

Test a section of RAM that will be used as a stack for the rest of the
initialization code.

Jump to the nccinit routine in the NCC_INIT.c file, which contains the rest
of the hardware initialization routines in the NCC_INIT routine.

Read and save registers that tell whether the application is in the debugger or
this is a software restart. If either of these is true, the application can skip
over some sections of the hardware initialization.

Set up the SimpleSerialDriver.

This allows you to use the mprintf routine, which you can use to print
debug information during bootup.

Set up the GPIO pins.

Enable the instruction cache

Set up the chip selects

Run the memory test.

Verify that the application will fit into RAM and return.
Set up the stacks for the different processor modes.
Jump to the C library startup routine.

www.digi.com 43

ROM bootloader

C library startup

After hardware initialization, the C library START routine is called by the
Reset_Handler, which is located in the INIT.arm file. The size of the stack

for the C library is specified in the customize.1dr customizable file. The default
stack size for the C library is 12K. If you are not using C++, you can reduce this size
to 8K. The main() routine is located in src/bsp/common/main.c.

The main() routine must perform these steps:

1 If the power-on self-test (POST) is enabled, execute it.
Set up the vector table.

Enable the Memory Management Unit (MMU).

Call NABoardInit (described in the next section).

g A W N

Perform the first level device driver initialization.

This step performs low-level device driver initialization and is executed
before the OS is loaded.

If C++ is enabled, initialize the C++ libraries.
7 Start ThreadX.

NABoardInit

This routine completes the hardware initialization that was started in INIT.arm.
The NABoardInit routine must do these steps:

1 Read the chip revision and stores it in g_NAChipRevision.

2 |Initialize the low level flash interface.

3 Set up non-volatile random access memory (NVRAM).

ROM bootloader

The NET+0S ROM bootloader is a small program that is programmed into ROM. The
application image is stored in flash in a compressed format. At startup, the
bootloader decompresses it to RAM, and executes it from RAM.

44 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

The advantage of using the ROM bootloader is twofold:

[Less flash memory is required because the application image is compressed.
m Applications generally run faster from SDRAM.

The ROM bootloader is built as part of the BSP. The ROM image for the bootloader is
contained in the platforms directory and is called rom.bin. When you run from the
debugger, the bootloader is not use.

For details about the ROM bootloader, see Appendix D, “Customizing the ROM
Bootloader.”

BSP tree structure

These sections describe and illustrate the BSP tree structure.

Top-level directory

The NET+OS BSP is located in the src/bsp directory. The top level directory, shown
next, contains the Makefile for the BSP and the Makefile for the bootloader:

src/bsp

bootloader common devices h init objs platforms profiler

bootloader subdirectory

The bootloader subdirectory contains the source code for the SPI and ROM-based
bootloaders. This figure shows the boot1oader subdirectory:

www.digi.com 45

BSP tree structure

bootloader

libs net ramlimage romlmage spiBootRamimage spiBootRomimage

The bootloader has two parts: the ROM image and the RAM image.

Because the bootloader size is kept to less than 64K, the 1ibs directory contains
the libraries that are linked into the bootloader. The bootloader does not link in the
standard NET+OS libraries.

The bootloader directory has six subdirectories. This table lists the subdirectories
and their contents:

Subdirectory Contents

1ibs Libraries that are specific to the bootloader

net Network-related code for the BSP

ramImage The code and Makefile for the portion of the bootloader that

runs from RAM

romImage The Makefile and code for the portion of the bootloader that
runs from ROM

spiBootRamImage and The SPI bootloader
spiBootRomImage

devices directory

The devices directory, which contains the NET+OS device drivers, is shown here:

devices

common net_50_20 NS9XXX

46 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

The device drivers are separated into three directories:

[common - Contains the device drivers that are common to all processors, such
as serial and Ethernet

n net_50_20 - Contains the drivers for the NS7520 and the NET+50
u ns9xxx - Contains the drivers for the NS9360 and NS9750

platforms directory

The platforms directory contains all the supported platforms. This is where you
add your platform. This figure shows only some of the supported platforms:

connectem connectme net50_d net50bga_a additional platforms

platforms

When you create a new platform, you copy an existing platform and create a new
subdirectory in this tree.

Customizing the BSP for application hardware

This section describes how to customize the NET+OS board support package
(BSP) for your application hardware. In addition, this section provides general
information about the BSP and presents the tasks for porting the BSP to a new
hardware platform.

This table lists and briefly describes the basic tasks for porting the BSP to your
application hardware.

www.digi.com 47

Customizing the BSP for application hardware

You may find it helpful to print this table and use it as a checklist as you port the BSP.

Task Action

-

Purchase Ethernet media access controller (MAC) addresses from the IEEE.

Create a new platform directory.

Modify the BSP Makefile.

Modify the linker scripts.

Modify the BSP configuration files to support your application hardware.

Modify the BSP to start up the required drivers.

Modify the format of BSP arguments in NVRAM.

Modify the error and exception handlers.

V(N o~ | M| W[N

Verify the debugger initialization files.

—_
o

Debug the initialization code.

-
-

Modify the startup dialog.

N
N

Modify the power-on self-test (POST) routines.

—_
w

Modify the Address Configuration Executive (ACE), which controls TCP/IP
configuration on startup.

For details about ACE, see the online help.

Follow the reference design

When you design your application hardware, follow the NET+Works reference
design as closely as possible. This practice allows you to reduce the amount of
modification to the BSP and reduces your risk during board bring-up.

In addition, use the same parts as used on the NET+Works development board,
especially memory peripherals and Ethernet PHY devices.

Verify the features your hardware supports

48

Make sure your hardware supports these features:
m Flash at CS1. The NS9750 and the NS9360 boot from this flash on powerup.

m RAM (32-bit wide) at CS4. If you are using multiple chip selects for SDRAM,
you must put the largest SDRAM on CS4. CS4 is mapped to address 0 after the
Memory Controller is enabled.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

The BSP autodetects and configures additional SDRAM memory on the
other chip selects.

m JTAG port. This port, which allows you to debug the hardware and software,
is essential for bringing up a new board.

[Extra serial port. This port is used to display standard out messages for
debugging. You can easily communicate diagnostic information to the
debugging engineer using the standard 1/0 printf.

m Enough RAM to run your entire application, even if your product runs from
ROM. Running an application from RAM greatly simplifies debugging.

Task 1: Purchase and assign Ethernet MAC addresses

Each device on a network needs a unique Ethernet MAC address. Your company
must purchase its own block of addresses from the IEEE. After you purchase a block
of addresses, you must assign an address to each board.

The addresses are stored in either NVRAM or flash ROM. Digi provides an Ethernet
MAC address with each development board, but you need a unique address for your
own boards.

Task 2: Create a new platform subdirectory
To support your application hardware, you need to modify code in the BSP.

The src/bsp/platforms directory contains a set of subdirectories for each
supported platform. Each subdirectory contains all the code for a particular
development board. For example, the ns9750_a subdirectory contains the code
needed to support the NS9750 development board.

You need to create a new subdirectory to hold the platform-specific code for your
application hardware. In this document, the new subdirectory is referred to as the
platform directory.

P To create the new platform subdirectory:

1 Determine which development board platform is closest to your application
hardware.

2 Copy the platform's subdirectory and all its contents to your platform
directory:

cd src/bsp/platforms/my_platform

www.digi.com 49

Customizing the BSP for application hardware

You modify the relevant files in the directory to interoperate with your hardware.

Be aware that it is unusual to modify any code outside the platform tree unless you
are adding your own drivers or modifying existing devices.

If you believe you must modify files outside the platform tree, contact Digi
technical support for confirmation.

Task 3: Building and modifying the BSP Makefile

50

The next step is to build the BSP.

» To build the BSP:
1 Double-click the X-Tools icon on your desktop.
2 Change to the directory in which you installed NET+OS.
3 Add these lines to the Makefile.inc file:
ifeq “$(PLATFORM)” “my_platform”
CHIP=NS9360
PROCESSOR=arm9
endif
- If you are using a ns9750_a, enter:
CHIP=NS9750
ifeq ‘$(PLATFORM)’ ‘my_platform’
CROSS_DEFS_PROCESSOR+= -DNS9750
endif
- If you are using a ns9360_a, enter:
CHIP=NS9360
ifeq ‘$(PLATFORM)’ ‘my_platform’
CROSS_DEFS_PROCESSOR+= -DNS360
endif0

4 Do one:

- Either enter this command:
make PLATFORM=my_platform

- Or enter these commands:
export PLATFORM=my_platform
make

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

where you replace my_pTlatform with the name of your platform's

subdirectory.

Task 4: Modify the linker scripts

The customize.1dr file declares a set of constants used to generate the linker
scripts. These constants control the size and location of the program sections.

Constants you may need to change

This table lists the constants you may need to change for most applications:

Constant Description

RAM_SIZE The size of the RAM part on the board.
The linker generates an error if the application is too large to
fit in RAM.

FLASH_SIZE The size of the flash part on the board.

The linker generates an error if a ROM-based application is
too large to fit in ROM.

FLASH_START

The starting address of flash. For the NS9750 and NS9360
processors, this address is typically 0x50000000.

RAM_START

The starting address of RAM.

FILE_SYSTEM_SIZE

The number of bytes to be allocated for the file system
in flash.

BOOTLOADER_SIZE_IN_FLASH

The amount of flash ROM to be reserved for the bootloader.
You also can use this constant to calculate where the
application image starts in flash. The bootloader shipped
with NET+OS fits into one sector of flash that is typically 64
K. It is important that this is large enough to fit the
pbootloader ROM image, which is in the src/bsp/
platforms/my platform/rom.bin directory.

www.digi.com 51

Customizing the BSP for application hardware

Constant Description

MAX_CODE_SIZE The largest possible size of the uncompressed application
image. Use this constant to reserve enough RAM to hold the
application image.

The bootloader uses this constant to reserve a section of
memory to hold the application.

The compression algorithm used by the bootloader generally
achieves 2:1 compression. A good rule of thumb is to set this
constant to twice the amount of flash available to hold the
compressed application image.

The linker generates an error if an application image is larger
than this value.

INIT_DATA_START Determines where the init data is stored in RAM.

The init data section stores information read by the
initialization code that needs to be accessed later. Enough
space must be left from the start of RAM to hold the vector
table, and possibly a FIQ routine, if you decide to write one.

INIT_DATA_SIZE The size of the memory area used to hold the start of
switches and buttons read at powerup.

CODE_START The start of ROM code.

NVRAM_FLASH_SIZE Determines how much flash ROM is reserved for NVRAM

storage. Set this constant to 0 if flash is not used for NVRAM.

Bootloader considerations

The bootloader utility, which is executed on startup, decompresses the application
image in flash to RAM and executes it. The bootloader must:

m Know where in RAM to decompress the application image to. The bootloader
creates the application header from information in the boot1dr.dat file.
Included in boot1dr.dat is a ramAddressfield whose value determines the load
address of the application in memory. When the header is generated, it is
“tacked on” the beginning of the application image. To determine where to
decompress the application to, the bootloader reads the ramAddress field in
the application's header.

m Be positioned in RAM where it will not overwrite itself when it decompresses
the application.

You must set the ramAddress field to the value of BOOTLOADER_CODE_START in the
customize.ldr file.

52 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Task 5: Modify BSP configuration files

You need to configure the BSP for your platform. The BSP configuration settings are
stored in files in the p7atforms directory. The online help and comments in the
files describe the content of the configuration files. Modify the configuration
settings to support your application hardware.

The next sections describe the files you must modify to support your hardware. You
may find it helpful to review the Memory Controller information in the hardware
reference for the processor you are using.

sysclock.h file

The sysclock.h file defines the value for the external oscillator or crystal that
supplies the input frequency defined in the sysclock.h platforms file. This line
defines the input frequency for the ns9750 platform:

#define NA_ARMI_INPUT_FREQUENCY 398131200

The value 398131200 is the input frequency to the NS9750 development boards and
29491200 for the NS9360 development boards. If your input frequency is different,
you must modify this value.

bsp.c file

The bsp.c file contains tables you must update:

m Static memory table. The MCStaticMemoryTable array in the bsp.c file in the
platforms directory holds the timing settings for the SRAM (flash) memory
parts. The values in the table correspond to the SRAM register settings for the
NS9750/NS9360 memory controller.

For more information, see the hardware reference for the processor you
are using.

The data structure that corresponds to this table is defined in the bsp.h
header file and described in the online help. The values in the table
correspond to the SRAM part supplied on the development board. The
online help also has a description of this table.

If you are using a flash part that is different from what's on the standard
NS9750/NS9360 development boards, you may need to modify this table.

(] Interrupt tables. When you change the system interrupt priority, you must
update these tables:

www.digi.com 53

Customizing the BSP for application hardware

54

- NABbusPriorityTab - This array in the bsp.c file in the platforms
directory contains the priority of each interrupt in the Bbus. The
NABbusPriorityTab allows flexible prioritization for all BBUS interrupts
in the NET+ARM that drive the BBUS_AGGREGATE_INTERRUPT in the
NAAhbPriorityTab table.

The NABbusPriorityTab table is configured with interrupts of higher
priority at the beginning and interrupts of lower priority at the end of
the array.

- NAAhbPriorityTab - This array in the bsp.c file in the p1atforms
directory contains the priority of each interrupt in the AHB Bus. The
NAAhbPriorityTab allows flexible prioritization for all the AHB interrupts
in the NET+ARM that drive the ARM processor IRQ.

The table is configured with interrupts of higher priority at the beginning
and interrupts of lower priority toward the end of the table.

For more information about interrupts, see the “AHB interrupts” and

“Bbus interrupts” sections in the hardware reference.

init_settings.h file

The init_settings.h file contains the SDRAM settings used to program CS4 (the
RAM at address 0). You need to configure these settings before accessing SDRAM,
which is done in the Reset_Handler routine. You also need to verify that the
memory settings in this file are correct for your SDRAM.

The register settings supplied in the NS9750/NS9360 platforms are for the PC133
parts supplied on the development board. The register settings in this file are
described in detail the hardware reference. For a description of these settings,
see the online help. It is important you verify that these values are correct for
your memory type.

cs.c file

The BSP_MPMC_REFRESH_RATE define contains the value for the SDRAM refresh rate.
This define is used to calculate the value for the Dynamic Memory Refresh Timing
register in the memory controller. You must modify this define to match the refresh
rate for the memory parts you are using.

The next table lists the customization hooks in the cs.c file, which contains the
routines that configure the NET+ARM chip selects to support memory parts. You
need to modify the code in these routines to support your application hardware.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Note that €S4 is already programmed in the initialization code with the parameters
in init_settings.h. CS1 is connected to flash.

Customization hook

customizeGetRamSize

Hardware feature/default values set

Returns the total amount of RAM on the system and calls the
customizeable customizeGetCSSize routine.

customizeGetCSSize

Returns the total number of bytes of memory the chip select
is configured to support by examining the address mask in
the CS mask register.

customizeSetupCSO

CSO has its power up value when this function is called.
The table in the bsp.c file is used to set the registers in
the Memory Controller. CSO has an optional SRAM device
connected to it.

customizeSetupCSl1

Sets up CS1 (flash ROM). CS1 contains the flash code, which
the processor initially starts executing on bootstrap. CS1 is
preconfigured through the use of strapping pins and must
always be connected to flash. The size and starting address
of flash come from the linker directive file that is created
from customize.ldr.

customizeSetupCS2

Sets up CS2 (Static Memory). The table in the bsp.c fileis
used to set the registers in the Memory Controller.

customizeSetupCS3

Must set up CS3 (Static Memory). CS3 has its powerup
value when this function is called. The table in bsp.cis
used to set the registers in the Memory Controller for this
chip select.

customizeSetupCS4

Called to customize CS4 (SDRAM). CS4 is initially set up in
init.s with the parameters from init_settings.h. The
size of the RAM on CS4 must be specified in the
customize.ldr file. CS4 gets mapped to address zero
after the memory controller is enabled.

customizeSetupCS5

Must set up CS5 (optional SDRAM) and fill in the size of the
amount of RAM detected on this chip select. This is then
used to create the memory map.

customizeSetupCS6

Must set up CS6 (optional SDRAM) and fill in the size of the
amount of RAM detected on this chip select. This is then
used to create the memory map.

customizeSetupCS7

Must set up CS7 (RAM) and fill in the size of the amount of
RAM detected on this chip select. This is then used to create
the memory map.

www.digi.com 55

Customizing the BSP for application hardware

56

Customization hook Hardware feature/default values set

customizeSetupMMCR Sets up the memory management control register (MMCR),
which controls the SDRAM refresh timing.This routine sets up
the MMCR for the NET+0OS development board. The refresh
rate is calculated from the BSP_MPMC_REFRESH_RATE define
incs.c.

You need to adjust this value to equal the refresh rate of the
SDRAM part you are using. A default refresh rate already has
been set up, but you may want to optimize this value.

customizeGetRamSize Returns the total amount of RAM on the system and calls the
customizeable customizeGetCSSize routine.

Because the routines in cs.c execute before RAM is set up and before the C library is
initialized, the routines cannot use:

m Global variables
m Static variables
m Constants created with the C const keyword

A small amount (512 bytes) of SDRAM is used to support a stack. The routines can
create local variables on this stack if the variables are small enough to fit.

gpio.h file

The NS9750 has 50 pins and the NS9360 has 73 GPIO pins that are multiplexed with
functions that include GPIO functionality. You can quickly configure these pins using
the definitions in the gpio.h file. The multiplexed functions include serial, LCD,
Timers, DMA, 1284, USB, Ethernet, external IRQs, and GPIO.

By selecting options other than BSP_GPTIO_MUX_INTERNAL_USE_ONLY, you can define,
set up, and program groups of pins at system startup to functions other than GPIO.

For information about how pins are multiplexed, see the gpio.h file and the
hardware reference for the processor you are using. The gpiomux_def.h public
header contains definitions used by the gpio.h file.

For a detailed description of the GPIO customization, see the online help.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

mii.c file

The Ethernet PHY driver is located in the mii.c file in the platforms directory. If
your hardware does not use a supported PHY, you must modify the driver to support
it. For more information about supported Ethernet PHYs, see either Chapter 7,

“Hardware Dependencies for ARM7-based Platforms” or Chapter 8, “Hardware
Dependencies for ARM9-based Platforms.”

For information about the routines in the mii.c file, see the online help.

customizeCache.c file

The customizeCache.c file contains the mmuTable, which determines the cache
setup for each section of the processor's address map and the access level (read-
only, read-write, or no-access) for each region.

You must update this table if:

m Your application uses a different amount of RAM or flash.

m Your application uses memory mapped devices.

m You want to change the cache mode or access level for a region.
For details about how to update mmuTable, see the online help.

By default, NET+OS uses write back cache. If you are writing NET+OS drivers, you
need to make sure that they can handle cache coherency.

pci.c file

The pci.c file contains customizePCIStartup, which is called by
pciVeryEarlyInitialization and expects a return pointer to a pci_init_t
structure that contains user-specific data needed for PCI configuration space.

You must customize the values in the returned pci_init_t structure to suit your
application. For more information about the pci_init_t structure, see the pci.h
public header file.

customizeButtons.c file

This file contains the customizeReadPowerOnButtons call, which can be used to
sense external inputs at powerup. The initialization code can use this information
to run special memory tests or system diagnostics.

www.digi.com 57

Customizing the BSP for application hardware

customizelLed.c file

The customizeled.c file contains the NALedTable table global data structure,
which the NET+OS LED driver uses to determine how to turn LEDs on and off. The
LEDs are connected to GPIO pins. For more information, see the section “gpio.h
file” and the section about programming GPIO inputs in the hardware reference for
the processor you are using.

customizeReset.c file

This file contains the customizeRestart and customizeReset functions.

These functions determine what the system should do in case of a reset or restart
request. This is where you place your application-specific code just before you
reset the device.

Task 6: Modify the new BSP to start up the required drivers

58

You must configure the bsp.h file to enable the drivers that you want to run with
your application. The default configuration works with a development board. Note
that drivers that use the same GPIO pins cannot properly function at the same
time. For details on all the defines in bsp.h, see the online help.

Be sure to review the bsp.h file carefully.

USB device controller

The BSP is configured by default to support the USB device. You must modify the
development board to support this interface. For information about modifying the
board, see the hardware reference for the processor you are using.

To disable the USB device, use either of these methods:
n Recommended method. Undefine BSP_INCLUDE_USB_DRIVER in the bsp.h file.
n Alternate method. Remove all USB driver entries from the device driver table

in the devices.c file.

To test USB device functionality on the NS9750 board, use the instructions in the
development board’s jumpers and components guide. To modify the development
board, see the ReadMe file in the nausbdevapp example. The USB device example
uses GPIO pin 17 to set up plug-and-play (pnp) functionality. Your system uses this
pin to detect whether the device is active and ready to receive commands.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

To test USB device functionality on the NS9360 board, see the ReadMe file in the
nausbdevapp example.

1284 controller

The BSP is configured by default to disable support of the 1284 peripheral device.
To enable the 1284 controller, use either of these methods:

n Recommended method. Define BSP_INCLUDE_PARALLEL_DRIVER in the
bsp.h file.

n Alternate method. Add the 1284 driver entries from the device driver table
in the devices.c file.

Edit the 1284.h file in your platforms directory to set the number and size of the
receive and transmit buffers used by the 1284 driver. The default values usually are
sufficient unless you want to tune your application for performance or memory
usage.

In addition, you must modify the development board to support the 1284 controller.
For information about modifying the board to support this interface, see the
hardware reference for the processor you are using.

To configure the GPIO MUX to support the parallel port, set BSP_GPI0_MUX_1284 to
BSP_GPIO_USE_PRIMARY_INTERFACE. Be aware that those pins are shared by several
other functions, and you will need to disable those functions in gpio.h. If conflicts
occur, the BSP Makefile will output compiler errors that tell you which functions
you need to disable.

I12C controller
The BSP is configured by default to enable support of the I2C peripheral device. To
disable the I12C controller, use either of these methods:

n Recommended method. Undefine BSP_INCLUDE_ITC_DRIVER in the
bsp.h file.

n Alternate method. Remove the 12C driver entries from the device driver table
in the devices.c file.

You do not need to modify any specific GPIO settings for the 12C device because the
device has its own 1/0 lines.

www.digi.com 59

Customizing the BSP for application hardware

LCD controller

The BSP is configured by default to enable support of the LCD peripheral devices.
To disable the LCD controller, use either of these methods:

n Recommended method. Undefine BSP_INCLUDE_LCD_DRIVER in the bsp.h file.

[Alternate method. Remove the LCD driver entries from the device driver
table in the devices.c file.

The LCD, timer, serial port C, serial port D, and 1284 share some of the GPIO pins.
If you modify the LCD GPIO configuration, you must verify each GPIO pin setting.

PCl driver

The BSP is configured by default to enable support of the PCI peripheral device. To
disable the PCI device driver, use either of these methods:

n Recommended method. Undefine BSP_INCLUDE_PCI_DRIVER in the bsp.h file.

u Alternate method. Remove the PCl driver entries from the device driver table
in the devices.c file, and enable code in the BSP_INCLUDE_PCI_DRIVER
definition in the NCC_INIT.c file that disables the PCI module.

Serial ports

The BSP is designed to support four serial ports. In the standard NET+OS release,
however, the BSP sets up one serial port to support asynchronous RS-232 style
communications and one SPI interface.

To set a serial port to a mode other than those already set up by the standard
NET+OS release (such as SPI), modify the gpio.h file to ensure that correct GPIO
pins are set to the correct value. Set BSP_SERIAL_PORT_X to one of these values in
bsp.h:

] BSP_SERIAL_NO_DRIVER

] BSP_SERIAL_UART_DRIVER

] BSP_SERIAL_SPI_DRIVER

] BSP_SERIAL_SPI_SLAVE_DRIVER

60 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

To disable the RS-232 serial peripheral interface controller, use either of these
methods:

[Recommended method. Undefine BSP_SERIAL_PORT_X where xis 1, 2, 3, or 4
in the bsp.h file.

n Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

RTC

The BSP supports a real time clock on N59360 board platforms:
m To enable the real time clock, set the BSP_INCLUDE_RTC_DRIVER define to TRUE.
m To disable the RTC set the BSP_INCLUDE_RTC_DRIVER define to FALSE.

Task 7: Modify the format of BSP arguments in NVRAM

The BSP stores some configuration arguments in NVRAM. The configuration values
are read and written by way of customization hooks in boardParams.c.

You must modify these customization hooks to support your application:

Customization hook Description

customizeGetMACAddress Determines the Ethernet MAC address used to
communicate on the network.

Each device on the network needs a unique Ethernet
MAC address. You must purchase a block of Ethernet
MAC addresses from the IEEE and modify this routine
to return an address from this block. The default
implementation returns a value that was stored in
NVRAM.

customizeGetSerialNumber Returns the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used

by the API libraries or in any part of the BSP except
the dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation returns a 9-character serial
number read from NVRAM. Many developers use the
Ethernet MAC address as the unit's serial number.

www.digi.com 61

Customizing the BSP for application hardware

Customization hook

customizeSaveSerialNumber

Description

Sets the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. It is not used
by the API libraries or in any part of the BSP except
the dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation stores a 9-character
serial number in NVRAM.

customizeSetMACAddress

Sets the Ethernet MAC address for the unit.

The default implementation stores the MAC address
as a 6-byte array in NVRAM.

customizeUseDefaultParameters

Determines default configuration values and returns
them in a buffer.

The default implementation determines the default
values through constants set in appconf.h. You must
modify this routine to support your application.

customizeReadDevBoardParams

Reads the configuration from NVRAM into a buffer. You
must modify this routine to support your application.

customizeWriteDevBoardParams

Writes the configuration to NVRAM.

The default implementation accepts the current
configuration as a buffer and writes the buffer into
NVRAM.

customizeGetIPParameters

Reads the IP-related configuration values from NVRAM.

customizeSavelPParameters

Writes the IP-related configuration values to NVRAM.

Task 8: Modify error and exception handlers

62

The errhndir.c file in the platforms directory contains customization hooks for an
error handler and an exception handler.

Error handler

Code in the BSP calls the error handler, customizeErrorHandler, when fatal
errors occur. Using constants in bsp.h, you can configure the default error

handler to either:

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

[Report the error by blinking LEDs in a pattern.
[Reset the unit when a fatal error occurs.

You may need to modify the error handler if you want to report the error in some
other way or take some other action.

Exception handler

The unexpected exception handler, customizeExceptionHandler, is called when
these exceptions occur:

m Undefined instruction

m Software interrupt

[Prefetch abort

[Data abort

[Fast interrupt

Using constants in bsp.h, you can configure the exception handler to:
m Handle these exceptions by resetting the unit.

n Blink an error code on LEDs.

m Continue execution at the point at which the exception returned.

Digi does not recommend that you try to continue execution. You may need to
modify the exception handler to better support your application.

For details about error and exception handlers, see Appendix F, “Processor Modes
and Exceptions.”

Task 9: Verify the debugger initialization files

This section provides instructions for both the Raven and the MAJIC debuggers.

Using the MAJIC/MAJICO probe

When you use the EPI MAJIC/MAJICO probe, you must initialize hardware registers
on the board that the BSP ROM startup code normally sets up. Debugger initializa-
tion scripts are set up as part of the installation procedure for NET+OS 6.3. The
scripts contain commands that the debugger executes before the application is
downloaded and executed.

www.digi.com 63

Customizing the BSP for application hardware

64

The MDI server is the interface between the gdb debugger and the MAJIC. The
debugger initialization script, ns9xxx.cmd, is located in the directory from which
the MDI server is executed.

During the installation procedure, you are prompted for the name of this directory.
The MDI server reads this script when you start to download code to the board
using gdb.

This table shows the debugger initialization files that the MDI server uses:

File name Contents

startice.cmd The JTAG settings and reads in the ns9xxx_cmd file to initialize
the target board

ns9xxx.cmd The sequence of commands to initialize SDRAM

epimdi.cfg MAJIC settings, including the network parameters

The debugger script initializes SDRAM and sets a bit in a register to indicate that the
application is executing in the debugger.

If you are using a different type of SDRAM, you must modify the settings in the
ns9xxx.cmd file. This file programs the registers in the memory controller.

For a detailed description of these registers, see the hardware reference for the
processor you are using.

Raven debugger

When you use the Raven debugger, you must initialize hardware registers on the
board that the BSP ROM startup code would normally set up. The scripts contain
commands that the debugger executes before the application is downloaded and
executed. The debugger initialization scripts are contained in the directory
debugger files and are labeled gdbns9xxx.raven. The debbuger reads these scripts
when you start to download code to the board using gdb.

If you are using a different type of SDRAM, you must modify the settings in these
scripts. The debugger scripts program the registers in the memory controller. For a
detailed description of these registers, see the hardware reference for the
processor you are using.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Task 10: Debug the initialization code

After you complete the modifications and create the debugger initialization scripts
for your application hardware, you may need to debug the code.

To debug code from RAM, you use the EPI MAJIC/MAJICO or the Raven and download
the code through the gdb debugger into the RAM on your board. The next sections
describe this procedure.

The next sections provide Instructions the MAJIC/MAJICO probes and the Raven
debugger.

Preparing to debug the initialization code using the MAJIC/MAJICO
The instructions in this section apply to both the MAJIC and the MAJICO debuggers.

Before you start debugging the initialization code, complete these tasks:

1 If you are using the MAJIC for the first time, verify its Ethernet connection to
by pinging the IP address of the MAJIC. From either the bash shell or a DOS
window, enter:

ping IP_ADDR
where IP_ADDR is the IP address of the MAJIC.

If you do not get a response, verify that the Ethernet cable is connected
to the MAJIC and that the status light on the MAJIC is green.

2 Rebuild the BSP with your changes:
a Change to the bsp directory:
cd src/bsp
b Enter this command:
make PLATFORM=my_platform
where my_pTlatform is the name of your platform.
3 Disable the POST by setting the APP_POST constant in the root.c file to 0.

Carefully review all the settings in the appconf.h file. Make sure that
stdio is directed to the correct serial port. The default is com/0.

www.digi.com 65

Customizing the BSP for application hardware

4 Build the application:
a Copy the template application, which is located in this directory:
src/apps/template
b In the src/apps/template32b directory, enter:
make PLATFORM=my_platform clean
make PLATFORM=my_pTlatform all
5 Start the MDI server by clicking the MDI server icon.
6 Load the application with either gdb or gdbtk.

- Tosetupagdbinit file in the 32b directory for the template
application, enter:
make gdbinit

- To start the debugger, enter:
gdbtk -se image.elf

7 Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter (PC) at the beginning of the
startup code.

8 Verify that the debugger initialization file has configured the application
board such that:

- The Chip Select registers for ROM and RAM are set up to support the parts
and memory map.

- You can read and write RAM on your application board.

9 Debug the initialization code by stepping through it, as described in the next
section.

Preparing to debug the initialization code using the Raven

Before you start debugging the initialization code, complete these tasks:

1 In the bsp directory, rebuild the BSP with your changes:

- Change to the BSP directory:
cd src/bsp

- Enter this command:
make PLATFORM=my_platform
where my_piatformis the name of your platform.
(Instead of entering make PLATFORM=my_pTlatform, you can set the bash
shell variable by entering export PLATFORM=my_platform and then enter
make to build the BSP.)

66 NET + Works with GNU Tools BSP Porting Guide

10

11

NET +OS BSP for ARM9

Disable the POST by setting the APP_POST constant in the root.c file to 0.

Carefully review all the settings in the appconf.h file. Make sure that stdio
is directed to the correct serial port. The default is /com/0.

Build the application:
a Copy the template application, which is located in this directory:
src/apps/template
b Inthe src/apps/template/32b directory, enter:
make clean
make all
Copy the debugger file that corresponds to your processor into the src/app/
template/32b directory.
When gdb starts, it reads this file.
For example, if you are using the NS9750, copy the debugger_files/gdbtk
-se image.elf fileinto src/apptemplate 32b and rename it gdbinit.
Click the ocdremote -C ARM926EJ-S icon.
From the /src/apps/template/32b directory, enter this command:
gdbtk -se image.elf
To load your image, from the gdb console window, enter:
lo image.elf

Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter (PC) at the beginning of the
startup code.

Verify that the debugger initialization file has configured the application
board such that:

- The Chip Select registers for ROM and RAM are set up to support the
parts and memory map.

- You can read and write RAM on your application board.

Debug the initialization code by stepping through it, as described next.

Debugging the initialization code

Debug the initialization code in stages, using the same order of the steps presented
in this section:

1
2

init.arm file

ncclnit routine

www.digi.com 67

Customizing the BSP for application hardware

68

3 NABoardInit routine
4 Ethernet driver startup

Note: This section describes debugging from RAM. You also may need to step
through the init.arm code when it runs from ROM.

Debug the init.arm file

The init.arm file, located in src/bsp/init/arm9, performs initialization functions.
Step through the code in init.arm, and verify that it works correctly. You usually
do not need to change the code to support custom hardware boards.

The first function executed in NET+OS is the Reset_Handler routine in the init.arm
file. If your board is not working, set a breakpoint on the Reset_Handler routine
and step through it.

Debug the ncclnit routine

The ncclnit routine, located in bsp/init/arm9/ncc_init.c, performs most of the
board-specific hardware setup by calling a set of functions that you customize to
support your board. After you customize these routines (described in Task 5), you
need to check nccInit and your customized routines to verify that they are
working correctly.

If you have difficulty starting the development board, you can use these
diagnostic tools:

m Asimple serial driver that is loaded in nccInit.

m mprintf, aspecial printf routine. A prototype of this routine is located in
h/ncc_init.h. You can use mprintf to display diagnostic information before
the serial driver is loaded in netosStartup.

m A NETOS_DEBUG flag, in nccInit. This flag can provide useful information.

Debug the NABoardInit routine

The NABoardInit routine, which is located in src/bsp/init/arm9, provides some
low-level initialization routines for flash and NVRAM. Step through the initialization
code in the narmbrd.c file to verify that the NVRAM APIs are initialized to support
the NVRAM on your application hardware. You can configure the board to use a
flash sector as NVRAM.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Debug the Ethernet driver startup

» To debug the Ethernet driver startup:

1 Put a breakpoint on the eth_reset routine (in eth_reset.c), and let the
program run until you reach the breakpoint.

2 Stepinto the customizeMiiReset routine (in the mii.c file) and then into
customizeMiildentifyPhy.

3 Verify that:
- customizeMiildentifyPhy returns a value not equal to Oxffff.
- mii_reset returns 0.
- customizeMiildentifyPhy identifies the PHY on your application

hardware.

4 Stepinto customizeMiiNegotiate and verify that customizeMiiCheckSpeed

determines whether you are connected to a 100 Base-T network.

5 Stepinto customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.

Task 11: Modify the startup dialog

The BSP prompts you to change configuration settings after a reset. The dialog
implemented for the development boards prompts you to set the board's serial
number, Ethernet MAC address, and IP networking parameters. The dialog code is
in the dialog.c filein the platforms directory.

If you plan to use the dialog in your product, change it to support your application.
The customizeDialog function calls the NAGetAppDialogPort, NAOpenDialog, and
NACloseDialog functions to determine which port to use for the dialog and to open
and close it.

If you do not want a dialog, replace the code in dialog.c with an empty version of
customizeDialog that just returns.

Generally, you do not need to customize these functions. To support your
application, however, you usually need to completely rewrite the other functions
called by customizeDialog to display the current configuration settings and
prompt. The I/0 port for the dialog is set by the APP_DIALOG_PORT constant in your
application’'s appconf.h file.

www.digi.com 69

Customizing the BSP for application hardware

Task 12: Modify the POST

If the APP_POST constant is set, the BSP automatically runs the POST from the
main.c, which is located in src/bsp/common.

The POST routines that ship with NET+OS test the NS9750 /NS9360 processor. You
may want to create other POST routines that test additional hardware on your board.

Task 13: Modify the ACE

70

The Address Configuration Executive (ACE) is an API that runs at startup to acquire
an IP address.

You need to customize the contents of two files in the platforms directory -
aceCallbacks.c and aceParams.c - that contain information the ACE uses.

aceCallbacks.c

The aceCallbacks.c file contains a set of callback functions that the ACE invokes
at different points in the startup process. You need to customize these callbacks for
your application.

For example, the customizeAceLostAddress routine is called when the lease for an IP
address has expired. The default implementation resets the unit. You could customize
customizeAcelostAddress to notify your application of the problem so that your
application can try to recover by closing and restarting network connections.

aceParams.c

The aceParams.c file contains the code that reads and writes ACE configuration
information in NVRAM. Generally, the only parts of the aceParams.c file that you
need to customize are these definitions:

m The dhcp_desired_params array. Contains a list of the Dynamic Host
Configuration Protocol (DHCP) options you want the client to request from the
server. Add any other DHCP options you want the client to request from the server.

m NADefaultEthinterfaceConfig. Contains the configuration that ACE uses if none
is stored in NVRAM. This configuration controls which protocols are used to get
an IP address and the options used with them. The default configuration uses all
protocols to get an IP address. Customize this configuration as needed.

For details about these functions, see the online help.

NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

Other BSP customizing

This section describes additional BSP customizing you may want to do.

BSP_NVRAM_DRIVER

The BSP_NVRAM_DRIVER constant in bsp.h defines the non-volatile memory type
used to store the configuration information. Here are the settings:

Constant Description

BSP_NVRAM_DRIVER This constant in bsp. h defines the non-volatile memory type used

to store the configuration information. Here are the settings:

m BSP_NVRAM_NONE - No NVRAM driver is to be built.

m BSP_NVRAM_LAST_FLASH_SECTOR - The last sector of flash is
to be used for NVRAM.
BSP_NVRAM_SEEPROM - The serial EEPROM driver is to be built.
BSP_NVRAM_SEEPROM_WITH_SEMAPHORES - The serial EEPROM
driver with semaphore protection is to be built.

m BSP_NVRAM_LAST_FLASH_SECTOR - The last sector of serial
flash is to be used for NVRAM.

TCP/IP stack

The TCP/IP stack, which is started as part of the BSP initialization process, is the
software module that handles networking functionality. These functions and
constants are used for configuring the TCP/IP stack:

Function or constant Description

BSP_LOW_INTERRUPT_LATENCY This constant in bsp.h determines how the TCP/IP stack implements its
critical section:

m To use a semaphore for the TCP/IP critical section, set
BSP_LOW_INTERRUPT_LATENCY to TRUE.

m To disable processor interrupts to implement the TCP/IP critical
section, set BSP_LOW_INTERRUPT_LATENCY to FALSE.

BSP_ENABLE_FAST_IP This constant in bsp.h enables Fast IP:

m To enable Fast IP, set BSP_ENABLE_FAST_IP to TRUE.
m To disable Fast IP, set BSP_ENABLE_FAST_IP to FALSE.
Fast IP is not supported for low interrupt latency.

www.digi.com 71

Other BSP customizing

Function or constant

BSP_WAIT_FOR_IP_CONFIG

Description

This constant in bsp.h determines whether the BSP waits for the stack
to be configured before starting the application by calling the
applicationStart() function. Previous versions of NET+OS always
waited for the stack to be configured.

Your application should not use any network resources until the stack has

been configured by setting an IP address on at least one interface. You can

use the customizeAceGetInterfaceAddrInfo() function to determine

whether an IP address has been assigned to an interface.

m To cause the BSP to wait for an IP address to be configured on at least
one interface before calling applicationStart, set
BSP_WAIT_FOR_IP_CONFIG to TRUE.

Tocall applicationStart without waiting for an IP address to be assigned,
set BSP_WAIT_FOR_IP_CONFIG to FALSE

BSP_ENABLE_ADDR_CONFLICT_DETECTION

This constant in bsp.h enables IP address conflict detection, during initial
IP address configuration.

If BSP_ENABLE_ADDR_CONFLICT_DETECTION is defined to TRUE, the ACE
subsystem sends ARP probes to detect IP address conflict for BOOTP,
RARP, Ping ARP, and static IP address protocols. IP address conflict
detection also must be enabled on a network device. You can retrieve
the device configuration for IP address conflict detection with the
NAGetAddrConflictData function.

NAIpSetKalnterval

This function (n naip_global.c overrides the default value for the TCP
keepalive interval, which by default is 2 hours (7200 seconds).

If ka_interval == 0, keepalive is turned off.

NAIpSetDefaultlIpTtl

This function in naip_global.c sets the default value for the time-to-live
field of outgoing packets. This value is used unless it is overridden on a
socket by the IP_TTL socket option.

NAIpSetTcpMs]

This functionin naip_global.c overrides the default value for the TCP MSL
and TCP TIME_WAIT interval. The default value of TCP MSL is 120 seconds.
The TIME_WAIT interval is set to (tcp_msl * 2).

APP_NET_HEAP_SIZE

This constant in appconf.h sets the TCP/IP stack heap size for dynamic
allocations. The TCP/IP stack allocates all packet buffers from this piece
of memory.

72 NET + Works with GNU Tools BSP Porting Guide

NET +OS BSP for ARM9

File system

The BSP can be configured to interface the C library file I/0 functions to the file
systems. NET+OS currently supports two file systems:

m Native file system. Used to create RAM volumes on RAM memory and flash
volumes on non-removable flash memory.

m FAT file system. Used to create FAT volumes on removable media such as USB
flash memory sticks.

Use these constants to configure the file systems:

Constant Description

BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY Set this constantin bsp.h to TRUE to include the native file system
in the C library and create a RAM and flash volume as part of the
BSP initialization process.

BSP_NATIVE_FS_MAX_INODE_BLOCK_LIMIT When the BSP creates a native file system volume, this constant
in bsp.h specifies the percentage of the maximum number of
inode blocks that can be allocated to store inodes for a volume.
This constant allows specifying the upper limit of the number of
blocks reserved to store inodes. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API.

BSP_NATIVE_FS_MAX_OPEN_DIRS When the BSP creates a native file system volume, this constant in
bsp.h specifies the maximum number of open directories that the
file system will track. A directory is considered open if the
directory has open files. Valid values are from 1 to 64.

For more information, see the NAFSinit_volume_cb native file
system API.

BSP_NATIVE_FS_MAX_OPEN_FILES_PER_DIR When the BSP creates a native file system volume, this constant in
bsp.h specifies the maximum number of open files per directory
that the file system will track. Valid values are from 1 to 64.
For more information, see the NAFSinit_volume_cb native file
system API in the online help.

BSP_NATIVE_FS_BLOCK_SIZE When the BSP creates a native file system volume, this constant in
bsp.h specifies the block size used for the volume. Valid values are:

m NAFS_BLOCK_SIZE_512
m NAFS_BLOCK_SIZE_1K
m NAFS_BLOCK_SIZE_2K
m NAFS_BLOCK_SIZE_4K

www.digi.com 73

Other BSP customizing

Constant

BSP_NATIVE_FS_RAMO_VOLUME_SIZE

Description

When the BSP creates the native file system RAM volume, this
constant specifies the size of the RAM volume in bytes.

BSP_NATIVE_FS_FLASHO_OPTIONS

When the BSP creates the native file system flash volume, this
constant specifies the advanced options to use. Valid values are the
bitwise ORing of the following:

m NAFS_MOST_DIRTY_SECTOR - Uses the default sector transfer
algorithm that selects the sector with the most dirty blocks. If
no sector transfer algorithm is specified or if multiple sector
transfer algorithms are specified, the default algorithm is
used.

m NAFS_RANDOM_DIRTY_SECTOR - Uses the alternative sector
transfer algorithm that randomly selects a sector with dirty
blocks.

m NAFS_TRACK_SECTOR_ERASES - Enables tracking the number
of sector erases for each sector of a flash volume.

m NAFS_BACKGROUND_COMPACTING - Enables the background
sector compacting thread. This feature automatically
reclaims the dirty blocks in the flash volumes and converts
them to erased blocks.

For more information, see the NAFSinit_volume_cb native file
system API function.

BSP_NATIVE_FS_FLASHO_COMPACTING_THRESHOLD

If the BSP_NATIVE_FS_FLASHO_OPTIONS constant includes
NAFS_BACKGROUND_COMPACTING, this constant specifies the
percentage of erased blocks in a flash sector to gain to trigger the
sector compacting process. Valid values are from 1 to 100.

For more information, see the NAFSinit_volume_cb native file
system API in the online help.

BSP_INCLUDE_FAT_FILESYSTEM_FOR_CLIBRARY

Set this constant to TRUE to include the FAT file system in C library.
The FAT file system is supported only on the NS9360 and NS9750
platforms.

74 NET + Works with GNU Tools BSP Porting Guide

Linker Files

C HAPTEI R 4

This chapter describes the linker files that are provided for sample projects and the

corresponding memory map.

75

Overview

Overview

The GNU linker combines one or more object modules into a single executable
output module. Executable programs are divided into several sections that contain
the code and data parts of the application. Commands in the linker files that are
supplied with NET+OS determine where to map the sections of applications in
memory.

The linker must position sections in an application where actual ROM and RAM will
reside. Therefore, the linker file that is used to create images that execute from
flash ROM is different from the one that executes from RAM.

The rest of this chapter describes the linker files for the sample projects.

For more information about the GNU linker, see your GNU Tools documentation.

Linker files provided for sample projects

76

Linker files are provided in src/bsp/platforms/my_platform and are used to link
the sample applications. Most projects use the image.1dr and rom.1dr linker files
to create applications that execute from RAM or ROM, respectively. These linker
scripts are generated when applications are built by the BSP Makefile.

The source files for the linker scripts are stored in the C:/NET0S63_GNU/bsp/init/
arm9 and C:/NET0S63_GNU/bsp/init/arm7 directories. When the BSP is built, these
files, along with customize.1dr, are used to generate the linker files in the
platforms directory which is then used by the application Makefile.

These linker files are provided:

Linker file Description

customize.ldr The customization file for linker scripts

image.ldr Generates an executable file for debugging and for the image.bin image
rom.ldr Generates an executable file for the rom.bin image

Some sections in applications are defined for all GNU applications, and some are
specific to NET+OS.

NET + Works with GNU Tools BSP Porting Guide

Linker Files

Basic GNU Tools section of the linker files

This table summarizes the GNU Tools section of the linker files:

Section Description

init Vector code section

text Text section, including code
data Initialized writable data section
bss Zeroed data section

rodata Read-only data

common Global variables

NET+0S section of the linker files

This table summarizes the NET+OS section of the linker files:

Section Description
gnu_initdata Stores jumper and button settings read at startup.
heap Heap; grows upward.

gnu_ncc_initdata Stores NET+OS settings determined at startup.

stack System stack; grows downward.
netosstack Stack for each processing mode; grows downward.
free_mem Used for the kernel to create the timer thread and root thread.

Do not use this section for any other purpose.

tth Stores the mmuTTB table at the end of RAM.

Initially is set up by the bootloader. Note that if you change ttbh_size,
you also must change SECOND_LEVEL_TABLE_SIZE in the mmu utility

Do not overwrite this table.

The ThreadX library is hard-coded to call tx_application_define (void
*first_unused_memory) after the kernel has been loaded and just before the
kernel scheduler starts. The free_mem address is passed to this function, which
creates the root thread that is responsible for starting NET+0S and the IP stack. Do
not pass any other address to create the root thread. The first_unused_memory
argument points to a global variable that the kernel sets up.

www.digi.com 77

Address mapping (ARM9 only)

Address mapping (ARM9 only)

The linker command files that are generated for each application set up an address
map and or cache data. You enable or disable the instruction cache by changing
BSP_AUTOMATICALLY_ENABLE_INSTRUCTION_CACHE in the bsp.h file. Instruction cache
is turned on by default.

The NS9360_a development board currently has:

[16 MB SDRAM on €S4, mapped at 0X0000000

m 2 MB flash on CS1, mapped at 0Xx50000000

In NET+OS, the netos_63_gnu/src/bsp/my_platform/customizeCache.c file contains

the table used to set up the MMU translation tables. A sample of the table is shown
next. In this table:

m The starting and ending virtual addresses are the address software can read.

m The cache mode defines whether the memory region is buffered, write
through, or write back.

m The user access defines the access permissions for the region. If an access
violation occurs, an exception is raised by the CPU. The user access allows the
MMU to set up address ranges that are invalid for the software to write to,
which is a useful in debugging rogue pointers.

Starting Ending virtual Page Cache mode User Physical
virtual address address size access address
0x0000000 OXOOFFFFFF SIZE_IM MMU_WRITE_BACK RW 0x00000000-
OXOO0FFFFFF
0XA0000000 OXAOOFFFFF SIZE_IM MMU_BUFFERED RW 0XA0000000-
OXAOOFFFFF
0xC0000000 OXCOFFFFFF SIZE_IM MMU_BUFFERED RW 0x000000-
OXO0FFFFFF

78 NET + Works with GNU Tools BSP Porting Guide

Linker Files

This is what the rows in the table specify:

m Top row. Specifies that the virtual address 0x0000000-0x00FFFFFF is write
back, is readable and writable and maps to the physical memory at
0x00000000-0x00FFFFFF.

m Second row. Specifies that the address 0xA000000 to 0xAOOFFFFF is set up to
be a buffered region of memory with read/write access; this is the section of
memory used for PCI I/0. The possible values for the cache mode are shown in
the next table.

m Third row. Shows that the address range 0xC0000000-0xCOFFFFFF is mapped
to the physical address range 0x000000-0x00FFFFFF and is buffered but not
cached. The 0xC0000000 is the address range that the software can use to
access memory as non-cached; all reads and writes go directly to main memory.

For more information, see the online help.

The ARM processor has a 16-word write buffer that performs burst writes to memory
to increase efficiency. NET+OS sets up the non-cached regions as bufferable; this
does not cause any coherency problems because writes are always performed
through the write buffer. So if you are using the DMA, by the time the F (full) bit is
set the data written before it would have been flushed from the write buffer. The
cache flush routines are described in the MMU section of the online help.

Cache mode Description

MMU_NONBUFFERED Disable all caching and buffering.

MMU_BUFFERED Disable caching, but allow writes to be buffered.

MMU_WRITE_THROUGH Cache reads, but do not cache writes. Allow writes to be
buffered.

MMU_WRITE_BACK Cache both reads and writes, and allow writes to be buffered.

www.digi.com 79

Address mapping (ARM9 only)

NET+0OS memory map (ARM9 only)

The NET+0S memory map for the ARM9 based development boards is shown next.
Note that the NS9360 does not have the PCI address space.

80

Virtual address space

1GB 2 GB 3 GB 4 GB
40000000 80000000 C0O000000 FFFFFFFF
0] 1 2 3 4 5 6 7 8 9 E B C D E F
Cached Uncached| Uncached Uncached Uncached Uncached § g{ Cached Uncached %
SDRAM SRAM |flash peripherals |PCl processor ER PCl SDRAM 2
memory | registers g % memory =
Sk
I ’ - 7 ,,"
| /ﬁ"’ // -7
[l -7 7 -
| - ’ 4 -~
| .- / , -
| e / -
1 - At
! P - / //’/
| - K L
| _--7 ’ -7
I - [Prae 4
] L /,r 4
: Physical address space -7 a7 /
| _--7 /,a’ , //
! _--7 P ’ ’
| - - / /
| _-=7 _-47 // J
, -7 1GB T 2GBi K 3GB 4GB
: -7 - 40009,000’ - 80000000 , C0000000 FFFFFFFF
0] 1 2 3 4 5 6 7 8 9 B C D E F
SDRAM | SDRAM SDRAM SDRAM SDRAM| SDRAM| SDRAM SDRAM|PCI Processor; Reserved for processor
CS4 CSb CS6 CSs7 CSO CS1 CS2 CS3 | memory|registers registers in future processors
flash

In this diagram:

The bottom half shows the actual physical address space.

The top half shows the virtual address space seen by the CPU and the software.

The first gigabyte of memory is set up as a cached region of memory; this is

the address space in which all applications run (stack, bss data, heap).

The 3 GB-4 GB range is set up for non-cached memory and is mapped to the

0-1 GB of physical memory. The end of the 4GB range is set up as invalid

because these are the addresses of registers in the NET+50 and the NS7520
processors that no longer exist. PClI memory also is mapped to a cached and
non-cached region.

NET + Works with GNU Tools BSP Porting Guide

Linker Files

All applications use the OGB-1GB range of addresses, which is set up as write-back
cache; NET+OS drivers typically use the 3GB-4GB to store DMA buffer descriptors that
should not be cached. You usually need to access the uncached region only if you are
writing drivers that use DMA; typical applications never need to use this region.

Memory aliasing in NET+0S (ARM7 only)

NET+OS aliases physical memory to four locations in the address map, so each
physical word of memory appears at four addresses. The aliasing is done on all
platforms. NET+OS configures one aliased copy of memory for instruction cache on
platforms that support cache. Code is executed from this area of the address map
to improve performance. NET+OS uses uncached areas for general data storage.

The next figure shows the NET+OS memory map with cache enabled. In the figure:
(] Physical memory is mapped four times in logical memory.

m The NET+ARM internal registers appear once.

[Logical page 2 is used for instruction cache.

n All addresses are in hexadecimal notation.

www.digi.com 81

Memory aliasing in NET+0S (ARM7 only)

Physical memory Logical memory

Overlays| NET+ARM internal

10000000 | NET+ARMinternal > registers £0000000

registers

RAM: 32 MB

ROM: 1 or 2 MB

0000000

| Cacheable region 2

3000000 | NVRAM: 8 KB b
Page 2

[S

OM: 1 or 2 MB
AM: 32 MB

m Page 0 contains a slot for up to 32 MB of RAM (using CS1 and CS2) at addresses
0x0 through 0x1ffffff.

m Either 1 or 2 MB of flash ROM on €S0 begin at 0x2000000, and 8 KB of NVRAM
starts at 0x3000000.

m The ROM and RAM spaces are remapped on pages 1, 2, and 3. For example:

Physical address Which is Can be accessed at

0x100 RAM 0x4000100, 0x8000100, and 0xC0O00100
0x20000100 Flash ROM 0x6000100, 0xA000100, and 0OxE000100
0x3000100 NVRAM Only at 0x3000100

82 NET + Works with GNU Tools BSP Porting Guide

Adding Flash

C HAPTEI R b

This chapter describes how to update flash memory.

83

Overview

NET+OS includes application program interface (API) functions for reading, writing,
and erasing flash memory. The internals of the flash memory API rely on
flash_id_table in the naflash.c file (located in C:/NET0S62_GNU/src/flash)

to define the known flash parts. The flash API is guaranteed to function only with
parts that are defined in the flash_id_table. If the part is not recognized, you
need to update the flash_id_table.

The rest of this chapter describes the f1ash_id_table and the procedures for
updating flash. For details about the flash API functions, see the online help.

NET+OS 6.3 supports these flash ROM parts:

Manufacturer Part number
AMD AM29F800B
AMD AM29DL323DB
AMD AM29LV16
Atmel AT29C040A
Atmel AT49BV8011
Atmel AT49BV8011T
Atmel AT49BV1614A
Fujits 29LV800BA
Macronix MX28F4000
Sharp H28F800SG
SST 28SF040

SST 9VF800

STM M29W800AB
STM M29W160DB
STM M29W320DB

Flash table data structure

84

The flash_id_table_t data structure, defined in the flash.h file, is shown here.
The tables that follow the code list the structure's data types and fields.

NET + Works with GNU Tools BSP Porting Guide

typedef struct
{

} flash_cmd_t;

typedef struct
{

Adding

WORD8 ccode;
WORD32 ccode_addr;

WORD16 mcode;

WORD16 mcode_addr;

WORD16 dcode;

WORD16 dcode_addr;

WORD16 total_sector_number;
WORD32 sector_size;

WORD16 prog_size;

WORD16 access_time;
flash_cmd_t *id_enter_cmd;
WORD16 id_enter_len;
flash_cmd_t *id_exit_cmd;
WORD16 id_exit_len;
flash_cmd_t *erase_cmd;
WORD16 erase_len;
flash_cmd_t *write_cmd;
WORD16 write_len;
flash_cmd_t *sector_erase_cmd;

WORD 32 *sector_size_array;

3 flash_id_table_t;

This table lists the data types used in the flash_id_table_t structure:

Data type

WORD8

Description

Unsigned byte

Flash

WORD16

Unsigned short

WORD32

Unsigned long

www.digi.com

85

This table summarizes the fields in the flash_id_table_t data structure:

Field Description

mcode Manufacturer's code
mcode_addr Address of manufacturer's code
dcode Device code

dcode_addr Address of device code

total_sector_number

Total number of sectors

sector_size

Size of sector (in bytes)

prog_size

Program load size (in bytes)

access_time

Access time (in nanoseconds)

id_enter_cmd

Pointer to the enter identify flash command

Id_enter_Ten

Number of cycles for the enter identify flash command

id_exit_cmd

Pointer to the exit identify flash command

id_exit_len

Number of cycles for the exit identify flash command

erase_cmd Pointer to the erase flash command
erase_len Number of cycles for the erase flash command
write_cmd Pointer to the write flash command
write_len Number of cycles for the write flash command

sector_erase_cmd

For AMD only

sector_size_array

For non-uniform sector sizes

Adding new flash

86

When you add support for new flash ROM, you need to provide definitions for the
new flash device, such as the number of flash sectors, the flash sector size, and the
program load size. You also need to modify the ROM type value in the

flash_id_table definition.

NET + Works with GNU Tools BSP Porting Guide

Adding Flash

For example, to add support for ST Micro M29W800AB flash ROM, you would edit
the flash.h file as shown here:

/* ST Micro M29W800AB*/

#define STM_M29W800AB_FLASH_SECTORS 0x013U

/* We are using block instead of sector */

#define STM_M29W800AB_FLASH_SECTOR_SIZE VARIABLE_SECTOR_SIZE
#define STM_M29W800AB_PROG_SECTOR_SIZE 0x0002U

To add support for new flash ROM:

1
2

In the flash.h file, add the definitions for the new flash device.

(Optional step for keeping track of devices supported.) In flash.h, modify
the ROM type value; for example:

#define STM_29W800AB 0x0D

In the naflash.c file, modify the f1ash_id_table definition. Add the new

flash part entries to the start of the table to allow faster software
identification of the flash part.

Modify other command sequences such as id_enter_cmd, id_exit_cmd,
and so on.

See the documentation supplied by the manufacturer of the flash device
you are using.

To rebuild the driver, enter make PLATFORM in the C:/netos62_gnu/src/flash
directory to rebuild the flash library in the top-level directory.

Rebuilding this library rebuilds the flash driver.

For example, for the STM_29W800AB, add this entry to the end of the
flash_id_table, based on the ROM type value defined in step 2:

{

0x20, 0x00, 0x005B, 0x01, STM_MZ29W800AB_FLASH_SECTORS,
VARIABLE_SECTOR_SIZE, STM_M29W800AB_PROG_SECTOR_SIZE, 120,
(flash_cmd_t *)STM_M29W8B00AB_flash_id_enter_cmd,

sizeof (STM_M29W800AB_flash_id_enter_cmd) / sizeof(flash_cmd_t),
(flash_cmd_t *),

STM_M29WB00AB_flash_id_exit_cmd,

sizeof (STM_M29W800AB_flash_id_exit_cmd) /
sizeof(flash_cmd_t),(flash_cmd_t *),

STM_M29W800AB_flash_erase_cmd,

www.digi.com 87

sizeof (STM_M29W800AB_flash_erase_cmd) / sizeof(flash_cmd_t),
(flash_cmd_t *)STM_M29W800AB_flash_write_cmd,

sizeof (STM_M29W800AB_flash_write_cmd) / sizeof(flash_cmd_t),
(flash_cmd_t *)STM_M29W800AB_flash_block_erase_cmd,
(WORD32*) STM_M29W800AB_flash_block_size_array

}

This table shows the definitions for the values in the example:

Value Definition

0x20 Manufacturer's code

0x00 Address of manufacturer's code
0x0058B Device code

0x01 Address of device code

Supporting larger flash

If you are adding larger flash, you need to perform additional steps, described
next.

P To support larger flash configurations:
1 Increase these three constants in flash.h:
- MAX_SECTORS - The maximum number of flash sectors supported
- MAX_SECTOR_SIZE - The maximum sector size supported
- MAX_FLASH_BANKS - The maximum number of flash banks supported

2 To rebuild the flash library in the top-level directory, enter make.

88 NET + Works with GNU Tools BSP Porting Guide

Device Drivers

C HAPTEI R 6

This chapter describes device driver functions.

89

Overview

Overview

NET+OS integrates device drivers with the low-level 1/0 functions provided in the
Cygwin standard C library. Each entry in the deviceTable array of the devices.c
file defines a device that the system supports.

This chapter describes the deviceTable array and the device driver functions.

Adding devices

To add a device, you add an entry to the deviceTable array. Application software
can then access the device through the standard C programming language /0
routines — open, read, write, ioctl, and close.

devicelnfo structure

The entries in deviceTable are devicelnfo structures. The ddi.h file defines the
deviceInfo structure. The fields in this structure define the device driver’s interface
to NET+OS.

The devicelnfo structure is defined as shown here:
typedef struct

{
char *name;
int channel;
devEnterFnType *deviceknter;
devInitFnType *devicelnit;
devOpenFnType *deviceOpen;
devCloseFnType *deviceClose;
devReadFnType *deviceRead;
devWriteFnType; *deviceWrite;
devIoctlFnType *deviceloctl;
unsigned flags;

} devicelnfo;

90 NET + Works with GNU Tools BSP Porting Guide

Device Drivers

This table defines the fields in the devicelInfo structure:

Field Description

name Pointer to a null-terminated string that is the device channel’s name.
The name must be unique for each device.

channel Channel number for the device name. This number is passed to the

device driver for all I/0 requests.

deviceEnter

Pointer to the driver’s first-level initialization routine for the channel.
DDIFirstLevelInitialization calls this routine once, during
initialization, when the C library initializes its I/0 library. Kernel
services are not available at this point.

devicelnit

Pointer to the driver’s second-level initialization routine for the
channel. DDISecondlLevelInitialization calls this routine once,
at startup, after the kernel has been loaded.

deviceOpen

Pointer to the device’s open routine for the channel. This routine is
called whenever an application opens the channel to indicate that a
new session is starting.

The f1ags field indicates whether the channel:

m Was opened for read, write, or read/write mode

m (Operates in blocking or non-blocking mode

deviceClose

Pointer to the driver’s close routine for the channel. This routine is
called at the end of every session.

deviceRead

Pointer to the driver’s read routine for the channel.

devicelWrite

Pointer to the driver’s write routine for the channel.

deviceloct]

Pointer to the driver’s I/0 control routine for the channel.

flags

Bit field that indicates which bits are valid in the f7ags field of an
open call to the device.

A bit set in this field indicates that the bit also can be set in the driver’s
open routine.

Device driver functions

This table provides a summary of the device driver functions in the devicelInfo

structure. The next sections describe each function. For details, see the online help.

www.digi.com 91

Adding devices

92

Function

deviceEnter

Description

First-level initialization function for a device table

devicelnit

Second initialization function for the device channel

deviceOpen

Informs the device driver that a new session is starting on the channel
and which I/0 mode will be used during the session

deviceClose

Informs the device driver that the application is closing its session

deviceRead

Reads data from the device to the caller’s buffer

devicelrite

Writes a buffer of data to a device

deviceloct]

Sends commands to the device

The return values for the functions are in a table in the section “Return values,

later in this chapter.

NET + Works with GNU Tools BSP Porting Guide

”

deviceEnter

Device Drivers

First-level initialization function for a device table.

When the C library initializes its 1/0 functions, deviceEnter is called for each entry
in the device table. This routine is called only once for each channel and performs
the basic initialization that the device driver needs.

Because this routine is called before the kernel has started, kernel services are not
available at this time. C library functions, however, are available.

Format

int deviceEnter (int channel);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry

For this routine’s return values, see the table in the section “Return values.”

www.digi.com 93

Adding devices

devicelnit

94

Second initialization routine for the device channel.

After the kernel has loaded, the device driver table is scanned, and the devicelnit
routines for each channel are called. The devicelnit routine is called once for
each channel and completes any additional initialization needs for the device
driver. Kernel services are available, and interrupts are enabled.

Format

int devicelnit (int channel);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry

For this routine’s return values, see the table in the section “Return values.”

NET + Works with GNU Tools BSP Porting Guide

Device Drivers

deviceOpen
Notifies the device driver that a new session is starting on the channel and tells
the driver which I/0 mode will be used during the session. This routine is called
when the application calls the open system call.
When deviceOpen is called, the driver performs these steps:

1 Checks that the channel number is valid, the channel is open, and the flags
are appropriate.

If an error condition is detected, the driver returns an error without
sending any information.

2 Sets aninternal flag to indicate that a session is in progress on the channel.
Performs any other initialization tasks required by the device.

Returns a value.

Format

int deviceOpen (int channel, unsigned flags);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry
flags Bit field formed by ORing together one or more of these values:
m (O_RDONLY
m O_WRONLY
m (0_RDWR
m (0_NONBLOCK

For this routine’s return values, see the table in the section “Return values.”

www.digi.com 95

Adding devices

deviceClose

96

Informs the device driver that the application is closing its session. This routine
is called when the application calls the c1ose system call.

When deviceClose is called, the driver performs these steps:

1 Checks that the channel is open and the configuration is valid for the device.
If an error condition is detected, the driver returns an error without
sending any information.

2 Either sets the channel semaphore or returns EBUSY if the semaphore is
already set.

3 Updates internal flags to indicate that the session has been closed.

4 Performs any other processing tasks as necessary.

5 Clears the channel semaphore.

6 Returns EXIT_SUCCESS.

Format

int deviceClose (int channel);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry

For this routine’s return values, see the table in the section “Return values.”

NET + Works with GNU Tools BSP Porting Guide

deviceRead

Device Drivers

Reads data from the device to the caller’s buffer. This routine is called when
the application calls the read system call.

When deviceRead is called, the driver performs these steps:

1
2
3

Sets bytesRead to 0.
Checks that the arguments are correct and the channel is open.
Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

Sets the channel semaphore or returns EBUSY if the semaphore already is set.
If no data is available, performs one of these steps:

- Blocking mode. Waits until some data is received.

If an error condition is detected, the driver aborts the transmission
and returns an appropriate completion code.

- Non-blocking mode. Releases the semaphore and returns EAGAIN.

Copies the data from the driver buffers until either all the data has been
copied or the caller’s buffer has been filled.

Updates bytesRead.
Releases the channel semaphore.

Returns a completion code.

Format

int deviceRead (int channel, void *buffer, int length,

int *bytesRead);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry
buffer Pointer to caller’s receive buffer
length Length of caller’s receive buffer (number of bytes)
bytesRead Pointer to the number of bytes actually read

For this routine’s return values, see the table in the section “Return values.”

www.digi.com 97

Adding devices

deviceWrite

Writes a buffer of data to a device. This routine is called when the application calls
the write system call.

When devicelWrite is called, the driver performs these steps:

1
2
3

9
10
11

Sets bytesWritten to 0.
Checks that the arguments are correct and the channel is open.
Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

Either sets the channel semaphore or returns EBUSY if the semaphore already
is set.

Opens a transmit buffer and fills it with data from the caller’s buffer.
Starts the transmit operation for the transmit buffer.

This step applies to blocking mode only. If an error condition is detected,
aborts the transmission and returns an appropriate completion code.

If there is more data in the caller’s buffer, repeats steps 5 through 7 until
there is no more data.

Updates bytesWritten to indicate the number of bytes transmitted.
Releases the channel semaphore.

Returns a completion code.

Format

int deviceWrite (int channel, void *buffer, int length,

int *bytesWritten);

Arguments

Argument Description

channel Channel number as set in the channel’s device table entry

buffer Pointer to caller’s buffer; not necessarily aligned

Tength Length of caller’s receive buffer (number of bytes)

bytesWritten Pointer to int to load with number of bytes actually written

For this routine’s return values, see the table in the section “Return values.”

98

NET + Works with GNU Tools BSP Porting Guide

Device Drivers

deviceloctl

Sends commands to the device. This routine is called when the application calls the
ioct1 system call.

When deviceloctl is called, the driver performs these steps:
1 Checks that the arguments are correct and that the channel is open.

If an error condition is detected, the driver returns an error without
sending any commands.

2 Either sets the channel semaphore or returns EBUSY if the semaphore is
already set.

3 Executes the command.
Releases the channel semaphore.
5 Returns EXIT_SUCCESS.

Format

int deviceloctl (int channel, int request, char *arg);

Arguments
Argument Description
channel Channel number as set in the channel’s device table entry
request Commands encoded as integers
arg Pointer to any extra information needed or to a buffer to return

information

You can define your own return values.

For this routine’s return values, see the table in the next section “Return values.”

www.digi.com 99

Return values

Return values

The NET+OS low level device driver interface (DDI) routines map to the DDI
application layer calls as shown in this table:

DDI routine DDI application layer call
deviceOpen open

deviceClose close

deviceloctl ioctl

deviceRead read

devicellrite write

All the DDI functions return 0 on success and an error number value otherwise. The
C library interprets this value and passes it up to the application that is calling the
functions.

The application return values fall into one of two categories:

m Data passing functions. The read and write function calls.

[Setup functions. The open, close, and ioct1 function calls.

The deviceRead and deviceWrite data passing functions use the arguments
*bytesRead and *bytesWritten, respectively, to pass the data size information back
to the application read and write function calls. The application call returns the
data size if the low level function succeeds.

For example, if deviceRead returns 0, and the *bytesRead argument is set to
100, the read function returns 100. Alternatively, when deviceRead returns a
non-zero, the read function returns -1 regardless of what's loaded into the
*bytesRead argument.

The setup functions are similar, but they do not communicate any data size up.
When a DDI function succeeds (for example, deviceloct] returns 0), the
application function also returns 0 (in this case ioct1 returns 0). Alternatively,
when deviceloct] returns a non-zero, the ioct1 function returns -1.

When any low level DDI function returns a non-zero value, the value is loaded into
the system error numbers and causes the application layer call to return -1. System
error numbers can be checked by a call to getErrno.

100 NET + Works with GNU Tools BSP Porting Guide

Device Drivers

Values and definitions for error numbers are in the errno.h system error header file.
The system error header file is in the /cygwin/user/arm-elf/include/sys folder.

The next table includes common error number return values with a typical
description. In general, the values that are returned are specific to the driver that
is being accessed. For more information, see the online help for the driver.

Value

EBUSY

Description

Device is busy.

EINVAL

Invalid argument.

ENOENT

No such file or directory.

EAGAIN

Unable to complete operation now; try again later.

EBADF

Bad file number.

EIO

1/0 error.

ENOMEM

Out of memory.

EROFS

Read-only file system.

ENXIO

Invalid device.

ETIMEDOUT

Operation timed out.

ERANGE

An argument has an invalid range.

EACCESS

Permission denied.

EFAULT

Bad address.

ENOSPC

No space available on device.

ENODEV

No such device.

ENOMEM

Memory allocation failure.

EXIT_SUCCESS

Call completed successfully.

Modifications to Cygwin’s standard C library and startup file

The standard C library has been rebuilt to support the NET+OS DDI. A customized
version of the startup files and C libraries is in the C:/NET0S63_GNU/11b/32b/gnu
directory. All the sample applications link to these files instead of to the standard

GNU versions.

www.digi.com 101

Modifications to Cygwin’s standard C library and startup file

To use the NET+OS device drivers and the ThreadX kernel, you must make your
applications link to these files. For an example, see either of the Makefiles
supplied in the sample applications or the GNU Tools linker documentation.

You can find all the necessary changes to the C library’s source code and the crt0.S
startup file in the C:/NET0S63_GNU/gnusrc directory.

Note: The C library that is shipped with NET+OS is not re-entrant. For more
information, see your GNU Tools documentation.

Modifying the libc.a library and crt0.o startup file

The NET+QOS version of the source file is in the gnusrc directory.

» To modify the libc.a and crt0.o files:

1 Copy cygwin/usr/arm-e1f/1ib/be/1ibc.a to the C:/NETOS61_GNU/gnusrc
directory.

2 To open a GNU X-Tools shell, enter this command:
xtools arm-elf

3 To produce the new Tibc.a and a new crt0.o file to support NET+0OS
I/0 devices, change to the C:/NET0S61_GNU/gnusrc directory and enter:

make all

4 Copy gnusrc/libc.a and anew crt0.o to the C:/NET0S61_GNU/1ib/32b/gnu
directory.

Note that the crtbegin.o, crtend.o, crti.o, and crtn.o filesin the C:/
NETOS61_GNU/11b/32b/gnu directory are copied from /cygwin/use/1ib/
gcc-lib/arm-elf/3.2/be.

Because these startup files are for C++ applications, you do not need to
modify them.

NET+OS device drivers configure and control the components of the Digi chips, such
as serial, Ethernet, USB, and so on. These drivers are part of the NET+OS operating

system, and depending on the defines in the bsp.h file for your platform, are loaded
on startup.

102 NET + Works with GNU Tools BSP Porting Guide

Device Drivers

NET+0S device drivers
This table lists the device drivers that are supported as part of NET+OS:

Driver Description Supported platforms
Ethernet Ethernet All

SPI master SPI master All

SPI slave SPI slave All
Serial Serial Al
NVRAM Non- volatile RAM Al
System clock System clock interface routines All
Timer Timer All
HDLC High level data link control All
MMU Memory Management Unit All
gpio General purpose |/0 Al
Parallel Parallel driver All

12¢ Inter-IC All

LCD LCD routines All

USB device USB device All

USB host USB Host All
PWM Pulse Width Modulator NS9360
RTC Real Time Clock NS9360
PCI PCI Bus NS9750
Ethernet Ethernet Al

Device driver interface

NET+OS device drivers are based on the standard Device Driver Interface (DDI) and
use a layered model to implement device drivers. Within this model, all API calls
are made through the DDI interface.

Some drivers (such as Timer and GPIO) do not use the DDI interface. Because they
do not fit into a read/write type of model, they have a separate interface.

www.digi.com 103

Hardware Dependencies for
ARM7-based Platforms

C HAPTER 7

This chapter discusses the NET+0S hardware dependencies for platforms that
use the NS7520 and NET-50 processors.

105

Overview

Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

m DMA channels

n Ethernet PHY

[ENI controller

[Serial ports

[Software watchdog

[Endianness

n System clock and timers
[Interrupts

The rest of the sections in this chapter describe these hardware dependencies.

DMA channels

This table describes how each of the 13 DMA channels is used in porting NET+OS:

Channel Used by What it does

1 Ethernet driver Moves data from the Ethernet receiver to
memory. The Ethernet driver code is in the
bsp/devices/ethernet directory.

2 Ethernet driver Moves data from memory to the Ethernet
transmitter.

3 through 6 Parallel ports (NET+50) For the NET+50 only. Moves data between the
parallel port and memory.

External peripherals For the NS7250 only. Only two channels-either 3
(NS7250) and 5 or 4 and 6-can be configured at one time.
7and 8 HDLC/serial/SPI driver Receives data
9 and 10 HDLC/serial/SPI driver Transmits data.
11 through 13 Moves data from memory to memory (NS7520
only)

106 NET + Works with GNU Tools BSP Porting Guide

Hardware Dependencies for ARM7-based Platforms

Ethernet PHY
NET+OS supports PHYs that use the MIl interface. The PHY driver, which is
implemented in the mii.c file, supports these PHYs:

PHY Manufacturer

FastCat (also known as the 3-volt enable PHY) Lucent Technologies

LXT970 Level One
LXT971A and LXT972A Intel
AM79C874 and AM79C875 AMD

You can modify the mii.c file to support additional PHYs.

ENI controller

The BSP configures the ENI controller for IEEE 1284 host port mode, which supports
four parallel ports.

Serial ports

The BSP normally sets up both serial ports to support asynchronous RS-232-style
communications.

To use the serial peripheral interface (SPI) controller, disable the serial driver, using
either of these methods:

[Recommended method. Undefine BSP_INCLUDE_SERIAL_DRIVER1 and
BSP_INCLUDE_SERIAL_DRIVER? in the bsp.h file.

n Alternate method. Remove the serial driver entries from the device driver
table in the devices.c file.

You do not need to disable the serial driver to use the HDLC driver.

www.digi.com 107

Software watchdog

Software watchdog

Endianness

System clock

The watchdog device driver uses the internal watchdog if BSP_WATCHDOG_TYPE is set
to BSP_WATCHDOG_INTERNAL in bsp.h.

The NAReset routine in the nareset.c file uses the software watchdog to reset
the system. NAReset is called by the default implementation of customizeReset
in gpio.c.

The BSP supports big endian mode only.

The BSP system clock depends on whether you are using an external crystal or an
external oscillator. The external PLLTST* signal indicates the choice. The frequency
of the selected source affects the BSP timing.

The PLL setting for the NS7520 is determined by the pull-up and pull-down resistors
tied to pins on the NS7520.

The rest of this section describes the constants you need to set for the system clock
in the bsp.h file.

BSP_CLOCK_SOURCE

108

The value of BSP_CLOCK_SOURCE in bsp.h determines the clock source to be used.
BSP_CLOCK_SOURCE indicates the input to the SYSCLK signal multiplexer, which has
two possible sources:

[TTL clock input applied to the XTAL1 pin

[Crystal oscillator and PLL circuit

NET + Works with GNU Tools BSP Porting Guide

Hardware Dependencies for ARM7-based Platforms

Set BSP_CLOCK_SOURCE to either of these:
[SELECT_THE_XTALI_INPUT
] SELECT_THE_CRYSTAL_OSCILLATOR_INPUT

XTAL1_FREQUENCY

XTAL1_FREQUENCY and XTAL1_FREQUENCY_20UM indicate the frequency of the TTL
clock input to the XTAL1 pin on the NET-50 and NS7520 platforms, respectively. If
BSP_CLOCK_SOURCE is set to SELECT_THE_XTAL1_INPUT, this value determines the
frequency of SYSCLK.

CRYSTAL_OSCILLATOR_FREQUENCY

This setting indicates the frequency of the crystal oscillator. If BSP_CLOCK_SOURCE is
set to SELECT_THE_CRYSTAL_OSCILLATOR_INPUT, the crystal oscillator is input to the
PLL, and in conjunction with PLL_CONTROL_REGISTER_N_VALUE, determines the
frequency of the internal SYSCLK signal.

PLL Control register setting

This setting indicates the v factor used in the divide-by circuits of the NET+ARM
clock generation section. The v factor multiplies or divides clock sources. The
value is stored in the PLLCNT field in the PLL Control register.

For more information, see the hardware reference for the processor you are using.

The range of values is 0 through 15; the suggested values are based on device type
and revision:

[For NET+50-based platforms, the value is determined by entries in the
NA_PLL_TABLE table in bsp.h.

[For NS7520-based platforms, the value is determined by hardware
bootstrap settings.

www.digi.com 109

System timers

System timers

Timer 1

Timer 2

Interrupts

The code that supports the system timers is in the bsptimer.c file. The two timers
are described next.

The BSP uses Timer 1 as the system heartbeat clock. The kernel uses the system
heartbeat clock for timing and pre-emption of tasks.

The frequency of the system heartbeat clock is controlled by the
BSP_TICKS_PER_SECOND constant in the bsp.h file. This value, which determines the
heartbeat rate, should be between 1 and 1000. A value of 100, for example,
provides a heartbeat rate of one tick every ten milliseconds.

The BSP uses Timer 2 to support the parallel driver. If this timer is disabled, or if its
frequency is changed, the parallel driver code in the narmpara.c file is affected.
Timer 2 normally is programmed to have a period of 217 microseconds.

If BSP_SERIAL_FAST_INTERRUPT is set in bsp.h, Timer 2 is used by the serial driver.

This table describes how interrupt levels are used in the BSP:

Interrupt level Use

31 (DMA 1) Ethernet driver receive packet interrupt

30 (DMA 2) Ethernet driver packet done interrupt

29 (DMA 3) ENI FIFO receive packet interrupt

28 (DMA 4) ENI FIFO transmit packet interrupt

27 and 26 (DMA 5 and 6) Not used

25 (DMA 7) m HDLC driver channel 1 receive frame interrupt

m Serial/SPl 1 DMA mode receive interrupt

NET + Works with GNU Tools BSP Porting Guide

Memory map

Hardware Dependencies for ARM7-based Platforms

Interrupt level

Use

24 (DMA 8) m HDLC driver channel 1 receive frame interrupt
Serial/SPl 1 DMA mode receive interrupt
23 (DMA9) m HDLC driver channel 2 receive frame interrupt
m Serial/SPI 2 receive interrupt
22 (DMA 10) m HDLC driver channel 2 transmit frame interrupt

m Serial/SPI 2 transmit interrupt

21-17 (ENI ports 1-4 and ENET RX)

Not used

16 (ENET TX)

Ethernet driver transmit interrupt

15 (SER 1 RX) Serial/SPI driver port 1 receive interrupt
14 (SER 1 TX Serial/SPI driver port 1 transmit interrupt
13 (SER 2 RX) Serial/SPI driver port 2 receive interrupt

12 (SER 2 TX)

Serial/SPI driver port 2 transmit interrupt

11 through 6

Not used

5 (Timer 1) System clock tick interrupt
4 (Timer 2) Not used
3 through 0 (PORTC) Not used

The NET-50 and NS7520 platforms have the same memory map:

u Addresses from 0xf0000000 to Oxffffffff are reserved for devices internal to

the NET+ARM.

[RAM on CS1 and €S2 is mapped from address 0x0 to 0x01ffffff.
[ROM on €S0 is mapped from address 0x02000000 to 0x021fffff.
(] NVRAM on €S3 is mapped from address 0x03000000 to 0x03001fff.

The BSP assumes that RAM is located at address 0x0, and it dynamically writes the
exception vector table to this location.

www.digi.com

Hardware Dependencies for
ARM9-based Platforms

C HAPTEIR 8

This chapter discusses NET+0OS hardware dependencies for platforms that use
the NS9360 and NS9750 processors.

Overview

Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

[Direct Memory Access (DMA) channels
n Ethernet PHY

[Endianness

m Timers

[Interrupts

[Memory map

The rest of the sections in this chapter describe these hardware dependencies.

DMA channels

The NS9750 and NS9360 use three DMA controllers. Two of them exist on the Bbus,
and one exists in the Bbus Bridge module. (For detailed information, see the
NS9750 Hardware Reference and the NS9360 Hardware Reference.)

One of the Bbus DMA controllers supports all Bbus peripherals except the USB
device, and the other is dedicated to the USB device interface. The AHB DMA has
two DMA channels. These channels can be used for memory-to-memory transfers on
both the NS9750 and NS9360, and for transfers between memory and an external
device on the NS9360. NET+OS does not use these channels. Your application can
use the AHB DMA channels.

Ethernet PHY

NET+OS supports PHYs that use the MIl interface. The PHY driver for the ns9750_a
platform, which is implemented in the mii.c file, supports the LXT971A PHY by
Intel. The PHY driver for the ns9360_a platform supports the ICS ICS1893AF and ICS
1893BF PHYs.

NET + Works with GNU BSP Porting Guide

Hardware Dependencies for ARM9-based Platforms

The PHY driver also supports these PHYs:

PHY Manufacturer

FastCat (also known as the 3-volt enable PHY) Lucent Technologies

LXT970 Level One
LXT971A and LXT972A Intel
AM79C874 and AM79C875 AMD

To support additional PHYs, you modify your platform's mii.c file.

To use the PHY interrupt to monitor the Ethernet link, set BSP_USE_PHY_INTERRUPT to
TRUE in the bsp.h file. Do not set BSP_USE_PHY_INTERRUPT to TRUE if your PHY or
platform does not support PHY interrupts. If you do not set BSP_USE_PHY_INTERRUPT
to TRUE, the ThreadX timer is used to monitor the Ethernet link.

The NS9750 series of NET+ARM processors uses Interrupt ID 6 for the Ethernet PHY
interrupt, implemented as a level interrupt. If PHY interrupt is enabled, make sure
customizeIsMiilnterruptActivelow returns the correct value.

Endianness

The BSP supports big endian mode only.

General purpose timers

This section describes how the general purpose timers are used.

System timers

NET+OS uses the first four of the 16 general purpose timers.

www.digi.com 115

Interrupts

This table shows how timers 0-3 are used:

Timer How used by NET+0S

0 As the system heartbeat clock. The kernel uses the system heartbeat
clock for timing and pre-emption of tasks.
The BSP_TICKS_PER_SECOND constant in the bsp. h file controls the
frequency of the system heartbeat clock. This value, which
determines the heartbeat rate, should be between 1 and 1000. A
value of 100, for example, provides a heartbeat rate of one tick
every ten milliseconds.

1 Used by NAuWait and NAWait, which the flash driver uses to:
m Provide delays needed for programming flash,

m Provide the reads that are needed to verify that a flash was
properly programmed.

2 To support the statistical profiler that is included with NET+OS.
You use the profiler to understand trends of execution.
The profiler records the location of an application using two

resources - the FIQ interrupt and Timer 2 - that normally are
not used.

3 To support the USB device DMA timeout function. Used by the USB
device driver to close out a DMA transfer when the received size
matches a multiple of the endpoint packet size. For example, if the
packet size is 64, this timer is needed to close out the DMA buffer
when the data received is 64,128, or nx64.

If you do not plan to use a particular feature, you can shut it off, and
use the timer in your application. This applies only to the timers that
NET+OS uses.

All other general purpose timers

Any custom application can use the rest of the general purpose timers.

Interrupts

The interrupt priorities are specified in the bsp.c file in the platforms directory.
You can modify the priority of the interrupts by editing the NAAhbPriorityTab and
NABbusPriorityTab tablesin bsp.c.

116 NET + Works with GNU BSP Porting Guide

System clock

Chip selects

Hardware Dependencies for ARM9-based Platforms

The Bbus peripherals - all four serial ports, the USB device, and the 1284 - combine
all their interrupts into one Bbus Aggregate interrupt. The Bbus interrupt priorities
are set by the table NABbusPriorityTab in bsp.c. All Bbus interrupts are
multiplexed into a single AHB interrupt, the BBus Aggregate Interrupt.

For a description of interrupts in NET+OS, see Appendix F, “Processor Modes and
Exceptions.”

For information about the interrupt controller, see the NS9750 Hardware Reference
and the N59360 Hardware Reference.

The constant NA_ARM9_INPUT_FREQUENCY in sysClock.h must be set to the
frequency of the signal input to the X1_SYS_0SC pin. This is the clock source to the
PLL when the PLL is used. If the PLL is bypassed, this signal is divided by 2 to
generate the ARM9 CPU clock.

The processor automatically determines the PLL divisor values from hardware
bootstrap settings when the PLL is used.

NET+OS requires the flash ROM to be connected to CS1, and RAM to be connected to
CS4. The exception to this is if SPI flash is used. In that case, nothing needs to be
connected to CS1. RAM on CS4 is mapped to the physical address range from 0x0 to
Ox0fffffff. ROM on CS4 is mapped to the physical address range from 0x50000000
to 0x507fffff.

The chip selects are configured by functions you write in your platform's cs.c file.
Each chip select has a function named customizeSetupCSX (X is replaced by the
chip select number), which the initialization code calls to set up the chip select.
The chip selects supplied for the NET+0S development board platforms set up CS1
and CS4 for the development boards. You must update these functions for your
application hardware.

www.digi.com 117

Memory map

Memory map

When a debugger is used, the debugger must configure the RAM chip select before
it loads your application. The commands to do this are inside of a script file that
the debugger executes whenever it prepares to download an application. The script
C:\Program Files\EPITools\edta22a\targets\ns9xxx\ns9xxx.cmd sets up CS4 to
support the RAM on the NET+OS development board. You must create your own
debugger script that sets up the chip selects for your application hardware.

The NS9360 and NS9750 have an embedded MMU. The MMU allows physical
addresses to be remapped to virtual addresses. NET+OS sets up the address map

shown next. The BSP assumes that all processor CSRs are mapped to their physical
addresses.

The address map is set up in the netos/src/bsp/platforms/CustomizeCache.c file.

NET + Works with GNU BSP Porting Guide

Porting NET+0OS 0v6.0
Applications to NET+0OS v6.3

C HAPTEIR 9

This chapter describes the differences between the APIs in NET+0S 6.0 and
NET+0S 6.3

Overview

Overview

This chapter describes the differences between the APIs in NET+OS 6.0 and
NET+0S 6.3

The NET+0S 6.0 and NET+OS 6.1 releases supported the ARM7 and ARM9 platforms,
respectively. NET+OS 6.3 merges the two API sets. In addition, some of the NET+0S
6.0 APIs have been deprecated or changed in the NET+0S 6.3 release.

This chapter lists these APIs and describes the replacements for them.

BSP Makefile

These are the changes to the BSP Makefile:

[NET+OS 6.0 built a single BSP library that you needed to delete and rebuild
whenever you changed platforms.

NET+0S 6.3 builds separate libraries for each BSP platform.

The Makefile PLATFORM variable determines which platform is built when
the BSP Makefile is executed and which BSP library is linked when
applications are built.

Using either of these steps, you must set PLATFORM to indicate the
platform you want to build for:

- Set the PLATFORM environment variable.

- Specify the value of PLATFORM in the command line to make; for example:
make PLATFORM=net50bga_a.

n NET+O0S 6.0 Makefiles send the compiler and linker output to the console.
By default, NET+OS 6.3 Makefiles discard this output.
To see the compiler and linker messages, enter this command:

make MODE=verbose

120 NET + Works with GNU Tools BSP Porting Guide

Porting NET + OS v6.0 Applications to NET +0OS v6.3

Application Makefiles

In NET+0S 6.0, the Makefiles in the sample applications attemped to build the
application for any platform, even for platforms that did not support the application.

In NET+0OS 6.3, sample applications that cannot run on all platforms determine the
platform on which they are being built and will terminate if they are being built on
an unsupported platform. If you create a new platform, you must modify these
Makefiles to build the applications under the new platform.

Linker scripts

[In NET+0S 6.0, the BSP Makefile generated a set of linker scripts that were
stored in the netos63_gnu/src/linkerscripts directory.

In NET+OS 6.3, these scripts have been moved to the platforms directory.
For example, the linker script for the net50bga_a platform is stored in the
netos63_gnu/src/bsp/platforms/net50bga_a directory.

[In NET+OS 6.0, the NET+OS libraries were specified in the linker scripts.
In NET+OS 6.3, the libraries are specified in each application’s Makefile.

Bootloader files

In NET+OS 6.0, the bootloader rom.bin file was stored in netos63_gnu/src/bsp/
bootloader/romimage.

In NET+OS 6.3, the bootloader rom.bin file is stored in the pTlatforms directory. For
example, the bootloader rom.bin file for the net50bga_a platform is stored in the
netos63_gnu/src/bsp/platforms/net50bga_a directory.

www.digi.com 121

Cache API
Cache API

Significant hardware differences exist between the cache implementations on the
NET+50 processor (there is no cache on the NS7520) and the ARM9-based processor.

Because of these differences, the NET+0S 6.0 cache API, which supports cache on
the NET+50, is not supported on the ARM9 platforms. When you port your
application to an NS9750 or NS9360, you must rewrite your code to use the ARM9
MMU API.

The NET+QOS 6.0 cache API is still supported on the NET+50 platforms.

Embedded Networking Interface

The Embedded Networking Interface (ENI) API is no longer supported.

ISR API
These functions in the Interrupt Service Routine (ISR) APl have been renamed:
n NADisablelIsr has been renamed nalnterruptDisable.
n NAEnableIsr has been renamed nalnterruptEnable.
(] NAInstallIsr has been renamed nalsrinstall.
[NAUninstallIsr has been renamed nalsrUninstall.
RAM API

These functions have been deprecated and are not supported on the NS9360 and
NS9750 processors:

] nccCopyCSSetup

n nccDetermineRamType

122 NET + Works with GNU Tools BSP Porting Guide

Porting NET + OS v6.0 Applications to NET +0OS v6.3

Real Time Clock driver

NET+OS 6.0 had a Real Time Clock (RTC) driver that supported an external RTC
chip. This driver was never implemented on any NET+OS development board, and
the NET+QOS 6.0 RTC driver has been dropped.

NET+OS 6.3 implements a new RTC driver that supports the RTC built into the
NS9360 processor.

These functions defined in the NET+OS 6.0 RTC driver are no longer supported:
] NAinstallRealTimeClockTime

] rtcGet

[rtcinitialize

[rtcSet

SYSCLK API

These functions in the SYSCLK API have been deprecated:
[NAgetSysClkFreq. Use NAgetCpuClkFreq or NAgetBbusClkFreq instead.
n NAgetXtalFreq. Use NAgetSysOscFreq instead.

GPIO configuration

NET+O0S 6.0 supplied a set of functions that you, the developer, customized to
configure the General Purpose 1/0 (GPIO) pins for your application.

In NET+OS 6.3, you configure GPIO by setting constants in the platform’s gpio.h file.
These customization hooks are no longer supported.

] customizeSetupPortA

] customizeSetupPortB

[] customizeSetupPortC

[] customizeSetupPortD

www.digi.com 123

SPI API

] customizeSetupPortF
[] customizeSetupPortG

[] customizeSetupPortH

SPI API

The NET+QOS 6.0 SPI API is deprecated and has been replaced by the NET+OS SPI
master driver in NET+0S 6.3.

Write new applications to use the new SPI master driver.

Because the old driver will be discontinued in a future release, Digi strongly
recommends that you port old applications to the new driver.

Stack sizes for exception handlers

In NET+0S 6.0, the stack sizes for the exception handlers were set in the
settings.s file in the pTlatforms directory.

In NET+0S 6.3, these values are set in the init_settings.h file.

Interrupt priorities

On the NET-50 and NS7520 platforms, interrupt priorities are determined by the
NAInterruptPriority table in the platform’s bsp.c file.

If you port your application to the NS9360 or NS9750, be aware that interrupt
priorities on these platforms are determined by the NAAhbPriorityTab and
NABbusPriorityTab tables in the platform’s bsp.c file.

124 NET + Works with GNU Tools BSP Porting Guide

Porting NET+0OS v6.1
Applications to NET+0OS v6.3

C HAPTER 10

This chapter describes the differences between the APIs in NET+0S 6.1 and
NET+OS 6.3.

125

Overview

Overview

BSP Makefile

The two previous releases of NET+0S, 6.0 and 6.1, supported the ARM7 and ARM9
platforms respectively. NET+OS 6.3 merges the two API sets. Some of the NET+0S
6.1 APIs have been deprecated or changed in the 6.3 release. This chapter lists
these APIs and describes the replacements for them.

The BSP Makefile has changed:

NET+OS 6.1 built a single BSP library that needed to be deleted and rebuilt
whenever you changed platforms.

NET+0S 6.3 builds separate libraries for each BSP platform.

The Makefile PLATFORM variable determines which platform is built when

the BSP Makefile is executed, and which BSP library is linked when

applications are built. You must set PLATFORM to indicate which platform

you want to build for, using either of these steps:

- Set the PLATFORM environment variable.

- Specify the value of PLATFORM in the command line to make; for example:
make PLATFORM=net50bga_a

NET+OS 6.1 Makefiles send the compiler and linker output to the console.

By default, NET+0S 6.3 Makefiles discard this output. To see the compiler and
linker messages, enter this command:

make MODE=verbose

Application Makefiles

126

In NET+OS 6.1, the Makefiles in the sample applications attempted to build the
application for any platform, even for platforms that did not support the application.

In NET+0OS 6.3, sample applications that cannot run on all platforms determine the
platform on which they are being built and will terminate if they are being built on
an unsupported platform. If you create a new platform, you must modify these
Makefiles to build the applications under the new platform.

NET + Works with GNU Tools Programmer’s Guide

Linker scripts

Bootloader files

Porting NET +OS v6.1 Applications to NET +0OS v6.3

In NET+0S 6.1, the BSP Makefile generated a set of linker scripts that were
stored in the netos63_gnu/src/1inkerscripts directory.

In NET+OS 6.3, these scripts have been moved into the platforms directory.
For example, the linker scripts for the ns9750_a platform is stored in the
netos63_gnu/src/bsp/platforms/ns9750_a directory.

In NET+OS 6.1, the NET+OS libraries were specified in the linker scripts.

In NET+OS 6.3, libraries are now specified in each application's Makefile.

In NET+OS 6.1, the rom.bin bootloader file was stored in netos63_gnu/src/bsp/
bootloader/romimage.

In NET+OS 6.3, the rom.bin bootloader file is stored in the platforms directory. For
example, the bootloader rom.bin file for the ns9750_a platform is stored in the
netos63_gnu/src/bsp/platforms/ns9750_a directory.

Client parallel driver

The client parallel driver has been simplified.

The 6.1 PCM_SET_RX_BUFFER and PCM_GET_TX_BUFFER ioct1 commands, which
the application used to send empty receive buffers to the driver and get empty
transmit buffers from the driver, have been dropped.

The 6.3 driver does its own buffer management.

The 6.1 PCM_SET_TX_CHANNEL and PCM_SET_RX_CHANNEL ioct1 commands,
which selected between data and command channels, are no longer
supported. The underlying hardware does not support this functionality.

www.digi.com 127

12C driver

] The 6.1 PCM_SET_SUPPORTED_MODE and PCM_GET_SUPPORTED_MODE ioct]
commands have been eliminated. The parallel port hardware automatically
negotiates the interface mode with the host. The application can use the
PCM_SET_CHANGE_CALLBACK ioct1 command to install a callback function that is
called with the newly selected interface mode whenever the mode changes.

[The 6.1 PCM_SET_RX_BUFLEN, PCM_GET_RX_RING_SIZE, and
PCM_GET_TX_RING_SIZE ioct]l commands have been eliminated. The size and
number of receive and transmit buffers are now set in the 1284.h file in the
platforms directory.

m The 6.1 PCM_GET_CHANGE_CALLBACK joct1 command has been dropped.

|12C driver

n The MCI2cBuildMsg function has been renamed NAI2CBuildMsg.
m The MC_I2C_MESSAGE_TYPE data type has been renamed NA_TI2C_MESSAGE_TYPE.
m The MC_I2C_BUFFER_STATE data type has been renamed NA_I12C_BUFFER_STATE.

m The NAI2CInit and NAI2COperation functions have been added to support
easier 12C Master operation without the use of 1/0 function calls.

Interrupt Service Routine (ISR) API

[MCDisablelsr has been renamed nalnterruptDisable.
m MCEnablelsr has been renamed nalnterruptEnable.

[MCInstalllIsr has been renamed nalsrinstall. The MCInstalllIsr function
takes four parameters, but nalsrinstall takes only three. The fourth
parameter to MCInstalllsr is a flag word that uses two bits. One bit
determines whether the interrupt request line is high or low active when
installing an ISR for an external interrupt. In NET+OS 6.3, you do this by
setting the appropriate BSP_GPI0_MUX_IRQ_X_CONFIG constant in the platform's
gpio.h file. The other bit determines whether interrupt is the Fast Interrupt
Request (FIQ). In NET+QOS 6.3, you do this by calling the nalsrSetFiq function.
MCUninstalllsr has been renamed nalsrUninstall.

128 NET + Works with GNU Tools Programmer’s Guide

Porting NET +OS v6.1 Applications to NET +0OS v6.3

MMU API

The 6.1 nonCachedMalloc and nonCachedFree functions have been deprecated.
They should not be used. Current applications that use them should be rewritten to
use the 6.3 functions.

m Use the NAvaToUncachedVa function to translate the Virtual Address (VA) of a
cached buffer to its uncached equivalent. The buffer can be dynamically or
statically allocated. Use the NACT1eanBuffer function before reading or writing
to the uncached VA. Use the NAInvalidateBuffer function after writing to the
uncached VA.

m Use the NAVaToPhys function to get the physical address of a buffer given its
VA. The buffer can be dynamically or statically allocated.

m Always use the NABeforeDMA and NAAfterDMA macros on DMA buffers before
and after a DMA transfer.

PLL functions

Several PLL functions have been renamed. This table shows the NET+0S 6.1 names
and the new NET+0S 6.3 names:

This NET+0S 6.1 name Has been changed to this NET+0S 6.3 name
MCReadPLLNDSW NAReadPLLNDSW

MCSetPLLNDSW NASetPLLNDSW

MCReadPLLNDStatus NAReadPLLNDStatus

MCReadPLLISStatus NAReadPLLISStatus

MCReadPLLBypassStatus NAReadPLLBypassStatus

MCSetSWChange NASetSWChange

MCSetPLLBypassSW NASetPLLBypassSW

MCReadPLLBypassSW NAReadPLLBypassSW

MCReadCPUSpeedGrade NAReadCPUSpeedGrade

www.digi.com 129

Real time clock driver

Real time clock driver

NET+0S 6.1 had a real time clock (RTC) driver that supported an external RTC chip.
This driver was never implemented on any NET+OS development board, and the
NET+O0S 6.1 RTC driver has been dropped.

NET+0S 6.3 implements a new RTC driver that supports the RTC built into the
NS9360 chip.

These functions that were defined in the NET+OS 6.1 RTC driver are no longer

supported:

] NAinstallRealTimeClockTime
] rtcGet

] rtclnitialize

| rtcSet

GPIO configuration

Timer driver

130

In NET+OS 6.1, the external interrupts were configured to be high active or low
active by the MCInstallIsr function.

In NET+OS 6.3, this is determined by the value of the external interrupt line's
BSP_GPIO_MUX_IRQ_X_CONFIG constant in the platform's gpio.h file, where X
indicates which external IRQ line. You can use this configuration setting to select
between level sensitive high active, level sensitive low active, rising edge, and
falling edge interrupt triggers.

The NET+QOS 6.1 timer driver has been replaced. These functions are no longer
supported:

[MCDisableTimer — Use NATimerStop to stop a timer.
n MCEnableTimer — Use NATimerStart to start a timer.

= MCSetTimerClockSelect — Use NATimerConfigure to select the clock input to
a timer.

NET + Works with GNU Tools Programmer’s Guide

SPI API

Porting NET +OS v6.1 Applications to NET +0OS v6.3

MCSetTimerMode — Use NATimerConfigure to select the timer's mode.

MCSetTimerInterruptSelect — Use NATimerInterruptEnable to enable a
timer's interrupt, and NATimerInterruptDisable to disable a timer's interrupt.

MCSetTimerUpDownSelect — Use NATimerConfigure to select whether a timer
counts up or down.

MCSetTimerBit — Use NATimerOpen to set the size of a timer.

MCSetTimerReloadEnable — Use NATimerConfigure to determine whether a
timer should automatically reload.

MCReloadTimerCounter — Use NATimerConfigure to set the reload count.
MCGetTimerCounter — Use NATimerRead to read the current timer value.

MCClearTimerInterrupt — Use NATimerInterruptAck to acknowledge a timer
interrupt.

The NET+OS 6.1 SPI API is deprecated. This APl has been replaced by the NET+0S
SPI master driver in NET+QOS 6.3. New applications should be written to use the new
SPI master driver. You should port old applications to the new driver because it will
be discontinued in a future release.

Network heap caching

USB host API

The NET+OS 6.1 BSP_CACHE_NETWORK_HEAP configuration constant has been dropped.

The network heap is always cached in NET+QOS 6.3.

The NET+OS 6.1 USB host APl and USB host header files have been changed. USB
host applications written under NET+0S 6.1 must be ported to use the NET+OS 6.3
USB host API. All the existing USB host device class drivers use the NET+0S 6.3 USB
host API.

www.digi.com 131

USB host API

The usbHost.h USB host header file has been renamed to usbHostApi.h. Within
the file, some of data structures have been changed. Therefore, USB host-related
compiler errors require referring to the specific data structures in this file.

These USB host API functions have been replaced:

[usbHostInit — Use usb_host_init to initialize the USB host.

[usbRegister — Use usb_register to register a device class driver.

(] usbDeregister — Use usb_deregister to de-register a device class driver.

m usbBulkOut and usbBulkIn — Use usb_bulk_transfer to perform bulk data
transfers.

[usbGetString — Use usb_get_string to retrieve USB device string data.

[usbGetDeviceDescriptor — Use usb_get_device_descriptor to retrieve USB
device descriptor data.

[usbGetStatus — Use usb_get_status to retrieve USB device status data.

n usbClearFeature — Use usb_clear_feature to send a clear feature command
to the USB device.

[usbSetFeature — Use usb_set_feature to send a set feature command to the
USB device.

] usbClearEndpointFeature — Use usb_clear_endpoint_feature to send a clear
endpoint feature to the USB device.

n usbSetConfiguration — Use usb_set_configuration to enable device
configuration in the USB device.

n usbSetInterface — Use usb_set_interface to select an interface in the USB
device.

n usbGetConfiguration — Use usb_get_configuration to retrieve the device
configuration from the USB device.

[usbRequestIrq — Use usb_request_interrupt_transfer to request interrupt
transfers from the USB device.

The NET+OS 6.1 USB host API functions that are device class requests have been
moved to the respective device class drivers in the netosxxx\src\usb_host_drivers
directory. netosxxx is your NET+OS installation directory.

132 NET + Works with GNU Tools Programmer’s Guide

Porting NET +OS v6.1 Applications to NET +0OS v6.3

These USB hub-related API functions have been replaced.

usbHubInit — Use usb_hub_init to initialize the USB hub driver.

usbGetHubDescriptor — This function is in the NET+0OS 6.1 USB host APl and is
replaced by usb_hub_get_hub_descriptor in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_hub_descriptor to
retrieve the USB Hub device descriptor data.

usbClearPortFeature — This function is in the NET+0S 6.1 USB host APl and is
replaced by usb_hub_clear_port_feature in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_clear_port_feature to
send a clear port feature command to the USB hub device.

usbSetPortFeature — This function is in the NET+OS 6.1 USB host API and is
replaced by usb_hub_set_port_feature in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_set_port_feature to
send a set port feature command to the USB hub device.

usbGetHubStatus — This function is in the NET+0S 6.1 USB host API and is
replaced by usb_hub_get_hub_status in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_hub_status to
retrieve send a clear port feature command to the USB hub device.

usbGetPortStatus — This function is in the NET+0S 6.1 USB host API and is
replaced by usb_hub_get_port_status in usbHub.c in
netosxxx\src\usb_host_drivers\hub. Use usb_hub_get_port_status to
retrieve the port status of the USB Hub device.

These USB keyboard related API functions have been replaced. netosxxx is your
NET+OS installation directory.

usbKeyboardIni - Use usb_keyboard_init to initialize the USB Keyboard
driver.

usbSetReport - This function is in the NET+OS 6.1 USB host API and is replaced
by usb_keyboard_set_report in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_reportto
send a set report command to the USB device.

usbGetReport - This function is in the NET+O0S 6.1 USB host library and is
replaced by usb_keyboard_get_report in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_get_reportto
send a get report command to the USB device.

www.digi.com 133

USB host API

134

usbSetIdle - This function is in the NET+OS 6.1 USB host APl and is replaced
by usb_keyboard_set_idle in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_idle to
send a set idle command to the USB device.

usbSetProtocol - This function is in the NET+0S 6.1 USB host API and is
replaced by usb_keyboard_set_protocol in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_set_protocol
to send a set protocol command to the USB device.

usbGetProtocol - This function is in the NET+0OS 6.1 USB host APl and is
replaced by usb_keyboard_get_protocol in usbKeyboard.c in
netosxxx\src\usb_host_drivers\keyboard. Use usb_keyboard_get_protoco]l
to send a get protocol command to the USB device.

These USB mouse-related API functions have been replaced. netosxxx is your NET+0S
installation directory.

usbMouseInit - Use usb_mouse_init to initialize the USB Mouse driver.

usbGetHidDescriptor - This function is in the NET+OS 6.1 USB host APl and is
replaced by usb_mouse_get_hid_descriptor in usbMouse.c in
netosxxx\src\usb_host_drivers\mouse.

Use usb_mouse_get_hid_descriptor to request the descriptor for an HID
(Human Interface Device).

This USB printer related API function has been replaced:

usbPrinterInit - Use usb_printer_init to initialize the USB printer driver.

NET + Works with GNU Tools Programmer’s Guide

Appendix A: Library
Makefile System

Overview

Overview

136

You use the Makefile system to build the BSP, POSIX, flash libraries, bootloader
images, and example application. This appendix describes the hierarchy of the
Makefile and how to build, clean, and add libraries. This chapter also describes
the bootloader Makefile and provides an example of building NET+OS libraries
and the naftpapp sample application.

You initiate makes in any directory with a Makefile by entering:

make PLATFORM = my_platform

where PLATFORM is a bash shell variable that you can specify in either the make
command line or the bash shell.

If you are doing frequent makes, it convenient to set the shell variable and then
just enter make. To set the PLATFORM shell variable, enter:

export PLATFORM=my_platform

To view the current value of your PLATFORM variable, enter:
echo $PLATFORM

Be aware that you must always specify the platform when you build NET+OS.

The PLATFORM variable directs make to where to get the libraries and which
platform directory to build in the BSP.
This is a list of the supported platforms:
[] ns9750_a

] ns9360_a

] connectme

[] connectem

[] connectsp

] ns7520_a

| net50bga_a

] connectwime

] connectwiem

[] net50_d

NET + Works with GNU BSP Porting Guide

Two optional variables are:
[DEBUG=on — Turns on the debugging information.

By default, this variable is set to off, which turns on the NETOS_DEBUG flag;
the NETOS_DEBUG flag then turns on the NA_ASSERT macro.

m MODE=verbose — echoes out each Makefile command. By default, this variable
is set to silent. To see the compile line, turn on this variable.
This variable is useful if a problem with search paths occurs or if you want
to check which compiler flags are turned on.

Makefile hierarchy

You can execute make from any directory that contains a Makefile. The Makefile
system is nested and built around many Makefiles. This diagram shows how the
system is organized; the list after the diagram describes the directories.

netos62_gnu/Makefile

netos62_gnu/Makefile.inc

netos62_gnu/Makefile.lib clean clean_examples examples

T

1 netos62_gnu/src/bsp/Makefile

—{netos62_gnu/src/flash/Makefile

i netos62_gnu/src/sflash/Makefile

— netos62gnu/src/posix/Makefile

netos62_gnu/Makefile.bld

www.digi.com 137

Makefile hierarchy

netos63_gnu/Makefile.inc, the master Makefile, uses the list of directories
in the Makefile.1ib file.

Makefile.inc goes into each directory in Make.1ib and executes the make
commands.

netos63_gnu/Makefile.inc has the top level platform-specific settings, flags
for compilation, link options, and processor specific settings.

Building all libraries

To build all the libraries, including the BSP:

1

Building individual

Change to the root directory:

cd netos63_gnu

Do one:

- Either enter this command:
make PLATFORM=my_pTlatform

- Or enter these commands:
export PLATFORM=my_pTlatform

make

libraries

To build a single library, you can go into the individual libraries, enter make, and
specify the platform.

For example, to create 1ibbsp.a for the ns9360_a:

1

138

Change to this directory:
netos63_gnu/src/bsp directory
Do one:

- Either enter this command:
make PLATFORM=ns9360_a

- Or enter these commands:
export PLATFORM=ns9360_a

make

NET + Works with GNU BSP Porting Guide

Library directory structure
The NET+OS library directory structure is keyed off the PROCESSOR, ENDIAN and
TOOLSET variables. This is the library directory structure:
netos63_gnu/lib/arm7/32b/gnu/
netos63_gnu/1ib/arm9/32b/gnu/

Except for the BSP library, 1ibbsp.a, all libraries are found in path shown in the
previous paragraph. Because 1ibbsp.a is the only platform-dependent library, the
BSP library directory is keyed off the PLATFORM variable. For example:
netos63_gnu/lib/arm7/32b/gnu/bsp/connectme/

netos63_gnu/1ib/arm9/32b/gnu/bsp/ns9360_a/

In addition to 1ibbsp.a, the BSP lib directory contains reset.o and memcpy .o objects.
These objects, which are linked in with the application, provide a fast memory copy
routine and the vector table.

Library Makefile variables

The child library Makefiles contain the name of the object files, include path,
source path, and any other defines you want to pass to the compiler. These
Makefiles are used to build the BSP, flash, sflash, and posix libraries.

For information about the application build files, see Appendix B, “Application
Makefile.”

This table lists the variables you need to define in the child Makefile:

Variable Description

0BJS Location of object files

SRCDIR List of source directories

LOCAL_LIB Name of the library

INCDIRS List of include paths with -I prefix
C_0BJ List of C object files

S_0BJ List of assembly object files

CC_0BJ List of C++ object files (*.cc and *.cxx)

www.digi.com 139

Bootloader Makefile

Variable Description

MY_CFLAGS List of C flags (such as -Werror, -Os). If you want to turn on debug
information, set the -g flag here

MY_DEFINES List of defines with the -D prefix

Adding a new libraries to the system

» To add new libraries:
1 Copy a child Makefile from netos63_gnu/src/flash and use it as a template.
2 Carefully set up the variables described in the previous table.
3 Add this directory to the list of libraries in the netos63_gnu/Makefile.1ib
file, which has the list of directories that will be built when you enter make.

You don’t need to change any other top-level Makefiles.

Cleaning libraries

When you clean the libraries, temporary files such as objects and dependency files
are deleted.

To clean libraries, enter this command:
make PLATFORM=my_pTlatform clean

The next time you build after a clean, all the object files will be rebuilt and
archived into the library.

Bootloader Makefile

Because bootloader Makefiles are called from netos63_gnu/src/bsp/Makefile, you
always build the bootloader as part of the BSP. The next diagram shows how the
bootloader Makefile system is organized. The list after the diagram describes the
directories.

140 NET + Works with GNU BSP Porting Guide

netos62_gnu/src/bsp/Makefile

1

libbsp.a Makefile.bootloader

bsp/bootloader/net/Makefile

bsp/bootloader/ramimage/Makefile

bsp/bootloader/romlimage/Makefile

bsp/bootloader/spiBootRamimage/Makefile

bsp/bootloader/spiBootRomIimage/Makefile

n netos63_gnu/src/bsp/bootloader/net/Makefile generates 1ibnet.1ib
directory under bootloader/1ibs/gnu/my_platform/

n netos63_gnu/src/bsp/bootloader/ramimage/Makefile generates blram.s,
bin to s converted file, which is linked in to rom.bin

| netos63_gnu/src/bsp/bootloader/romimage/Makefile generates rom.bin
under netos63_gnu/src/bsp/platforms/my_platform/

] netos63_gnu/src/bsp/bootloader/spiBootRamImage/Makefile generates
spi_blram.s, bin to a converted file, which is linked in to spi_rom.bin
(supported only on ARM9)

] netos63_gnu/src/bsp/bootloader/romImage/Makefile generates spi_rom.bin
under netos63_gnu/src/bsp/platforms/my_platform/ (supported only on
ARM9)

www.digi.com 141

Example: using the Makefile

Example: using the Makefile

This example shows how to build NET+OS libraries and the naftpapp sample

application:

1

Open a bash shell and change to this directory:

cd c:/netos63_gnu

Enter these commands:

export PLATFORM=my_platform
export MODE=verbose

make

cd src/examples/naftpapp/32

make

The results of the build, which are located in the 32b directory, include these files:

image.

image.

image

image.

elf - Debug image
bin - Executable image

.map - Map file for image

sym - Symbol table for image

If the ROM image also is built, these files are created in the 32b directory:

142

rom.e1f - ROM debug image

rom.bin - ROM executable image

rom.map - ROM map file for image

rom.sym - Symbol table for ROM image

NET + Works with GNU BSP Porting Guide

Appendix B: Application
Makefile

Building applications

Building applications

To allow ease of use and rapid prototyping, an application Makefile hierarchy is
supplied with each sample application, located under the sample application’s 32b
folder. (For example, the Makefile for the sample application program naftpapp is
in the src/naftpapp/32b directory and is called Makefile.) This Makefile allows
application writers to rapidly assemble complex applications.

Application Makefiles

144

Each application has its own Makefile in the applications/32b directory.

For example, the Makefile for the naftpapp application example is in the src/
naftpapp/32b directory and is called Makefile. This Makefile includes a master
Makefile, which isin the ./src/1inkerscripts directory

You do not need to modify the master Makefiles; to create a new application, copy
an existing Makefile and use it as a template.

The application Makefile generates these files:

File Description

image.bin Application image. Can be downloaded into flash, decompressed by
the bootloader, and executed from RAM

image.elf Application image in ELF format. Contains debug symbols; you use it to
debug your RAM-based application.

image.map Linker map. Contains size and location information about RAM-based
application symbols.

image.sym Symbol table. Contains information on the location of RAM-based
application symbols.

rom.bin ROM-based application image. Can be downloaded into and executed
from flash
rom.elf ROM-based application image in ELF format. Contains debug symbols;

you use it to debug your ROM-based application

NET + Works with GNU Tools BSP Porting Guide

File

rom.map

Description

Linker map. Contains information (size and location) about ROM-based
application symbols

rom.sym

Symbol table. Contains information on the location of ROM-based
application symbols

These variables are defined in the Makefile application:

Variable

APP_DESCRIPTION

Description

A string that contains a brief description of this application.

APP_INCDIRS

List of include paths with -I prefix

APP_C_FILES

List of C

APP_CC_FILES

List of C++ files

APP_ASM_FILES

List of assembly files

APP_C_FLAGS

List of C flags to pass to the compiler; for example, you can turn
on debug information (-g) or optimization here

APP_C_FLAGS

List of C flags to pass to the compiler for C++ files

APP_ASM_FLAGS

List of C flags (such as -Werror, -0s), to pass to the assembler

APP_LIBS

List of libraries to link into this application

Sections of the Makefile

The application Makefile includes these sections:

Section

NETOS_DIR

Description

Defines the root of the NET+OS tree (where this version of NET+0S
is installed).

APP_DESCRIPTION

Description of the application used to identify the image in the
standard output window.

vpath

Defines the search path for all the application source files.

www.digi.com 145

Application Makefiles

146

Section

BUILD_RAM_IMAGE

Description

When enabled (non-zero), builds the RAM-based and debug images,
image.bin and image.elf, respectively. The RAM-based image.bin
image can be loaded into flash, along with the boot1oader rom.bin,
and decompressed into high speed SDRAM at startup, for faster
execution and higher performance. Because the image must be
decompressed, the time to boot is longer. Applications that have
critical boot time requirements might want to use the application ROM
image (or modify the decompression scheme in the bootloader).
BUILD_RAM_IMAGE option is enabled by default.

BUILD_ROM_IMAGE

When enabled (non-zero), builds the ROM-based image rom.bin,
which can be loaded into flash, in place of the boot1oader rom.bin,
and includes the bootstrap process and the application image. This
image is executed from ROM (instead of RAM), eliminating the need to
decompress the application image from ROM to RAM and reducing the
boot time.

Because of the slower speeds of ROM memory access (and lack of

memory burst capability), program execution speed overall is reduced.
BUILD_ROM_IMAGE option is enabled by default.

APP_C_FILES

List of application ANSI C files to be compiled using the ARM GNU GCC
compiler.

These files should have a .c file extension.

APP_CC_FILES

List of application C++ files to be compiled using the ARM GCC
compiler. For proper C++ compilation, include the - xc++ flag in the
APP_CC_FLAGS group.

These files should have a .C, .cxx, or .cc file extension.

APP_ASM_FILES

List of application assembler files to be assembled using the ARM GCC
assembler.

These files should have a .s, .S, or .arm file extension.

APP_C_FLAGS

Compiler directives and defines passed through to the GCC compiler
and used during compilation of the APP_C_FILES application files. This
must be a recognizable GCC option; for example, adding -DAPP_DEBUG
defines the APP_DEBUG symbol in your application.

APP_CC_FLAGS

Compiler directives and defines passed through to the GCC compiler
and used during compilation of the APP_CC_FILES application files.

APP_ASM_FLAGS

Assembler directives and defines passed through to the GCC assembler
and used during assembly of the APP_ASM_FILES application files.

NET + Works with GNU Tools BSP Porting Guide

Section Description

APP_INCDIRS Application-specific include directories, in GCC compatible format.
(Uses the -I prefix and is passed through directly to GCC.) For example,
to add the directory above the 32b directory, set this symbol to -I .

APP_LIBS Libraries required for this specific application. Requires full path and

file name.

Makefile hierarchy

This section describes the hierarchy that the Makefile uses.

Path name

linkerScripts/Makefile.app.inc

Description

This Makefi1e is included directly in the application
Makefile and includes the 1inkerScripts/
Makefile.appcc.common and the
linkerScripts/Makefile.appbuild Makefile
based on the platform selected.

linkerScripts/
Makefile.appcc.common

This Makefile is included in the TinkerScripts/
Makefile.app.inc and assigns values to the GNU
toolset, DEBUG_FLAG, WARN_FLAGS, C_DEFS,
CC_DEFS, ASM_DEFS, C_FLAGS, CC_FLAGS, and
ASM_FLAGS. These settings are platform-
independent.

Makefile.appbuild.ns9360

This Makefile is included in the 1inkerScripts/
Makefile.app.inc. Defines the NS9360 flag and
uses the armv5te architecture type, needed for the
arm926ejs.

Makefile.appbuild.ns9750

This Makefile is included in the TinkerScripts/
Makefile.app.inc. Defines the NS9750 flag and
uses the armv5te architecture type, needed for the
arm926ejs.

Makefile.appbuild.original

This Makefileis for 1inkerScripts/
Makefile.appbuild.$(BUILD_METHOD) for all
other processor types (which defaults to the ARM7
family). This is where the arm7tdmi processor type is
selected.

www.digi.com 147

Application Makefiles

Makefile targets
In addition to the targets for the files listed earlier in this appendix (for example,
either image.bin or rom.bin), these targets exist in the Makefile:
Target Description

clean Removes all objects, images, map files, symbol files, and
dependencies.

all Builds all objects, images, map files, symbol files, and creates a
dependency file.

gdbinit Creates a .gdbinit file used for the gdb debugger.

Building an application

NET+OS ships with prebuilt libraries. If you modify the BSP or a library, you must
rebuild the libraries before you build your application.

To build your application:

1 Change to this directory:
cd netos63_gnu/source/examples/sample application/32b
2 Do one:
- Either enter this command:
make PLATFORM=my_platform
- Or enter these commands:
export PLATFORM=my_platform

make

Cleaning an application

When you clean an application, temporary files such as objects and dependency
files are deleted.

To clean an application, enter this command:
make PLATFORM=my_platform clean

148 NET + Works with GNU Tools BSP Porting Guide

Porting an application to a new platform

Some applications cannot run on all platforms. Makefiles for these applications
check the value of the PLATFORM variable and will terminate with an error message
if it you try to build the application on an unsupported platform.

If you create a new platform, you must update the application Makefiles to make
the application build on the new platform. To update an application's Makefile to
support a new platform, look for statements in the Makefile similar to these:

ifneq ($(findstring $(PLATFORM), ns9750_a ns9360_a_eng),)

else

$(error This application is not supported for the specified platform,
check readme for more information)

endif

The supported platforms are listed after ifneq ($(findstring $(PLATFORM); in
this case,the platforms are ns9750_a ns9360_a_eng. Edit the Makefile, and add the
name of your platform to the list. If a Makefile does not have these statements,
the application is supported on all platforms.

www.digi.com 149

Appendix C: Customizing
the SPI Bootloader

Overview

Overview

152

To recover after a flash download of new firmware fails, or to boot from the
network, you use the SPI bootloader. When the download fails, the SPI
bootToader automatically downloads a new image from a network server.

You enable SPI-EEPROM boot logic by strapping off the boot_cfg pins to the boot
from the SDRAM setting in the Miscellaneous System Configuration and Status
register. When boot logic is enabled, it copies the contents of SPI serial flash (or
SPI-EEPROM) to system memory, allowing you to boot from low-cost serial memory.
The CPU is held in reset while the data is copied. The boot logic works by
interfacing to serial port B using the BBus to perform the transactions that are
required to copy the boot code from SPI serial flash (or SPI-EEPROM) to external
memory. For details about SDRAM settings, see the “SPI Bootloader Overview” in
the online help.

The SPI bootloader is copied from ROM to RAM at powerup through the SPI-
boot_logic hardware. The image can be compressed to save space in serial flash.
In normal operation, the RAM image verifies that the application image stored in
serial flash is correct, decompresses it to RAM, and executes it. The application
image also has a boot image header, which determines where, in RAM, to
decompress it.

For the NS9750 and NS9360 processors, SPI serial flash (or SPI-EEPROM) must be
connected to serial port B because the boot logic does not communicate with any
other serial port.

Digi recommends that you use the SPI bootloader to run your application.

The SPI bootloader utility consists of two application images:

[ROM image. A small application that is copied from SPI flash to RAM by
hardware and executed in RAM

n RAM image. Your large application, which runs from RAM
The RAM image verifies that the application image stored in flash is correct,
decompresses it to RAM, and executes it.

The rest of this chapter describes these images and provides details about how the
SPI bootloader utility functions.

NET + Works with GNU Tools BSP Porting Guide

SPI bootloader application images

ROM image

RAM image

This section provides a description of the ROM and RAM application images that the
SPI bootloader utility uses.

The ROM image is located in the first (and possibly the second) sector of SPI serial
flash (or SPI EEPROM). The processor automatically copies the ROM image to RAM
after a reset and immediately starts to execute the SPI bootloader ROM image. The
SPI bootloader uses the BSP initialization code to configure the hardware.

The ROM image initializes the hardware. After the hardware is initialized, the ROM
image decompresses the RAM image section of the SPI bootToader to a different
location in RAM and executes it.

You build the ROM image with the SPI bootloader utility, which is located in
in /bin.

The RAM image is stored as an application image in SPI serial flash (SPI EEPROM).
Like other applications, the RAM image has a boot image header. Information in the
header determines where, in RAM, to decompress the image. The RAM image runs
after it is decompressed to RAM.

The RAM image has these requirements:

m Sufficient RAM must be available to hold the RAM image portion of the SP1I
bootloader (about 128 KB), the compressed application image downloaded
from the network, and the decompressed version of the application image.

The maximum sizes of both the compressed and decompressed versions of the
application image are set in the linker script customization file.

m The application image must be built with the boothdr utility, which is located
in /bin.

www.digi.com 153

Application image structure

If the application image fails the checksum test, the RAM image attempts to
recover by:

[Downloading a replacement for it using TFTP

m Using the DHCP/BOOTP server to get the network/ and file name to download
information

The RAM image uses these steps to perform the recovery:

Initializes the Ethernet driver.

Initializes the UDP stack.

Downloads the application image from a network server to RAM.

Validates the downloaded application image by performing a CRC32 checksum.

Stores the image into flash.

O O A WN =

Resets the unit, which restarts the process.

The application image, which this procedure replaces, passes the
checksum test and is executed.

Application image structure

An application image consists of:
m An application image header, which has two parts:
- ANET+0S header
- An optional custom header
m The application itself
m A checksum, which is computed over the entire image, including the headers

The next section describes each component of the application image header.

Application image header

154

The application image header has two sections of variable length. The first part
contains data that the SPI bootloader uses, and the second part contains
application-specific data that you define. Fields at the start of a section determine
the size of the two sections.

NET + Works with GNU Tools BSP Porting Guide

This data structure defines the application image header:

typedef struct

{

WORD32 headerSize;
WORD32 naHeaderSize;
char signaturel[81];
WORD32 version;
WORD32 flags;

WORD32 flashAddress;
WORD32 ramAddress;
WORD32 size;

} blImageHeaderType;

This table describes how the fields are used:

Field Description

headerSize Set to indicate the size of the complete header, including the
application-specific section. The application starts immediately
after the end of the header.

naHeaderSize Set to indicate the size of the NET+OS portion of the image header
in bytes, including this field.

signature Set to the ASCII string bootHdr to identify this header as a valid
image header.

version Set to O for this version of the image header.

flags A bit field of flags.
For details about bit values, see the next table.

flashAddress If the image is to be written to flash, set this field to the address
to which the image will be written. The entire image, including
the header, is written to flash.

ramAddress Holds the image's destination address in RAM. When an image is
written to RAM to be executed, only the application part of the
image, without the header, is written.

size Holds the size of the image (not including the header)

in bytes.

www.digi.com 155

Application image structure

These bit values are defined for the flags field:

Bit value Description

BL_WRITE_TO_FLASH If this bit is set, the image is written to the address in flash specified
in the flashAddress field.
If this bit is clear, the image is run immediately without writing it to
flash. The image is moved or decompressed to the address in the
ramAddress field before it is executed.

BL_LZSS_COMPRESSED If this bit is set, the application portion of the image is compressed.
It is decompressed to the address in the ramAddress field before it
is executed.

BL_EXECUTE_FROM_RQOM If this bit is set, the application is executed from ROM. The
application must not be compressed.
If this bit is not set, the application is decompressed or moved to the
address in the ramAddress field before it is executed.

boothdr utility
The boothdr utility converts a binary image into an application image by:
1 Inserting a header at the beginning of the image.
The data to place inside the header is read from a configuration file.
2 Inserting a customer header.

You specify this action at the command line by providing the name of a
file that contains the custom header.

3 Calculating a CRC32 checksum for the entire image, including the header, and
placing it at the end of the file.

The boothdr utility takes this command line:

boothdr config-file input-file output-file [custom-header-file]

Arguments
Argument Description
config-file The name of the configuration file
input-file The name of the bin file to convert

156 NET + Works with GNU Tools BSP Porting Guide

Argument Description

output-file The name of the file to create

custom-header-file The name of a file that contains your custom header as binary data

spibootldr utility

The SPI boot1dr utility inserts a SPI boot header at the beginning of the ROM image.
The SPI boot header is needed because the memory controller exits the reset
state in non-operational mode, requiring the SPI-EEPROM boot logic to configure
the memory controller as well as the external SDRAM before any memory access.
The information required to configure the memory controller and the external
SDRAM must be stored in a configuration header in the SPI serial flash (or SPI-
EEPROM) in a contiguous block that starts at address 0. Each entry in the header,
with the exception of the pad entry, must be 4 bytes long.

The size of the configuration header varies from 128 bytes to 130 bytes because of
the variable length nature of the SPI serial flash (or SPI-EEPROM) read command.

The spibootldr utility takes this command line:
spibootldr config_file input_file output_file

These are the arguments for the spibootldr utility:

Argument Description

config_file The name of the SDRAM configuration file. NET+OS 6.3 uses
bsp/platforms/my_platform/init_settings.h.

input_file The name of the bin file to convert.

output_file The name of the file to create.

For more information about the SPI boot header, see the “SPI Bootloader Overview”
in the online help.

For information about SPI-EEPROM boot logic, see the hardware documentation for
your processor.

www.digi.com 157

Generating an image

Generating an image

The template and sample Makefiles in the apps and examples directories use these
steps to create application images when you build an application:

1 The Makefile is compiled and linked.

The application is linked for its execution address in RAM (image.bin) or
ROM (rom.bin), but is linked as a ROM application. Normally, this image is
set up for debugging.

2 The compression program that ships with NET+OS compresses the image.

The boot1dr creates an application image that the bootloader supports.

Configuration file

The configuration file contains configuration information in the form of several
keyword/value pairs. The default configuration file, bootl1dr.dat, is stored in the
bsp/platforms/my_platform directory.

This table describes the keyword/value pairs:

Keyword Value description

WriteToFlash Set to one of these options:
m Yes. Sets the BL_WRITE_TO_FLASH bit in the fTlags
field of the header.
m No. The bit is left clear.

Compressed Set to one of these options:
m Yes. Sets the BL_LZSS_COMPRESSED bit in the flags
field of the header.
m No. The bit is left clear.

ExecutedFromRom Set to one of these options:
m Yes. Sets the BL_EXECUTE_FROM_ROM bit in the flags
field of the header.
m No. The bit is left clear.

FlashOffset Specifies the offset from the beginning of flash where the image is to
be written.

Set to a hexadecimal value preceded by 0x.

158 NET + Works with GNU Tools BSP Porting Guide

Keyword Value description

RamAddress Specifies the absolute address in RAM at which to execute the

application. The application is copied or decompressed to this
location.
Set to a hexadecimal value preceded by 0x.

MaxFileSize Specifies the maximum size of the image in bytes. The application

terminates in error if the combination of the image, header, and
checksum is larger than this value.
Set to a hexadecimal value preceded by 0x.

Here is an example of a configuration file that uses keyword/value pairs:
WriteToFlash Yes

Compressed Yes

ExecuteFromRom No

FlashOffset 0x20000

RamAddress 0x4000

MaxFileSize 0xD0000

General bootloader limitations

B

e aware of these general limitations about the bootloader:

The bootloader’s DHCP/BOOTP client is limited. The client supports options
for getting the IP address, subnet mask, gateway address, boot image file
name, and boot image size only. You cannot use the client to get other
options.

m The bootloader's User Datagram Protocol (UDP) stack supports a limited

implementation of UDP and IP that supports only those features needed to
support DHCP/BOOTP and Trivial FTP (TFTP).

m The TFTP client supports only file downloads.
[The TFTP server and the DHCP/BOOTP server must be located on the same

machine; that is, they must have the same IP address.

www.digi.com 159

Customizing the SPIl bootloader utility

Customizing the SPI bootloader utility

You can modify a set of functions in the default bootloader to support your specific
applications and environments. These functions, referred to as customization hooks,
are in the spi_bImain.c and blerror.c files in the platforms directory.

The code in spi_blimain.c is like a template bootloader. If the current application
image is corrupt, the code uses the bootloader application program interface (API)
to download a new application image. To add new functionality to the bootloader,
you modify the template.

The rest of the chapter describes the functions in the spi_bimain.c file. For
details about each function, see the online help.

Customization hooks

This table provides a summary of the functions in the spi_blmain.c file, which is in
the platforms directory:

Function Description

NABTReportError Called whenever an error occurs

getMacAddress Gets the Ethernet MAC address that the bootloader
should use

isImageValid Determines whether an image is valid

shouldDownloadImage Determines whether the boot1oader should download a new image

getDefaultFilename Determines the name of the file to download

downloadImage Downloads a new application image

160 NET + Works with GNU Tools BSP Porting Guide

NABIReportError
Called when an error is detected.

The error is reported to the user.

Format

void NABTReportError (errorCode);

Arguments
Argument Description
errorCode Identifies the error type

Return values

None

Implementation

The default implementation reports an error by blinking the LEDs on the
development board in a pattern and then returns. The errorCode value determines
the pattern.

Because this implementation relies on hardware (LEDs) that may not be present on
customer boards, it is valid for only the NET+ARM development board.

You can customize the function in a number of ways, depending on the features in
the target hardware; for example, by:
m Writing an error message out the serial port

[Blinking the LEDs in a loop, which effectively forces users to reset the device
manually after correcting the problem

www.digi.com 161

Customizing the SPIl bootloader utility

getMacAddress

162

Returns a pointer to the Ethernet MAC address that the bootloader uses.

Format

char *getMacAddress;

Arguments

None

Return values

Returns the Ethernet MAC address as an array of characters

Implementation

The default implementation uses the customizeGetMACAddress function to read the
Ethernet MAC address from NVRAM. You can use the default implementation if the
customizeGetMACAddress function has been ported to the application hardware.

You may need to modify the default implementation if you want to get the MAC
address in a different way. Do not hard-code the MAC address; doing so prevents
more than one unit from operating on the network.

NET + Works with GNU Tools BSP Porting Guide

isimageValid

Determines whether a downloaded image is valid.

Format

int isImageValid (blImagelnfoType *imagelnfo, int imagelsSInRAM)

Arguments
Value Description
imagelnfo Pointer to the image header
imagelsInRam Either of these:

m Non-zero. The image is currently in RAM.
m Zero. The image is currently in serial flash.

Return values

Value Description
TRUE Image is valid.
FALSE Image is not valid.

Implementation

The default implementation validates the image by checking the signature in the
header and performing a cyclic redundancy check (CRC) on the image. If the image
is not in RAM, this routine first reads the image in serial flash into RAM.

You can extend the default implementation to determine whether the application
can and should be run on the hardware; for example, by:

[Encoding information in the custom section of the image header that
identifies the application's hardware requirements and features

[Encoding the hardware capabilities into the GEN_ID and GPIO bits
m Verifying that the hardware has the features needed to run the application

m Verifying that the end user is allowed to run the application on this unit; in
other words, making sure the user is not trying to upgrade a low-end unit with
the firmware for a high-end unit

[If the application is to be written into flash, verifying that it fits
m Verifying that the destination address specified in the image header is valid

www.digi.com 163

Customizing the SPIl bootloader utility

shouldDownloadimage

Determines whether to download an application image from the network.

Format

int shouldDownloadImage(void);

Arguments

None

Return values

Value Description
TRUE Downloads the image from the network
FALSE Executes the image in flash

Implementation

To help debug the bootloader, the default implementation returns TRUE if the
image is invalid.

static BOOLEAN shouldDownloadImage(void)

{

#if (BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY == TRUE)
return TRUE;

#else
int result = TRUE;
bl1ImageHeaderType imagelnfo;
memset(&imagelnfo, 0, sizeof(blImageHeaderType));
if (b1ReadFromSFlash(NAAppOffsetInSFlash, (char *)&d1Buffer[0], sizeof
(b1ImageHeaderType), 0)

!= BL_SUCCESS)
NABTReportError(SIMPLE_SPI_EEPROM_READ_FAIL);

fmemcpy (&imageInfo, &d1Buffer[0], sizeof (blImageHeaderType));

result = (isImageValid(&imageInfo, 0/*image is in EEPROM*/) ==
FALSE);

return result;

#endif
}

164 NET + Works with GNU Tools BSP Porting Guide

You may want the bootloader to download a new image even if the current image is
valid. For example, you may want to let end users force a download by either
pushing a button at powerup or selecting an option from a configuration menu.

To boot from the network only, set BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY to
TRUE. The function always returns TRUE without checking whether the image in
flash is valid.

www.digi.com 165

Customizing the SPIl bootloader utility

getDefaultFilename

166

The Dynamic Host Configuration Protocol (DHCP) client gets the name of the
application image from the DHCP or Bootstrap Protocol (BOOTP) server. The client
can pass the server the name of the file when the server requests this information,
allowing the server to determine which file is appropriate for the client.

How the server uses the information depends on the implementation. If no file
name is specified, the server returns the name of the default image file.

This function sets the name of the file that is passed to the DHCP/BOQTP server.
The function returns a zero-length string if it wants the default file.

Format

char *getDefaultFilename(void);

Arguments

None

Return values

A null-terminated ASCII string that is the name of the file that the DHCP client will
request from the DHCP/BOOTP server

Implementation

The default implementation returns a pointer to an empty string, which has the
effect of requesting the default boot image on the Trivial File Transfer Protocol
(TFTP) server.

You will probably want to modify the default implementation to pass a file name to
the DHCP/BOOTP server. Some possibilities are:
m Hard-coding a file name that identifies the product

[Determining the features supported by the hardware and generating a file
name that has this information encoded in it

m Generating a file name that identifies the features purchased by the user

NET + Works with GNU Tools BSP Porting Guide

downloadlmage

Downloads an application image from the network into a memory buffer.

Format

int downloadImage (char *destination, int maxLength)

Arguments
Argument Description
destination Pointer to the memory buffer that will hold the image
maxLength Size of the memory buffer in bytes

Return values

Return value Description
BL_SUCCESS Image successfully downloaded
otherwise Error code that identifies the failure

Implementation

The default implementation uses DHCP to get an IP address and TFTP to download
load the image. After the image is downloaded, it is validated.

You can use the default implementation in many applications. For example, you
may want to extend the default implementation by:
[Using information in NVRAM to determine:
- The unit's IP address
- The IP address of the TFTP server
- The name of the application image to download
m Passing a vendor class identifier (option 60) to the DHCP server
[Receiving vendor information (option 43) from the DHCP server
[Downloading the image over a serial or parallel port

www.digi.com 167

Appendix D: Customizing
the ROM Bootloader

Overview

Overview

To recover after a flash download of new firmware fails, you use the bootTloader.
When the download fails, the bootloader automatically downloads a new image
from a network server.

The bootloader runs from ROM and links in an image that is copied to RAM and
executed. The image may be compressed to save ROM space. In normal operation,
the RAM image verifies that the application image stored in flash is correct,
decompresses it to RAM, and executes it. The application image also has a boot
image header, which determines where, in RAM, to decompress it.

Digi recommends that you use the bootloader to run your application.

The bootloader utility consists of two application images:
[ROM image. A small application that runs from ROM

[RAM image. Your large application, which runs from RAM.

The RAM image verifies that the application image stored in flash is
correct, decompresses it to RAM, and executes it.

The rest of this chapter describes these images and provides details about how the
bootTloader utility functions.

Bootloader application images

ROM image

170

This section provides a description of the ROM and RAM application images that the
bootloader utility uses.

The ROM image is located in the first sector of flash. The processor automatically
starts to execute code from the beginning of flash after a reset, and so
immediately starts to execute the bootloader ROM image. The bootloader uses the
BSP initialization code to configure the hardware.

The ROM image initializes the hardware. After the hardware is initialized, the
ROM image decompresses the RAM image section of the bootloader to RAM and
executes it.

NET + Works with GNU Tools BSP Porting Guide

RAM image

The RAM image is stored as an application image in flash. Like other applications,
the RAM image has a boot image header. Information in the header determines
where, in RAM, to decompress the image. The RAM image runs after it is
decompressed to RAM.

The RAM image has these requirements:

m Sufficient RAM must be available to hold the RAM image portion of the
bootloader (about 128 KB), the compressed application image downloaded
from the network, and the decompressed version of the application image.

The maximum sizes of both the compressed and decompressed versions of
the application image are set in the linker script customization file.

m The application image must be built with the boothdr utility, which is located
in /bin.

If the application image fails the checksum test, the RAM image attempts to

recover by:

[Downloading a replacement for it using TFTP

(] Using the DHCP/BOOQOTP server to get the network/file name to download
information

The RAM image uses these steps to perform the recovery:

Initializes the Ethernet driver.

Initializes the UDP stack.

Downloads the application image from a network server to RAM.

Validates the downloaded application image by performing a CRC32 checksum.

Stores the image into flash.

o O A WN =

Resets the unit, which restarts the process.

The application image, which this procedure replaces, passes the
checksum test and is executed.

www.digi.com 171

Application image structure

Application image structure

An application image consists of:

m An application image header, which has two parts:
- ANET+O0S header
- An optional custom header
m The application itself
m A checksum, which is computed over the entire image, including the headers

The next section describes each component of the application image header.

Application image header

The application image header has two sections of variable length. The first part
contains data that the bootTloader uses, and the second part contains application-
specific data that you define. Fields at the start of a section determine the size of
the two sections.
This data structure defines the application image header:
typedef struct
{

WORD32 headerSize;

WORD32 naHeaderSize;

char signaturel[81];

WORD32 version;

WORD32 flags;

WORD32 flashAddress;

WORD32 ramAddress;

WORD32 size;
} blImageHeaderType;

172 NET + Works with GNU Tools BSP Porting Guide

This table describes how the fields are used:

Field

headerSize

Description

Set to indicate the size of the complete header, including the
application-specific section. The application starts immediately
after the end of the header.

naHeaderSize

Set to indicate the size of the NET+OS portion of the image header
in bytes, including this field.

signature Set to the ASCII string bootHdr to identify this header as a valid
image header.

version Set to 0 for this version of the image header.

flags A bit field of flags.
See the next table for details about bit values.

flashAddress If the image is to be written to flash, set this field to the address to
which the image will be written. The entire image, including the
header, is written to flash.

ramAddress Holds the image's destination address in RAM. When an image is
written to RAM to be executed, only the application part of the
image, without the header, is written.

size Holds the size of the image (not including the header) in bytes.

These bit values are defined for the fiags field:

Bit value

BL_WRITE_TO_FLASH

Description

If this bit is set, the image is written to the address in flash
specified in the f1ashAddress field.

If this bit is clear, the image is run immediately without writing it
to flash. The image is moved or decompressed to the address in the
ramAddress field before it is executed.

BL_LZSS_COMPRESSED

If this bit is set, the application portion of the image is
compressed. It is decompressed to the address in the ramAddress
field before it is executed.

BL_EXECUTE_FROM_ROM

If this bit is set, the application is executed from ROM. The
application must not be compressed.

If this bit is not set, the application is decompressed or moved to
the address in the ramAddress field before it is executed.

www.digi.com 173

boothdr utility

boothdr utility

The boothdr utility converts a binary image into an application image by:
1 Inserting a header at the beginning of the image.

The data to place inside the header is read from a configuration file.
2 Inserting a customer header.

You specify this action at the command line by providing the name of a
file that contains the custom header.

3 Calculating a CRC32 checksum for the entire image, including the header, and
placing it at the end of the file.

The boothdr utility takes this command line:

Format

boothdr config-file input-file output-file [custom-header-file]

Arguments
Argument Description
config-file The name of the configuration file
input-file The name of the bin file to convert
output-file The name of the file to create

custom-header-file The name of a file that contains your custom header as binary data

Generating an image

The template and sample Makefiles in the apps and examples directories use these
steps to create application images when you build an application:

1 The Makefile compiles and links the image.

The application is linked for its execution address in RAM (image.bin) or
ROM (rom.bin), but is linked as a ROM application. Normally, this image is
set up for debugging.

174 NET + Works with GNU Tools BSP Porting Guide

2 The compression program that ships with NET+0S compresses the image.

3 The bootldr creates an application image that the bootToader supports.

Configuration file

The configuration file contains configuration information in the form of several
keyword/value pairs. The default configuration file, boot1dr.dat, is stored in the
bsp/platforms/my_platform directory.

This table describes the keyword/value pairs:

Keyword Value description

WriteToFlash Set to one of these options:
m Yes. Sets the BL_WRITE_TO_FLASH bit in the flags
field of the header.
m No. The bit is left clear.

Compressed Set to one of these options:
m Yes. Sets the BL_LZSS_COMPRESSED bit in the
flags field of the header.
m No. The bit is left clear.

ExecutedFromRom Set to one of these options:
m Yes. Sets the BL_EXECUTE_FROM_ROM bit in the
flags field of the header.
m No. The bit is left clear.

FlashOffset Specifies the offset from the beginning of flash where the image
is to be written.

Set to a hexadecimal value preceded by 0x.

RamAddress Specifies the absolute address in RAM at which to execute the
application. The application is copied or decompressed to this
location.

Set to a hexadecimal value preceded by 0x.

MaxFileSize Specifies the maximum size of the image in bytes. The application
terminates in error if the combination of the image, header, and
checksum is larger than this value.

Set to a hexadecimal value preceded by 0x.

www.digi.com 175

General bootloader limitations

Here is an example of a configuration file that uses keyword/value pairs:

WriteToFTash Yes
Compressed Yes
ExecuteFromRom No
FlashOffset 0x20000
RamAddress 0x4000
MaxFileSize 0xD0000

General bootloader limitations

Keep in mind these general limitations about the bootloader:

m The bootloader’s DHCP/BOOTP client is limited. The client supports options
for getting the IP address, subnet mask, gateway address, boot image file
name, and boot image size only. You cannot use the client to get other options.

m The bootloader's User Datagram Protocol (UDP) stack supports a limited
implementation of UDP and IP that supports only those features needed to
support DHCP/BOOTP and Trivial FTP (TFTP).

m The TFTP client supports only file downloads.

[The TFTP server and the DHCP/BOOTP server must be located on the same
machine (that is, must have the same IP address).

Overview of customizing

176

You can modify a set of functions in the default bootloader to support your specific
applications and environments. These functions, referred to as customization hooks,
are in the bImain.c and blerror.c files in the platforms directory.

The code in bimain.c is like a template bootloader. If the current application
image is corrupt, the code uses the bootloader application program interface (API)
to download a new application image. To add new functionality to the bootloader,
you modify the template.

NET + Works with GNU Tools BSP Porting Guide

The rest of the chapter describes the functions in the bimain.c file. For details
about each function, see the online help.

Customization hooks

This table provides a summary of the functions in the bimain.c file, which is in the

platforms directory:

Function

NAB1ReportError

Description

Called whenever an error occurs

getMacAddress

Gets the Ethernet MAC address that the boot1oader should use

isImageValid

Determines whether an image is valid

shouldDownloadImage

Determines whether the boot1oader should download a new
image

getDefaultFilename

Determines the name of the file to download

downloadImage

Downloads a new application image

www.digi.com 177

Customization hooks

NABIReportError
Called when an error is detected.

The error is reported to the user.

Format

void NABTReportError (errorCode);

Arguments
Argument Description
errorCode Identifies the error type

Return values

None

Implementation

The default implementation reports an error by blinking the LEDs on the
development board in a pattern and then returns. The errorCode value
determines the pattern.

Because this implementation relies on hardware (LEDs) that may not be present on
customer boards, it is valid for only the NET+ARM development board.

You can customize the function in a number of ways, depending on the features in
the target hardware; for example, by:
m Writing an error message out the serial port

m Blinking the LEDs in a loop, which effectively forces users to reset the device
manually after correcting the problem

178 NET + Works with GNU Tools BSP Porting Guide

getMacAddress

Returns a pointer to the Ethernet MAC address that the boot1oader uses.

Format

char *getMacAddress, (void);

Arguments

None

Return values

Returns the Ethernet MAC address as an array of characters

Implementation

The default implementation uses the customizeGetMACAddress function to read
the Ethernet MAC address from NVRAM. You can use the default implementation if
the customizeGetMACAddress function has been ported to the application hardware.

You may need to modify the default implementation if you want to get the MAC
address in a different way. Do not hard-code the MAC address; doing so prevents
more than one unit from operating on the network.

www.digi.com 179

Customization hooks

isimageValid

180

Determines whether a downloaded image is valid.

Format

int isImageValid (blImagelnfoType *imagelnfo)

Arguments
Value Description
imagelnfo Pointer to the image header

Return values

Value Description

TRUE Image is valid.

FALSE Image is not valid.
Implementation

The default implementation validates the image by checking the signature in the
header and performing a cyclic redundancy check (CRC) on the image.

You s

hould extend the default implementation to determine whether the

application can and should be run on the hardware; for example, by:

Encoding information in the custom section of the image header that
identifies the application’s hardware requirements and features.

Encoding the hardware capabilities into the GEN_ID and GPIO bits.
Verifying that the hardware has the features needed to run the application.

Verifying that the end user is allowed to run the application on this unit; in
other words, making sure the user is not trying to upgrade a low-end unit with
the firmware for a high-end unit.

If the application is to be written into flash, verifying that it fits.
Verifying that the destination address specified in the image header is valid.

NET + Works with GNU Tools BSP Porting Guide

shouldDownloadimage

Determines whether to download an application image from the network.

Format

int shouldDownloadImage(void);

Arguments

None

Return values

Value Description
TRUE Downloads the image from the network.
FALSE Executes the image in flash.

Implementation

To help debug the bootloader, the default implementation returns TRUE if the
image is invalid.

BOOLEAN shouldDownloadImage(void)

{
int result = TRUE;
bl1ImageHeaderType *imageInfo = (blImageHeaderType *)
BSP_APPLICATION_ADDRESS;
result = (isImageValid(imagelnfo) == FALSE);
return result;
}

You may want the bootloader to download a new image even if the current image
is valid. For example, you may want to let end users force a download by either
pushing a button at powerup or selecting an option from a configuration menu.

www.digi.com 181

Customization hooks

getDefaultFilename

182

The Dynamic Host Configuration Protocol (DHCP) client gets the name of the
application image from the DHCP or Bootstrap Protocol (BOOTP) server. The client
can pass the server the name of the file when the server requests this information,
allowing the server to determine which file is appropriate for the client.

How the server uses the information depends on the implementation. If no file
name is specified, the server returns the name of the default image file.

This function sets the name of the file that is passed to the DHCP/BOQTP server.
The function returns a zero-length string if it wants the default file.

Format

char *getDefaultFilename(void);

Arguments

None

Return values

A null-terminated ASCII string that is the name of the file that the DHCP client will
request from the DHCP/BOOTP server

Implementation

The default implementation returns a pointer to an empty string, which has the
effect of requesting the default boot image on the Trivial File Transfer Protocol
(TFTP) server.

You will probably want to modify the default implementation to pass a file name to
the DHCP/BOOQOTP server. Some possibilities are:

[Hard-coding a file name that identifies the product

(] Determining the features supported by the hardware and generating a file
name that has this information encoded in it

m Generating a file name that identifies the features purchased by the user

NET + Works with GNU Tools BSP Porting Guide

downloadlmage

Downloads an application image from the network into a memory buffer.

Format

int downloadImage (char *destination, int maxLength)

Arguments
Argument Description
destination Pointer to the memory buffer that will hold the image
maxLength Size of the memory buffer in bytes

Return values

Return value Description
BL_SUCCESS Image successfully downloaded
otherwise Error code that identifies the failure

Implementation

The default implementation uses DHCP to get an IP address and TFTP to download
load the image. After the image is downloaded, it is validated.

You can use the default implementation in many applications. For example, you
may want to extend the default implementation by:

m Using information in NVRAM to determine:

- The unit's IP address

- The IP address of the TFTP server

- The name of the application image to download
[Passing a vendor class identifier (option 60) to the DHCP server
n Receiving vendor information (option 43) from the DHCP server
m Downloading the image over a serial or parallel port

www.digi.com 183

Appendix E: Customizing
the Address Configuration
Executive

185

Overview

Overview

The Address Configuration Executive (ACE) controls the process of acquiring an IP
address and other IP configuration settings, and configures the IP stack.

ACE provides built-in support for using static IP addresses and for these protocols:
m DHCP

= BOOTP
= Ping ARP
= RARP

= AutolP

ACE invokes a set of callback functions at various points in the process of acquiring
an address. The ACE API consists of a series of functions that the callbacks can use
to get more information.

This appendix describes how to program changes for ACE. This document is not
intended to provide knowledge of the Address Resolution Protocols; rather, it
describes how some of these protocols can be managed in the ACE configuration.

Configuring ACE

186

To add or remove a protocol from ACE, you must change the NVRAM parameters
(ACE Configuration).

These functions store the protocol -specific configuration to NVRAM for the
interface identified in the call. customizeAceSetInterfaceConfig() writes all the
protocol-specific ACE configurations, or the ACE configuration for an interface and
customizeAceSetConfig() writes the entire ACE configuration into NVRAM.)

These APIs are available to applications for this purpose:
] customizeAceSetConfig()

] customizeAceSetInterfaceConfig()

] customizeAceSetStaticConfig()
||

customizeAceSetRarpConfig()

NET + Works with GNU Tools Programmer’s Guide

] customizeAceSetDhcpConfig()
] customizeAceSetBootpConfig()

] customizeAceSetAutoipConfig()

After you set up the configuration information you want and save it to NVRAM, you
can restart ACE. At that point, ACE reads the configuration parameters from NVRAM.

Setting the static IP configuration

To change the static IP configuration, you set the values in a structure of type
configAceStaticInfo.

When the members isConfigValid and isEnabled are set to TRUE, the
configuration can be processed by ACE (that is, it turns static IP on).

These are the arguments for static IP configuration:

[auto_assign:

- When set to true, causes this configuration to take precedence over other
protocols and runs with the startup delay 0.

- When set to false, static IP is invoked after its startup delay, like any
other protocol.

m ip_address, subnet_mask and gateway — Required parameters that are not
described in this document.

m name_server_address — Can be specified. This is an IP address expressed as a
32-bit value.

startinfo structure

This member of the configAceStaticInfo structure contains these required

parameters:

[protocol — A number defined in ace_params.h identifying that identifies the
protocol (ACE_PROT_STATIC in this case).

[priority — A non-negative number. Priority granted to the protocol is
inversely proportional to this number (0 is highest priority). Priority applies
when several protocols acquire the IP address at the same time.

www.digi.com 187

Configuring ACE

m delay_before_start — Number of seconds to delay starting this protocol.

n shutdown_type — One of three choices:
- ACE_ALWAYS_SHUTDOWN

- ACE_CONT_IF_GOT_ADDRESS
- ACE_NEVER_SHUTDOWN

For static configuration shutdown, the type must be ACE_ALWAYS_SHUTDOWN.

Setting DHCP configuration

188

Note that in this section, all IP address parameters are 32- bit words in network
byte order.

To change the DHCP configuration, set the values in a structure of type
configAceDhcpInfo. When the members isConfigValid and isEnabled are set to
TRUE, the configuration can be processed by ACE (that is, turns on DHCP).

These are the parameters in the DHCP configuration:

[suggested_ip_address — Optionally provided.

[] server_ip_address — For ACE_RESTART_DHCP_REUSE.
n gateway — Default gateway address.

[suggested_lease_time — ime_t structure.

[number_of_retries — Must be 4.

[Tease_start_time — Time recorded at start of lease.

[dhcp_restart_type — DHCP restart type; only ACE_RESTART_DHCP_DISCOVER
is supported.

[need_bcast_response — Sets broadcast flag in DHCP message.

m do_init_delay — Enables initial random delay before sending Discover message.
m arp_reply_timeout — Reply timeout for ARP probe.

m desired_params — Array of DHCP options to send to the DHCP server.

[num_desired_params — Number of valid DHCP options)

m startInfo - Same structure as above. (See “Setting the static IP
configuration,” earlier in this chapter.)

- protocol — ACE_PROT_DHCP.

- SHUTDOWN_TYPE — Must be either ACE_CONT_IF_GOT_ADDRESS or
ACE_NEVER_SHUTDOWN for DHCP to renew the lease.

NET + Works with GNU Tools Programmer’s Guide

Configuring ACE

AUTOIP configuration

To change the AutolP configuration, you set the values in a structure of type
configAceAutoipInfo().

When the members isConfigValid and isEnabled are set to TRUE, this
configuration can be processed by ACE (that is, turns AUTOIP on).
These are the parameters in the AUTOIP Configuration:

m autoip_local_addr — IP address that AutolP initially uses when trying to
configure an address.

[startInfo — Same structure as above.
See “Setting the static IP configuration,” earlier in this chapter.
] protocol - ACE_PROT_AUTOIP.

] shutdown_type — Must be either ACE_CONT_IF_GOT_ADDRESS or
ACE_NEVER_SHUTDOWN.

Stopping ACE

Stopping the service is necessary to make changes in the protocols which ACE uses
to manage address events.

To stop ACE, call aceStop. The only parameter passed in this call is the interface
name (for example, eth0).

189 NET + Works with GNU Tools Programmer’s Guide

Appendix F: Processor
Modes and Exceptions

Overview

Overview

This appendix describes the modes in which NET+OS operates and how NET+0S
handles interrupts.

The ARM processor supports seven modes. This table lists the modes and describes
how they are used:

Mode Used for

User Normal user code

SVC (supervisor) m Processing software interrupts
m NET+0S
m All threads
m The kernel scheduler

Abort Processing memory faults

System Running privileged operating system tasks

Undef (undefined) Handling undefined instruction traps

IRQ (interrupt) m Processing standard interrupts
m NET+0S

FIQ (fast interrupt) Processing fast interrupts

Hardware interrupts cause the processor to switch to IRQ mode.

The IRQ handler switches back to SVC mode before it calls the device's service
routine, allowing higher priority devices to interrupt the service routine, if necessary.

Vector table

An exception occurs when the normal flow of a program halts temporarily; for
example, to service an interrupt. Each exception causes the ARM processor to save
some state information and then jump to a location in low memory. This location in
memory is referred to as the vector table.

A vector table is stored from 0x00000000 to 0x0000001f. Each vector consists of a
32-bit word that is a single NET+ARM instruction. The instruction loads the program
counter with the contents of a memory location, which implements a 32-bit jump
to an interrupt service routine (ISR).

192 NET + Works with GNU Tools BSP Porting Guide

This table shows the vector address for each exception type:

Exception Vector address
Reset 0x00000000
Undefined instruction 0x00000004

Software interrupt (SWI) 0x00000008 (not used by NET+QOS)

Prefetch abort 0x0000000c
Data abort 0x00000010
Interrupt (IRQ) 0x00000018
Fast interrupt (FIQ) 0x0000001c

NET+OS treats these exception types as fatal errors:

Prefetch aborts

Data aborts

Undefined instructions
Fast interrupts
Software interrupts

The handler for these exception types is located in src/bsp/arm9init/init.s.

The default FIQ handler and the exception types in the table call the
customizeExceptionHandler routine.

Although ARM9-based processors (such as the N59360 and NS9750) allow external
interrupts to trigger a fast interrupt, ARM7-based processors do not. Applications
for both ARM7- and ARM9-based processors always can program the watchdog timer
and the general-purpose timer to trigger a fast interrupt.

The default FIQ handler normally calls customizeExceptionHandler. For more
information about FIQs, see “ARM7 FIQ handlers” or “ARM9 FIQ handlers,” later in
this chapter.

www.digi.com 193

IRQ handler

IRQ handler

An interrupt request is generated when one or more devices assert their interrupt
signal. For ARM9-based processors, the BSP provides an IRQ handler, which reads
the Interrupt Service Routine Address register (ISRADDR) and the Active Interrupt
Level Status register to determine which devices need to be serviced.

The IRQ signal is multiplexed by the interrupt controller built into the NET+ARM to
support 32 signals:

m 26 interrupt signals support AHB devices that are internal to the NS9750 and
NS9360.

m 1 interrupt signal supports Bbus devices that are internal to the NS9750. In the
NS9360, several of the BBus signals are moved up to the AHB interrupt vector
table, including USB device, USB host, BBUS DMA and I2C. These changes
speed up the interrupt response from those peripherals.

Several timer interrupts that are supported in the AHB interrupt vector
table in the NS9750 have been combined in the NS9360 to make room for
the BBus interrupts described in the previous paragraph.

m 4 interrupt signals support external devices.

m 1 interrupt signal is not used and is considered reserved.

ARM7-based processors have different interrupt signals. For more
information, see the bsp.c file and the hardware reference for the
processor you are using.

Application software can selectively Install, uninstall, enable, or disable any of
the interrupt signals with nalsrinstall, nalsrUninstall, nalnterruptEnable,
and nalnterruptDisable, respectively.

In ARM9-based processors, the IRQ handler for Bbus uses a prioritized interrupt
scheme. If more than one device requests service, the handler determines which
device has higher priority and services that device first. Interrupts for higher priority
devices are enabled before the device's service routine is called, allowing the
device's service routine to be interrupted if a higher priority device requests service.

194 NET + Works with GNU Tools BSP Porting Guide

Servicing AHB interrupts in ARM9 based NET+ARM processor.

The NET+OS IRQ handler uses this procedure to service an AHB interrupt:

1
2

3

10
11

A device requests service by asserting its interrupt signal.
The NET+ARM latches the request into the ISR Address register (ISRADDR).

After the signal has been latched, and if the interrupt pin is edge-triggered,
the NET+ARM generates the interrupt, even if the device stops asserting its
interrupt line.

When one of the corresponding interrupts configured in the Interrupt Configu-
ration register is invoked, the NET+ARM asserts the IRQ signal to the ARM CPU.

If interrupts are enabled when the IRQ signal is asserted, the ARM CPU switches
to IRQ mode and jumps to the IRQ handler.

The IRQ handler saves the context of the interrupted thread and switches to
SVC mode to service the interrupt.

The IRQ handler calls NAIrqHandler in the NA_isr.c file, which reads the
ISRADDR register to determine which device interrupt to process.

NAIrgHandler saves the current interrupt mask word and then enables inter-
rupts from higher priority devices.

NAIrgHandler calls the ISR that was registered for the device with the
nalsrinstall routine.

The ISR services the device and acknowledges the interrupt.

Control returns to NAIrqHandler, which restores the interrupt mask word
and returns.

When all pending interrupts have been serviced, NET+OS restores the context of the
interrupted thread and resumes processing the thread.

Servicing Bbus interrupts in ARM9 based NET+ARM processor

The Bbus IRQ handler uses this procedure to service an interrupt:

1

A Bbus device requests service by asserting its interrupt signal with Bbus
Aggregate Interrupt.

The NAIrgHandler in mc_isr.c calls BBUS_IrqHandler, which is installed as
an ISR, to service the BBUS interrupt.

www.digi.com 195

Changing interrupt priority

3 Inaloop, Bbus_IrqHandler masks all lower priority interrupts, enables inter-
rupts, and calls the function registered during the NAInstalllIsr call.

After the handler completes this procedure, it disables the interrupts that are lower
priority than the one currently being processed. The loop repeats until the handler
services all interrupt levels. When all pending interrupts have been serviced, control
is returned back to NAIrqgHandler.

Changing interrupt priority

AHB interrupts:

196

You can change the interrupt priority level by changing the order of the
NAAhbPriorityTab and NABbusPriorityTab arrays in the bsp.c file. The tables in
the next sections, “AHB interrupts in ARM9-based processors” and “Bbus interrupts
in ARM9-based processors,” show the contents of the arrays, ordered from lowest
to highest priority. You can specify each priority only once.

NET+OS treats incorrect ordering as a fatal error; that is, NET+OS calls
customizeErrorHandler.

ARM9-based processors

The priority of each interrupt in the AHB Bus is controlled by software. The priority
is set by the order configured in the Interrupt Configuration register. When an
interrupt occurs:

[Its handler is stored in the ISR Address register.

m Its priority level is stored in the Active Interrupt Level Status register.

The driver executes the interrupt handler, with the priority level passed as a
parameter. An interrupt with a higher priority can preempt the current interrupts.
After the call of the interrupt handler is completed, the interrupt driver
automatically clears the interrupt to be reused.

Interrupt sources with a higher-numbered priority level can interrupt the service
routines of devices with lower-numbered priority levels.

The priority for each AHB source interrupt is specified in the NAAhbPriorityTab
array in the bsp.c file.

NET + Works with GNU Tools BSP Porting Guide

This table lists the supported interrupt sources in the AHB Bus and the associated
software directives for the NS9750:

AHB interrupt source Software directive
External 3 EXTERNAL3_INTERRUPT
External 2 EXTERNAL2_INTERRUPT
External 1 EXTERNALLI_INTERRUPT
External 0 EXTERNALO_INTERRUPT
Timer 14 and 15 BUS AGGREGATE_INTERRUPT
Timer 12 and 13 TIMER12-13_INTERRUPT
Timer 10 and 11 TIMERIO-11_INTERRUPT
Timer 8 and 9 TIMER8-9_INTERRUPT
Timer 7 TIMER7_INTERRUPT

Timer 6 TIMER6_INTERRUPT

Timer 5 TIMERS_INTERRUPT

Timer 4 TIMERA_INTERRUPT

Timer 3 TIMER3_INTERRUPT

Timer 2 TIMERZ_INTERRUPT

Timer 1 TIMERI_INTERRUPT

Timer 0 TIMERO_INTERRUPT
Reserved AHB_PERIPH15_INTERRUPT
12C 12C_INTERRUPT

PCI External 3 PCI_EXTERNAL3_INTERRUPT
PCI External 2 PCI_EXTERNALZ_INTERRUPT
PCI External 1 PCI_EXTERNALI_INTERRUPT
PCl External 0 PCI_EXTERNALO_INTERRUPT
PCI Arbiter PCI_ARBITER_INTERRUPT
PCI Bridge PCI_BRIDGE_INTERRUPT
LCD CD_INTERRUPT

Ethernet PHY ETH_PHY_INTERRUPT
Ethernet Transmit ETH_TRANSMIT_INTERRUPT

www.digi.com 197

Changing interrupt priority

AHB interrupt source

Ethernet Receive

Software directive

ETH_RECEIVE_INTERRUPT

Reserved

N/A

Bbus Aggregate

TIMER14-15_INTERRUPT

AHB Bus Error

AHB_BUS_ERROR_INTERRUPT

Watchdog

WATCHDOG_INTERRUPT

This table lists the supported interrupt sources in the AHB Bus and the associated
software directives for the NS9360:

AHB Interrupt source

Software directive

External 3 EXTERNAL3_INTERRUPT
External 2 EXTERNAL2_INTERRUPT
External 0 EXTERNALO_INTERRUPT
IEEE_1284 [EEE_1284_INTERRUPT
USB_DEVICE USB_DEVICE_INTERRUPT
USB_HOST USB_HOST_INTERRUPT
RTC RTC_INTERRUPT
Timer 7 TIMER7_INTERRUPT
Timer 6 TIMER6_INTERRUPT
Timer 5 TIMERS_INTERRUPT
Timer 4 TIMER4_INTERRUPT
Timer 3 TIMER3_INTERRUPT
Timer 2 TIMERZ2_INTERRUPT
Timer 1 TIMERI_INTERRUPT
Timer 0 TIMERO_INTERRUPT
BBUS_DMA BBUS_DMA_INTERRUPT
12C [2C_INTERRUPT
SER3TX SER3TX INTERRUPT
SER3RX SER3RX INTERRUPT
SER2TX SERZTX_INTERRUPT

198 NET + Works with GNU Tools BSP Porting Guide

AHB Interrupt source

Software directive

SER2RX SERZRX_INTERRUPT
SER1TX SERITX_INTERRUPT
SER1RX SERIRX_INTERRUPT
LCD LCD_INTERRUPT

Ethernet PHY

ETH_PHY_INTERRUPT

Ethernet Transmit

ETH_TRANSMIT_INTERRUPT

Ethernet Receive

ETH_RECEIVE_INTERRUPT

Reserved N/A

BBUS Aggregate

ANY BBUS INTERRUPT DIRECTIVE

AHB Bus Error

AHB_BUS_ERROR_INTERRUPT

Watchdog

WATCHDOG_INTERRUPT

Bbus interrupts: ARM9-based processors

The priority in the Bbus is controlled by the logic in the Bbus interrupt handler.
Each device on the Bbus shares the Bbus Aggregate interrupt, a common interrupt
on the AHB bus. When a device signals an interrupt, these steps occur:

1

The hardware sets bits in the Bbus Bridge Interrupt Status register to indicate
which device on the Bbus is signaling the event.

If the device's interrupt level is not masked off, the hardware generates an
IRQ exception, causing the NET+OS interrupt driver to be executed.

The Bbus Interrupt Handler determines which device is signaling the interrupt
condition and calls the ISR that is registered to it.

The ISR processes the interrupt and then returns.

The interrupt driver checks for more pending interrupts. If any interrupts are
found, their ISRs are called as well.

When all pending interrupts have been processed, the NET+0S interrupt driver
returns control to the application.

199

www.digi.com

Changing interrupt priority

This table lists the supported interrupt sources in the Bbus and the associated
software directives. The priority for each Bbus interrupt source is specified in the
NABbusPriorityTab array in the bsp.c file. Interrupt sources with a higher-
numbered priority level can interrupt the service routines of devices with lower-
numbered priority levels.

Bbus interrupt source Software directive
IEEE 1284 [EEE_1284_INTERRUPT
Bbus DMA 16 BBUS_DMAL6_INTERRUPT
Bbus DMA 15 BBUS_DMAL5_INTERRUPT
BBUS_DMA14_INTERRUPT BBUS_DMAL4_INTERRUPT
Bbus DMA 13 BBUS_DMAI3_INTERRUPT
Bbus DMA 12 BBUS_DMAL2_INTERRUPT
Bbus DMA 11 BBUS_DMALI1_INTERRUPT
Bbus DMA 10 BBUS_DMAIO_INTERRUPT
Bbus DMA 9 BBUS_DMAO9_INTERRUPT
Bbus DMA 8 BBUS_DMAO8_INTERRUPT
Bbus DMA 7 BBUS_DMAQ7_INTERRUPT
Bbus DMA 6 BBUS_DMAQ6_INTERRUPT
Bbus DMA 5 BBUS_DMAQS_INTERRUPT
Bbus DMA 4 BBUS_DMAQ4_INTERRUPT
Bbus DMA 3 BBUS_DMAQ3_INTERRUPT
Bbus DMA 2 BBUS_DMAQ2_INTERRUPT
Bbus DMA 1 BBUS_DMAQI1_INTERRUPT
AHB DMA 2 AHB_DMAQ2_INTERRUPT
AHB DMA 1 AHB_DMAQ1_INTERRUPT
Utility UTIL_INTERRUPT

Bbus peripheral BBUS_PERIPHI0_INTERRUPT
Serial 1 receive SERIRX_INTERRUPT
Serial 2 receive SER2RX_INTERRUPT
Serial 3 receive SER3RX_INTERRUPT

200 NET + Works with GNU Tools BSP Porting Guide

Bbus interrupt source Software directive

Serial 4 receive SER4RX_INTERRUPT
Serial 4 transmit SERATX_INTERRUPT
Serial 3 transmit SER3TX_INTERRUPT
Serial 2 transmit SERZ2TX_INTERRUPT
Serial 1 transmit SERZTX_INTERRUPT
usB USB_INTERRUPT

Bbus DMA BBUS_DMA_INTERRUPT

System interrupts: ARM7-based platforms
The priority for interrupts is set by the NAInterruptPriority table in the bsp.c
file of its corresponding platform.
When a device signals an interrupt, these steps occur:
1 The hardware sets bits in the Interrupt Status Register.

2 If the device's interrupt level is not masked off, the hardware generates an
IRQ exception, causing the NET+QOS interrupt driver to be executed.

3 The Interrupt Handler determines which device is signhaling the interrupt condi-
tion and calls the ISR that is registered to it.

4 The ISR processes the interrupt and then returns.

At this point, the interrupt driver checks for more pending interrupts. If any
interrupts are found, their ISRs are called as well.

6 When all pending interrupts have been processed, the NET+QOS interrupt driver
returns control to the application.

The next table lists the supported interrupt sources in the ARM7 based NET+ARM
processor. Interrupt sources with a higher-numbered priority level can interrupt the
service routines of devices with lower-numbered priority levels.

www.digi.com 201

Changing interrupt priority

Interrupt source Software directive
DMA1 DMAL1_INT

DMA2 DMA2_INT

DMA3 DMA3_INT

DMA4 DMA4_INT

DMA5 DMAS_INT

DMA6 DMAG_INT

DMA7 DMA7_INT

DMA8 DMA8_INT

DMA9 DMA9_INT

DMA10 DMAIO_INT
ENI/PORT1 ENI/PC_PORTI_INT
ENI/PORT2 ENI/PC_PORTZ2_INT
ENI/PORT3 ENI/PC_PORT3_INT
ENI/PORT4 ENI/PC_PORT4_INT
ENETRX ENETRX_INT
ENETTX ENETTX_INT
SER1RX SERIRX_INT
SER1TX SERITX_INT
SER2RX SERZRX_INT
SER2TX SER2TX_INT

1M1-7 Reserved
WATCHDOG WATCHDOG_INT
TIMER1 TIMERI_INT
TIMER2 TIMERZ_INT

PCPC3 PCPC3_INT

PCPC2 PCPC3_INT

PCPC1 PCPCI_INT

PCPCO PCPCO_INT

202 NET + Works with GNU Tools BSP Porting Guide

Interrupt service routines

The IRQ handler calls Interrupt Service Routines (ISRs) to service interrupts that
external devices generate. You can implement ISRs as standard C functions. The
ISRs must clear the interrupt condition - usually by acknowledging it - and service
the interrupt. Then the ISRs can return as standard C functions.

Because interrupts are enabled for higher priority interrupt levels when the ISR is
called, an ISR with a higher priority can interrupt the processing of one with a
lower priority.

Installing an ISR

You install an ISR by calling NAInstal1Isr. After this routine returns, the ISR is
installed, and the interrupt associated with the ISR is enabled.

Disabling and removing an ISR

To disable and remove an ISR, call NAUninstal1Isr. This routine disables the
interrupt and uninstalls the ISR handler.

ARM9 FIQ handlers

Because a fast interrupt (FIQ) is a higher priority interrupt than an IRQ, it can
interrupt an IRQ at any time.

The default handler installed by the BSP treats a FIQ exception as an error (that is,
it calls customizeExceptionHandler).

Use the nalsrSetFiq function to program an interrupt source to generate an FIQ
interrupt, and then call nalsrInstall to install the interrupt handler for the FIQ.

For ARM9-based processors only:

m Unlike an IRQ, only one interrupt can be configured for an FIQ, and it must be
the first one in the NAAhbPriorityTab array.

n To disable and remove a FIQ, call NAUninstallIsr.

www.digi.com 203

ARM7 FIQ handlers
ARM7 FIQ handlers

On ARMY7 based-processors, the watchdog timer and the two general-purpose
timers can be configured to generate a FIQ interrupt. To enable these interrupts,
set the corresponding bits in the Interrupt Enable register. For descriptions of the
System Control register, Timer 1 and Timer 2 Control registers, and the Interrupt
Enable register, see the hardware reference for the processor you are using.

» To install an ARM7 FIQ handler:

1 Write the address of the application FIQ handler to memory location
0x0000003C.

2 Enable the FIQs bit in the Interrupt Configuration register for the specific
source interrupt.

3 Modify the IRQ handler routine to exclude the FIQs from being dispatched with
the IRQs.

The IRQ handler code is in these files:

[] na_isr.c

] reset.s

| init.s

Be aware that NET+0OS normally does not use FIQs. The statistical profiler utility,

however, which helps you identify system bottlenecks so you can improve system
performance, does use FIQs.

For an example of how to install and use FIQs, see bsp/profiler/profilerAPI.c.

204 NET + Works with GNU Tools BSP Porting Guide

Appendix G: Memory Usage
in Networked Applications

Overview

Overview

Block pools

Byte pools

206

Memory requirements and usage are two aspects of TCP/IP networking that often
are misunderstood. For clarification, the term network heap refers to the memory
used exclusively for the NET+OS TCP/IP stack. All NET+OS networking applications
require a segment of network heap. This space is the initial block of memory
allocated from the C library heap. It is used for initial static and dynamic allocation
of TCP/IP memory needs and managed independently from the C library heap.

Two standard approaches to memory management used in TCP/IP stacks are byte
pools and block pools, each with its own benefits and consequences.

Block pools (allocation of fixed sized buffers) are beneficial because no search is
needed to allocate a block. If one exists, it is merely allocated. The drawback,
however, is the wasted space that is not used because of the fixed-size blocks.

For example, suppose all requests for blocks greater than 64 bytes but less than 128
bytes always receive a 128 byte buffer. Requests for 64 bytes would result in 50%
wasted space.

Alternatively, a byte pool, which is a large block of bytes, is managed by a linked
list to available blocks within the pool, and separated (or fragmented) by already
allocated blocks. Traversing this list to find the best fit can become time
consuming, and in the worst case, cause allocation failures when fragmentation is
excessive. On the other hand, allocation utilization is 100% because the caller
receives exactly what was requested. For example, when an application requests
64 bytes, the manager traverses its linked list until a 64 byte block is located.

These examples illustrate a time versus memory trade-off:

m A block pool is faster but wastes space.

m A byte pool takes longer to search and find the best fit block, but enables
better use of the block.

The NET+OS network heap is, by default, a byte pool. A portion of the heap can be
converted to a block pool.

NET + Works with GNU Tools BSP Porting Guide

Network heap application tuning

The NET+OS TCP/IP network heap is defined by parameters in appconf.h. The
total memory (in bytes) allocated for the heap is defined by APP_NET_HEAP_SIZE,
and as mentioned above, the heap is, by default, a byte pool.

To allocate portions of the network heap as a block pool, you can add these
definitions to appconf.h and adjust them as needed:

#define APP_TCPIP_16BYTE_BLOCK_COUNT 60

#define APP_TCPIP_32BYTE_BLOCK_COUNT 60

#define APP_TCPIP_64BYTE_BLOCK_COUNT 100

#define APP_TCPIP_128BYTE_BLOCK_COUNT 20

#define APP_TCPIP_256BYTE_BLOCK_COUNT 10

#define APP_TCPIP_540BYTE_BLOCK_COUNT 200

#define APP_TCPIP_1836BYTE_BLOCK_COUNT 200

The network heap can be split into a byte pool and seven block pools of size 16, 32,
64, 128, 256, 540, and 1836. These block sizes were chosen based on needs of the
TCP/IP stack. When a block pool runs out, a block from the next highest pool is used.
When the pools run out, or when the size exceeds the largest block, memory is taken
from the byte pool.

Memory usage in TCP connections

The total memory required, Myyt5, Of an active TCP/IP connection can be
calculated as:

Mrotal = Mstatic + Mrecv * Mrransmit

where

B Mqatic is @ fixed constant that is required for socket data structures and state.
B Mgey is the reserved buffer required for receiving data.

B Myansmit 1S the buffer needed to store transmit data that might be needed for
retransmission.

www.digi.com 207

Active close of a TCP connection

Other dynamic memory needs for TCP/IP stated timers and configuration are ignored
at this time.

The value of Mgecy @and Mansmit €an be computed directly from the socket options
for SO_RCVBUF and SO_SNDBUF, respectively. So as the TCP window size grows,
Mstatic << MRecw MTransmit, @nd the size of My5 can easily be approximated by:

Mtotal = MRecy *+ Mtransmit

For example, on a high throughput connection, where the TCP window is set to the
maximum on both send and receive (64K), a connection will require a total of 128K
bytes. Additionally, if this service requires the ability to service eight simultaneous
connections, this service alone will require 1MByte of network heap, not including

the heap needed for ARP, the passive listener, spare Ethernet buffers, or any other
socket memory requirement.

When you design client-server systems, it is critical to consider and test for the
worst-case usage models.

Another source memory usage, but more subtle, is the cost of maintaining a closed
TCP/IP connection. When a client-server calls closesocket, it does not necessarily
mean the memory associated with the connection is immediately freed up, and it’s
crucial which side closes first.

This aspect of TCP/IP is extremely sensitive to which party in the client-server pair
closes first.

Active close of a TCP connection

208

An active close occurs when a TCP client-server first calls closesocket, which
causes the unit to send a FIN segment. The unit’s TCP connection state enters the
FIN_WAIT_1 state after sending the FIN and then enters the FIN_WAIT_2 state after
receiving the ACK to the sent FIN.

The unit’s TCP connection state remains in the FIN_WAIT_2 state until it receives a
FIN segment from its peer half-opened connection. There is no TCP/IP timer to
terminate from the FIN_WAIT_2 state, and its possible for connections to remain
half-opened indefinitely, if, for example the peer has crashed, network
connectivity is lost, or the client-server protocol is poorly designed.

NET + Works with GNU Tools BSP Porting Guide

To protect against sockets remaining in the FIN_WAIT_2 state, the socket option
SO_KEEPALIVE is recommended. This option actively probes the peer for
disconnections or crashes and terminates the half-opened connections if the keep-
alive timeout interval is exceeded. The keep-alive timeout interval is globally set;
you can change the interval with the NAIpSetKalInterval API call.

Time wait state of a TCP connection

The TCP connection state transitions to the TIME_WAIT state (from the FIN_WAIT_1
or FIN_WAIT_2 states) after acknowledging the FIN from the peer. However, the TCP
connection remains in TIME_WAIT state for 2*TCP_MSL seconds. Note the default
TCP MSL is 120 seconds, and therefore, the default TIME_WAIT interval is four
minutes.

You can change the global per-system TCP MSL value using the NAIpSetTcpMs1 API
call. The value of TCP MSL can be set between 15 and 120 seconds, reducing the
time memory and available sockets are tied up after the connection is closed.

The TIME-WAIT state is 2 * MSL and can be reduced using NA1pSetTcpMs1.

Using a connection reset instead of an orderly close

Another way to keep memory and sockets from lingering after connections are
closed is to use the connection reset mechanism instead of an orderly close.

This example uses the connection reset mechanism:

struct Tinger op;

op.1_linger = 0;

op.l_onoff = 1;

setsockopt(fd, SOL_SOCKET, SO_LINGER, (char*)&op, sizeof op);

closesocket(fd);

In this example, instead of sending a FIN segment at the closesocket() call, a RST is
sent instead. The drawback of this mechanism is that any remaining data in the send
queue will be discarded.

www.digi.com 209

Maximum number of sockets

Maximum number of sockets

The maximum number of active sockets is fixed at 128 and cannot be changed.

Additionally, the socket descriptor 0 cannot be used, so the maximum number of
open sockets is limited to 127 (MAX_SOCKETS - 1).

210 NET + Works with GNU Tools BSP Porting Guide

Index

A crt0.o file 102
crt0.S file 102
customization hooks 160, 177
customizeGetMACAddress function 162
Cygwin standard C library
and device drivers 90
and startup crt0.o file 101
modifying 101

adding devices 90
AM79C874 and AM79C875 PHYs 107, 115
AMD PHY 107, 115
application image
components of 154, 172
header 155, 172, 173
structure 154, 172

D

data passing functions 100
ddi.h file 90
DDIFirstLevellnitialization 91
DDISecondLevellnitialization 91
default configuration file 158, 175
device

adding 90

drivers and ThreadX kernel 102
device driver

C interface (DDI) functions 100

device driver routines

deviceClose 96

deviceEnter 93

devicelnit 94

blerror.c file 160, 176
blmain.c file 160, 176
boothdr utility 153, 156, 171, 174
boothdr.exe 7
bootldr.dat file 158, 175
bootloader utility

limitations of 159, 176

close function 90
compress.exe 7
configuration file 158, 175

Index-1

Index-2

deviceloctl 99
deviceOpen 95
deviceRead 97
deviceWrite 98
deviceClose routine 96
deviceEnter routine 93
devicelnfo structure 90
devicelnfo structures 90
devicelnit routine 94
deviceloctl routine 99
deviceOpen routine 95
deviceRead routine 97
devices.c file 90
deviceTable array 90
deviceWrite routine 98
DHCP/BOOTP client 159, 176
downloadimage routine 160, 167, 183

F
FastCat PHY 107, 115

G

generating
an image 158, 174

getDefaultFilename routine 160, 166,
182

getMacAddress routine 160, 162, 179

H

hard-coding the MAC address 162, 179
hooks, customization 160, 176, 177

image, generating 158, 174

Intel PHY 107, 114, 115

ioctl function 90

islmageValid routine 160, 163, 180

K

keyword/value pairs in configuration
file 159, 176

L

Level One PHY 107, 115
libc.a file and library 102

limitations of the bootloader utility 159,
176

Lucent Technologies PHY 107, 115
LXT970 PHY 107, 115

LXT971A PHY 114

LXT971A PHY and LXT972A PHY 107, 115

M

MAC address 160, 177
and hard-coding 162, 179
mii.c file 107, 115

modifying Cygwin’s standard C library
and startup file 101

N

NABIReportError routine 161
NABIReportError routine 160, 177

NET+OS device driver interface
(DDI) 100

(o) W

open function 90 write function 90

R

RAM image and bootloader utility 153,
171

rammain.c file 176
read function 90
reportError routine 178

return values for NET+OS DDI
routines 100

ROM image and bootloader utility 153,
170

S

setup functions 100

shouldDownloadimage routine 160, 164,
181

smicng.exe 6
spi_blmain.c file 160
spiboothdr.exe 6

T

TFTP client and bootloader utility 159,
176

ThreadX kernel and NET+0S device
drivers 102

U

User Datagram Protocol (UDP) stack and
bootloader utility 159, 176

Index-3

	Contents
	Introduction
	Overview
	Application development

	What is the board support package?
	Why does the target BSP need to change from the NET+ARM development board BSP?
	What are the benefits of following the NET+ARM reference design?
	What’s the best way to add my target hardware BSP platform?

	NET+OS tree structure
	bsp
	examples
	bin
	h
	gnusrc
	smicng
	arm7
	arm9
	debugger_ files
	docs

	NET+OS BSP for ARM7
	Overview
	Platforms
	Initialization
	Initializing hardware
	Initialization sequence
	C library startup
	NABoardInit
	ROM bootloader

	BSP tree structure
	Top-level directory
	bootloader subdirectory
	devices directory
	platforms directory

	Customizing the BSP for application hardware
	Follow the reference design
	Verify the features your hardware supports
	Task 1: Purchase and assign Ethernet MAC addresses
	Task 2: Create a new platform subdirectory
	Task 3: Building and modifying the BSP Makefile
	Task 4: Modify the linker scripts
	Task 5: Modify BSP configuration files
	Task 6: Modify the new BSP to start up the required drivers
	Task 7: Modify the format of BSP arguments in NVRAM
	Task 8: Modify error and exception handlers
	Task 9: Verify the debugger initialization files
	Task 10: Debug the initialization code
	Task 11: Modify the startup dialog
	Task 12: Modify the POST
	Task 13: Modify the ACE

	Other BSP customizing
	BSP_NVRAM_DRIVER
	TCP/IP stack
	File system

	NET+OS BSP for ARM9
	Overview
	Supported platforms
	Initialization
	Initializing hardware
	Initialization sequence
	C library startup
	NABoardInit

	ROM bootloader
	BSP tree structure
	Top-level directory
	bootloader subdirectory
	devices directory
	platforms directory

	Customizing the BSP for application hardware
	Follow the reference design
	Verify the features your hardware supports
	Task 1: Purchase and assign Ethernet MAC addresses
	Task 2: Create a new platform subdirectory
	Task 3: Building and modifying the BSP Makefile
	Task 4: Modify the linker scripts
	Task 5: Modify BSP configuration files
	Task 6: Modify the new BSP to start up the required drivers
	Task 7: Modify the format of BSP arguments in NVRAM
	Task 8: Modify error and exception handlers
	Task 9: Verify the debugger initialization files
	Task 10: Debug the initialization code
	Task 11: Modify the startup dialog
	Task 12: Modify the POST
	Task 13: Modify the ACE

	Other BSP customizing
	BSP_NVRAM_DRIVER
	TCP/IP stack
	File system

	Linker Files
	Overview
	Linker files provided for sample projects
	Basic GNU Tools section of the linker files
	NET+OS section of the linker files

	Address mapping (ARM9 only)
	NET+OS memory map (ARM9 only)

	Memory aliasing in NET+OS (ARM7 only)

	Adding Flash
	Flash table data structure
	Supporting larger flash

	Device Drivers
	Overview
	Adding devices
	deviceInfo structure
	Device driver functions

	Return values
	Modifications to Cygwin’s standard C library and startup file
	Modifying the libc.a library and crt0.o startup file
	NET+OS device drivers
	Device driver interface

	Hardware Dependencies for ARM7-based Platforms
	Overview
	DMA channels
	Ethernet PHY
	ENI controller
	Serial ports
	Software watchdog
	Endianness
	System clock
	BSP_CLOCK_SOURCE
	XTAL1_FREQUENCY
	CRYSTAL_OSCILLATOR_FREQUENCY
	PLL Control register setting

	System timers
	Memory map

	Hardware Dependencies for ARM9-based Platforms
	Overview
	DMA channels
	Ethernet PHY
	Endianness
	General purpose timers
	System timers
	All other general purpose timers

	Interrupts
	System clock
	Chip selects
	Memory map

	Porting NET+OS v6.0 Applications to NET+OS v6.3
	Overview
	BSP Makefile
	Application Makefiles
	Linker scripts
	Bootloader files
	Cache API
	Embedded Networking Interface
	ISR API
	RAM API
	Real Time Clock driver
	SYSCLK API
	GPIO configuration
	SPI API
	Stack sizes for exception handlers
	Interrupt priorities

	Porting NET+OS v6.1 Applications to NET+OS v6.3
	Overview
	BSP Makefile
	Application Makefiles
	Linker scripts
	Bootloader files
	Client parallel driver
	I2C driver
	Interrupt Service Routine (ISR) API
	MMU API
	PLL functions
	Real time clock driver
	GPIO configuration
	Timer driver
	SPI API
	Network heap caching
	USB host API
	Overview
	Makefile hierarchy
	Building all libraries
	Building individual libraries
	Library directory structure
	Library Makefile variables
	Adding a new libraries to the system
	Cleaning libraries

	Bootloader Makefile
	Example: using the Makefile
	Building applications
	Application Makefiles
	Sections of the Makefile
	Makefile hierarchy
	Makefile targets
	Building an application
	Cleaning an application
	Porting an application to a new platform

	Overview
	SPI bootloader application images
	ROM image
	RAM image

	Application image structure
	Application image header
	boothdr utility
	spibootldr utility

	Generating an image
	Configuration file
	General bootloader limitations

	Customizing the SPI bootloader utility
	Customization hooks

	Overview
	Bootloader application images
	ROM image
	RAM image

	Application image structure
	Application image header

	boothdr utility
	Generating an image
	Configuration file

	General bootloader limitations
	Overview of customizing
	Customization hooks
	Overview
	Configuring ACE
	Setting the static IP configuration
	Setting DHCP configuration
	AUTOIP configuration
	Stopping ACE

	Overview
	Vector table
	IRQ handler
	Servicing AHB interrupts in ARM9 based NET+ARM processor.
	Servicing Bbus interrupts in ARM9 based NET+ARM processor

	Changing interrupt priority
	Interrupt service routines
	Installing an ISR
	Disabling and removing an ISR

	ARM9 FIQ handlers
	ARM7 FIQ handlers
	Overview
	Block pools
	Byte pools

	Network heap application tuning
	Memory usage in TCP connections
	Active close of a TCP connection
	Time wait state of a TCP connection
	Using a connection reset instead of an orderly close
	Maximum number of sockets
	A
	B
	C
	D
	F
	G
	H
	I
	K
	L
	M
	N
	O
	R
	S
	T
	U
	W

	Appendix A: Library Makefile System
	Appendix B: Application Makefile
	Appendix C: Customizing the SPI Bootloader
	Appendix D: Customizing the ROM Bootloader
	Appendix E: Customizing the Address Configuration Executive
	Appendix F: Processor Modes and Exceptions
	Appendix G: Memory Usage in Networked Applications

