
Part number/version: 90000785_J
Date Last Modified: 9/4/13
www.digiembedded.com

NET+OS Programmer’s
Guide

©2004-2011 Digi International Inc.

Digi, the Digi logo, the Rabbit logo, the MaxStream logo, the When Reliability Matters logo, Digi Connect,
Digi Connect SP, Digi Connectware Manager, ConnectPort, PortServer, Rabbit 2000, XBee, and NET+ are
trademarks or registered trademarks of Digi International in the United States and other countries. ARM
and NET+ARM are trademarks or registered trademarks of ARM Limited. All other trademarks are the
property of their respective owners.

Information is this document is subject to change without notice and does not represent a commitment on
the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Digi may
make improvements and/or changes in this manual or in the product(s) and/or the program(s) described
in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made periodically
to the information herein; these changes may be incorporated in new editions of the publication.

Printed in the United States of America. All rights reserved.

Support

 United States telephone: 1 877 912-3444

 International telephone: 1 952 912-3444

 Fax: 952 912 4952

 Web site: http://www.digiembedded.com

Contents
C h a p t e r 1 : N E T + O S I n t r o d u c t i o n ... 1

System components .. 2

ThreadX RTOS kernel... 3

Advanced Web Server (AWS) .. 3

Internet Address Manager (IAM) .. 3

System requirements.. 4

Working with NET+OS/Digi ESP .. 4

NET+OS tree structure .. 4

bin... 5

debugger_ files.. 6

Documentation .. 6

gnusrc... 7

h ... 7

lib ... 7

mibcomp ... 7

src ... 7

utilities ... 8

P a r t 1 : C u s t o m i z a t i o n . 9

C h a p t e r 2 : B S P O v e r v i e w ... 10

Overview ... 11

What is the board support package (BSP)?.. 11

BSP tree structure .. 12
n n n n n n n i i i

Top-level directory .. 12

bootloader subdirectory .. 13

devices directory .. 14

platforms directory.. 15

Platforms... 16

Initialization... 17

Initializing hardware .. 17

Initialization sequence for ARM7 platforms 17

Initialization sequence for ARM9 platforms 18

C h a p t e r 3 : C r e a t i n g a N e w P l a t f o r m ...20

Overview ... 21

Creating a new platform .. 21

Step 1: Create a new platform directory 21

Step 2: Copy a similar platform into the new directory 21

Step 3: Copy a similar JLINK file to your platform 22

Step 4: Create a custom platform BSP BOARD type 22

Step 5: Add your platform to naPlatformCodeTable 22

Step 6: Rebuild imagehdr utility .. 22

C h a p t e r 4 : C o n f i g u r i n g a N e w P l a t f o r m ..24

Overview ... 25

Customizing the BSP for application hardware 25

Task 1: Set the GPIO configuration ... 25

Task 2: Modify the BSP to set up the required drivers 26

Task 3: Modify the BSP configuration files................................... 28

Task 4: Modify the format of BSP arguments in NVRAM 29

Task 5: Modify error and exception handlers................................ 31

Task 6: Modify the startup dialog ... 32

Task 7: Modify the POST.. 33

Other BSP customizing ... 33

BSP_NVRAM_DRIVER ... 33

TCP/IP stack.. 33
iv n n n n n n n

File system.. 35

C h a p t e r 5 : C u s t o m i z i n g t h e B o o t l o a d e r .. 38

Overview ... 39

Bootloader application images ... 40

ROM image .. 40

RAM image .. 40

Application image structure .. 42

Application image header .. 43

Generating an image ... 45

Configuration file .. 46

General bootloader limitations .. 47

Customizing the bootloader utility .. 48

Customization hooks .. 48

P a r t 2 : H a r d w a r e . 58

C h a p t e r 6 : B r i n g i n g U p N e w H a r d w a r e .. 59

Verify the debugger initialization files.. 60

Using the MAJIC/MAJICO probe... 61

Debug the initialization code ... 62

Preparing to debug the initialization code 62

Debugging the initialization code on ARM7 platforms 64

Debug the INIT.s file .. 64

Debug the ncc_init routine... 65

Debug the NABoardInit routine .. 66

Debug the Ethernet driver startup .. 66

Debugging the initialization code on ARM9 platforms 67

Debug the init.arm file ... 67

Debug the nccInit routine .. 67

Debug the NABoardInit routine .. 68

Debug the Ethernet driver startup .. 68

C h a p t e r 7 : M e m o r y M a p .. 69
n n n n n n n v

Memory aliasing (ARM7) ... 70

Memory map (ARM9) ... 72

C h a p t e r 8 : A d d i n g F l a s h ..74

Overview ... 75

Supported flash memory parts... 75

Flash table data structure.. 76

Supporting larger flash.. 80

C h a p t e r 9 : H a r d w a r e D e p e n d e n c i e s f o r A R M 7 - b a s e d M o d u l e s

81

Overview ... 82

DMA channels.. 82

Serial ports .. 83

Software watchdog ... 83

Endianness ... 83

System timers ... 83

Interrupts .. 84

RS-232-style communications.. 85

C h a p t e r 1 0 : H a r d w a r e D e p e n d e n c i e s f o r A R M 9 - b a s e d

M o d u l e s ...86

Overview ... 87

DMA channels on the NS9750 and NS9360 Processors 87

DMA Channels on the NS9210 and NS9215 Processors............................. 87

Endianness ... 88

General purpose timers.. 88

System timers .. 88

All other general purpose timers.. 88

Interrupts .. 89

System clock... 89

P a r t 3 : M a k e f i l e s . 90
vi n n n n n n n

C h a p t e r 1 1 : N E T + O S M a k e f i l e S y s t e m .. 91

Overview ... 92

Makefile hierarchy.. 93

Building all libraries ... 94

Building individual libraries .. 94

Library directory structure ... 95

Library Makefile variables .. 95

Adding new libraries to the system ... 96

Cleaning libraries .. 96

Bootloader Makefile .. 96

Example: using the Makefile .. 98

C h a p t e r 1 2 : A p p l i c a t i o n M a k e f i l e .. 99

Building applications ..100

Application Makefiles ...100

Definitions of the Makefile ..101

Makefile hierarchy..103

Makefile targets...104

Building an application ..104

Creating .gdbinit files for your debugger104

Cleaning an application..105

Porting an application to a new platform...................................105

P a r t 4 : B u i l d i n g W e b P a g e s . 106

C h a p t e r 1 3 : U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y 107

Overview ..108

The PBuilder utility...108

Comment tags ...108

About the Advanced Web Server Toolkit documentation.................109

Running the PBuilder utility..109

Linking the application with the PBuilder output files112

security.c file ...112
n n n n n n n v i i

cgi.c and file.c files ..112

Creating Web pages ...113

AWS custom variables ..113

Data types ...114

Displaying variables ..115

Changing variables..115

Security...118

Exceptional cases ...118

Controlling the MAW module ..119

Setting the semaphore timeout ..119

Array subscripts ...120

Error handling ...121

Phrase dictionaries and compression ..121

Maintaining and modifying Web content...122

Sample applications ...123

P a r t 5 : M i s c e l l a n e o u s . 124

C h a p t e r 1 4 : P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S

v 7 . x ..125

Changes to the flash driver ..126

IAM and ACE ..126

Changes to the sockets API...126

Changes to SNMP...128

netos/src/bsp/customize directory ..128

Changes to Makefile variables and defines ..128

Automatic RAM sizing ...129

Porting pre-NETOS 7.x PPP applications ...130

Adding a route ..130

Deleting a route...130

Adding PAP user/password or adding CHAP ID and secret key pair130

Checking link status ..131

Creating the interface ...131

Getting the peer assigned local address132
viii n n n n n n n

Closing the interface ...133

Setting authentication and compression133

Initializing serial port configuration ...134

Setting the ring count..134

Dial string settings..135

C h a p t e r 1 5 : P r o c e s s o r M o d e s a n d E x c e p t i o n s 136

Overview ..137

Vector table ..137

IRQ handler ...139

Servicing AHB interrupts in ARM9 based NET+ARM processor140

Servicing Bbus interrupts in ARM9 based NET+ARM processor141

Changing interrupt priority ..141

Interrupt service routines ..150

Installing an ISR ...150

Disabling and removing an ISR ..150

ARM9 FIQ handlers...150

ARM7 FIQ handlers...151

C h a p t e r 1 6 : D e v i c e D r i v e r s .. 152

Overview ..153

Adding devices ...153

deviceInfo structure..153

Device driver functions ..154

Return values...165

Modifications to Cygwin’s standard C library and startup file..................166

Modifying the libc.a library and crt0.o startup file167

NET+OS device drivers ...167

Device driver interface ..169

P a r t 6 : T r o u b l e s h o o t i n g . 170

C h a p t e r 1 7 : T r o u b l e s h o o t i n g ... 171

Diagnosing errors ..172
n n n n n n n i x

Diagnosing a fatal error..172

Diagnosing an unexpected exception..172

Reserializing a module..173

Observing the LEDs ...173

Assigning a MAC address to the module174

Restoring the contents of flash memory ...176

Step 1: Configure the module and the debugger177

Step 2: Building the bootloader ..177

Step 3: Building the application image and starting naftpapp177

Step 4: Sending rom.bin to the module178

Step 5: Verifying the boot ROM image on the module179

Step 6: Verify the contents of flash ...179
x n n n n n n n

Using This Guide
Review this section for basic information about this guide, as well as for
general support contact information.

About this guide

This guide describes NET+OS operating system, operating environment, or
development environment and how to use it as part of your development cycle.
The NET+OS operating system, operating environment, or development
environment is a network software suite optimized for the NET+ARM family of
chips, processor, or modules.

The chapters in this guide are functionally grouped into six parts:

 Part 1: Tools

 Part 2: Customization

 Part 3: Hardware

 Part 4: Makefiles

 Part 5: Miscellaneous

 Part 6: Troubleshooting

Installation directory

The instructions in this document show the installation directory as C:\netos. If
you install your software in the default directory, be aware that you will see
netos followed by its version numbers; for example: C:\netosxx
w w w . d i g i . c o m x i

Conventions used in this guide

This table describes the typographic conventions used in this guide:

Related documentation

For additional documentation, see the Documentation folder in the NET+OS
Start menu.

Documentation updates

Digi occasionally provides documentation updates through the package
manager. Be aware that if you see differences between the documentation you
received in your NET+OS package and the documentation on the Web site, the
Web site content is the latest version.

This convention Is used for

italic type Emphasis, new terms, variables, and document titles.

bold, sans serif type Menu commands, dialog box components, and other items
that appear on-screen.

Select menu name menu
selection name

Menu commands. The first word is the menu name; the
words that follow are menu selections.

monospaced type File names, pathnames, and code examples.
x i i n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

NET+OS Introduction
C H A P T E R 1

This chapter introduces the NET+OS development environment and its
components.
1

Overview

The NET+OS products offer an embedded solution for hardware and networking
software that are being implemented into product designs.

The NET+OS package includes:

 Either a Digi Connect module, a ConnectCore module, or a
development board

 A board support package

 A JTAG debugger

 Networking firmware

 Object code with application program interfaces (APIs)

 Development tools

 Sample code

 Documentation

For information about the Digi Connect or ConnectCore module or the
development board, see your hardware reference.

System components

This section describes the components that make up the NET+OS software.

NET+OS runtime software

NET+OS software provides the building blocks to help you create your custom
applications. You create your application with calls to APIs for:

 The board support package (BSP)

 ThreadX RTOS kernel

 Basic Internet protocols

 Higher-level protocols and services
2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S I n t r o d u c t i o n
Board support package

The NET+OS BSP is a collection of ARM object code, C source-code drivers, and
the bootloader. The BSP initializes hardware and software and provides power-
on self tests (POST).

The BSP includes a set of APIs that you use to incorporate device peripheral
functionality into your application. In addition, the BSP provides the drivers for
your Digi Connect module, including those for Ethernet, serial, SPI, flash, USB
host, USB device, LCD, PCI/CardBus, and others.

ThreadX RTOS kernel

The ThreadX®RTOS, from Express Logic, is based on a high-speed picokernel
architecture. ThreadX helps you manage complex event synchronization
and memory using threads, queues, application timers, semaphores, and
event flags.

Advanced Web Server (AWS)

Using the AWS, you convert your HTML into C code so you can compile that
code with the rest of your application. AWS provides support for HTML,
multiple Web object sources, object compression, and advanced security.

Internet Address Manager (IAM)

The NET+OS development environment provides services such as the IAM, which
lets you acquire IP parameters at startup from multiple prioritized sources,
including DHCP, Auto IP, and others.
w w w . d i g i . c o m n n n n n n n 3

S y s t e m r e q u i r e m e n t s
System requirements

To run the NET+OS development software, your system must meet these
requirements:

 Intel architecture (x86) PC running one of these Microsoft operating
systems:

– Windows Vista

– Windows XP Professional

– Windows 2000 Professional

Be aware that Windows 9x is no longer supported because of limited
system resources in the operating system.

 CPU: Pentium 4/1.8 GHz; 2.4 GHz or faster recommended

 Minimum system RAM: 512 MB; 1GB recommended

 Free disk space: 1 .1GB

Working with NET+OS/Digi ESP

Digi ESP for NET+OS is an Integrated Development Environment (IDE) you can
use to develop embedded applications with NET+OS.

Digi ESP for NET+OS is built on Eclipse and the C/C++ Development Tools (CDT)
plugin. Eclipse is an open, extensible IDE, and the CDT is a plugin that provides
support for developing applications with C and C++ in the Eclipse platform.

To start Digi ESP, select Start NET+OS Digi ESP.

The software is located in Program Files\Digi\Digi ESP.

NET+OS tree structure

The NET+OS tree structure is divided into subdirectories, with netos as the root
directory, as shown next:
4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S I n t r o d u c t i o n
The next sections describe the subdirectories under netos.

bin

The binary files that are executable on a PC and used by the NET+OS
development environment are located in netos/bin. This list shows some of the
most commonly-used files:

 spiboothdr.exe — Uses the netos/src/bsp/platforms/"my platform"/spibootldr.dat configuration
file for SPI devices.

 smidump.exe — MIB compiler for SNMP MIBs written in either the SMI v1 or
SMI v2 formats.

 compress.exe — Compresses the application image’s .bin file to save memory in
flash.

 boothdr.exe — Inserts a header at the beginning of the image based on
information read from the netos/src/bsp/platforms/my_platform/boothdr.dat
configuration file.

boothdr.exe calculates a CRC32 checksum for the entire image, including
the header, and places it at the end of the updated file.
w w w . d i g i . c o m n n n n n n n 5

N E T + O S t r e e s t r u c t u r e
These are the fields in the boothdr.dat file:

debugger_ files.

This directory contains sample gdb initialization scripts and configuration
setting files for the JTAG debugger. The file also contains the gdbThreadX script,
which sets up macros to view ThreadX structures. This file is located in netos/

debugger_files.

Documentation

All the NET+OS hardware- and software-related documentation is located in netos/

Documentation. This directory contains the NET+OS API Reference and hardware and
software guides

Field Description

WriteToFlash Used by the bootloader when it downloads a file from a network
server to determine whether to write the file to flash.

Set to either yes or no.

Compressed Indicates whether the file should be compressed

Set to either yes or no.

ExecuteFromRom Specifies where the bootloader executes the application:

 To execute directly from flash, set to yes.

 To decompress the file to RAM, set to no.

flashOffset Indicates where in flash to write the file to.

Set to a hexadecimal value.

ramAddress Indicates where in RAM to copy the application to decompress it.

Set to a hexadecimal value.

MaxFileSize Indicates the maximum size of the file in bytes.

Set to a hexadecimal value.
6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S I n t r o d u c t i o n
gnusrc

These files allow you to interface the GNU C library I/O functions to the file
systems and C library time functions to the real time clock driver. The GNU I/O
and time driver interface functions are located in netos/gnusrc.

h

Contains the public API header files. When an application calls an API function
from a NET+OS library, the respective C file must include the header file for the
API routines.

lib

Contains the ARM7 and ARM9 libraries used to build your images.

mibcomp

Contains files used for the SNMP MIB compiler. Store all MIBs referenced in your
enterprise MIB in \netos\mibcomp\mibcomp_win321\smi\mibs\ietf. This folder is defined as
your SMIPATH and is used by the MIB compiler.

src

These sections describe some of the subdirectories of src.

flash

Contains the files used for the NET+OS NOR flash driver.

sflash

Contains files used to support a serial Flash driver.

fs_intf

Contains the file system interface files used for FTP and email (POP3, SMTP).
w w w . d i g i . c o m n n n n n n n 7

N E T + O S t r e e s t r u c t u r e
posix

Contains sample files used to implement a POSIX-like API.

rphttpd

Contains the Advanced Web Server (AWS) stub files required to use the Advanced
Web Server AWS, which include security stubs, User Dictionaries, and CGI stubs.

treck

Contains the NET+OS TCP/IP public header files.

utilities

Contains sample code used for device discovery, which uses the Digi ADDP
(Advanced Device Discovery Protocol). Also includes a header (Include\addp.h) for
the ADDP library interface and an example using the ADDP library for a WIN32
application.
8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

9

Part 1: Customization

BSP Overview
C H A P T E R 2

This chapter describes the NET+OS board support package (BSP).
1 0

O v e r v i e w
Overview

Application development involves writing hardware-independent, high-level
software components. Using a NET+ARM module and its associated board
support package (BSP,) you can begin software development immediately. The
NET+OS development environment is delivered with BSPs to support all
NET+ARM processors and all DIGI Connect and ConnectCore modules. Each BSP
is tailored to support the module’s specific target processor (for example, the
NS9360 or NS7520) and the components that surround the processor (memory
and PHY).

Some modules can have more than one hardware configuration. For example, it
may be possible to configure processor pins to be either a serial port or general
purpose I/O pins. You determine how the hardware should be configured to
support your application and then configure the BSP to set the correct
configuration at powerup and load the proper device drivers to support it.

This chapter describes the BSP and how it supports multiple platforms. It also
describes the tree structure of both the BSP and NET+OS.

What is the board support package (BSP)?

The BSP consists of the hardware-dependent parts of the real-time operating
system (RTOS), which are responsible for:

 Initializing the hardware after a hard reset or software restart

 Handling processor exceptions

 Device drivers

 Starting the ThreadX kernel

 Starting the network stack

The BSP provides the hardware services in a standardized application
programming layer (API) to the application software, allowing the application
software to maintain hardware platform independence.
1 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B S P O v e r v i e w
BSP tree structure

These sections describe the BSP tree structure.

Top-level directory

The NET+OS BSP is located in the src/bsp directory. The top level directory contains
the Makefile for the BSP and the Makefile for the bootloader. This figure shows the
top level directory:
w w w . d i g i . c o m n n n n n n n 1 2

B S P t r e e s t r u c t u r e
bootloader subdirectory

The bootloader subdirectory, shown next, contains the source code for the SPI and
ROM-based bootloaders:

The bootloader has two parts: the ROM image and the RAM image. Because the
bootloader size is kept to less than 64K, the libs directory contains the libraries
that are linked into the bootloader. The bootloader does not link in the standard
NET+OS libraries.

This table describes the subdirectories of the bootloader directory:

This directory Contains

libs Libraries that are specific to the bootloader

net The network-related code for the BSP

ramImage The code and Makefile for the portion of the bootloader that runs
from RAM

romImage The Makefile and code for the portion of the bootloader that runs
from ROM

spiBootRamImage and
spiBootRomImage

The SPI bootloader
1 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B S P O v e r v i e w
devices directory

The devices directory, which contains all the NET+OS device drivers, is shown next:

The device drivers are separated into three directories:

This directory Contains

common The device drivers that are common to all processors, such as
serial and Ethernet

net_50_20 The drivers for the NS7520 and the NET+50

ns9xxx The drivers for the NS9210, NS9215, NS9360 and NS9750
w w w . d i g i . c o m n n n n n n n 1 4

B S P t r e e s t r u c t u r e
platforms directory

The platforms directory, which contains all the supported platforms, is where you
add your platform. This figure shows all of the supported platforms:

When you create a new platform, you copy an existing platform and create a
new subdirectory in this tree.
1 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B S P O v e r v i e w
Platforms

If you are adding a new platform to your NET+OS development environment,
start with a platform that is similar to yours. This table shows the list of
supported platforms provided with the NET+OS development environment:

For a description of your platform, see the hardware reference for your module
or processor.

Platform name CPU

ns7520_a NS7520

connectme NS7520

connectem NS7520

connectwime NS7520

connectwiem NS7520

connectwiem9210 NS9210

connectme9210 NS9210

connectsp NS7520

connectwisp NS7520

ns9750_a NS9750

ns9360_a NS9360

ns9210_a NS9210

connectcore9c_a NS9360

connectcorewi9c_a NS9360

connectcore9p9215_a NS9215

connectcorewi9p9215_a NS9210

connectcore9p9360_a NS9360

connectcore7u_a NS7250
w w w . d i g i . c o m n n n n n n n 1 6

I n i t i a l i z a t i o n
Initialization

This section describes the power-up and initialization of the NET+OS
development environment for NOR-Flash based platforms. In general, you do
not need to modify the initialization code.

For NAND-Flash based platforms, see the Digi NET+OS U-Boot reference
Manual.

Initializing hardware

These are the locations of the hardware initialization code:

 ARM7-based platforms. src/bsp/init/arm7

 ARM9-based platforms. src/bsp/init/arm9

The main() routine is located in src/bsp/common/main.c.

Initialization sequence for ARM7 platforms

Reset_Handler, located in the INIT.s file, is the first routine that is executed when
the processor is powered on. Reset_Handler must perform these steps:

1 Initialize supervisor mode and disable interrupts.

2 (NET+50 only) Initialize the PLL.

3 Execute a software reset to get the hardware into a known state.

4 Put the DMA controller into test mode so the DMA context RAM can be
used as a temporary stack.

5 Jump to the ncc_init routine (located in NCC_INIT.c).

6 Set up the system control register.

7 Initialize the GPIO pins.

8 Set up the chip selects.

9 Run the memory test.

10 Verify that the application will fit into RAM and return.

11 Set up the stacks for the different processor modes.
1 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B S P O v e r v i e w
12 Jump to the C library startup routine, which sets up the C runtime
environment.

The C Library startup routine calls main() when it completes.

13 Initialize the C++ runtime environment.

14 Execute the Power On Self Test (POST) if the POST is enabled.

15 Initialize the processor vector table.

16 Execute NABoardInit to initialize the flash and NRAM drivers.

17 Call the low level device driver initialization routines, which perform any
hardware specific set up required before the operating system starts.

18 Start the ThreadX operating system.

Initialization sequence for ARM9 platforms

Reset_Handler, located in the init.arm file, is the first routine that is executed when
the processor is powered on. Reset_Handler must perform these steps:

1 Determine whether or not the application is booting from SPI:

– Booting from SPI. The initialization code sets a flag that is read later.
The code that initializes the memory controller is skipped because this
is already done during the SPI boot.

– Not booting from SPI. The initialization code initializes the memory
controller so the application can run from SDRAM.

2 On the NS9360 and NS9750 platforms, take the BBUS out of reset.

3 Use the Ethernet receive FIFO as a temporary stack on the NS9210 and
NS9215 platforms for the call to nccInit. On the NS9360 and NS9750
platforms, use a section of RAM as a temporary stack.

4 Jump to the nccInit routine in the NCC_INIT.c file, which contains the rest of
the hardware initialization routines in the NCC_INIT routine.

5 Read and save registers that tell whether the application is in the
debugger or this is a software restart.

If either of these is true, the application can skip over some sections
of the hardware initialization.

6 Set up the SimpleSerialDriver.

This step allows you to use the mprintf routine, which you can use to
print debug information during bootup.
w w w . d i g i . c o m n n n n n n n 1 8

I n i t i a l i z a t i o n
7 Set up the GPIO pins.

8 Enable the instruction cache.

9 Set up the chip selects.

10 Run the memory test.

11 Verify that the application will fit into RAM and return.

12 Set up the stacks for the different processor modes.

13 Jump to the C library startup routine, which initializes the C runtime
environment.

The C Library startup code calls main, in src/bsp/common/main.c, when it
completes.

14 Initialize the C++ runtime environment.

15 If the Power On Self Test (POST) is enabled, execute it.

16 Set up the vector table.

17 Enable the Memory Management Unit (MMU).

18 Call NABoardInit, which initializes the flash and NVRAM drivers.

19 Perform the first level device driver initialization.

20 Start ThreadX.
1 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Creating a New Platform
C H A P T E R 3

This chapter describes how to add support for a new platform for your
application.
2 0

O v e r v i e w
Overview

If you use the same module in two or more products, you may need to configure
it differently in each product. Most of the configuration information for the
module and BSP is stored in a set of files in a platform directory. The NET+OS
development environment ships with template platforms for each of the
modules. This chapter describes how to create copies of the template
platforms, which you will modify to configure the BSP to your application’s
requirements.

Creating a new platform

Each subdirectory in the src/bsp/platforms directory contains the files that are
specific to a specific module. You need to create your own platform
subdirectory so you can modify the configuration files in it for your
application’s requirements. In addition, you need to update several NET+OS
Makefiles to support the new platform.

Step 1: Create a new platform directory

Create a new directory in src/bsp/platforms for your new platform. The Makefiles
use the directory name as the platform name, so use a name that is easy to
type on the command line.

Step 2: Copy a similar platform into the new directory

Determine which NET+OS platform template supports your modules. The
name of the platform directory is based on the module name.(For example,
for the connectcore9c, the template directory is src/bsp/platforms/connectcore9c_a.)
Then copy the files from that directory into the platform subdirectory you
just created.
2 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C r e a t i n g a N e w P l a t f o r m
Step 3: Copy a similar JLINK file to your platform

For example, in debugger_files, copy .gdbconnectme.jlink to .gdbcustomplatform.jlink if your
platform resembles the Connect ME.

Step 4: Create a custom platform BSP_BOARD type

In src/bsp/h/platformcodes.h, create a BSP_BOARD_* instance with a unique value.

For example:

#define BSP_BOARD_CUSTOM (BSP_DIGI_BOARD_BIT|20)

Step 5: Add your platform to naPlatformCodeTable

In src/bsp/customize/platformcode.c, add:

,{customplatform, BSP_BOARD_CUSTOM, BSP_PROCESSOR_NS7520,
BSP_BOARD_REV_A, 8}

Step 6: Rebuild imagehdr utility

Using Visual C++, rebuild src/utilities/imagehdr/imagehdr.dsw

Now that you have created your new platform, you must configure it. For
instructions, see the next chapter.
w w w . d i g i . c o m n n n n n n n 2 2

C r e a t i n g a n e w p l a t f o r m
2 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Configuring a New Platform
C H A P T E R 4

This chapter describes how to configure a NET+OS BSP platform.
2 4

O v e r v i e w
Overview

This chapter describes how to configure a platform to the requirements of your
application.

All the files discussed in this chapter are in the platform directory you created
using instructions from Chapter 5, “Creating a New Platform.”

Customizing the BSP for application hardware

Task 1: Set the GPIO configuration

You can configure many of the processor pins to support one of several
functions. For example, GPIO pin 0 on the NS9360 can be configured to be
one of these functions:

 The TxData pin for serial port B

 The DONE signal for DMA channel

 An input to timer 1

 A general purpose I/O pin

You must determine how these pins should be configured to support your
hardware.

The gpio.h file has a set of macro definitions that determine how each pin is
configured by the BSP initialization code. (The macro definitions are described
in the “BSP/Device Drivers/Signal Multiplexing and GPIO” section of the API
Reference.) To set the GPIO configuration to support your application
hardware, edit the gpio.h file in your platform subdirectory.

The BSP code generates compiler errors if you select an invalid GPIO
configuration; for example, configuring one pin to perform two functions.
2 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
To test your GPIO configuration, execute the BSP Makefile:

1 Open a command shell by clicking the XTools icon.

2 Enter this command:

cd src/bsp directory

3 Enter this command:

“make PLATFORM=myPlatform”

where

myPlatform is the name of your platform.

Task 2: Modify the BSP to set up the required drivers

You must configure the bsp_drivers.h file (in your platforms directory) to enable the
drivers you want to run with your application. To enable the drivers, set the
values of these macros:

 BSP_SERIAL_PORT_1

 BSP_SERIAL_PORT_2

 BSP_SERIAL_PORT_3

 BSP_SERIAL_PORT_4

 BSP_INCLUDE_PARALLEL_DRIVER

 BSP_INCLUDE_I2C_DRIVER

 BSP_INCLUDE_LCD_DRIVER, BSP_INCLUDE_USB_DRIVER

 BSP_NVRAM_DRIVER

 BSP_INCLUDE_RTC_DRIVER
 BSP_INCLUDE_LCD_DRIVER

 BSP_INCLUDE_USB_DRIVER

 BSP_INCLUDE_PCI_DRIVER

 BSP_SPI_PORT

 BSP_PWM_MAXIMUM_CHANNELS

 BSP_QUAD_DECODER_ENABLE

For more information about these macros, see the BSP configuration section of
the API Reference.
w w w . d i g i . c o m n n n n n n n 2 6

C u s t o m i z i n g t h e B S P f o r a p p l i c a t i o n h a r d w a r e
The default configuration works with a development board. Note that drivers
that use the same GPIO pins cannot function properly at the same time. Be sure
to review the bsp_drivers.h and bsp_serial.h files carefully.

Make sure the GPIO pins needed for a device are configured to support it. For
example, the GPIO pins used by the serial ports can be configured for other
functions on the NS9360 processor. If you want to use the serial ports, make
sure the GPIO pins are configured to act as serial ports.

Serial ports

The BSP supports either two serial ports on ARM7-based processors or four
serial ports on ARM9 processors.

To set a serial port to a mode other than those already set up by the standard
NET+OS release, modify the gpio.h file to set the GPIO pins to the appropriate
value.

To disable the RS-232 serial peripheral interface controller, set
BSP_SERIAL_PORT_X, where x is the number of the serial port, to
BSP_SERIAL_NO_DRIVER.

I2C controller (ARM9 processors only)

The BSP is configured by default to enable support of the I2C peripheral device.
To disable the I2C controller, set BSP_INCLUDE_ITC_DRIVER to FALSE.

LCD controller (ARM9 processors only)

The BSP is configured by default to enable support of the I2C peripheral device.
To disable the LCD controller, set BSP_INCLUDE_LCD_DRIVER to FALSE.

PCI driver (NS9750 only)

The BSP is configured by default to enable support of the PCI peripheral device.
To disable the PCI device driver, set BSP_INCLUDE_PCI_DRIVER to FALSE.

RTC (NS9210,NS9215, and NS9360)

The BSP supports a real time clock on NS9210, NS9215 and NS9360-based
platforms.
2 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
 To enable the RTC device driver, set BSP_INCLUDE_RTC_DRIVER to TRUE.

 To disable the RTC device driver, set BSP_INCLUDE_RTC_DRIVER to FALSE.

Task 3: Modify the BSP configuration files

The BSP configuration settings are stored in files in the platforms directory. (For
information about the content of the configuration files, see the API Reference
and comments in the files.) You need to modify the configuration settings to
support your application hardware.

Interrupt tables (ARM9 processors)

When you change the system interrupt priority, you must update these
interrupt tables in the bsp.c file in the platforms directory:

 NABbusPriorityTab — This array contains the priority of each interrupt in the
Bbus. The NABbusPriorityTab allows flexible prioritization for all Bbus
interrupts in the NET+ARM platform that drive the
BBUS_AGGREGATE_INTERRUPT in the NAAhbPriorityTab table.

The NABbusPriorityTab table is configured with interrupts of higher
priority at the beginning and interrupts of lower priority at the end of
the array.

 NAAhbPriorityTab — This array contains the priority of each interrupt in the
AHB Bus. The NAAhbPriorityTab allows flexible prioritization for all the AHB
interrupts in the NET+ARM platform that drive the ARM processor IRQ.

The table is configured with interrupts of higher priority at the
beginning and interrupts of lower priority toward the end of the table.
For more information about interrupts, see the “AHB interrupts” and
“Bbus interrupts” sections in the hardware reference.

pci.c file (NS9750 modules only)

The pci.c file contains customizePCIStartup, which is called by pciVeryEarlyInitialization and
expects a return pointer to a pci_init_t structure that contains user-specific data
needed for PCI configuration space. Customize the values in the returned
pci_init_t structure to suit your application.
w w w . d i g i . c o m n n n n n n n 2 8

C u s t o m i z i n g t h e B S P f o r a p p l i c a t i o n h a r d w a r e
For more information about the pci_init_t structure, see the pci.h public header
file.

customizeLed.c file

The customizeLed.c file contains the NALedTable structure global data table, which
the NET+OS LED driver uses to determine how to turn LEDs on and off. The LEDs
are connected to GPIO pins. For more information, see the section “GPIO.h
file” and the information about programming GPIO inputs in the hardware
reference for the processor you are using.

customizeReset.c file

This file contains the customizeRestart and customizeReset functions, which determine
what the system should do in case of a reset or restart request. This is where
you place application-specific code that will be executed just before resetting
the device.

Simple serial driver

A simple serial driver is provided for debugging the BSP before the main serial
driver is loaded. The driver assumes that serial port 1 will be used at 9600
baud. To use a different port or baud rate, modify this driver.

The driver for the NS7520 and the NET+50 is located in the simpleSerial.c file in the
bsp/devices/net_50_20/serial directory.

The driver for the NS9750/NS9360 is in the bsp/devices/ns9xxx/common/serial directory.
The driver for the NS9210/NS9215 is in the bsp/devices/ns9xxx/ns9215/serial directory.

Task 4: Modify the format of BSP arguments in NVRAM

The BSP stores some configuration arguments in NVRAM. Customization hooks
in boardParams.c read and write the configuration values.

NET+OS provides a simple NVRAM driver that can support several types of
storage devices. Edit bsp_drivers.h and set BSP_NVRAM_DRIVER to indicate which
storage device should be supported. For more information about
BSP_NVRAM_DRIVER, see the online help.
2 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
The format of data in NVRAM is determined by the devBoardParamsType in
boardParams.h structure. This structure, and the APIs that read and write it,
support development boards; they do not support application hardware. Modify
or rewrite this structure and its supporting APIs as needed by your application.

The NVRAM API has these functions:

Customization hook Hardware feature/default values set

customizeGetMACAddress Determines the Ethernet MAC address used to
communicate on the network.

Each device on the network needs a unique
Ethernet MAC address. You must purchase a block
of Ethernet MAC addresses from the IEEE and
modify this routine to return an address from this
block. The default implementation returns a value
that was stored in NVRAM.

customizeGetSerialNumber Returns the serial number for the unit. The serial
number is used only in some sample applications
and in the startup dialog. It is not used by the API
libraries or in any part of the BSP except the dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation returns a 9-character
serial number read from NVRAM. Many developers
use the Ethernet MAC address as the unit's serial
number.

customizeSaveSerialNumber Sets the serial number for the unit.

The serial number is used only in some sample
applications and in the startup dialog. Neither the
API libraries nor any other part of the BSP uses the
serial number. It is not used by the API libraries or
in any part of the BSP except the dialog.

If you rewrite the dialog, you can omit this routine.
The default implementation stores a 9-character
serial number in NVRAM.

customizeSetMACAddress Sets the Ethernet MAC address for the unit.

The default implementation stores the MAC address
as a 6-byte array in NVRAM.
w w w . d i g i . c o m n n n n n n n 3 0

C u s t o m i z i n g t h e B S P f o r a p p l i c a t i o n h a r d w a r e
Task 5: Modify error and exception handlers

The errhndlr.c file in the platforms directory contains customization hooks for an
error handler and an exception handler.

Error handler

Code in the BSP calls the error handler, customizeErrorHandler, when fatal errors
occur. Using constants in bsp_sys.h, you can configure the default error handler to
do one of these:

 Report the error by blinking LEDs in a pattern.

 Reset the unit when a fatal error occurs.

You may need to modify the error handler if you want to report the error in some
other way or take some other action.

customizeUseDefaultParameters Determines default configuration values and
returns them in a buffer.

The default implementation determines the default
values through constants set in appconf.h. Modify this
routine to support your application.

CustomizeReadDevBoardParams Reads the configuration from NVRAM into a buffer.
Modify this routine to support your application.

customizeWriteDevBoardParams Writes the configuration to NVRAM. The default
implementation accepts the current configuration
as a buffer and writes the buffer into NVRAM.

customizeGetIPParams Reads the IP-related configuration values from
NVRAM.

customizeSaveIPParams Writes the IP-related configuration values to
NVRAM.

Customization hook Hardware feature/default values set
3 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
Exception handler

The unexpected exception handler, customizeExceptionHandler, is called when these
exceptions occur:

 Undefined instruction

 Software interrupt

 Prefetch abort

 Data abort

 Fast interrupt

Using constants in bsp_sys.h, you can configure the exception handler to:

 Handle these exceptions by resetting the unit.

 Blink an error code on LEDs.

 Continue execution at the point at which the exception returned.

Digi does not recommend that you continue execution. You may need to modify
the exception handler to better support your application.

Task 6: Modify the startup dialog

The BSP prompts you to change configuration settings after a reset. The dialog
implemented for the development boards prompts you to set the board's serial
number, Ethernet MAC address, and IP networking parameters. The dialog code
is in the dialog.c file in the bsp/customize directory.

If you plan to use the dialog in your product, change it to support your
application. The customizeDialog function calls the NAGetAppDialogPort, NAOpenDialog,
and NACloseDialog functions to determine which port to use for the dialog and to
open and close it.

To turn off the dialog, update the file bsp_sys.h by defining the manifest constant
BSP_ENABLE_DIALOG to FALSE.

If you do decide to prompt end users with a dialog, you usually have to rewrite
the code in dialog.c to properly support your application. The BSP_DIALOG_PORT
constant in your platform’s bsp_sys.h file sets the I/O port for the dialog.
w w w . d i g i . c o m n n n n n n n 3 2

O t h e r B S P c u s t o m i z i n g
Task 7: Modify the POST

If the APP_POST constant is set, the BSP automatically runs the POST from the
main.c, which is located in src/bsp/common.

The POST supplied with the NET+OS development environment tests the
processor. You may want to create other POST routines that test additional
hardware on your board.

Other BSP customizing

This section describes additional customizing you may want to do.

BSP_NVRAM_DRIVER

The BSP_NVRAM_DRIVER constant in bsp_sys.h defines the non-volatile memory
type used to store the configuration information. This list describes the
settings:

 BSP_NVRAM_NONE — No NVRAM driver is to be built

 BSP_NVRAM_LAST_FLASH_SECTOR — The last sector of flash memory to be
used for NVRAM

 BSP_NVRAM_SEEPROM — The serial EEPROM driver is to be built

 BSP_NVRAM_SEEPROM_WITH_SEMAPHORES — The serial EEPROM driver with
semaphore protection is built

 BSP_NVRAM_LAST_SFLASH_SECTOR — The last sector of serial flash is to be
used for NVRAM

TCP/IP stack

The TCP/IP stack is the software module that handles networking functionality
and is started as part of the BSP initialization process. You configure the TCP/IP
stack using these functions and constants:
3 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
Function or constant Description

BSP_WAIT_FOR_IP_CONFIG This constant in bsp_net.h determines whether
the BSP waits for the stack to be configured
before starting the application by calling
applicationStart(). Previous versions of NET+OS
waited for the stack to be configured.

Your application should not use any network
resources until the stack configures itself by
setting an IP address on at least one interface.
To determine whether an IP address has been
assigned to an interface, use
customizeIamGetIfAddrInfo().

 To cause the BSP to wait for an IP address to
be configured on at least one interface
before calling applicationStart, set
BSP_WAIT_FOR_IP_CONFIG to TRUE.

 To call applicationStart without waiting for
an IP address to be assigned, set
BSP_WAIT_FOR_IP_CONFIG to FALSE

BSP_ENABLE_ADDR_CONFLICT_DETECTION This constant in bsp_net.h enables IP address
conflict detection during initial IP address
configuration. If you defined
BSP_ENABLE_ADDR_CONFLICT_DETECTION to
TRUE, the IAM subsystem sends ARP probes to
detect IP address conflict for static IP address
protocols.

See the Network Interface Configuration in the
NET+OS API Reference for more information on
Address Conflict Detection.

NAIpSetKaInterval This function in naip_global.c overrides the
default value for the TCP keepalive interval,
which is 2 hours (7200 seconds). If ka_interval ==

0, keepalive is turned off.

NAIpSetDefaultIpTtl This function in naip_global.c sets the default
value for the time-to-live field of outgoing
packets. This value is used unless it is
overridden on a specific socket by the IP_TTL

socket option.
w w w . d i g i . c o m n n n n n n n 3 4

O t h e r B S P c u s t o m i z i n g
Internet Address Manager

The Internet Address Manager (IAM) module determines the IP address and
other network settings during initialization. IAM can use either static values
stored in NVRAM or protocols such as DHCP to query the network for a
configuration.

You edit the iamParams.c and iamCallbacks.c files to control how IAM acquires network
configuration parameters. The iamParams.c file is stored in the platform directory.
The iamCallbacks file, stored in src/bsp/customize, normally does not need to be
changed. If, however, you do need to change it, copy it in your platform’s
directory and edit the copy. The BSP source paths are set up so the copy in the
platform directory is used instead of the copy in src/bsp/customize. For more
information about IAM, see the online help.

For information about configuring TCP/IP memory usage, see the NET+OS
Programmers Guide.

File system

You can configure the BSP to interface the C library file I/O functions to the file
systems. The NET+OS development environmetn currently supports two file
systems:

 Native file system. Used to create RAM volumes on RAM memory and flash
volumes on non-removable flash memory.

 FAT file system. Used to create FAT volumes on removable media such as
USB flash memory sticks.

NAIpSetTcpMsl This function in naip_global.c overrides the
default value for the TCP MSL and TCP

TIME_WAIT interval. The default value of TCP
MSL is 120 seconds. The TIME_WAIT interval is
set to (tcp_msl * 2).

APP_NET_HEAP_SIZE This constant in appconf.h sets the TCP/IP stack
heap size for dynamic allocations. The TCP/IP
stack allocates all packet buffers from this
piece of memory.

Function or constant Description
3 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g a N e w P l a t f o r m
Use these constants to configure the file systems:

Constant Description

BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY To include the native file system in the C library and create
a RAM and flash volume as part of the BSP initialization
process, set this constant in bsp_fs.h to TRUE.

BSP_NATIVE_FS_MAX_INODE_BLOCK_LIMIT When the BSP creates a native file system volume, this
constant in bsp_fs.h specifies the percentage of the maximum
number of inode blocks you can allocate to store inodes for
a volume. Using this constant, you specify the upper limit of
the number of blocks reserved to store inodes. Valid values
are from 1 to 100.

For more information, see the native NAFSinit_volume_cb file
system API function in the online help.

BSP_NATIVE_FS_MAX_OPEN_DIRS When the BSP creates a native file system volume, this
constant in bsp_fs.h specifies the maximum number of open
directories the file system will track. A directory is
considered open if any of its files are open. Valid values are
from 1 - 64. For more information, see the native
NAFSinit_volume_cb file system function in the online help.

BSP_NATIVE_FS_MAX_OPEN_FILES_PER_DIR When the BSP creates a native file system volume, this
constant in bsp_fs.h specifies the maximum number of open
files per directory that the file system will track. Valid values
are from 1 to 64.

For more information, see the native NAFSinit_volume_cb file
system function in the online help.

BSP_NATIVE_FS_BLOCK_SIZE When the BSP creates a native file system volume, this
constant in bsp_fs.h specifies the block size used for the
volume. Valid values are:

 NAFS_BLOCK_SIZE_512

 NAFS_BLOCK_SIZE_1K

 NAFS_BLOCK_SIZE_2K

 NAFS_BLOCK_SIZE_4K

BSP_NATIVE_FS_RAM0_VOLUME_SIZE When the BSP creates the native file system RAM volume,
this constant specifies the size of the RAM volume in bytes.
w w w . d i g i . c o m n n n n n n n 3 6

O t h e r B S P c u s t o m i z i n g
BSP_NATIVE_FS_FLASH0_OPTIONS When the BSP creates the native file system flash volume,
this constant specifies the advanced options to use. Valid
values are the bitwise ORing of these options:

 NAFS_MOST_DIRTY_SECTOR — Uses the default sector
transfer algorithm that selects the sector with the most
dirty blocks. If you do not specify a sector transfer
algorithm, or if you specify multiple sector transfer
algorithms, the default algorithm is used.

 NAFS_RANDOM_DIRTY_SECTOR — Uses the alternative
sector transfer algorithm that randomly selects a sector
with dirty blocks.

 NAFS_TRACK_SECTOR_ERASES — Enables tracking the
number of sector erases for each sector of a flash volume.

 NAFS_BACKGROUND_COMPACTING — Enables the
background sector compacting thread. This feature
automatically reclaims the dirty blocks in the flash
volumes and converts them to erased blocks.

For more information, see the NAFSinit_volume_cb native file
system function in the online help.

BSP_NATIVE_FS_FLASH0_COMPACTING_THRESHOLD If the BSP_NATIVE_FS_FLASH0_OPTIONS constant includes
NAFS_BACKGROUND_COMPACTING, this constant specifies
the percentage of erased blocks in a flash sector to gain to
trigger the sector compacting process. Valid values are from
1 to 100.

For more information, see the NAFSinit_volume_cb native file
system function in the online help.

Constant Description
3 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Customizing the Bootloader
C H A P T E R 5

This chapter describes the NOR-Flash based bootloader utility and the ways in
which you can customize it.

See the Digi NET+OS U-Boot Reference Manual for information on customizing
U-Boot, used on NAND-Flash based products.
3 8

O v e r v i e w
Overview

The NET+OS bootloader is executed immediately after the hardware is power
cycled. The bootloader determines whether a valid application is stored in flash,
as shown here:

If you are using the software debugger, the bootloader also is used to download
images for debug over the network. When you use flash, the bootloader is stored in
the first few sectors of flash and is loaded automatically by the processor when it
powers up.

The NS9360, NS9750 and NS9215 chips can boot from SPI-EEPROM SPI flash
devices. You enable SPI-EEPROM boot logic through bootstrap resistors. For
details, see the hardware reference for your processor.

When boot logic is enabled, it copies the contents of SPI serial flash (or SPI-
EEPROM) to system memory, allowing you to boot from low-cost serial
memory. The CPU is held in reset while the data is copied. The boot logic
interfaces to serial port B using the BBus to perform the transactions that are
required to copy the boot code from SPI serial flash (or SPI-EEPROM) to
external memory. For details about SDRAM settings, see “SPI Bootloader
Overview” in the online help.

In either case, the bootloader is automatically copied from ROM to RAM by the
hardware after a hard reset. The application image can be compressed to save
space in serial flash.

If The bootloader

A valid application is stored in
flash

Copies (or decompresses) the application from flash
to RAM and tries to execute

A valid application is not stored in
flash

Tries to download a new image over the network or
serial port.

A valid backup recovery
application is stored in flash

Copies (or decompresses) the backup recovery
application from flash to RAM and tries to execute.

A valid backup recovery
application is not stored in flash

Tries to download a new image over the network.

The network download of the new
image was not successful

Tries to download a new image over the serial port
3 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
In normal operation, the bootloader verifies that the application image stored in
flash is correct, decompresses it to RAM, and executes it. The application image
also has a boot image header, which determines where, in RAM, to decompress
it. Digi recommends that you use the bootloader to run your application.

The bootloader utility consists of two application images:

 ROM image. A small application that is copied from flash to RAM by
hardware and executed in RAM

 RAM image. The main body of the bootloader, which runs from RAM

The RAM image verifies that the application image stored in flash is correct,
decompresses it to RAM, and executes it.

The rest of this chapter describes these images and provides details about how
the bootloader utility functions.

Bootloader application images

This section provides a description of the ROM and RAM application images that
the bootloader utility uses.

ROM image

The ROM image is located in the first (and possibly the second) sector of flash
(or SPI EEPROM). The processor automatically copies the ROM image to RAM
after a reset and immediately starts to execute the bootloader ROM image. The
bootloader uses the BSP initialization code to configure the hardware. After the
hardware is initialized, the ROM image decompresses the RAM image section of
the bootloader to a different location in RAM and executes it.

RAM image

The RAM image is stored as an application image in flash (or SPI EEPROM). Like
other applications, the RAM image has a boot image header. Information in the
header determines where, in RAM, to decompress the image. The RAM image
runs after it is decompressed to RAM.
w w w . d i g i . c o m n n n n n n n 4 0

B o o t l o a d e r a p p l i c a t i o n i m a g e s
The RAM image has these requirements:

 Sufficient RAM must be available to hold the RAM image portion of the
bootloader (about 128 KB), the compressed application image downloaded
from the network, and the decompressed version of the application image.

The maximum sizes of both the compressed and decompressed versions of
the application image are set in the linker script customization file, custom-

ize.ldr

 The application image must be built with the boothdr utility, which is
located in /bin.

The RAM image of the bootloader determines whether the application image is valid
by performing a checksum test on it. If the application image fails the checksum
test, the RAM image attempts to recover by:

 Executing the backup recover application stored in flash

The RAM image uses these steps to perform the recovery:

1 Checks for valid header in the application image.

2 Gets the address of the backup recovery image from the application image
header.

3 Checks for a valid backup recovery image by performing a checksum test.

4 Executes the backup recovery image if the image is valid.

The RAM image of the bootloader determines whether the backup recovery
application image is valid by performing a checksum test on it. If the backup
recovery application image fails the checksum test, the RAM image attempts to
recover by:

 Using the DHCP/BOOTP server to get the network and file name to
download information

 Downloading a replacement for it using TFTP

The RAM image uses these steps to perform the recovery:

1 Initializes the Ethernet driver
4 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
2 Initializes the UDP stack

3 Downloads the application image from a network server to RAM

4 Validates the downloaded application image by performing a CRC32
checksum

5 Stores the image into flash

6 Resets the unit, which restarts the process

If the RAM image of the bootloader is unable to download the application image
through the TFTP recovery method, it attempts to recover by:

 Using the serial recovery method to download the application image

The RAM image uses these steps to perform the recovery:

1 Starts the serial recovery process to download the application from
another device through the serial port.

2 Validates the downloaded application image by performing a CRC32

checksum

3 Stores the image into flash

4 Resets the unit, which restarts the process

Application image structure

An application image consists of:

 An application image header, which has two parts:

– A NET+OS header

– An optional custom header
w w w . d i g i . c o m n n n n n n n 4 2

A p p l i c a t i o n i m a g e s t r u c t u r e
 The application itself

 A checksum, which is computed over the entire image, including the
headers

The next section describes each component of the application image header.

Application image header

The application image header has two sections of variable length. The first part
contains data that the bootloader uses, and the second part contains application-
specific data that you define. Fields at the start of a section determine the size
of the two sections.

This data structure defines the application image header:

typedef struct

{

WORD32 headerSize;

WORD32 naHeaderSize;

char signature[8];

WORD32 version;

WORD32 flags;

WORD32 flashAddress;

WORD32 ramAddress;

WORD32 size;

WORD32 backupAddress;

WORD32 reserved1;

WORD32 reserved2;

WORD32 reserved3;

WORD32 reserved4;

} blImageHeaderType;

This table describes how the fields are used:
4 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
These bit values are defined for the flags field:

Field Description

headerSize Set to indicate the size of the complete header, including the
application-specific section. The application starts
immediately after the end of the header.

naHeaderSize Set to indicate the size of the NET+OS portion of the image
header in bytes, including this field.

signature Set to the ASCII string bootHdr to identify this header as a valid
image header.

version Set to 1 for the NET+OS 7.4 and later versions of the image
header.

flags A bit field of flags.

For details about bit values, see the next table.

flashAddress If the image is to be written to flash, set this field to the
address to which the image will be written. The entire image,
including the header, is written to flash.

ramAddress Holds the image's destination address in RAM. When an image
is written to RAM to be executed, only the application part of
the image, without the header, is written.

size Holds the size of the image (not including the header)
in bytes.

backupAddress Holds the address of the backup recovery image in Flash
memory.

reserved1 Reserved for future use.

reserved2 Reserved for future use.

reserved3 Reserved for future use.

reserved4 Reserved for future use.
w w w . d i g i . c o m n n n n n n n 4 4

G e n e r a t i n g a n i m a g e
Generating an image

The template and sample Makefiles in the apps and examples directories use these
steps to create application images when you build an application:

1 The application is compiled and linked.

The application is linked for its execution address in RAM (image.bin) or
ROM (rom.bin), but is linked as a ROM application. Normally, this image
is set up for debugging.

2 The compression program that ships with the NET+OS development envi-
ronment compresses the image.

Bit value Description

BL_WRITE_TO_FLASH If you set this bit, the image is written to the address in flash
specified in the flashAddress field.

If you clear this bit, the image is run immediately without writing
it to flash. The image is moved or decompressed to the address
in the ramAddress field before it is executed.

BL_LZSS_COMPRESSED If you set this bit, the application portion of the image is
compressed. It is decompressed to the address in the ramAddress
field before it is executed.

BL_LZSS2_COMPRESSED If you set this bit, the application portion of the image is
compressed using the LZSS2 compression algorithm. It is
decompressed to the address in the ramAddress field before it is
executed.

BL_EXECUTE_FROM_RO

M

If you set this bit, the application is executed from ROM. The
application must not be compressed.

If you do not set this bit, the application is decompressed or
moved to the address in the ramAddress field before it is
executed.

BL_BYPASS_CRC_CHEC

K

If you set this bit, the application image is executed without first
performing the CRC32 checksum test to determine if the image
is valid. This option allows for faster application image boot
times. However, if the application image is corrupted, none of
the recovery methods will be executed.
4 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
3 The boothdr creates an application image that the bootloader supports.

Configuration file

The configuration file contains configuration information in the form of several
keyword/value pairs. The default configuration file, bootldr.dat, is stored in the
bsp/platforms/my_platform directory.

This table describes the keyword/value pairs:

Keyword Value description

WriteToFlash Set to one of these options:
 Yes. Sets the BL_WRITE_TO_FLASH bit in the flags field of the

header.
 No. The bit is left clear.

Compressed Set to one of these options:
 Yes. Sets the BL_LZSS2_COMPRESSED bit in the flags field of the

header.
 No. The bit is left clear.

ExecutedFromRom Set to one of these options:
 Yes. Sets the BL_EXECUTE_FROM_ROM bit in the flags field of

the header.
 No. The bit is left clear.

FlashOffset Specifies the offset from the beginning of flash where the image is
to be written.

Set to a hexadecimal value preceded by 0x.

RamAddress Specifies the absolute address in RAM at which to execute the
application. The application is copied or decompressed to this
location.

Set to a hexadecimal value preceded by 0x.

MaxFileSize Specifies the maximum size of the image in bytes. The application
terminates in error if the combination of the image, header, and
checksum is larger than this value.

Set to a hexadecimal value preceded by 0x.
w w w . d i g i . c o m n n n n n n n 4 6

G e n e r a t i n g a n i m a g e
Here is an example of a configuration file that uses keyword/value pairs:

General bootloader limitations

Be aware of these general limitations of the bootloader:

 The bootloader’s DHCP/BOOTP client is limited. The client supports options
for getting the IP address, subnet mask, gateway address, boot image file
name, and boot image size only. You cannot use the client to get other
options.

 The bootloader's User Datagram Protocol (UDP) stack supports a limited
implementation of UDP and IP that supports only those features needed to
support DHCP/BOOTP and Trivial FTP (TFTP).

 The TFTP client supports only file downloads.

 The TFTP server and the DHCP/BOOTP server must be located on the same
machine; that is, they must have the same IP address.

 IPv4 only.

BypassCrcCheck Set to one of these options:
 Yes. Sets the BL_Bypass_CRC_CHECK bit in the flags field of the

header.
 No. The bit is left clear.

BackupAddress Specifies the address of the backup recovery application image
stored in Flash memory.

Set to a hexadecimal value preceded by 0x.

WriteToFlash Yes

Compressed Yes

ExecuteFromRom No

FlashOffset 0x10000

RamAddress 0x4000

MaxFileSize 0xD0000

BypassCrcCheck No

BackupAddress 0x2130000

Keyword Value description
4 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
Customizing the bootloader utility

You can modify a set of functions in the default bootloader to support your specific
applications and environments. These functions, called customization hooks,
are in the b1main.c and blerror.c files in the platforms directory.

The code in blmain.c (or spi_blmain.c for the SPI bootloader) is like a template
bootloader. If the current application image is corrupt, the code uses the bootloader
application program interface (API) to download a new application image. To
add new functionality to the bootloader, you modify the template.

The rest of the chapter describes the functions in the blmain.c file. For details
about each function, see the online help.

Customization hooks

This table provides a summary of the functions in the blmain.c file, which is in
the platforms directory:

Function Description

NABlReportError Called whenever an error occurs

getMacAddress Gets the Ethernet MAC address the bootloader should use

isImageValid Determines whether an image is valid

shouldDownloadImage Determines whether the bootloader should download a new image

getDefaultFilename Determines the name of the file to download

downloadImage Downloads a new application image

customizedApplicationImageHandler User implemented application image processing algorithm
w w w . d i g i . c o m n n n n n n n 4 8

C u s t o m i z i n g t h e b o o t l o a d e r u t i l i t y
NABlReportError

Called when an error is detected.

The error is reported to the user.

Format

void NABlReportError (errorCode);

Arguments

Return values

None

Implementation

The default implementation reports an error by blinking the LEDs on the
development board in a pattern and then returns. The errorCode value
determines the pattern.

You can customize the function in a number of ways, depending on the features
in the target hardware; for example, by:

 Writing an error message out the serial port

 Blinking the LEDs in a loop, which effectively forces users to reset the
device manually after correcting the problem

Argument Description

errorCode Identifies the error type
4 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
getMacAddress

Returns a pointer to the Ethernet MAC address that the bootloader uses.

Format

char *getMacAddress (void);

Arguments

None

Return values

Returns the Ethernet MAC address as an array of characters

Implementation

The default implementation uses the customizeGetMACAddress function to read the
Ethernet MAC address from NVRAM. You can use the default implementation if
the customizeGetMACAddress function has been ported to the application hardware.

You may need to modify the default implementation if you want to get the MAC
address in a different way. Do not hard-code the MAC address; doing so prevents
more than one unit from operating on the network.
w w w . d i g i . c o m n n n n n n n 5 0

C u s t o m i z i n g t h e b o o t l o a d e r u t i l i t y
isImageValid

Determines whether a downloaded image is valid.

Format

int isImageValid (blImageInfoType *imageInfo, int imageIsInRAM)

Arguments

Return values

Implementation

The default implementation validates the image by checking the signature in
the header and performing a cyclic redundancy check (CRC) on the image. If the
image is not in RAM, isImageValid first reads the image in serial flash into RAM.

You can extend the default implementation to determine whether the
application can and should run on the hardware; for example, by doing one,
some, or all these steps:

 Encoding information in the custom section of the image header that
identifies the application's hardware requirements and features

 Encoding the hardware capabilities into the GEN_ID and GPIO bits

 Verifying that the hardware has the features needed to run the application

Value Description

imageInfo Pointer to the image header

imageIsInRam Either of these:
 Non-zero. The image is currently in RAM.
 Zero. The image is currently in serial flash.

Value Description

TRUE Image is valid.

FALSE Image is not valid.
5 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
 Verifying that the end user is allowed to run the application on this unit; in
other words, making sure the user is not trying to upgrade a low-end unit
with the firmware for a high-end unit

 If the application is to be written into flash, verifying that it fits

 Verifying that the destination address specified in the image header is valid
w w w . d i g i . c o m n n n n n n n 5 2

C u s t o m i z i n g t h e b o o t l o a d e r u t i l i t y
shouldDownloadImage

Determines whether to download an application image from the network.

Format

int shouldDownloadImage(void);

Arguments
None

Return values

Implementation

To help debug the bootloader, the default implementation returns TRUE if the
image is invalid.

static BOOLEAN shouldDownloadImage(void)

{

#if (BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY == TRUE)
return TRUE;

#else
int result = TRUE;
blImageHeaderType imageInfo;

memset(&imageInfo, 0, sizeof(blImageHeaderType));

if (blReadFromSFlash(NAAppOffsetInSFlash, (char *)&dlBuffer[0], sizeof (blImageHeaderType), 0)

!= BL_SUCCESS)
NABlReportError(SIMPLE_SPI_EEPROM_READ_FAIL);

fmemcpy(&imageInfo, &dlBuffer[0], sizeof (blImageHeaderType));

result = (isImageValid(&imageInfo, 0/*image is in EEPROM*/) == FALSE);

return result;

#endif

}

Value Description

TRUE Downloads the image from the network

FALSE Executes the image in flash
5 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
You may want the bootloader to download a new image even if the current image is
valid. For example, you may want to let end users force a download by either
pushing a button at powerup or selecting an option from a configuration menu.

To boot from the network only, set BSP_BOOTLOADER_BOOT_FROM_NETWORK_ONLY

to TRUE. The function always returns TRUE without checking whether the image
in flash is valid.
w w w . d i g i . c o m n n n n n n n 5 4

C u s t o m i z i n g t h e b o o t l o a d e r u t i l i t y
getDefaultFilename

The Dynamic Host Configuration Protocol (DHCP) client gets the name of the
application image from the DHCP or Bootstrap Protocol (BOOTP) server. The
client can pass the server the name of the file when the server requests this
information, allowing the server to determine which file is appropriate for the
client.

How the server uses the information depends on the implementation. If no file
name is specified, the server returns the name of the default image file.

This function sets the name of the file that is passed to the DHCP/BOOTP
server. The function returns a zero-length string if it wants the default file.

Format

char *getDefaultFilename(void);

Arguments

None

Return values

A null-terminated ASCII string that is the name of the file that the DHCP client
will request from the DHCP/BOOTP server

Implementation

The default implementation returns a pointer to an empty string, which has the
effect of requesting the default boot image on the Trivial File Transfer Protocol
(TFTP) server.

You will probably want to modify the default implementation to pass a file
name to the DHCP/BOOTP server, using one of these approaches:

 Hard-coding a file name that identifies the product

 Determining the features supported by the hardware and generating a file
name that has this information encoded in it

 Generating a file name that identifies the features purchased by the user
5 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

C u s t o m i z i n g t h e B o o t l o a d e r
downloadImage

Downloads an application image from the network into a memory buffer.

Format

int downloadImage (char *destination, int maxLength)

Arguments

Return values

Implementation

The default implementation uses DHCP to get an IP address and TFTP to
download load the image. After the image is downloaded, it is validated.

You can use the default implementation in many applications. For example, you
may want to extend the default implementation by:

 Using information in NVRAM to determine:

– The unit's IP address

– The IP address of the TFTP server

– The name of the application image to download

 Passing a vendor class identifier (option 60) to the DHCP server

 Receiving vendor information (option 43) from the DHCP server

 Downloading the image over a serial or parallel port

Argument Description

destination Pointer to the memory buffer that will hold the image

maxLength Size of the memory buffer in bytes

Return value Description

BL_SUCCESS Image successfully downloaded

otherwise Error code that identifies the failure
w w w . d i g i . c o m n n n n n n n 5 6

C u s t o m i z i n g t h e b o o t l o a d e r u t i l i t y
customizedApplicationImageHandler
User implemented bootloader Flash application image processing routine

Format

void customizedApplicationImageHandler (void);

Arguments

None

Return Values

None

Implementation

This function allows the user to implement a customized Flash application
image processing algorithm. When #define BSP_BOOTLOADER_RECOVERY_METHOD
is set to BSP_BOOTLOADER_CUSTOMIZED_RECOVERY in the platform’s bsp_bldr.h file,
the bootloader will execute the Flash application image processing algorithm in
customizedApplicationImageHandler() and bypass the default bootloader Flash
application image processing algorithm. This customized algorithm must
execute an application image if the image is valid and perform an application
image recovery if the image is invalid. The application image recovery process
can include any of the default bootloader recovery methods.
5 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Part 2: Hardware
5 8

5 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Bringing Up New Hardware
C H A P T E R 6

This chapter describes how to bring up new application hardware.
5 9

V e r i f y t h e d e b u g g e r i n i t i a l i z a t i o n f i l e s
Verify the debugger initialization files

When you use the debugger, you initialize hardware registers on the board that
the BSP ROM startup code would normally set up. You can use debugger
initialization scripts for this task. The script contains commands that the
debugger executes before the application is downloaded and executed.

The NET+OS development environment ships with debugger scripts, located in
netos/debugger_files, that initialize the supported Digi Connect products and

development boards. You must verify that the NET+OS debugger script still
works with your application hardware; if it does not, you must create a new
debugger script.

NET+OS supports the DIGI JTAG Link debugger. Additionally, support is
available in most platforms for Macraigor Raven and Mentor Graphics
MAJIC/MAJICO.

The information in this chapter is based on the assumption that you are using one
of these debuggers. The .gdbinit files generated by NET+OS application Makefiles are
based on files in netos/debugger_files.

The files listed next contain the commands that set up the memory controller
to support the SDRAM on the development boards. You must do this before you
can download application code into the board’s RAM.

Review the file for the processor you are using, and verify that it sets up the
memory controller correctly for the SDRAM that your application hardware uses.

If the script listed in the table does not set up memory correctly for your
board, create a new one with commands to do so. You create a new
initialization script by copying the one for your processor and editing it as
needed for your application hardware. Note that the memory controller set up

This debugger script Initializes

.gdbinit.ns7520 NS7520 registers

.gdbinit.ns9360 NS9360 registers

.gdbinit.ns9750 NS9750 registers

.gdbinit.ns9215 NS9210/NS9215 Registers
6 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B r i n g i n g U p N e w H a r d w a r e
on the NS9210 is the same as the NS9215, so the .gdbinit.ns9215 scripts serve as
an example for both.

 NET+50. Configure the PLL to the correct clock speed by setting PLLCR.

 ARM7 processors. Configure the System Control register to set the correct
bus speed and endianess and to disable the watchdog timer.

 ARM7 processors. Set the valid bit in the CS0 chip select to 0. The BSP
checks this bit to determine whether a debugger is being used.

This is important because the BSP needs to know whether to configure
the RAM chip selects, perform a memory test, and turn on cache.

After you create the initialization script, edit the application Makefiles to use
your new script whenever you select your platform. This table lists the Makefiles in
src/linkerscripts with the platforms they are used for.

Edit the code in the Makefile that handles the gdbinit target to use your startup
script when your platform is selected. You can do this by using an if statement
that examines the value of the $(PLATFORM) Makefile variable.

Using the MAJIC/MAJICO probe

The debugger initialization scripts ns9xxx.cmd and ns9215.cmd are located in the
directory from which the MDI server is executed.

During the installation procedure, you are prompted for the name of this
directory. The MDI server reads this script when you start to download code to
the board using gdb.

Makefile Supported processors

Makefile.appbuild.ns9360 NS9360

Makefile.appbuild.ns9750 NS9750

Makefile.appbuild.original NET+50 and NS7520

Makefile.appbuild.ns9215 NS9215

Makefile.appbuild.ns9210 NS9210
w w w . d i g i . c o m n n n n n n n 6 1

D e b u g t h e i n i t i a l i z a t i o n c o d e
This table shows the debugger initialization files that the MDI server uses:

The debugger script initializes SDRAM and sets a bit in a register to indicate that
the application is executing in the debugger.

If you are using a different type of SDRAM, you must modify the settings in the
ns9xxx.cmd or ns9215.cmd file. This file programs the registers in the memory
controller. For a detailed description of these registers, see the hardware
reference for the processor you are using.

Debug the initialization code

After you complete the modifications and create the debugger initialization
scripts for your application hardware, you may need to debug the initialization
code. To debug code from RAM, you use the debugger and download the code
through the gdb debugger into the RAM on your board. The next sections
describe this procedure.

Preparing to debug the initialization code

 Before you start debugging the initialization code, complete these tasks:

1 From the bsp directory, rebuild the BSP with your changes:

File name Contents

startice.cmd JTAG settings and reads in the ns9xxx.cmd file to initialize the target
board

ns9xxx.cmd This file contains the commands to initialize SDRAM on NS9360 and
NS9750 based development boards and modules, which use 32-bit
SDRAM.

ns9215.cmd This file contains the commands to initialize SDRAM on the
connectcore9p9215_a module, which uses 16-bit SDRAM. The NS9215
and NS9210 both use the same memory controller, so this file can also
be used as an example of a configuration file for a NS9210-based
device.

epimdi.cfg MAJIC settings, including network parameters
6 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B r i n g i n g U p N e w H a r d w a r e
– Change to the BSP directory:
cd src/bsp

– Enter this command:

make PLATFORM=my_platform

where my_platform is the name of your platform.
(Instead of entering make PLATFORM=my_platform, you can set the
bash shell variable by entering export PLATFORM=my_platform; then you
can build the BSP by entering just make.)

2 Disable the POST by setting the APP_POST constant in the root.c file to 0.

3 Carefully review all the settings in the appconf.h file.

4 Build the application:

– Copy the template application, which is located in:

/apps/template

– In the src/apps/template/32b directory, enter:

make PLATFORM=my_platform clean

make PLATFORM=my_platform all

5 Start up the debugger software; for example:

– GDB server for the Digi JTAG Link

– ocdRemote for the Macraigor Raven

– mdi server for the Mentor Graphics MAJIC/MAGICO

6 From the /src/apps/template/32b directory, enter this command:
gdbtk -se image.elf

7 To load your image, from the gdb console window, enter:
lo image.elf

8 Set up the debugger to view assembler instructions, and then step one
instruction. This leaves the program counter (PC) at the beginning of the
startup code.

9 Verify that the debugger initialization file has configured the application
board such that:

– The Chip Select registers for ROM and RAM are set up to support the
parts and memory map.

– All interrupts are masked off.

– On NET+50 platforms, the PLL registers are properly programmed for
the crystal on your application hardware.
w w w . d i g i . c o m n n n n n n n 6 3

D e b u g t h e i n i t i a l i z a t i o n c o d e
– You can read and write RAM on your application board.

10 Debug the initialization code by stepping through it, as described in the
next section.

Debugging the initialization code on ARM7 platforms

Debug the initialization code in stages, using the same order of the steps
presented in this section:

1 INIT.s file

2 ncc_init() routine

3 NABoardInit routine

4 Ethernet driver startup

Be aware that this section describes debugging from RAM. You also may need to
step through the INIT.s code when it runs from ROM.

Debug the INIT.s file

The src/bsp/init/arm7/INIT.s file performs initialization functions. Step through the
code in INIT.s, and verify that it works correctly. You usually do not need to
change the code to support custom hardware boards.

The code in INIT.s must perform this process:

1 Set the processor mode and disable all interrupts.

2 Initialize the PLL (NET+50 only).

3 Set the BSPEED field in the System Control register to enable full bus
speed.

4 Execute a soft reset.

5 Place the DMA controller into test mode.

This action causes the on-chip static RAM (normally used to store DMA
context information and register values) to become available as RAM.

6 Set the SVC stack pointer to point to the DMA RAM.

7 Call the ncc_init routine to continue the initialization process.

8 Set up stacks for all processor modes.

9 Release the DMA controller from test modes.
6 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B r i n g i n g U p N e w H a r d w a r e
10 Call the C library startup routines.

The routines do not return.

Debug the ncc_init routine

The ncc_init routine performs most of the board-specific hardware setup by
calling a set of functions that you customize to support your board. After you
customize these routines (described in task 6), you need to check ncc_init and
your customized routines to verify that they are working correctly. The ncc_init.c
file is in bsp/init/arm7.

The ncc_init routine must perform this process:

1 Set up the Memory Management Control register by calling:
customizeSetupMMCR

2 Set up the System Control register by calling:
customizeGetScr

3 Determine whether a software restart has occurred by examining the
contents of UNDEF mode R14.

The Restart function sets this register when the system is restarted.

4 Determine whether a debugger is attached.

The debugger script files indicate the presence of a debugger by
clearing the valid bit for chip select 0 (CS0).
w w w . d i g i . c o m n n n n n n n 6 5

D e b u g t h e i n i t i a l i z a t i o n c o d e
5 Set up the GPIO ports by calling the customizeSetupPortX routines.

6 Set up CS0 by calling customizeSetupCS0.

7 If a debugger is detected, call customizeSetupCS3 to set up CS3, and call
customizeGetRamSize to determine the amount of RAM on the system.

8 Call the customizeReadPowerOnButtons function to read and save the state of
buttons and jumpers.

9 Verify that the application can fit in the available RAM.

10 Set flags in memory, which is now set up, to indicate whether a debugger
is present and whether a software restart has occurred.

Debug the NABoardInit routine

The NABoardInit routine, located in src/bsp/init/arm7/narmbrd.c, provides some low-
level initialization routines for flash and NVRAM. Step through the initialization
code in the narmbrd.c file to verify that the NVRAM APIs are initialized to support
the NVRAM on your application hardware. You can configure the board to use a
flash sector as NVRAM.

Debug the Ethernet driver startup

 To debug the Ethernet driver startup:

1 In eth_reset.c, put a breakpoint on the eth_reset routine, and let the program run
until you reach the breakpoint.

2 In the mii.c file, step into the customizeMiiReset routine and then into
customizeMiiIdentifyPhy.

3 Verify that:

– customizeMiiIdentifyPhy returns a value not equal to 0xffff. -mii_reset returns 0.

– customizeMiiIdentifyPhy identifies the PHY on your application hardware.
6 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

B r i n g i n g U p N e w H a r d w a r e
4 Step into customizeMiiNegotiate and verify that customizeMiiCheckSpeed determines
whether you are connected to a 100 Base-T network.

5 Step into customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.

Debugging the initialization code on ARM9 platforms

Debug the initialization code in stages, using the same order of the steps
presented in this section:

1 init.arm file

2 nccInit routine

3 NABoardInit routine

4 Ethernet driver startup

This section describes debugging from RAM. You also may need to step through
the init.arm code when it runs from ROM.

Debug the init.arm file

The init.arm file, located in src/bsp/init/arm9, performs initialization functions. Step
through the code in init.arm, and verify that it works correctly. You usually do not
need to change the code to support custom hardware boards.

The first function executed in NET+OS is Reset_Handler in the init.arm file. If your
board is not working, set a breakpoint on the Reset_Handler routine and step
through it.

Debug the nccInit routine

The nccInit routine, located in bsp/init/arm9/ncc_init.c, performs most of the board-
specific hardware setup by calling a set of functions that you customize to
support your board. After you customize these routines (described in Task 5),
you need to check nccInit and your customized routines to verify that they are
working correctly.

If you have difficulty starting the development board, use these diagnostic tools:

 A simple serial driver that is loaded in nccInit.
w w w . d i g i . c o m n n n n n n n 6 7

D e b u g t h e i n i t i a l i z a t i o n c o d e
 mprintf, a special printf routine. A prototype of this routine is located in h/

ncc_init.h. You can use mprintf to display diagnostic information before the
serial driver is loaded in netosStartup.

 A NETOS_DEBUG flag, in nccInit. This flag can provide useful information.

Debug the NABoardInit routine

The NABoardInit routine, located in src/bsp/init/arm9, provides some low-level
initialization routines for flash and NVRAM. Step through the initialization code
in the narmbrd.c file to verify that the NVRAM APIs are initialized to support the
NVRAM on your application hardware. You can configure the board to use a
flash sector as NVRAM.

Debug the Ethernet driver startup

 To debug the Ethernet driver startup:

1 In eth_reset.c, put a breakpoint on the eth_reset routine, and let the program run
until you reach the breakpoint.

2 In the mii.c file, step into the customizeMiiReset routine, and then into
customizeMiiIdentifyPhy.

3 Verify that:

– customizeMiiIdentifyPhy returns a value not equal to 0xffff.
- mii_reset returns 0.

– customizeMiiIdentifyPhy identifies the PHY on your application hardware.

4 Step into customizeMiiNegotiate and verify that customizeMiiCheckSpeed determines
whether you are connected to a 100 Base-T network.

5 Step into customizeMiiCheckDuplex to determine whether you have a full- or
half-duplex link.
6 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Memory Map
C H A P T E R 7

This chapter discusses the memory maps for ARM7- and ARM9-based
modules.
6 9

M e m o r y a l i a s i n g (A R M 7)
Memory aliasing (ARM7)

NS7520 modules have this memory map:

 Addresses from 0xf0000000 to 0xffffffff are reserved for devices internal to the
NET+ARM processor.

 RAM on CS1 and CS2 is mapped from address 0x0 to 0x01ffffff.

 ROM on CS0 is mapped from address 0x02000000 to 0x021fffff.

 NVRAM on CS3 is mapped from address 0x03000000 to 0x03001fff.

The BSP assumes that RAM is located at address 0x0, and it dynamically writes the
exception vector table to this location.

The NET+OS aliases physical memory to four locations in the address map, so
each physical word of memory appears at four addresses. The aliasing is done
on all platforms. NET+OS configures one aliased copy of memory for instruction
cache on platforms that support cache (the NET+50). Code is executed from
this area of the address map to improve performance. NET+OS uses uncached
areas for general data storage.

In the next figure, which shows the NET+OS memory map with cache enabled:

 Physical memory is mapped four times in logical memory.

 The NET+ARM internal registers appear once.

 Logical page 2 is used for instruction cache.

 All addresses are in hexadecimal notation.
7 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

M e m o r y M a p
Page 0 contains a slot for up to 32 MB of RAM (using CS1 and C2) at addresses 0x0
through 0x1ffffff.

Either 1 or 2 MB of flash memory on CS0 begins at 0x2000000, and 8 KB of
NVRAM starts at 0x3000000.

The ROM and RAM spaces are remapped on pages 1, 2, and 3; for example:
w w w . d i g i . c o m n n n n n n n 7 1

M e m o r y m a p (A R M 9)
Memory map (ARM9)

The ARM9 processors (NS9210, NS9215, NS9360,NS975) have an embedded
MMU. The MMU allows you to remap physical addresses to virtual addresses. For
simplicity, NET+OS sets most virtual addresses to be the same as their physical
addresses. The exception to this is RAM, which is located at physical address 0x0
and is mapped to two different virtual addresses: 0x0 and 0xC000000. Accesses to
RAM at virtual address zero use the write-back cache mode. Accesses to RAM at
virtual address 0xC0000000 are not cached.

The next illustration shows the NET+OS memory map for the ARM9-based
modules. Note that the NS9750 is the only processor that has the PCI address
space.

Physical address Which is Can b accessed at

0x100 RAM 0x4000100, 0x80001000, and 0C000100

0x20000100 Flash ROM 0x60001000, 0xA000100, and 0xE000100

0x30000100 NVRAM 0x3000100 only
7 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

M e m o r y M a p
In this diagram:

 The top half shows the virtual address space seen by the CPU and the
software.

 The bottom half shows the actual physical address space.

 The first GB of memory is set up as a cached region of memory; this is the
address space in which all applications run (stack, bss data, heap).

The 3-4 GB range is set up for non-cached memory and is mapped to
the 0-1 GB of physical memory. The end of the 4 GB range is set up as
invalid because these are the addresses of registers in the NET+50 and
the NS7520 processors that no longer exist. PCI memory also is mapped
to a cached and non-cached region.

All applications use the 0-1 GB range of addresses, which is set up as write-back
cache. NET+OS drivers typically use the 3-4 GB to store DMA buffer descriptors
that should not be cached.

You usually need to access the uncached region only if you are writing drivers
that use DMA; typical applications never need to use this region.

Adding memory or memory mapped devices to an ARM9-based processor
requires updates to the MMU Table. See the MMU Driver Device Driver, under
the Hardware/Board Support tab in the NET+OS API Reference.
w w w . d i g i . c o m n n n n n n n 7 3

M e m o r y m a p (A R M 9)
7 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Adding Flash
C H A P T E R 8

This chapter describes how to update the NET+OS flash driver to support
additional flash parts.
7 4

O v e r v i e w
Overview

The NET+OS development environment includes application program interface
(API) functions for reading, writing, and erasing flash memory. The internals of
the flash memory API rely on flash_id_table in the naflash.c file (located in C:/netos/src/

flash) to define the known flash parts. The flash API is guaranteed to function
only with parts that are defined in the flash_id_table. If the part is not recognized,
you need to update the flash_id_table.

The rest of this chapter describes the flash_id_table and the procedures for
updating flash. For details about the flash API functions, see the online help.

Supported flash memory parts

NET+OS supports these flash memory parts:

Manufacturer Part number

AMD AM29F800BB

AMD AM29F800BT

AMD AM29DL323DB

AMD AM29LV160T

AMD AM20LV160B

AMD AMD29DL323DT

AMD AM29DL323DTB

AMD AM29LV128M

AMD AM19LV160B

AMD AM27LV320DB

AMD AM29LV641MH

AMD AM29LV641

AMD AM29LV800BB

AMD AM29LV800BT

AMD AM29DW641F

Atmel AT49BV8011
7 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A d d i n g F l a s h
If your platform uses one of these flash parts, then you should edit the file
flashparts.h in your platform directory. This file contains a list of macro
definitions, one for each flash part. Set the definitions for the flash parts your
platform uses to TRUE to enable support for those parts. Set the definitions for
flash parts which your platform does not use to FALSE to reduce memory usage.
For example, if your platform uses the AM29LV800BB part, then set
NAFLASH_WANT_TO_SUPPORT_AM20LV800BB to TRUE.

Flash table data structure

The flash_id_table_t data structure, defined in the flash.h file, is shown here. The
tables that follow the code list the structure's data types and fields.

typedef struct

{

Atmel AT49BV8011T

Atmel AT49BV1614A

Fujits MBM29LV800BE

Fujits MBM29LV160B

Fujits MBM29LV160T

Macronix MX28F4000

Sharp H28F800SG

SST 28SF040

SST 39VF800

STM M29W800AB

STM M29W160DB

STM M29W320DB

STM M29DW641F

STM M29W160B

STM M29W160T

STM M29W320EB

Manufacturer Part number
w w w . d i g i . c o m n n n n n n n 7 6

O v e r v i e w
WORD8 ccode;

WORD32 ccode_addr;

} flash_cmd_t;

typedef struct

{

WORD16 mcode;

WORD16 mcode_addr;

WORD16 dcode;

WORD16 dcode_addr;

WORD16 total_sector_number;

WORD32 sector_size;

WORD16 prog_size;

WORD16 access_time;

flash_cmd_t *id_enter_cmd;

WORD16 id_enter_len;

flash_cmd_t *id_exit_cmd;

WORD16 id_exit_len;

flash_cmd_t *erase_cmd;

WORD16 erase_len;

flash_cmd_t *write_cmd;

WORD16 write_len;

flash_cmd_t *sector_erase_cmd;

WORD 32 *sector_size_array;

}flash_id_table_t;
7 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A d d i n g F l a s h
This table lists the data types used in the flash_id_table_t structure:

This table summarizes the fields in the flash_id_table_t data structure:

Data type Description

WORD8 Unsigned byte

WORD16 Unsigned short

WORD32 Unsigned long

Field Description

mcode Manufacturer's code

mcode_addr Address of manufacturer's code

dcode Device code

dcode_addr Address of device code

total_sector_number Total number of sectors

sector_size Size of sector (in bytes)

prog_size Program load size (in bytes)

access_time Access time (in nanoseconds)

id_enter_cmd Pointer to the enter identify flash command

Id_enter_len Number of cycles for the enter identify flash command

id_exit_cmd Pointer to the exit identify flash command

id_exit_len Number of cycles for the exit identify flash command

erase_cmd Pointer to the erase flash command

erase_len Number of cycles for the erase flash command

write_cmd Pointer to the write flash command

write_len Number of cycles for the write flash command

sector_erase_cmd For AMD only

sector_size_array For non-uniform sector sizes
w w w . d i g i . c o m n n n n n n n 7 8

O v e r v i e w
Adding new flash

When you add support for new flash memory, you need to provide definitions
for the new flash device, such as the number of flash sectors, the flash sector
size, and the program load size. You also need to modify the ROM type value in
the flash_id_table definition.

For example, to add support for ST Micro M29W800AB flash memory, you would
edit the flash.h file as shown here:

/* ST Micro M29W800AB*/

#define STM_M29W800AB_FLASH_SECTORS 0x013U

/* We are using block instead of sector */

#define STM_M29W800AB_FLASH_SECTOR_SIZE VARIABLE_SECTOR_SIZE

#define STM_M29W800AB_PROG_SECTOR_SIZE 0x0002U

 To add support for new flash memory:

1 In the flash.h file, add the definitions for the new flash device.

2 In the flashparts.h file in your platform directory, add a macro definition for
your flash part which can be used to control whether support for it is built
into the library. For example, the macro definition
NAFLASH_WANT_TO_SUPPORT_M29W800AB is used for the STM
M29W800AB.

3 In the netos/src/bsp/common/flashparts.c file, modify the flash_id_table definition.

Add the new flash part entries to the start of the table to allow faster
software identification of the flash part. Surround the table for your
part with if statements that use the macro definition you created in
step 2. Use the other table definitions as examples.

4 Modify other command sequences such as id_enter_cmd, id_exit_cmd, and so on.
(See the documentation supplied by the manufacturer of the flash device
you are using.)

5 Rebuild the BSP by typing “make PLATFORM=your_platform” in the netos/
src/bsp directory. This will update the copy of the flash_id_table in the BSP
directory.
7 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A d d i n g F l a s h
This table shows the definitions for the values in the example:

Supporting larger flash

If you are adding larger flash, you need to perform additional step.

 To support larger flash configurations:

1 Increase these three constants in flash.h:

– MAX_SECTORS — The maximum number of flash sectors supported

– MAX_SECTOR_SIZE — The maximum sector size supported

– MAX_FLASH_BANKS — The maximum number of flash banks supported

2 Rebuild the flash driver by typing "make PLATFORM=your_platform" in the
netos/src/flash directory.

Value Definition

0x20 Manufacturer's code

0x00 Address of manufacturer's code

0x005B Device code

0x01 Address of device code
w w w . d i g i . c o m n n n n n n n 8 0

O v e r v i e w
8 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Hardware Dependencies for
ARM7-based Modules
C H A P T E R 9

This chapter discusses the NET+OS hardware dependencies for modules that
use the NS7520 processor.
8 1

O v e r v i e w
Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

 DMA channels

 Serial ports

 Software watchdog

 Endianness

 System clock and timers

 Interrupts

The rest of the sections in this chapter describe the hardware dependencies.

DMA channels

This table describes how each of the 13 DMA channels is used in porting NET+OS:

Channel Used by What it does

1 Ethernet driver Moves data from the Ethernet receiver to
memory. The Ethernet driver code is in the
bsp/devices/ethernet directory.

2 Ethernet driver Moves data from memory to the Ethernet
transmitter.

3 - 6 External peripherals
(NS7250)

NS7250 processor only. Only two channels —
either 3 and 5 or 4 and 6 — can be configured at
one time.

7 and 8 Serial/SPI driver Receives data

9 and 10 Serial/SPI driver Transmits data.

11 - 13 Moves data from memory to memory (NS7520
processor only)
8 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

H a r d w a r e D e p e n d e n c i e s f o r A R M 7 - b a s e d M o d u l e s
Serial ports

The BSP normally sets up both serial ports to support asynchronous RS-232-style
communications. This includes:

 BSP_SERIAL_PORT_x, defined as BSP_SERIAL_UART_DRIVERS in bsp_serial.h

 BSP_GPIO_MUX_SERIAL_y to a UART selection in gpio.h

To use the serial peripheral interface (SPI) controller:

 In bsp_serial.h, redefine BSP_SERIAL_PORT_x to BSP_SERIAL_SPI_DRIVER

 In gpio.h, redefine BSP_GPIO_MUX_SERIAL_y to BSP_GPIO_MUX_serial_SPI_MASTER

Software watchdog

The watchdog device driver uses the internal watchdog if BSP_WATCHDOG_TYPE
is set to BSP_WATCHDOG_INTERNAL in bsp_sys.h.

The NAReset routine in the nareset.c file uses the software watchdog to reset the
system. NAReset is called by the default implementation of customizeReset in gpio.c.

Endianness

The BSP supports big endian mode only.

System timers

The code that supports the system timers is in the bsptimer.c file. The two timers
are described next.

Timer 1
w w w . d i g i . c o m n n n n n n n 8 3

I n t e r r u p t s
The BSP uses Timer 1 as the system heartbeat clock. The kernel uses the
system heartbeat clock for timing and pre-emption of tasks.

The frequency of the system heartbeat clock is controlled by the
BSP_TICKS_PER_SECOND constant in the bsp_sys.h file. The recommended value, is
between 1 and 1000. A value of 100, for example, provides a heartbeat rate of
one tick every ten milliseconds.

Timer 2

This timer is available for use by the application.

Interrupts

This table describes how interrupt levels are used in the BSP:

Interrupt level Use

31 (DMA 1) Ethernet driver receive packet interrupt

30 (DMA 2) Ethernet driver packet done interrupt

29 (DMA 3) ENI FIFO receive packet interrupt

28 (DMA 4) ENI FIFO transmit packet interrupt

27 and 26 (DMA 5 and 6) Not used

25 (DMA 7) HDLC driver channel 1 receive frame interrupt

 Serial/SPI 1 DMA mode receive interrupt

24 (DMA 8) HDLC driver channel 1 receive frame interrupt

 Serial/SPI 1 DMA mode receive interrupt

23 (DMA 9) HDLC driver channel 2 receive frame interrupt

 Serial/SPI 2 receive interrupt

22 (DMA 10) HDLC driver channel 2 transmit frame interrupt

 Serial/SPI 2 transmit interrupt

21-17 (ENI ports 1-4 and ENET RX) Not used

16 (ENET TX) Ethernet driver transmit interrupt

15 (SER 1 RX) Serial/SPI driver port 1 receive interrupt
8 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

H a r d w a r e D e p e n d e n c i e s f o r A R M 7 - b a s e d M o d u l e s
RS-232-style communications

To use the serial peripheral interface (SPI) controller, disable the serial driver,
by undefining BSP_INCLUDE_SERIAL_DRIVER1 and BSP_INCLUDE_SERIAL_DRIVER2 in the
bsp_serial.h file.

14 (SER 1 TX Serial/SPI driver port 1 transmit interrupt

13 (SER 2 RX) Serial/SPI driver port 2 receive interrupt

12 (SER 2 TX) Serial/SPI driver port 2 transmit interrupt

11 through 6 Not used

5 (Timer 1) System clock tick interrupt

4 (Timer 2) Not used

3 through 0 (PORTC) Not used

Interrupt level Use
w w w . d i g i . c o m n n n n n n n 8 5

I n t e r r u p t s
8 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Hardware Dependencies for
ARM9-based Modules
C H A P T E R 1 0

This chapter discusses NET+OS hardware dependencies for modules that use
the NS9360, NS9210, NS9215 and NS9750 processors.
8 6

O v e r v i e w
Overview

To port NET+OS to your application hardware, you need to be aware of specific
dependencies in these areas:

 Direct Memory Access (DMA) channels

 Endianness

 Timers

 Interrupts

 Memory map

The rest of the sections in this chapter describe the hardware dependencies.

DMA channels on the NS9750 and NS9360 Processors

The NS9750 and NS9360 processors use three DMA controllers. Two of them
exist on the Bbus, and one exists in the Bbus Bridge module. (For detailed
information, see the hardware reference for your processor.

One of the Bbus DMA controllers supports all Bbus peripherals except the USB
device, and the other is dedicated to the USB device interface. The AHB DMA
has two DMA channels. These channels can be used for memory-to-memory
transfers on both the NS9750 and NS9360 processors and for transfers between
memory and an external device on the NS9360 processor. NET+OS does not use
these channels. Your application can use the AHB DMA channels.

DMA Channels on the NS9210 and NS9215 Processors

The NS9210 and NS9215 processors use three DMA controllers. One controller
supports the Ethernet controller, one controller supports I/O hub devices and
one controller supports DMA transfers to external memory. See Hardware
Reference manuals for these processors for more information.
8 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

H a r d w a r e D e p e n d e n c i e s f o r A R M 9 - b a s e d M o d u l e s
Besides support external DMA transfers, external DMA channel 1 is also used by
the AES encryption/decryption module. The NET+OS development environment
uses AES with SSL and IPSEC. Therefore external DMA channel 1 is not available
for use.

Note that the A/D converter and UART D both use the same I/O hub DMA
channel. Therefore, only one of these devices can use DMA at a time. NET+OS
requires that you disable the driver for UART D if you use the NET+OS A/D
driver. The driver will call __panic if it determines that the serial driver has
been configured to support UART D.

Endianness

The BSP supports big endian mode only.

General purpose timers

This section describes how the general purpose timers are used.

System timers

The statistical profiler uses timer 2 and the FIQ interrupt. These resources are
used only if the statistical profiler is enabled by building the BSP with the
constant STATISTICAL_PROFILER defined. These resources are available for
application use if this constant is not defined.

The system clock, NAuWait and NAWait routines, and the USB device driver each
use the first available timer.

All other general purpose timers

Any custom application can use the rest of the general purpose timers.
w w w . d i g i . c o m n n n n n n n 8 8

I n t e r r u p t s
Interrupts

The interrupt priorities are specified in the bsp.c file in the platforms directory. You
modify the priority of the interrupts by editing the NAAhbPriorityTab and
NABbusPriorityTab tables in bsp.c.

On the NS9360 and NS9750, the Bbus peripherals —all four serial ports, the USB
device, and the 1284 — combine all their interrupts into one Bbus Aggregate
interrupt. These interrupt priorities are set by the table NABbusPriorityTab in bsp.c.
All Bbus interrupts are multiplexed into a single AHB interrupt — the BBus
Aggregate Interrupt.

For information about the interrupt controller, see the Hardware Reference
Manual for your processors.

System clock

The NA_ARM9_INPUT_FREQUENCY constant in sysClock.h must be set to the
frequency of the signal input to the X1_SYS_OSC pin. This is the clock source to
the PLL when the PLL is used. If the PLL is bypassed, this signal is divided by 2
to generate the ARM9 CPU clock.

The processor automatically determines the PLL divisor values from hardware
bootstrap settings when you use the PLL.
8 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Part 3: Makefiles
9 0

9 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

NET+OS Makefile System
C H A P T E R 1 1

This chapter describes how to use the NET+OS Makefiles to rebuild the NET+OS
BSP and libraries.
9 1

O v e r v i e w
Overview

You use the Makefile system to build the BSP, POSIX, flash libraries, bootloader
images, and example applications. This chapter describes the hierarchy of the
Makefile and how to build, clean, and add libraries. This chapter also describes
the bootloader Makefile and provides examples of building NET+OS libraries.

You initiate makes in any directory with a Makefile by entering this command:

make PLATFORM = my_platform

where PLATFORM is a bash shell variable that you can specify in either the make
command line or the bash shell.

If you are doing frequent makes, it’s convenient to set the shell variable and
then enter just make. To set the PLATFORM shell variable, enter:

export PLATFORM=my_platform

To view the current value of your PLATFORM variable, enter this command:

echo $PLATFORM

Be aware that you must always specify the platform when you build NET+OS.
The PLATFORM variable directs make to where to get the libraries and which
platform directory to build in the BSP.

This list shows the supported platforms:

 connectcore9c_a connectwime

 connectcorewi9c_a net50bga_a

 connectcore9p9360_a connectcore9p9215_a

 connectem

 connectme ns7520_a

 connectsp ns9360_a

 connectwiem ns9750_a

 connectme9210 connect wisp
9 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S M a k e f i l e S y s t e m
Two optional variables are:

 DEBUG=on — Turns on the debugging information.

By default, this variable is set to off. When this variable is set to on, the
NETOS_DEBUG flag is turned on; NETOS_DEBUG turns on the NA_ASSERT macro.

 MODE=verbose — echoes out each Makefile command.

By default, this variable is set to silent. To see the compile line, turn on
this variable.

This variable is useful if a problem with search paths occurs or if you
want to check which compiler flags are turned on.

Makefile hierarchy

You can execute make from any directory that contains a Makefile. The Makefile
system is nested and built around many Makefiles. This call graph shows how the
system is organized; the list after the call graph describes the directories.

netos/Makefile

netos/Makefile.inc

netos/Makefile.lib

netos/src/bsp/Makefile

netos/src/flash/Makefile

netos/src/snmpcust/Makefile

netos/gnu/src/posix/Makefile

netos/Makefile/bld
w w w . d i g i . c o m n n n n n n n 9 3

M a k e f i l e h i e r a r c h y
 netos/Makefile.inc, the master Makefile, uses the list of directories in the
Makefile.lib file.

 Makefile.inc goes into each directory in Make.lib and executes the make
commands.

 netos/Makefile.inc has the top level platform-specific settings, flags for
compilation, link options, and processor-specific settings.

Building all libraries

 To build all the libraries, including the BSP:

1 Change to the root directory:

cd netos

2 Do one:

– Either enter this command:
make PLATFORM=my_platform

– Or enter these commands:
export PLATFORM=my_platform
make

Building individual libraries

To build a single library, you can go into the individual libraries, enter make, and
specify the platform.

For example, to create libbsp.a for the ns9360_a:

1 Change to this directory:
netos/src/bsp

2 Do one:

– Either enter this command:
make PLATFORM=ns9360_a

– Or enter these commands:
export PLATFORM=ns9360_a

make
9 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S M a k e f i l e S y s t e m
Library directory structure

The NET+OS library directory structure is keyed off the CPU, ENDIAN, and
TOOLSET variables. This is the library directory structure:

netos/lib/arm7/32b/gnu/

netos/lib/arm9/32b/gnu/

Except for the BSP library, libbsp.a, all libraries are found in the path shown in the
previous paragraph. Because libbsp.a is the only platform-dependent library, the
BSP library directory is keyed off the PLATFORM variable; for example:

netos/lib/arm7/32b/gnu/bsp/connectme/

netos/lib/arm9/32b/gnu/bsp/ns9360_a/

In addition to libbsp.a, the BSP lib directory contains reset.o and memcpy.o objects.
These objects, which are linked in with the application, provide a fast memory
copy routine and the vector table.

Library Makefile variables

The child library Makefiles contain the name of the object files, include path,
source path, and any other defines you want to pass to the compiler. These
Makefiles are used to build the bsp, flash, sflash, and posix libraries.

This table lists the variables you need to define in the child Makefile:

Variable Description

OBJS Location of object files.

SRCDIR List of source directories.

LOCAL LIB Name of the library.

INCDIRS List of include paths with -l prefix.

C OBJ List of C object files.

OBJ List of assembly object files.

OBJ List of C++ objects (*.cc and *.cxx).

MY_CFLAGS List of C flags (such as -Werror, -Os).

To turn on debug information, set the -g flag here.

MY_DEFINES List of defines with the -D prefix
w w w . d i g i . c o m n n n n n n n 9 5

B o o t l o a d e r M a k e f i l e
Adding new libraries to the system

 To add new libraries:

1 Copy a child Makefile from netos/src/flash, and use it as a template.

2 Carefully set up the variables described in the previous table.

3 Add this directory to the list of libraries in the netos/Makefile.lib file, which has
the list of directories that will be built when you enter make.

You don’t need to change any other top-level Makefiles.

Cleaning libraries

When you clean the libraries, temporary files such as objects and dependency
files are deleted.

To clean libraries, enter this command:

make PLATFORM=my_platform clean

The next time you build after a clean, all the object files are rebuilt and archived
into the library.

Bootloader Makefile

Because bootloader Makefiles are called from netos/src/bsp/Makefile, you always build
the bootloader as part of the BSP. The next diagram shows how the bootloader
Makefile system is organized.
9 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

N E T + O S M a k e f i l e S y s t e m
This table describes the directories:

Directory Description

netos/src/bsp/bootloader/net/Makefile Generates the libnet.lib directory under
bootloader/libs/gnu/my_platform/

netos/src/bsp/bootloader/ramImage/Makefile Generates blram.bin to a converted file that
is linked to rom.bin

netos/src/bsp/bootloader/romImage/Makefile Generates rom.bin under netos/src/bsp/

platforms/my_platform/

netos/src/bsp/bootloader/spiBootRamImage/Makefile Generates spi_blram.bin to a converted file
that is linked to spi_rom.bin
(ARM9 only)

netos/src/bsp/bootloader/romImage/Makefile Generates spi_rom.bin under netos/src/bsp/

platforms/my_platform/ (ARM9 only)

libbsp.a Makefile.bootloader

netos/src/bsp/Makefile

bsp/bootloader/net/Makefile

bsp/bootloaderramImage/Makefile

bsp/bootloader/romImage/Makefile

bsp/bootloader/spiBootRamImage/Makefile

bsp/bootloader/spiBootRomImage/Makefile
w w w . d i g i . c o m n n n n n n n 9 7

E x a m p l e : u s i n g t h e M a k e f i l e
Example: using the Makefile

This example shows how to build the NET+OS libraries and BSP for your
platform:

1 Open a bash shell and change to this directory:
cd c:/netos

2 Enter these commands:
export PLATFORM=my_platform export

MODE=verbose

make

where you replace my_platform with the name of your platform.

For example, if you are using the connectcorewi9c_a platform, you would
replace my_platform with connectcorewi9c_a.

The system rebuilds any NET+OS libraries that have changed, including the BSP.
9 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Application Makefile
C H A P T E R 1 2

This chapter describes the application Makefile hierarchy and its sections. This
chapter also describes the procedures for building, cleaning, and porting an
application to a new platform.
9 9

B u i l d i n g a p p l i c a t i o n s
Building applications

To allow ease of use and rapid prototyping, an application Makefile hierarchy is
supplied with each sample application, located under the sample application's
32b folder. (For example, the Makefile for the sample application program naftpapp
is in the src/naftpapp/32b directory and is called Makefile.) This Makefile allows
application writers to rapidly assemble complex applications.

Application Makefiles

Each application has its own Makefile in the applications/32b directory.

For example, the Makefile for the naftpapp application example is in the src/naftpapp/

32b directory and is called Makefile. This Makefile includes a master Makefile, which
is in the ./src/linkerscripts directory

You do not need to modify the master Makefiles; to create a new application,
copy an existing Makefile and use it as a template.

The application Makefile generates these files:

File Description

image.bin Application image. Can be downloaded into flash, decompressed by
the bootloader, and executed from RAM

image.elf Application image in ELF format. Contains debug symbols; you use it to
debug your RAM-based application.

image.map Linker map. Contains size and location information about RAM-based
application symbols.

image.sym Symbol table. Contains information on the location of RAM-based
application symbols.

rom.bin ROM-based application image. Can be downloaded into and executed
from flash
1 0 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A p p l i c a t i o n M a k e f i l e
These variables are defined in the Makefile application:

Definitions of the Makefile

The application Makefile includes these definitions:

rom.elf ROM-based application image in ELF format. Contains debug symbols
you use to debug ROM-based application

rom.map Linker map. Contains information (size and location) about ROM-based
application symbols

rom.sym Symbol table. Contains information on the location of ROM-based
application symbols

Variable Description

APP_DESCRIPTION A string that contains a brief description of this application.

APP_INCDIRS List of include paths with –I prefix

APP_C_FILES List of C

APP_CC_FILES List of C++ files

APP_ASM_FILES List of assembly files

APP_C_FLAGS List of C flags to pass to the compiler; for example, you can turn
on debug information (-g) or optimization here

APP_C_FLAGS List of C flags to pass to the compiler for C++ files

APP_ASM_FLAGS List of C flags (such as –Werror, -Os), to pass to the assembler

APP_LIBS List of libraries to link into this application

File Description

Section Description

 NETOS_DIR Defines the root of the NET+OS tree (where this version of NET+OS
is installed).

APP_DESCRIPTION Description of the application used to identify the image in the
standard output window.

vpath Defines the search path for all the application source files.
w w w . d i g i . c o m n n n n n n n 1 0 1

A p p l i c a t i o n M a k e f i l e s
BUILD_RAM_IMAGE When enabled (non-zero), builds the RAM-based and debug images,
image.bin and image.elf, respectively. The RAM-based image.bin image can
be loaded into flash, along with the bootloader rom.bin, and
decompressed into high speed SDRAM at startup, for faster execution
and higher performance. Because the image must be decompressed,
the time to boot is longer. If your application has a critical boot time
requirement, you might want to use the application ROM image (or
modify the decompression scheme in the bootloader.
BUILD_RAM_IMAGE option is enabled by default.

BUILD_ROM_IMAGE When enabled (non-zero), builds the ROM-based image rom.bin, which
can be loaded into flash in place of the bootloader rom.bin, and includes
the bootstrap process and the application image. This image is
executed from ROM (instead of RAM), which eliminates the need to
decompress the application image from ROM to RAM and reduces the
boot time.

Because of the slower speeds of ROM memory access (and lack of
memory burst capability), program execution speed overall is reduced.
BUILD_ROM_IMAGE option is enabled by default.

Be aware that applications you build to execute from flash cannot:

 Use flash-based file systems.

 Store configuration parameters in flash.

 Update firmware in flash.

APP_C_FILES List of application ANSI C files to be compiled using the ARM GNU GCC
compiler.

These files should have a .c file extension.

APP_CC_FILES List of application C++ files to be compiled using the ARM GCC
compiler. For proper C++ compilation, include the -xc++ flag in the
APP_CC_FLAGS group.

These files should have a .C, .cxx, or .cc file extension.

APP_ASM_FILES List of application assembler files to be assembled using the ARM GCC
assembler.

These files should have a .s, .S, or .arm file extension.

APP_C_FLAGS Compiler directives and defines passed through to the GCC compiler
and used during compilation of the APP_C_FILES application files. This
must be a recognizable GCC option; for example, adding -DAPP_DEBUG
defines the APP_DEBUG symbol in your application.

APP_CC_FLAGS Compiler directives and defines passed through to the GCC compiler
and used during compilation of the APP_CC_FILES application files.

Section Description
1 0 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A p p l i c a t i o n M a k e f i l e
Makefile hierarchy

This section describes the hierarchy that the Makefile uses.

APP_ASM_FLAGS Assembler directives and defines passed through to the GCC assembler
and used during assembly of the APP_ASM_FILES application files.

APP_INCDIRS Application-specific include directories, in GCC compatible format.
(Uses the -I prefix and is passed through directly to GCC.) For example,
to add the directory above the 32b directory, set this symbol to -I .

APP_LIBS Libraries required for this specific application. Requires full path and
file name.

Section Description

Path name Description

linkerScripts/Makefile.app.inc This Makefile is included directly in the application
Makefile and includes the linkerScripts/

Makefile.appcc.common and the linkerScripts/

Makefile.appbuild Makefile based on the platform
selected. Sets the BUILD_METHOD based on platform,
which is then used to pull from the appropriate
linkerscripts directory.

linkerScripts/Makefile.appcc.common This Makefile is included in the linkerScripts/

Makefile.app.inc and assigns values to the GNU toolset,
DEBUG_FLAG, WARN_FLAGS, C_DEFS, CC_DEFS,
ASM_DEFS, C_FLAGS, CC_FLAGS, and ASM_FLAGS.
These settings are platform-independent.

Makefile.appbuild.ns9360 This Makefile is included in linkerScripts/Makefile.app.inc.
Includes all the NS9360 specific build and .gdbinit
settings for the make.

Makefile.appbuild.ns9750 This Makefile is included in linkerScripts/Makefile.app.inc.
Includes all the NS9750 specific build and .gdbinit
settings for the make.

Makefile.appbuild.original This Makefile is included in linkerScripts/Makefile.app.inc
when any other processor type is used.

Makefile.appbuild.ns9215 This Makefile is included in linkerscripts/
Makefile.app.inc. Includes all the NS9210 or NS9215
specific build and .gdbinit settings for the make.
w w w . d i g i . c o m n n n n n n n 1 0 3

A p p l i c a t i o n M a k e f i l e s
Makefile targets

In addition to the targets for the files listed earlier in this appendix (for
example, either image.bin or rom.bin), these targets exist in the Makefile:

Building an application

NET+OS ships with prebuilt libraries. If you modify the BSP or a library, you
must rebuild the libraries before you build your application.

For example, to build the naftpapp application, you would use this procedure:

To build your application:

1 Change to this directory:
cd netos/source/examples/naftpapp/32b

2 Do one:

– Either enter this command:

make PLATFORM=my_platform DEBUGGER=jtaglink

– Or enter these commands:

export PLATFORM=my_platform

export DEBUGGER=jtaglink

make all

Creating .gdbinit files for your debugger

NET+OS creates a .gdbinit file as part of the application make process. This is
done by building the all target.

The supported debugger options are jtaglink, raven, and majic.

Target Description

clean Removes all objects, images, map files, symbol files, and
dependencies.

all Builds all objects, images, map files, symbol files, and creates a
dependency file.

gdbinit Creates a .gdbinit file used for the gdb debugger.
1 0 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

A p p l i c a t i o n M a k e f i l e
Cleaning an application

When you clean an application, temporary files such as objects and
dependency files are deleted.

To clean an application, enter this command:

make PLATFORM=my_platform clean

Porting an application to a new platform

Some applications cannot run on all platforms. Makefiles for these applications
check the value of the PLATFORM variable and will terminate with an error
message if it you try to build the application on an unsupported platform.

If you create a new platform, you must update the application Makefiles to make
the application build on the new platform. To update an application's Makefile to
support a new platform, look for statements in the Makefile similar to these:

ifneq ($(findstring $(PLATFORM), ns9750_a ns9360_a_eng),)

else

$(error This application is not supported for the specified platform, check readme for more information)

endif

The supported platforms are listed after ifneq ($(findstring $(PLATFORM); in this case,
the platforms are ns9750_a ns9360_a_eng. Edit the Makefile, and add the name of your
platform to the list.

If a Makefile does not have these statements, the application is supported on all
platforms.
w w w . d i g i . c o m n n n n n n n 1 0 5

A p p l i c a t i o n M a k e f i l e s
1 0 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Part 4: Building Web Pages
1 0 6

1 0 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Using the Advanced Web
Server Utility
C H A P T E R 1 3

This chapter describes the Advanced Web Server (AWS) utility, which you use
to convert HTML Web pages into usable, compilable C source code.
1 0 7

O v e r v i e w
Overview

The Advanced Web Server (AWS) utility, also known as PBuilder, is a program
that converts HTML Web pages into usable, compilable C source code.

The utility uses several inputs — in particular, Web content — to generate
source files to be used and linked with the Advanced Web Server. You can
maintain or update an HTML page, rerun the PBuilder utility, and recompile the
application program to generate updated images.

Working in the way, you can directly edit the web page and debug edits with a
standard web browser, rather than update source code generated from a tool.

The PBuilder utility

The PBuilder utility, a component of AWS, converts HTML Web pages into
usable, compilable C source code. The HTML pages are stored as linked lists of
smaller data structures that AWS requires.

Digi strongly discourages generating these structures manually. The structures
are complex, and their internal structure is beyond the scope of this guide.

PBuilder understands comment tags (described in the next section), which are
special proprietary annotations. The comment tags are within HTML comment
syntax, so they have no effect on the Web page, and they are absent when the
page is served by the AWS. However, comment tags allow you to generate and
modify hooks (function stubs) with the present dynamic content inserted.

Comment tags

The most important component of the PBuilder utility is the comment tags you
insert into the HTML Web pages. You can use comment tags to link dynamic
data fields with the Web page to specific application variables or functions.

Each comment tag begins with <!-- tagname --> and ends with
<!-- RpEnd -->

The Web content within a comment tag (that is, the HTML between
<!- RpFormInput --> and <!-- RpEnd -->) is not used, nor is it required. Digi recommends
that you include the HTML, however, to assist when you create Web pages.
1 0 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
The Advanced Web Server Toolkit documentation for the PBuilder utility
describes comment tags in detail. Digi strongly recommends that you carefully
review the nahttp_pd application and read the comment tag section in the
PBuilder documentation.

About the Advanced Web Server Toolkit documentation

The Advanced Web Server Toolkit documentation, included on the NET+OS CD,
describes how to annotate HTML Web content with comment tags to pass
dynamic content through the server. The documentation also provides examples.

A portion of the documentation describes the internal workings of the AWS.
These structures and routines are considered private and can be changed at
any time. A section also is included that describes the PBuilder utility and how
the phrase dictionary is used for Web content compression.

Digi has created 8 white papers describing the use of different aspects of the
AWS. Digi recommends that you also review these pieces of documentation.

Running the PBuilder utility

You run the PBuilder utility from a DOS prompt by entering this command:

pbuilder list.bat

A window that looks similar to this opens:
w w w . d i g i . c o m n n n n n n n 1 0 9

R u n n i n g t h e P B u i l d e r u t i l i t y
The window shows a directory list followed by a PBuilder execution and the
contents of list.bat. The list.bat file contains all the Web pages used for the nahttp_pd
application. The Web page file (that is, list.bat) needs either a .bat or .txt
extension.

The Web pages within the files are located in the \html directory. The list.bat file,
however, requires the Web pages to be listed with a forward slash; for
example, html/netarm1.htm.

Directory list

pbuilder list.bat
command
1 1 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
You need these additional files to run the PBuilder utility:

 PbSetUp.txt — Copy this file from the nahttp_pd application directory, and use it
to configure the PBuilder utility.

Do not change this file.

 RpUsrDct.txt — Contains definitions for Web content compression and is used
to generate the RpUsrDct.c and RpUsrDct.h files.

You can update the RpUsrDct.txt file to include common phrases used in
the application’s Web pages.

The output of this PBuilder execution — netarm1.c and netarm1_v.c — is located in
the \html directory and is the source code representation of the Web pages:

 The netarm1.c file contains the linked list structures.

Never update or modify this file.

 The html\netarm1_v.c file contains the stubs used for dynamic content. This
file was copied to the working directory (.\) and fleshed out for this
application.

It is good practice to move the v.c file to a different directory. Otherwise, when
you run the PBuilder utility again, the fleshed-out version of the file will be
overwritten.

This PBuilder execution also produces the RpPages.c file, which contains a
structure – gRpMasterObjectList – that contains all the application Web pages.

You must compile and link these files for this application:

 pbuilder\html\netarm1.c

 pbuilder\netarm1_v.c

 pbuilder\RpPages.c

 pbuilder\RpUsrDct.c

Because pbuilder\RpUsrDct.h is required, you need to add the \pbuilder\ path to the
build’s include path.
w w w . d i g i . c o m n n n n n n n 1 1 1

L i n k i n g t h e a p p l i c a t i o n w i t h t h e P B u i l d e r o u t p u t f i l e s
Linking the application with the PBuilder output files

When you build an application, you include the AWS library in the final link of
the application. You also need to compile and include three additional files in
the build:

 security.c

 file.c

 cgi.c

These files are in the appropriate application directory. You can either leave
the files as they are or update them based on Web application requirements.

For examples of overwriting the files, see the nahttp_pd or naficgi sample
application on the NET+OS CD.

security.c file

Using the security.c file, you can add up to eight security realms. You can then use
the realms to password-protect Web pages.

For more information, see the nahttp_pd sample application or the Advanced Web
Server Toolkit documentation for the PBuilder utility.

cgi.c and file.c files

You use the cgi.c and file.c files to handle external CGI and to add or simulate a
file system. The file system method was used for uploading and retrieving the
file used in the naficgi sample application.

For more information about using external CGI, see the naficgi sample
application, the NET+OS API Reference, or the Advanced Web Server Toolkit
documentation for the PBuilder utility.
1 1 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
Creating Web pages

The Management API Interface to the Advanced Web Server (MAW) API
integrates the Advanced Web Server and the Management API. You use the MAW
API to construct Web pages that access management variables.

The Advanced Web Server has a built-in way to support a custom interface to
system variables. The interface has been adapted to access variables through
the management API, allowing you to use the standard AWS mechanism for
embedding dynamic data into Web pages.This program demonstrates how to
create Web pages that display and change management variables.

AWS custom variables

Using AWS, you can create Web pages that can display the current value of
variables and prompt users for new values. To create these pages, you insert
comment tags in your HTML source code. These tags identify variables to AWS
and tell it how to access them.

For example, these HTML comment tags, when run through the PBuilder utility,
generate C source code that AWS uses to display the variable Username:

<!-- RpNamedDisplayText Name=Username RpTextType=ASCII RpGetType=Function

RpGetPtr=GetUsername -->

<!-- RpEnd -->

The HTML comment tag starts with the RpNamedDisplayText keyword, which
identifies the comment tag as an AWS command to insert the current value of a
variable into a Web page.

This table describes the tags:

This tag Tells AWS that

Name=Username The variable is named Username.

RpTextType=ASCII The variable is an ASCII string.

RpGetType=Function A function has been supplied to read the variable.

RpGetPtr=GetUsername The function is named GetUsername.
w w w . d i g i . c o m n n n n n n n 1 1 3

C r e a t i n g W e b p a g e s
When PBuilder encounters this comment tag, it converts the HTML to C code and
includes a call to the getUsername function, which returns an ASCII string that AWS
inserts into the Web page. For more information about using comment tags, see
the Advanced Web Server Toolkit documentation for the PBuilder utility.

AWS normally accesses variables directly through either pointers or functions
that you write. In addition, AWS has a built-in mechanism to support
customized access to variables.

Comment tags that use the custom interface for accessing variables are similar,
with these exceptions:

 You must set the RpGetType and RpSetType tags to Custom.

 The RpGetPtr and RpSetPtr tags are no longer needed. Setting the type tag to
Custom tells AWS to call a customizable routine to get the value of the
variable.

Through modifications to the AWS’s customizable routines to access
management variables, AWS and the management API have been integrated.
So, for example, if the variable Username were registered with the management
API, the AWS comment tag to display its value would be:

<!-- RpNamedDisplayText Name=Username RpTextType=ASCII
RpGetType=Custom -->

<!-- RpEnd -->

Data types

This table shows how AWS data types are mapped to management API data
types:

AWS type Management type

ASCII MAN_CHAR

ASCIIExtended MAN_CHAR

ASCIIFixed MAN_CHAR

HEX WORD8

HEXColonForm WORD8

DotForm WORD8

Signed8 INT8
1 1 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
Displaying variables

To display the values of management variables in Web pages, use the AWS
RpNamedDisplayText comment tag. The comment tag takes this form:

<!-- RpNamedDisplayText Name=name RpTextType=type RpGetType=Custom-->

<!-- RpEnd -->

where you replace:

 name with the name of the management variable to display.

 type with the AWS type of the variable.

For example, assume that monthString is a character string, yearInt32 is a 32-bit
integer, and dayWord8 is an 8-bit word, and that all the variables have been
registered with the management API. The HTML code to display them would be:

The date is

<!-- RpNamedDisplayText Name=monthString RpTextType=ASCII RpGetType=Custom -->

<!-- RpEnd -->

<!-- RpNamedDisplayText Name=dayWord8 RpTextType=Unsigned8 RpGetType=Custom -->

<!-- RpEnd -->

<!-- RpNamedDisplayText Name=yearInt32 RpTextType=Signed32 RpGetType=Custom -->

<!-- RpEnd -->

Changing variables

You use HTML forms to prompt users for input. AWS comment tags are embedded
in the HTML form commands to tell AWS how to transfer the user's input into
application variables.

Signed16 INT16

Signed32 INT32

Unsigned8 WORD8

Unsigned16 WORD16

Unsigned32 WORD32

AWS type Management type
w w w . d i g i . c o m n n n n n n n 1 1 5

C r e a t i n g W e b p a g e s
RpFormInput

To prompt users for a numeric value or a string, use the RpFormInput tag. The
format of this tag is:

<!-- RpFormInput TYPE=promptType RpTextType=dataType NAME=name RpGetType=Custom
RpSetType=Custom MaxLength=length Size=size -->

html code

<!-- RpEnd -->

where you replace:

 promptType with the type of prompt for this input field (text, password,
hidden, check box, or option button).

 dataType with the AWS data type for the variable.

 name with the name the variable was registered under.

 length with the maximum length for the variable.

 size with the size of the input field.

For example, this HTML code prompts for a value for maxTemperature, which is a
16-bit integer. The prompt is a 15-character-wide text field.

<!-- RpFormInput TYPE=text RpTextType=Signed16 NAME=maxTemperature RpGetType=Custom
RpSetType=Custom MaxLength=15 Size=15 -->

<!-- RpEnd -->

RpFormTextAreaBuf

Use RpFormTextAreaBuf to prompt users for a string value with a multi-line text
box. Use this form:

<!-- RpFormTextAreaBuf NAME=name RpGetType=Custom RpSetType=Custom ROWS=height

COLS=width -->

<!-- RpEnd -->

where you replace:

 name with the variable's name

 height with the height of the text box

 width with the width of the text box
1 1 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
For example, this HTML code prompts users with a 4 x 50 text box to enter a
new value for the string postalAddress:

<!-- RpFormTextAreaBuf NAME=postalAddress RpGetType=Custom RpSetType=Custom ROWS=4

COLS=50 -->

<!-- RpEnd -->

RpFormSingleSelect and RpSingleSelectOption

You can use a select list to prompt for a numeric value to be written into an 8-
bit word using the RpFormSingleSelect and RpSingleSelectOption tags:

 RpFormSingleSelect sets up a select list.

 RpSingleSelectOption sets up individual items in the select list.

RpFormSingleSelect

The RpFormSingleSelect tag has this form:

<!-- RpFormSingleSelect NAME=name RpGetType=Custom RpSetType=Custom Size=size -->

option list

<!-- RpEnd -->

where you replace:

 name with the variable's name

 size with the number of visible lines in the select list

 option list with a list of RpSingleSelectOption tags

RpSingleSelectOption

The RpSingleSelectOption tag has this form:

<!-- RpSingleSelectOption value="text label"
RpItemNumber=numericValue -->

<!-- RpEnd -->

where:

 text label is a label for this option.

 numericValue is the corresponding numeric value to be assigned to the
variable if the user selects this option.
w w w . d i g i . c o m n n n n n n n 1 1 7

C r e a t i n g W e b p a g e s
The next example sets up a select list that prompts users to choose a day of the
week. The variable dayOfTheWeek is set to a value between 0 and 6, depending on
which day a user chooses.

<!-- RpFormSingleSelect NAME=dayOfTheWeek RpGetType=Custom RpSetType=Custom Size=7

-->

<!-- RpSingleSelectOption value="Sunday" RpItemNumber=0 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Monday" RpItemNumber=1 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Tuesday" RpItemNumber=2 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Wednesday" RpItemNumber=3 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Thursday" RpItemNumber=4 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Friday" RpItemNumber=5 -->

<!-- RpEnd -->

<!-- RpSingleSelectOption value="Saturday" RpItemNumber=6 -->

<!-- RpEnd -->

<!-- RpEnd -->

Security

AWS allows you to associate a username and password with a group of Web
pages. The combination of the username, password, and list of Web pages is
called a realm. The AWS requires users to supply a username and password
whenever they access any page in the realm. You can create up to eight realms.

Exceptional cases

You may need to write special-purpose code to access management variables.
In these cases, you can specify the AWS function type in the comment tags, and
then supply functions to perform the access.

In this example, the appGetDate and appSetDate functions are defined to access a
management variable:
1 1 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
<!-- RpFormInput TYPE=text NAME=dateString RpGetType=Function RpGetPtr=appGetDate

RpSetType=Function RpSetPtr=appSetDate MaxLength="31" Size="31" -->

<!-- RpEnd -->

Controlling the MAW module

You can configure the MAW module to control:

 The timeout that is used to access management variables

 The array subscripts that are used when accessing management variables
that are arrays

 How error conditions are handled

This table shows the default configuration settings:

Setting the semaphore timeout

Management variables can be protected by one or more semaphores. When the
MAW module accesses a management variable, it specifies the maximum
amount of time it will wait for the semaphores to unlock. By default, the
timeout is infinity.

Applications change the timeout value with the mawSetAccessTimeoutfunction,
which is defined as:

void mawSetAccessTimeout (MAN_TIMEOUT_TYPE timeout);

The timeout argument specifies the new timeout value.

Setting Default action

Semaphore timeout Wait forever for semaphores to unlock.

Array subscripts If the variable is a one-dimensional character array, read or
write the entire variable.

Error handling Halt system on errors.
w w w . d i g i . c o m n n n n n n n 1 1 9

C o n t r o l l i n g t h e M A W m o d u l e
Applications also can specify different timeouts for each variable. To do so, use
mawInstallTimeoutFunction to register a function that is passed the name of each
variable being accessed and returns the appropriate timeout. This function is
defined as:

void mawInstallTimeoutFunction (mawTimeoutFn appFunction);

The appFunction argument is a pointer to a function supplied by the application
that controls the timeouts used for each variable.

mawTimeoutFn type

The type mawTimeoutFn is defined as:

typedef MAN_TIMEOUT_TYPE (*mawTimeoutFn)(char *varName);

The varName argument specifies the name of the variable being accessed, and
the function returns an appropriate timeout value.

Array subscripts

If Web pages access management variables that are arrays, the application
must register a function to specify the subscripts to use when the arrays are
accessed. You do this by calling the function mawInstallSubscriptsFunction, which is
defined in this way:

void mawInstallSubscriptsFunction (mawSubscriptsFn appFunction);

The appFunction argument is a pointer to the application-supplied function that
determines the subscripts to use.

mawSubscriptsFn type

The mawSubscriptsFn type is defined in this way:

typedef int * (*mawSubscriptsFn)(char *varName, INT16 *indices, int *dimensions, int numberdimensions,
AwsDataType htmlType);

where:

 varName is a pointer to the variable being accessed.

 indices is a pointer to an array of integers that are the current loop indices
being used by the HTTP server.

 dimensions is a pointer to an array of integers that specify the dimensions of
the management variable.
1 2 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
 numberDimensions is the number of dimensions the management variable has.

 htmlType is the data type the HTTP server is expecting.

The function must return a pointer to an integer array that contains the
subscripts of the array element to be accessed.

If the variable is an array of characters, the function can return NULL to
indicate that the entire array is to be read or written.

Error handling

Applications can use the mawInstallErrorHandler function to install an error handler.
This function is defined as:

void mawInstallErrorHandler (mawErrorFn appFunction);

The appFunction argument is a pointer to the application's error handler.

mawErrorFn type

The mawErrorFn type is defined in this way:

typedef void * (*mawErrorFn)(char *varName, AwsDataType htmlType, MAW_ERROR_TYPE error);

where:

 Varname is a pointer to the variable being accessed.

 HtmlType is the data type expected by the HTTP server.

 Error is the error condition that is identified.

The function either halts the system or returns a value the HTTP server can
use.

Phrase dictionaries and compression

The AWS uses a phrase dictionary technique to provide compression for static
ASCII text strings with the HTML Web content. The PBuilder utility uses the
RpUsrDct.txt file as input and builds its data structures to point to common
phrases in the dictionary instead of repeating strings.

This figure shows the content of the RpUsrDct.txt file for the nahttp_pd application:
w w w . d i g i . c o m n n n n n n n 1 2 1

M a i n t a i n i n g a n d m o d i f y i n g W e b c o n t e n t
You add common phrases in all the application Web pages (for example, a
company name that is used several times).

In the sample file, note this definition, which is used several times in the
application Web pages:

C_S_AWS = “Advanced Web Server”

Search the \pbuilder\html\netarm1.c file. The C_S_AWS string is used consistently
throughout the file.

Maintaining and modifying Web content

After you generate application source files, the best way to maintain and
update Web content is through the HTML pages. Digi recommends that you
maintain these files and include them in source control.

If a Web page requires a change or a new page, you can either update the
HTML, add a new page to the list.bat file, or do both. You can add new phrases to
the dictionary at any time.
1 2 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

U s i n g t h e A d v a n c e d W e b S e r v e r U t i l i t y
For the changes to take effect, rerun the PBuilder utility. The application or
image is automatically rebuilt.

Sample applications

Two sample applications are included in the application directory:

 nahttp_pd — This application shows examples of using comment tags,
overwrites the security.c file to use a password-protected page, and shows an
example of the phrase dictionary.

 naficgi — This application shows how a file can be uploaded and served, and
it overwrites the cgi.c and file.c files to external CGI.
w w w . d i g i . c o m n n n n n n n 1 2 3

S a m p l e a p p l i c a t i o n s
1 2 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Part 5: Miscellaneous
1 2 4

1 2 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Porting NET+OS v6.x
Applications to NET+OS v7.x
C H A P T E R 1 4

This chapter describes the differences between the APIs in NET+OS 6.x and
NET+OS 7.x.
1 2 5

C h a n g e s t o t h e f l a s h d r i v e r
Changes to the flash driver

The NET+OS flash driver has been changed to make it possible to select which
parts are supported by the driver. This change reduces the memory requirements
because table entries for unused parts not compiled into the driver.

The flashparts.h file in the platform directory determines which parts are supported
by each platform. The file contains a set of macro definitions, and each
definition corresponds to a specific flash part. For example,
NAFLASH_WANT_TO_SUPPORT_AM29DL323DTB determines whether the AMD
AM29DL323D part is supported.

 To build in support for a part, set the macro definition to TRUE.

 To drop support for a part, set the macro definition to FALSE.

When you port a platform to NET+OS 7.x that you created under NET+OS 6.x, you
must copy the flashparts.h file into the platform directory and edit it to enable support
for the flash parts your hardware uses.

IAM and ACE

In NET+OS 7.x, the Internet Address Manager (IAM) replaces the Address
Configuration Executive (ACE), which was used in NET+OS 6.x and previous
releases of NET+OS.

Changes to the sockets API

The NET+OS sockets API has been updated to support both IP version 6 and IP
version 4. Most of these changes, described next, make the API more
compatible with BSD sockets:

 In previous releases, sockaddr_in structures were used to pass addresses to
the accept, bind, connect, getpeername, getsockname, recvfrom, and sendto functions.
NET+OS 7.x uses the sockaddr structure. The compiler emits a warning
message if you use sockaddr_in instead of sockaddr.
1 2 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S v 7 . x
 The Fast Socket API has been replaced with the Zero Copy API. You need to
rewrite applications that used the Fast Socket API to use the Zero Copy
API. This API is documented in the online help, in the “Zero Copy Socket
API” section.

 The NAIpSetKaGarbage function is no longer supported.

 These IP level options are no longer supported:

 These TCP level options are no longer supported:

 These socket level options are no longer supported:

IP_O_FRAG IP_O_RR

IP_O_SECURE IP_O_STREAM

IP_O_LSRR IP_O_TIME

IP_O_SSR IP_MULTICAST_LOOP

TCP_O_SEQNO TCP_SET_RCV_MSS

TCP_O_SEQNO TCP_ACKNSEG

TCP_ENABLE_PAWS TCP_PERMIT_SACKS

TCP_ENABLE_PAWS disable TCP_SEND_SACK

TCP_MAXSEG TCP_FAST_RETR_RECOV

TCP_USE_PEER_MSS_OPTION TCP_ENABLE_TRANSACTION_TCP

SO_THROUGHPUT SO_RXDATA

SO_EXPEDITE SO_ADD_FDEST

SO_NOCHKSUM SO_DEL_FDEST

SO_MAXMSG SO_FSOCK_CALLBACK

SO_MYADDR SO_NUM_FBUFFS
w w w . d i g i . c o m n n n n n n n 1 2 7

C h a n g e s t o S N M P
Changes to SNMP

The SNMP agent has been replaced. You must reimplement any MIBs that you
implemented using MIBMAN and NET+OS 6.x

netos/src/bsp/customize directory

The netos/src/bsp/customize directory has been added to the BSP. This directory
contains files that are shared by all platforms, and which you may want to
customize. Changes to files in this directory affect all BSP platforms. The BSP
Makefile is set up as the source path to search first for files in the platform directory,
and then in the netos/src/bsp/customize directory.

To change a file in netos/src/bsp/customize for only one platform, copy that file into
the platform directory, and make the changes to the copy. The copy in the platform
directory takes priority over the copy in the customize directory.

Changes to Makefile variables and defines

The Makefiles set up internal variables that indicate the processor type. The
Makefiles also create a symbol that identifies the processor type by defining a
macro in the command line to the C compiler. These symbols have changed in
NET+OS 7.x.

 In NET+OS 6.x, PROCESSOR was set to either arm9 or arm7. Starting in NET+OS
7.x, PROCESSOR is set to indicate the type of processor supported:

– net50

– ns7520

– ns9750

– ns9360

– ns9210

– ns9215

In addition, the processor type is set to 1, and all other processor type
are set to 0. For example, when you build the ConnectME platform,
1 2 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S v 7 . x
which uses an ns7520, PROCESSOR is set to ns7520, and ns7520 is set to
1. The other processor types —ns9360, for example — are set to 0.

 In previous versions of NET+OS, CHIP was set to indicate the type of
processor the platform supported. As of NET+OS 7.x, CHIP is no longer
defined by the Makefiles. It has been replaced with PROCESSOR.

 Starting in NET+OS 7.x, the CPU symbol is defined to indicate the internal
CPU type. CPU is set to either arm9 or arm7, and the selected CPU type is set
to 1. For example, when you build the ConnectME, which uses an ARM7
CPU, CPU is set to arm7, arm7 is set to 1, and the arm9 symbol is not defined.

Automatic RAM sizing

When you used the NS9750 or NS9360 with NET+OS 6.x, you had to set the size
of the SDRAM configuration files.

NET+OS 7.x adds support for automatically determining the size of RAM on
power up. This feature is supported only when you boot from regular flash or
ROM; it is not supported when you boot from SPI flash.

To use this feature:

1 Set the RAM_SIZE constant (defined in either customize.lx or
the RAM that will be available.

2 Edit init_settings.h in the platform directory, and set the timing parameters for
the type of SDRAM you plan to use.

Note that all the SDRAM you use must use the same timing parameters.
The BSP cannot automatically sense the timing.

3 Edit init_settings.h in the platform directory and set the values for
FIRSTSECTORRAM, SECONDSECTORRAM, THIRDSECTORRAM, and
FOURTHSECTORRAM. These values are used to set the SDRAM mode register.

The settings in init_settings.h are documented in the online help.

The BSP automatically detects the RAM size at powerup. If the amount of RAM
is greater than the value set in RAM_SIZE, the extra RAM is added to the heap.
w w w . d i g i . c o m n n n n n n n 1 2 9

P o r t i n g p r e - N E T O S 7 . x P P P a p p l i c a t i o n s
Porting pre-NETOS 7.x PPP applications

Point-to-Point (PPP) is a communications protocol that allows devices to
perform network communications through a serial communications line.

NET+OS 7.x has a new TCP/IP stack that includes a new PPP layer. The sections
that follow show how standard PPP functions were implemented in NET+OS 6.x
and how they can be ported using NET+OS 7.x

Adding a route

Adding routes allows IP packets for different networks to be routed through the
interface. These functions add a static route for the specified PPP interface.

NET+OS 6.x

int PPPAddRoute(unsigned long destination, unsigned long mask, unsigned long gateway, int commPort);

NET+OS 7.x

int PPPAddStaticRoute(PPPUserInterface interfaceHandle, const struct sockaddr_storage * destIpAddrPtr,int
prefixLen, const struct sockaddr_storage * gatewayIpAddrPtr, int hops);

Deleting a route

These functions are for deleting an added route.

NET+OS 6.x

int PPPDelRoute(unsigned long destination, unsigned long mask);

NET+OS 7.x

int PPPDelStaticRoute(const struct sockaddr_storage * destIpAddrPtr, int prefixLen);

Adding PAP user/password or adding CHAP ID and secret key pair

These functions set the authentication modes for the specified PPP interface
using either the CHAP or PAP protocols. In addition, these functions set the
specified PPP interface’s PAP username/password and CHAP ID/secret key pairs.
1 3 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S v 7 . x
NET+OS 6.x

int PPPDeviceSetAuth(char * devname, char * papname, char * pappassword, char * chapname, char *
chapsecret, int authentication);

NET+OS 7.x

int PPPSetOption(PPPUserInterface interfaceHandle, int protocolLevel, int remoteLocalFlag, int optionName,
const char * optionValuePtr, int optionLength);

Use PPP_PAP_PROTOCOL and PPP_CHAP_PROTOCOL as protocolLevel.

Checking link status

This function provides a method for reporting the PPP link status. A callback
feature has been added to notify your application of changes in time.

NET+OS 6.x

int PPPCheckLink(unsigned int commPort);

NET+OS 7.x

Int PPPLinkInterfaceToDevice(PPPUserInterface interfaceHandle, char * deviceName, PPP_USER_FUNCS *
userFuncs);

Use linklayer_callback_fn to check the link status.

Creating the interface

This function creates and configures a PPP device on the specified port where
the mode argument is used to select either a modem or a direct serial
connection. The device IP parameters are configured based on the specified IP
address and subnet mask.

NET+OS 6.x

int PPPCreateDevice(unsigned int commPort, unsigned int mode, unsigned int ipAddress, unsigned int
subnetMask)

NET+OS 7.x

int PPPAddInterface(int pppMode, PPPUserInterface * interfaceHandle);
w w w . d i g i . c o m n n n n n n n 1 3 1

P o r t i n g p r e - N E T O S 7 . x P P P a p p l i c a t i o n s
int PPPSetOption(PPPUserInterface interfaceHandle, int protocolLevel, int remoteLocalFlag, int optionName,
const char * optionValuePtr, int optionLength);

int PPPLinkInterfaceToDevice(PPPUserInterface interfaceHandle, char * deviceName, PPP_USER_FUNCS *
userFuncs);

To configure the IP address, use the PPPSetOptions call.

To configure serial settings, use the configure_device_fn callback function.

Getting the peer assigned local address

This function gets the peer-assigned IP address of the PPP interface.

NET+OS 6.x

int PPPGetPeerAssignedAddress(unsigned int commPort, unsigned long * ipAddress);

NET+OS 7.x

int PPPGetLocalPeerIpAddress(PPPUserInterface interfaceHandle, struct sockaddr_storage *
localPeerIpAddressPtr,int addressFamily, unsigned int multiHomeIndex);

To get the peer IP address, use:

Int PPPGetRemotePeerIpAddress(PPPUserInterface interfaceHandle, struct sockaddr_storage *

remotePeerIPAddress);
1 3 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S v 7 . x
Closing the interface

In the case of a modem, this function hangs up the phone line, resets the
modem, and closes the modem connection on the specified port.

In the case of a serial, this function closes the direct serial port.

NET+OS 6.x

int PPPModemClose(unsigned int commPort);

int PPPSerialClose(unsigned int commPort);

NET+OS 7.x

int PPPCloseInterface(PPPUserInterface interfaceHandle);

Setting authentication and compression

Use these functions to:

 Set the authentication mode options for the specified PPP interface (that
is, CHAP or PAP)

 Set the specified PPP interface’s PAP username/password and CHAP ID/
secret key pairs.

 Enable/disable Van Jacobson (VJ) compression or IP header compression.

NET+OS 6.x

Either of these:

int PPPSetAuth(unsigned int commPort, char * papname, char * pappassword, char * chapname, char *
chapsecret, int authentication);

int PPPSetVJ(unsigned int commPort, int require_VJ)

NET+OS 7.x

int PPPSetOption(PPPUserInterface interfaceHandle, int protocolLevel, int remoteLocalFlag, int optionName,
const char * optionValuePtr, int optionLength);
w w w . d i g i . c o m n n n n n n n 1 3 3

P o r t i n g p r e - N E T O S 7 . x P P P a p p l i c a t i o n s
Initializing serial port configuration

This function opens the serial port to the specified baud rate.

In the case of a modem, this function initializes the modem layer.

NET+OS 6.x

int PPPSerialInit(unsigned int commPort, unsigned int mode, unsigned int baud);

int PPPModemInit(unsigned int commPort, unsigned int mode, unsigned int baud, char * init_string);

The serial port baud rate is set up during the process to start the direct serial or
modem PPP connection. Flow control and data/stop/parity are hard coded to
RTS/CTS and 8N1 respectively.

NET+OS 7.x

Int PPPLinkInterfaceToDevice(PPPUserInterface interfaceHandle, char * deviceName, PPP_USER_FUNCS *
userFuncs);

To configure the serial settings, use the configure_device_fn callback function, which is
called from PPPOpenInterface.

You can set flow control and data/stop/parity to whatever you want.

Setting the ring count

This function sets the ring count before the modem answers an incoming call.

NET+OS 6.x

int PPPSetModemAutoAnswer(unsigned int commPort, unsigned int auto_answer_rings);
1 3 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P o r t i n g N E T + O S v 6 . x A p p l i c a t i o n s t o N E T + O S v 7 . x
NET+OS 7.x

int PPPUseDialer(PPPUserInterface interfaceHandle);

int PPPDialerAddSendExpect(PPPUserInterface interfaceHandle, char * sendString, char * expectString, char
* errorString, int numRetries, int timeout, unsigned char flags)

Dial string settings

NET+OS 6.x

Either of these:

int PPPSetModemDialStr(unsigned int commPort, char * dial_string);

int PPPSetModemDialString(char * dial_string);

NET+OS 7.x

int PPPUseDialer(PPPUserInterface interfaceHandle);

int PPPDialerAddSendExpect(PPPUserInterface interfaceHandle, char * sendString, char * expectString, char *
errorString, int numRetries, int timeout, unsigned char flags);
w w w . d i g i . c o m n n n n n n n 1 3 5

P o r t i n g p r e - N E T O S 7 . x P P P a p p l i c a t i o n s
1 3 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Processor Modes and
Exceptions
C H A P T E R 1 5

This chapter describes the modes NET+OS supports and how NET+OS handles
interrupts.
1 3 6

O v e r v i e w
Overview

This chapter describes the modes in which NET+OS operates and how NET+OS
handles interrupts.

The ARM processor supports seven modes. This table lists the modes and
describes how they are used:

Hardware interrupts cause the processor to switch to IRQ mode.The IRQ
handler switches back to SVC mode before it calls the device's service routine,
allowing higher priority devices to interrupt the service routine, if necessary.

Vector table

An exception occurs when the normal flow of a program halts temporarily; for
example, to service an interrupt. Each exception causes the ARM processor to
save some state information and then jump to a location in low memory. This
location in memory is referred to as the vector table.

Mode Used for

User Normal user code

SVC (supervisor) Processing software interrupts
 NET+OS
 All threads
 The kernel scheduler

Abort Processing memory faults

System Running privileged operating system tasks

Undef (undefined) Handling undefined instruction traps

IRQ (interrupt) Processing standard interrupts
 NET+OS

FIQ (fast interrupt) Processing fast interrupts
1 3 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
A vector table is stored from 0x00000000 to 0x0000001f. Each vector consists of a 32-
bit word that is a single NET+ARM instruction. The instruction loads the
program counter with the contents of a memory location, which implements a
32-bit jump to an interrupt service routine (ISR).

This table shows the vector address for each exception type:

NET+OS treats these exception types as fatal errors:

 Prefetch aborts

 Data aborts

 Undefined instructions

 Fast interrupts

 Software interrupts

The handler for these exception types is located in src/bsp/arm9init/init.s. The default
FIQ handler and the exception types in the table call the customizeExceptionHandler
routine.

Although ARM9-based processors (such as the NS9360 and NS9750) allow
external interrupts to trigger a fast interrupt, ARM7-based processors do not.
Applications for both ARM7- and ARM9-based processors always can program
the watchdog timer and the general-purpose timer to trigger a fast interrupt.

The default FIQ handler normally calls customizeExceptionHandler. For more
information about FIQs, see “ARM7 FIQ handlers” or “ARM9 FIQ handlers,” later
in this chapter.

Exception Vector address

Reset 0x00000000

Undefined instruction 0x00000004

Software interrupt (SWI) 0x00000008 (not used by NET+OS)

Prefetch abort 0x0000000c

Data abort 0x00000010

Interrupt (IRQ) 0x00000018

Fast interrupt (FIQ) 0x0000001c
w w w . d i g i . c o m n n n n n n n 1 3 8

I R Q h a n d l e r
IRQ handler

An interrupt request is generated when one or more devices assert their
interrupt signal. For ARM9-based processors, the BSP provides an IRQ handler,
which reads the Interrupt Service Routine Address register (ISRADDR) and the
Active Interrupt Level Status register to determine which devices need to be
serviced.

The IRQ signal is multiplexed by the interrupt controller built into the NET+ARM
to support 32 signals, described next:

 26 interrupt signals support AHB devices that are internal to the NS9750
and NS9360.

 Four interrupt signals support Bbus devices that are internal to the
NS9750. In the NS9360, several of the BBus signals are moved up to the
AHB interrupt vector table, including USB device, USB host, BBUS DMA and
I2C. These changes speed up the interrupt response from those
peripherals.

Several timer interrupts that are supported in the AHB interrupt vector
table in the NS9750 have been combined in the NS9360 to make room
for the BBus interrupts described in the previous paragraph.

 Four interrupt signals support external devices.

 One interrupt signal is not used and is considered reserved.

 For the NS9210 and NS9215 processors, the interrupt system is a two-tier
priority scheme, where two lines access the CPU core and can interrupt
the processor: IRQ (normal interrupt) and FIQ (fast interrupt). FIQ has a
higher priority than IRQ. The IRQ interrupts come from several different
sources in the processor and are managed using the Interrupt Config
registers. IRQ interrupts can be enabled or disabled on a per-level basis
using the Interrupt Enable registers. These registers serve as masks for
the different interrupt levels.

ARM7-based processors have two interrupt signals. For more information, see
the bsp.c file and the hardware reference for the processor you are using.

Application software can selectively Install, uninstall, enable, or disable any of
the interrupt signals with naIsrinstall, naIsrUninstall, naInterruptEnable, and naInterruptDisable,
respectively.
1 3 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
In ARM9-based processors, the IRQ handler for Bbus uses a prioritized interrupt
scheme. If more than one device requests service, the handler determines
which device has higher priority and services that device first. Interrupts for
higher priority devices are enabled before the device's service routine is called,
allowing the device's service routine to be interrupted if a higher priority
device requests service.

Servicing AHB interrupts in ARM9 based NET+ARM processor

The NET+OS IRQ handler uses this procedure to service an AHB interrupt:

1 A device requests service by asserting its interrupt signal.

2 The NET+ARM latches the request into the ISR Address register (ISRADDR).

3 After the signal has been latched, and if the interrupt pin is edge-trig-
gered, the NET+ARM generates the interrupt, even if the device stops
asserting its interrupt line.

4 When one of the corresponding interrupts configured in the Interrupt
Configuration register is invoked, the NET+ARM asserts the IRQ signal to the
ARM CPU.

5 If interrupts are enabled when the IRQ signal is asserted, the ARM CPU
switches to IRQ mode and jumps to the IRQ handler.

6 The IRQ handler saves the context of the interrupted thread and switches
to SVC mode to service the interrupt.

7 The IRQ handler calls NAIrqHandler in the NA_isr.c file, which reads the ISRADDR
register to determine which device interrupt to process.

8 NAIrqHandler saves the current interrupt mask word and enables interrupts
from higher priority devices.

9 NAIrqHandler calls the ISR that was registered for the device with the naIsrInstall
routine.

10 The ISR services the device and acknowledges the interrupt.

11 Control returns to NAIrqHandler, which restores the interrupt mask word and
returns.

When all pending interrupts have been serviced, NET+OS restores the context of
the interrupted thread and resumes processing the thread.
w w w . d i g i . c o m n n n n n n n 1 4 0

C h a n g i n g i n t e r r u p t p r i o r i t y
Servicing Bbus interrupts in ARM9 based NET+ARM processor

The Bbus IRQ handler uses this procedure to service an interrupt:

1 A Bbus device requests service by asserting its interrupt signal with Bbus
Aggregate Interrupt.

2 The NAIrqHandler in mc_isr.c calls BBUS_IrqHandler, which is installed as an ISR, to
service the BBUS interrupt.

3 In a loop, Bbus_IrqHandler masks all lower priority interrupts, enables inter-
rupts, and calls the function registered during the NAInstallIsr call.

After the handler completes this procedure, it disables the interrupts that are
lower priority than the one currently being processed. The loop repeats until the
handler services all interrupt levels. When all pending interrupts have been
serviced, control is returned back to NAIrqHandler.

Changing interrupt priority

You can change the interrupt priority level by changing the order of the
NAAhbPriorityTab and NABbusPriorityTab arrays in the bsp.c file. The tables in the next
sections, “AHB interrupts in ARM9-based processors” and “Bbus interrupts in
ARM9-based processors,” show the contents of the arrays, ordered from lowest
to highest priority. You can specify each priority only once.

NET+OS treats incorrect ordering as a fatal error and calls customizeErrorHandler.

AHB interrupts: ARM9-based processors

The priority of each interrupt in the AHB Bus is controlled by software. The
priority is set by the order configured in the Interrupt Configuration register.
When an interrupt occurs:

 Its handler is stored in the ISR Address register.

 Its priority level is stored in the Active Interrupt Level Status register.

The driver executes the interrupt handler, with the priority level passed as a
parameter. An interrupt with a higher priority can preempt the current
1 4 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
interrupts. After the call of the interrupt handler is completed, the interrupt
driver automatically clears the interrupt to be reused.

Interrupt sources with a higher-numbered priority level can interrupt the
service routines of devices with lower-numbered priority levels.

You specify the priority for each AHB source interrupt in the NAAhbPriorityTab
array in the bsp.c file.

This table lists the supported interrupt sources in the AHB Bus and the
associated software directives for the NS9750:

AHB interrupt source Software directive

External 3 EXTERNAL3_INTERRUPT

External 2 EXTERNAL2_INTERRUPT

External 1 EXTERNAL1_INTERRUPT

External 0 EXTERNAL0_INTERRUPT

Timer 14 and 15 BUS AGGREGATE_INTERRUPT

Timer 12 and 13 TIMER12-13_INTERRUPT

Timer 10 and 11 TIMER10-11_INTERRUPT

Timer 8 and 9 TIMER8-9_INTERRUPT

Timer 7 TIMER7_INTERRUPT

Timer 6 TIMER6_INTERRUPT

Timer 5 TIMER5_INTERRUPT

Timer 4 TIMER4_INTERRUPT

Timer 3 TIMER3_INTERRUPT

Timer 2 TIMER2_INTERRUPT

Timer 1 TIMER1_INTERRUPT

Timer 0 TIMER0_INTERRUPT

Reserved AHB_PERIPH15_INTERRUPT

I2C 12C_INTERRUPT

PCI External 3 PCI_EXTERNAL3_INTERRUPT

PCI External 2 PCI_EXTERNAL2_INTERRUPT
w w w . d i g i . c o m n n n n n n n 1 4 2

C h a n g i n g i n t e r r u p t p r i o r i t y
This table lists the supported interrupt sources in the AHB Bus and the
associated software directives for the NS9360:

PCI External 1 PCI_EXTERNAL1_INTERRUPT

PCI External 0 PCI_EXTERNAL9_INTERRUPT

PCI Arbiter PCI_ARBITER_INTERRUPT

PCI Bridge PCI_BRIDGE_INTERRUPT

LCD CD_INTERRUPT

Ethernet PHY ETH_PHY_INTERRUPT

Ethernet Transmit ETH_TRANSMIT_INTERRUPT

Ethernet Receive ETH_RECEIVE_INTERRUPT

Reserved N/A

Bbus Aggregate TIMER14-15_INTERRUPT

AHB Bus Error AHB_BUS_ERROR_INTERRUPT

Watchdog WATCHDOG_INTERRUPT

AHB Interrupt source Software directive

External 3 EXTERNAL3_INTERRUPT

External 2 EXTERNAL2_INTERRUPT

External 0 EXTERNAL0_INTERRUPT

IEEE_1284 IEEE_1284_INTERRUPT

USB_DEVICE USB_DEVICE_INTERRUPT

USB_HOST USB_HOST_INTERRUPT

RTC RTC_INTERRUPT

Timer 7 TIMER7_INTERRUPT

Timer 6 TIMER6_INTERRUPT

Timer 5 TIMER5_INTERRUPT

Timer 4 TIMER4_INTERRUPT

Timer 3 TIMER3_INTERRUPT

AHB interrupt source Software directive
1 4 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
Timer 2 TIMER2_INTERRUPT

Timer 1 TIMER1_INTERRUPT

Timer 0 TIMER0_INTERRUPT

BBUS_DMA BBUS_DMA_INTERRUPT

I2C I2C_INTERRUPT

SER3TX SER3TX INTERRUPT

SER3RX SER3RX INTERRUPT

SER2TX SER2TX_INTERRUPT

SER2RX SER2RX_INTERRUPT

SER1TX SER1TX_INTERRUPT

SER1RX SER1RX_INTERRUPT

LCD LCD_INTERRUPT

Ethernet PHY ETH_PHY_INTERRUPT

Ethernet Transmit ETH_TRANSMIT_INTERRUPT

Ethernet Receive ETH_RECEIVE_INTERRUPT

Reserved N/A

BBUS Aggregate ANY BBUS INTERRUPT DIRECTIVE

AHB Bus Error AHB_BUS_ERROR_INTERRUPT

Watchdog WATCHDOG_INTERRUPT

AHB Interrupt source Software directive
w w w . d i g i . c o m n n n n n n n 1 4 4

C h a n g i n g i n t e r r u p t p r i o r i t y
This table lists the supported interrupt sources and associated software
directives for the NS9210/NS9215:

 Interrupt source Software directive

0 WATCHDOG_INTERRUPT

1 AHB_BUS_ERROR_INTERRUPT

2 EXTERNAL_DMA_INTERRUPT

3 CPU_WAKE_INTERRUPT

4 ETH_RECEIVE_INTERRUPT

5 ETH_TRANSMIT_INTERRUPT

6 ETH_PHY_INTERRUPT

7 UARTA_INTERRUPT

8 UARTB_INTERRUPT

9 UARTC_INTERRUPT

10 UARTD_INTERRUPT

11 SPI_INTERRUPT

12 Reserved (IOP)

13 Reserved (IOP)

14 ADC_INTERRUPT

15 EARLY_POWER_LOSS_INTERRUPT

16 I2C_INTERRUPT

17 RTC_INTERRUPT

18 TIMER0_INTERRUPT

19 TIMER1_INTERRUPT

20 TIMER2_INTERRUPT

21 TIMER3_INTERRUPT

22 TIMER4_INTERRUPT

23 TIMER5_INTERRUPT

24 TIMER6_INTERRUPT

25 TIMER7_INTERRUPT
1 4 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
Bbus interrupts: ARM9-based processors

The priority in the Bbus is controlled by the logic in the Bbus interrupt handler.
Each device on the Bbus shares the Bbus Aggregate interrupt — a common
interrupt on the AHB bus.

When a device signals an interrupt, these steps occur:

1 The hardware sets bits in the Bbus Bridge Interrupt Status register to
indicate which device on the Bbus is signaling the event.

2 If the device's interrupt level is not masked off, the hardware generates an
IRQ exception, causing the NET+OS interrupt driver to be executed.

3 The Bbus Interrupt Handler determines which device is signaling the
interrupt condition and calls the ISR that is registered to it.

4 The ISR processes the interrupt and returns.

5 The interrupt driver checks for more pending interrupts. If any interrupts
are found, their ISRs are called as well.

6 When all pending interrupts are processed, the NET+OS interrupt driver
returns control to the application.

This table lists the supported interrupt sources in the Bbus and the associated
software directives. The priority for each Bbus interrupt source is specified in
the NABbusPriorityTab array in the bsp.c file. Interrupt sources with a higher-
numbered priority level can interrupt the service routines of devices with lower-
numbered priority levels.

26 TIMER8_INTERRUPT

27 EXTERNAL9_INTERRUPT

28 EXTERNAL0_INTERRUPT

29 EXTERNAL1_INTERRUPT

30 EXTERNAL2_INTERRUPT

31 EXTERNAL3_INTERRUPT

 Interrupt source Software directive
w w w . d i g i . c o m n n n n n n n 1 4 6

C h a n g i n g i n t e r r u p t p r i o r i t y
Bbus interrupt source Software directive

IEEE 1284 IEEE_1284_INTERRUPT

Bbus DMA 16 BBUS_DMA16_INTERRUPT

Bbus DMA 15 BBUS_DMA15_INTERRUPT

BBUS_DMA14_INTERRUPT BBUS_DMA14_INTERRUPT

Bbus DMA 13 BBUS_DMA13_INTERRUPT

Bbus DMA 12 BBUS_DMA12_INTERRUPT

Bbus DMA 11 BBUS_DMA11_INTERRUPT

Bbus DMA 10 BBUS_DMA10_INTERRUPT

Bbus DMA 9 BBUS_DMA09_INTERRUPT

Bbus DMA 8 BBUS_DMA08_INTERRUPT

Bbus DMA 7 BBUS_DMA07_INTERRUPT

Bbus DMA 6 BBUS_DMA06_INTERRUPT

Bbus DMA 5 BBUS_DMA05_INTERRUPT

Bbus DMA 4 BBUS_DMA04_INTERRUPT

Bbus DMA 3 BBUS_DMA03_INTERRUPT

Bbus DMA 2 BBUS_DMA02_INTERRUPT

Bbus DMA 1 BBUS_DMA01_INTERRUPT

AHB DMA 2 AHB_DMA02_INTERRUPT

AHB DMA 1 AHB_DMA01_INTERRUPT

Utility UTIL_INTERRUPT

Bbus peripheral BBUS_PERIPH10_INTERRUPT

Serial 1 receive SER1RX_INTERRUPT

Serial 2 receive SER2RX_INTERRUPT

Serial 3 receive SER3RX_INTERRUPT

Serial 4 receive SER4RX_INTERRUPT

Serial 4 transmit SER4TX_INTERRUPT

Serial 3 transmit SER3TX_INTERRUPT

Serial 2 transmit SER2TX_INTERRUPT
1 4 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
System interrupts: ARM7-based platforms

You set the priority for interrupts using the NAInterruptPriority table in the bsp.c file
of its corresponding platform.

When a device signals an interrupt, these steps occur:

1 The hardware sets bits in the Interrupt Status register.

2 If the device's interrupt level is not masked off, the hardware generates an
IRQ exception, causing the NET+OS interrupt driver to be executed.

3 The Interrupt Handler determines which device is signaling the interrupt
condition and calls the ISR that is registered to it.

4 The ISR processes the interrupt and returns.

5 The interrupt driver checks for more pending interrupts. If any interrupts
are found, their ISRs are called as well.

6 When all pending interrupts are processed, the NET+OS interrupt driver
returns control to the application.

The next table lists the supported interrupt sources in the ARM7 based NET+ARM
processor. Interrupt sources with a higher-numbered priority level can interrupt
the service routines of devices with lower-numbered priority levels.

Serial 1 transmit SER2TX_INTERRUPT

USB USB_INTERRUPT

Bbus DMA BBUS_DMA_INTERRUPT

Bbus interrupt source Software directive
w w w . d i g i . c o m n n n n n n n 1 4 8

C h a n g i n g i n t e r r u p t p r i o r i t y
Interrupt source Software directive

DMA1 DMA1_INT

DMA2 DMA2_INT

DMA3 DMA3_INT

DMA4 DMA4_INT

DMA5 DMA5_INT

DMA6 DMA6_INT

DMA7 DMA7_INT

DMA8 DMA8_INT

DMA9 DMA9_INT

DMA10 DMA10_INT

ENI/PORT1 ENI/PC_PORT1_INT

ENI/PORT2 ENI/PC_PORT2_INT

ENI/PORT3 ENI/PC_PORT3_INT

ENI/PORT4 ENI/PC_PORT4_INT

ENETRX ENETRX_INT

ENETTX ENETTX_INT

SER1RX SER1RX_INT

SER1TX SER1TX_INT

SER2RX SER2RX_INT

SER2TX SER2TX_INT

11 – 7 Reserved

WATCHDOG WATCHDOG_INT

TIMER1 TIMER1_INT

TIMER2 TIMER2_INT

PCPC3 PCPC3_INT

PCPC2 PCPC3_INT

PCPC1 PCPC1_INT

PCPC0 PCPC0_INT
1 4 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

P r o c e s s o r M o d e s a n d E x c e p t i o n s
Interrupt service routines

The IRQ handler calls Interrupt Service Routines (ISRs) to service interrupts that
external devices generate. You can implement ISRs as standard C functions.
The ISRs must clear the interrupt condition — usually by acknowledging it — and
service the interrupt. Then the ISRs can return as standard C functions.

Because interrupts are enabled for higher priority interrupt levels when the ISR
is called, an ISR with a higher priority can interrupt the processing of one with
a lower priority.

Installing an ISR

You install an ISR by calling NAInstallIsr. After this routine returns, the ISR is
installed, and the interrupt associated with the ISR is enabled.

Disabling and removing an ISR

To disable and remove an ISR, call NAUninstallIsr. This routine disables the
interrupt and uninstalls the ISR handler.

ARM9 FIQ handlers

Because a fast interrupt (FIQ) is a higher priority interrupt than an IRQ, an FIQ
can interrupt an IRQ at any time. The default handler installed by the BSP
treats a FIQ exception as an error and calls customizeExceptionHandler).

Use naIsrSetFiq to program an interrupt source to generate an FIQ interrupt, and
then call naIsrInstall to install the interrupt handler for the FIQ.

For ARM9-based processors only:

 Unlike an IRQ, only one interrupt can be configured for an FIQ, and it must
be the first one in the NAAhbPriorityTab array.

 To disable and remove a FIQ, call NAUninstallIsr.
w w w . d i g i . c o m n n n n n n n 1 5 0

A R M 7 F I Q h a n d l e r s
ARM7 FIQ handlers

On ARM7 based-processors, you can configure the watchdog timer and the two
general-purpose timers to generate a FIQ interrupt. To enable these interrupts,
set the corresponding bits in the Interrupt Enable register. For descriptions of
the System Control register, Timer 1 and Timer 2 Control registers, and the
Interrupt Enable register, see the hardware reference for the processor you are
using.

 To install an ARM7 FIQ handler:

1 Write the address of the application FIQ handler to memory location
0x0000003C.

2 Enable the FIQs bit in the Interrupt Configuration register for the specific
source interrupt.

3 Modify the IRQ handler routine to exclude the FIQs from being dispatched
with the IRQs.

The IRQ handler code is in these files:

 na_isr.c

 reset.s

 init.s

Be aware that NET+OS normally does not use FIQs. The statistical profiler utility,
however, which helps you identify system bottlenecks so you can improve system
performance, does use FIQs.

For an example of how to install and use FIQs, see bsp/profiler/profilerAPI.c.
1 5 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Device Drivers
C H A P T E R 1 6

This chapter describes device driver functions.
1 5 2

O v e r v i e w
Overview

NET+OS integrates device drivers with the low-level I/O functions provided in
the Cygwin standard C library. Each entry in the deviceTable array of the devices.c
file defines a device that the system supports.

This chapter describes the deviceTable array and the device driver functions.

Adding devices

To add a device, you add an entry to the deviceTable array. Application software
can then access the device through the standard C programming language I/O
routines — open, read, write, ioctl, and close.

deviceInfo structure

The entries in deviceTable are deviceInfo structures. The ddi.h file defines the deviceInfo
structure. The fields in this structure define the device driver’s interface to
NET+OS.

The deviceInfo structure is defined as shown here:
typedef struct

{

char *name;

int channel;

devEnterFnType *deviceEnter;

devInitFnType *deviceInit;

devOpenFnType *deviceOpen;

devCloseFnType *deviceClose;

devReadFnType *deviceRead;

devWriteFnType; *deviceWrite;

devIoctlFnType *deviceIoctl;

unsigned flags;

} deviceInfo;
1 5 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
This table defines the fields in the deviceInfo structure:

Device driver functions

This table shows a summary of the device driver functions in the deviceInfo
structure. The next sections describe each function.

For details, see the online help.

Field Description

name Pointer to a null-terminated string that is the device channel’s name.
The name must be unique for each device.

channel Channel number for the device name. This number is passed to the
device driver for all I/O requests.

deviceEnter Pointer to the driver’s first-level initialization routine for the
channel. DDIFirstLevelInitialization calls this routine once, during
initialization, when the C library initializes its I/O library. Kernel
services are not available at this point.

deviceInit Pointer to the driver’s second-level initialization routine for the
channel. DDISecondLevelInitialization calls this routine once, at startup,
after the kernel has been loaded.

deviceOpen Pointer to the device’s open routine for the channel. This routine is
called whenever an application opens the channel to indicate that a
new session is starting.

The flags field indicates whether the channel:

 Was opened for read, write, or read/write mode

 Operates in blocking or non-blocking mode

deviceClose Pointer to the driver’s close routine for the channel. This routine is
called at the end of every session.

deviceRead Pointer to the driver’s read routine for the channel.

deviceWrite Pointer to the driver’s write routine for the channel.

deviceIoctl Pointer to the driver’s I/O control routine for the channel.

flags Bit field that indicates which bits are valid in the flags field of an open
call to the device. A bit set in this field indicates that the bit also can
be set in the driver’s open routine.
w w w . d i g i . c o m n n n n n n n 1 5 4

A d d i n g d e v i c e s
The return values for the functions are in a table in the section “Return values,”
later in this chapter.

Function Description

deviceEnter First-level initialization function for a device table

deviceInit Second initialization function for the device channel

deviceOpen Informs the device driver that a new session is starting on the
channel and which I/O mode will be used during the session

deviceClose Informs the device driver that the application is closing its session

deviceRead Reads data from the device to the caller’s buffer

deviceWrite Writes a buffer of data to a device

deviceIoctl Sends commands to the device
1 5 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
deviceEnter
First-level initialization function for a device table.

When the C library initializes its I/O functions, deviceEnter is called for each entry
in the device table. This function is called only once for each channel and
performs the basic initialization that the device driver needs.

Because this routine is called before the kernel has started, kernel services are
not available at this time. C library functions, however, are available.

Format

int deviceEnter (int channel);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
w w w . d i g i . c o m n n n n n n n 1 5 6

A d d i n g d e v i c e s
deviceInit

Second initialization function for the device channel.

After the kernel has loaded, the device driver table is scanned, and the deviceInit
functions for each channel are called. The deviceInit routine is called once for
each channel and completes any additional initialization needs for the device
driver. Kernel services are available, and interrupts are enabled.

Format

int deviceInit (int channel);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
1 5 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
deviceOpen

Notifies the device driver that a new session is starting on the channel and tells
the driver which I/O mode will be used during the session. This routine is called
when the application calls the open system call.

When deviceOpen is called, the driver performs these steps:

1 Checks that the channel number is valid, the channel is open, and the
flags are appropriate.

If an error condition is detected, the driver returns an error without
sending any information.

2 Sets an internal flag to indicate that a session is in progress on the
channel.

3 Performs any other initialization tasks required by the device.

4 Returns a value.

Format

int deviceOpen (int channel, unsigned flags);

Arguments

For this routine’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry

flags Bit field formed by ORing together one or more of these values:

 O_RDONLY

 O_WRONLY

 O_RDWR

 O_NONBLOCK
w w w . d i g i . c o m n n n n n n n 1 5 8

A d d i n g d e v i c e s
deviceClose

Informs the device driver that the application is closing its session. This
function is called when the application calls the close system call.

When deviceClose is called, the driver performs these steps:

1 Checks that the channel is open and the configuration is valid for the
device.

If an error condition is detected, the driver returns an error without
sending any information.

2 Does one of these steps:

– Sets the channel semaphore

– Returns EBUSY if the semaphore is already set.

3 Updates internal flags to indicate that the session has been closed.

4 Performs any other processing tasks as necessary.

5 Clears the channel semaphore.

6 Returns EXIT_SUCCESS.

Format

int deviceClose (int channel);

Arguments

For this function’s return values, see the table in the section “Return values.”

Argument Description

channel Channel number as set in the channel’s device table entry
1 5 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
deviceRead

Reads data from the device to the caller’s buffer. This function is called when
the application calls the read system call.

When deviceRead is called, the driver performs these steps:

1 Sets bytesRead to 0.

2 Checks that the arguments are correct and the channel is open.

3 Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

4 Sets the channel semaphore or returns EBUSY if the semaphore already is
set.

If no data is available, performs one of these steps:

– Blocking mode. Waits until some data is received.
If an error condition is detected, the driver aborts the transmission
and returns an appropriate completion code.

– Non-blocking mode. Releases the semaphore and returns EAGAIN.

5 Copies the data from the driver buffers until either all the data has been
copied or the caller’s buffer has been filled.

6 Updates bytesRead.

7 Releases the channel semaphore.

8 Returns a completion code.

Format

int deviceRead (int channel, void *buffer, int length,
 int *bytesRead);

Arguments

Argument Description

channel Channel number as set in the channel’s device table entry

buffer Pointer to caller’s receive buffer

length Length of caller’s receive buffer (number of bytes)

bytesRead Pointer to the number of bytes actually read
w w w . d i g i . c o m n n n n n n n 1 6 0

A d d i n g d e v i c e s
For this routine’s return values, see the table in the section “Return values.”
1 6 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
deviceWrite

Writes a buffer of data to a device. This routine is called when the application
calls the write system call.

When deviceWrite is called, the driver performs these steps:

1 Sets bytesWritten to 0.

2 Checks that the arguments are correct and the channel is open.

3 Checks for a pending error on the device.

If an error condition is detected, the driver returns an error without
transferring any data.

4 Sets the channel semaphore or returns EBUSY if the semaphore already is
set.

5 Opens a transmit buffer and fills it with data from the caller’s buffer.

6 Starts the transmit operation for the transmit buffer.

7 This step applies to blocking mode only. If an error condition is detected,
aborts the transmission and returns an appropriate completion code.

8 If there is more data in the caller’s buffer, repeats steps 5 through 7 until
there is no more data.

9 Updates bytesWritten to indicate the number of bytes transmitted.

10 Releases the channel semaphore.

11 Returns a completion code.

Format

int deviceWrite (int channel, void *buffer, int length,
 int *bytesWritten);

Arguments

Argument Description

channel Channel number as set in the channel’s device table entry

buffer Pointer to caller’s buffer; not necessarily aligned

length Length of caller’s receive buffer (number of bytes)

bytesWritten Pointer to int to load with number of bytes actually written
w w w . d i g i . c o m n n n n n n n 1 6 2

A d d i n g d e v i c e s
For this routine’s return values, see the table in the section “Return values.”
1 6 3 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
deviceIoctl

Sends commands to the device. This routine is called when the application calls
the ioctl system call.

When deviceIoctl is called, the driver performs these steps:

1 Checks that the arguments are correct and that the channel is open.

If an error condition is detected, the driver returns an error without
sending any commands.

2 Either sets the channel semaphore or returns EBUSY if the semaphore is
already set.

3 Executes the command.

4 Releases the channel semaphore.

5 Returns EXIT_SUCCESS.

Format

int deviceIoctl (int channel, int request, char *arg);

Arguments

You can define your own return values.

For this routine’s return values, see the table in the next section “Return
values.”

Argument Description

channel Channel number as set in the channel’s device table entry

request Commands encoded as integers

arg Pointer to any extra information needed or to a buffer to return
information
w w w . d i g i . c o m n n n n n n n 1 6 4

R e t u r n v a l u e s
Return values

The NET+OS low level device driver interface (DDI) functions map to the DDI
application layer calls as shown in this table:

All the DDI functions return 0 on success and an error number value otherwise.
The C library interprets this value and passes it up to the application that is
calling the functions.

The application return values fall into one of two categories:

 Data passing functions. The read and write function calls

 Setup functions. The open, close, and ioctl function calls

The deviceRead and deviceWrite data passing functions use the *bytesRead and
*bytesWritten arguments, respectively, to pass the data size information back to the
application read and write function calls. The application call returns the data size
if the low level function succeeds.

For example, if deviceRead returns 0, and the *bytesRead argument is set to 100, the
read function returns 100. Alternatively, when deviceRead returns a non-zero, the
read function returns –1 regardless of what's loaded into the *bytesRead argument.

The setup functions are similar, but they do not communicate any data size up.
When a DDI function succeeds (for example, deviceIoctl returns 0), the application
function also returns 0 (in this case ioctl returns 0). Alternatively, when deviceIoctl
returns a non-zero, the ioctl function returns –1.

When any low level DDI function returns a non-zero value, the value is loaded
into the system error numbers and causes the application layer call to return
–1. System error numbers can be checked by a call to getErrno.

DDI routine DDI application layer call

deviceOpen open

deviceClose close

deviceIoctl ioctl

deviceRead read

deviceWrite write
1 6 5 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
Values and definitions for error numbers are in the errno.h system error header
file, which is located in the /cygwin/user/arm-elf/include/sys folder.

The next table includes common error number return values with a typical
description. In general, the values that are returned are specific to the driver
that is being accessed. For more information, see the online help for the driver.

Modifications to Cygwin’s standard C library and startup file

The standard C library has been rebuilt to support the NET+OS DDI. A
customized version of the startup files and C libraries is in the C:/netos/lib/32b/gnu

Value Description

EBUSY Device is busy.

EINVAL Invalid argument.

ENOENT No such file or directory.

EAGAIN Unable to complete operation now; try again later.

EBADF Bad file number.

EIO I/O error.

ENOMEM Out of memory.

EROFS Read-only file system.

ENXIO Invalid device.

ETIMEDOUT Operation timed out.

ERANGE An argument has an invalid range.

EACCESS Permission denied.

EFAULT Bad address.

ENOSPC No space available on device.

ENODEV No such device.

ENOMEM Memory allocation failure.

EXIT_SUCCESS Call completed successfully.
w w w . d i g i . c o m n n n n n n n 1 6 6

M o d i f i c a t i o n s t o C y g w i n ’ s s t a n d a r d C l i b r a r y a n d s t a r t u p f i l e
directory. All the sample applications that are provided with NET+OS link to
these files instead of to the standard GNU versions.

To use the NET+OS device drivers and the ThreadX kernel, you must make your
applications link to these files. For an example, see either of the Makefiles
supplied in the sample applications or the GNU Tools linker documentation.

You can find all the necessary changes to the C library’s source code and the
crt0.S startup file in the C:/netos/gnusrc directory.

Note: The C library that is shipped with NET+OS is not re-entrant. For more
information, see your GNU Tools documentation.

Modifying the libc.a library and crt0.o startup file

The NET+OS version of the source file is in the gnusrc directory.

 To modify the libc.a and crt0.o files:

1 Copy cygwin/usr/arm-elf/lib/be/libc.a to the C:/netos/gnusrc directory.

2 To open a GNU X-Tools shell, enter this command:

xtools arm-elf

3 To produce the new libc.a and a new crt0.o file to support NET+OS I/O
devices, change to the C:/netos/gnusrc directory and enter:

make all

4 Copy gnusrc/libc.a and a new crt0.o to the C:/netos/lib/32b/gnu directory.

Note that the crtbegin.o, crtend.o, crti.o, and crtn.o files in the
C:/netos/lib/32b/gnu directory are copied from /cygwin/use/lib/gcc-lib/arm-elf/3.2/be.

Because these startup files are for C++ applications, you do not need
to modify them.

NET+OS device drivers configure and control the components of the Digi chips,
such as serial, Ethernet, USB, and so on. These drivers are part of the NET+OS
operating system, and depending on the defines in the bsp_drivers.h and bsp_serial.h file
for your platform, are loaded on startup.

NET+OS device drivers

This table lists the device drivers that are supported as part of NET+OS:
1 6 7 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

D e v i c e D r i v e r s
Driver Description Supported platforms

Ethernet Ethernet All

SPI master SPI master All

SPI slave SPI slave NS9360, NS9750,NS9215,
NS9210

Serial UART Serial UART All

NVRAM Non- volatile RAM All

System clock System clock interface routines All

Timer Timer All

MMU Memory Management Unit NS9360, NS9750, NS9215,
NS9210

GPIO General purpose I/O All

IEEE — 1284 Parallel driver NET+50, NS9360

I2c Inter-IC NS9360, NS9750, NS9215,
NS9210

LCD LCD routines NS9360, NS9750

USB device USB device NS9360, NS9750

USB host USB Host NS9360, NS9750

PWM Pulse Width Modulator NS9360, NS9215, NS9210

RTC Real Time Clock NS9360, NS9215

PCI PCI Bus NS9750

AES AES H/W Accelerator NS9215, NS9210

A/D Analog-to-Digital Converter NS9215, NS9210

QUAD Quadrature Driver NS9215

SD/SDIO Secure Digital Driver NS9215

Comparator Comparator NS9215

Scratchpad Scratchpad Memory NS9215
w w w . d i g i . c o m n n n n n n n 1 6 8

M o d i f i c a t i o n s t o C y g w i n ’ s s t a n d a r d C l i b r a r y a n d s t a r t u p f i l e
Device driver interface

NET+OS device drivers are based on the standard Device Driver Interface (DDI)
and use a layered model to implement device drivers. Within this model, all API
calls are made through the DDI interface.

Some drivers (such as Timer and GPIO) do not use the DDI interface. Because
they do not fit into a read/write type of model, they have a separate interface.
1 6 9 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Part 6: Troubleshooting
1 7 0

1 7 1 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Troubleshooting
C H A P T E R 1 7

This chapter describes how to diagnose errors you may encounter when you are
working with NET+OS. This chapter also describes how to reserialize a module.
1 7 1

D i a g n o s i n g e r r o r s
Diagnosing errors

These sections tell you how to diagnose two types of errors:

 Fatal errors

 Unexpected exceptions

Diagnosing a fatal error

Code in the BSP and NET+OS API libraries calls the customizeErrorHandler routine
when a fatal error — one from which the software cannot recover — is
encountered.

The default version of customizeErrorHandler blinks the LEDs on the module in a
pattern that indicates the type of error that occurred.

 To determine where in the code an error occurred:

1 Stop the program in the debugger.

2 Examine the call stack.

The call stack lists each function frame on the stack. To go to any of
these functions, double-click the function name in the call stack display.

3 To continue execution from the point where the error occurred, set the
naCustomizeErrorHandlerClearToContinue variable to 0.

Be aware that because a fatal error has occurred, the results are unpredictable.

Diagnosing an unexpected exception

The customizeExceptionHandler routine is called whenever an unexpected exception
occurs. This table describes the exceptions:

Exception type Triggered when

Data abort Software attempts to access memory that doesn’t exist, or attempts
to perform a misaligned address.

Prefetch abort The processor attempts to fetch an instruction from memory that
doesn’t exist.
1 7 2 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

T r o u b l e s h o o t i n g
The value of the BSP_HANDLE_UNEXPECTED_EXCEPTION constant in bsp_sys.h controls
the default version of customizeExceptionHandler. (For details, see the NET+OS API
Reference.) Usually, customizeExceptionHandler either resets the unit or blinks the LEDs
in a pattern that indicates the type of exception that occurred. During
development, you can continue execution from where the exception occurred.

 To diagnose an unexpected exception:

1 Put a breakpoint on customizeExceptionHandler.

2 When the breakpoint is reached, step into the routine until it sets
customizeExceptionHandlerClearToContinue to TRUE.

3 Set customizeExceptionHandlerClearToContinue to 0.

4 Step through the routine until just before it returns.

5 Switch the debugger display to show assemble instructions.

6 Step through the code assembler instructions one at a time until the
processor returns to the source of the exception.

Reserializing a module

The Digi Connect and ConnectCore modules ship with a boot ROM application
programmed in flash memory. This application allows you to configure the
module.

Observing the LEDs

Be aware of the LEDs whenever you power cycle the module. The LEDs provide
information you can use to monitor the module’s status at all times.

Fast interrupt The FIQ pin is toggled by hardware, or when internal devices such as
the watchdog timer in the NET+ARM are programmed to generate it.

Software interrupt The processor executes a software interrupt (SWI) instruction.

Undefined interrupt The processor executes an undefined instruction.

Exception type Triggered when
w w w . d i g i . c o m n n n n n n n 1 7 3

R e s e r i a l i z i n g a m o d u l e
Assigning a MAC address to the module

Each device on the network must have a unique Ethernet media access controller
(MAC) address. The module comes preconfigured with a factory-set MAC address
that is printed on a sticker on the module.

The MAC address can be lost if NVRAM is corrupted by an application under test.
In such a case, you must restore the MAC address to make sure that the module
can communicate over the network. The module ships with an application written
in flash memory that you can use to restore the MAC address. From the debugger,
you also can use any sample application built with the configuration dialog
enabled.

 To restore a module’s original Ethernet MAC address:

1 Connect the module to a serial port on your system.

2 Start a HyperTerminal session on the serial port.

3 Power up the module.

A message similar to this one appears after a brief pause:
1 7 4 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

T r o u b l e s h o o t i n g
4 Enter the configuration dialog by pressing a key before the timeout
expires.

5 At the prompt, enter the system password:

password

6 Enter the values for the IP stack configuration settings and serial port
baud rate.

7 At the prompt, enter the Ethernet MAC address that appears on the sticker
on the module.

8 Respond to the prompts to set up the remaining configuration settings.

This is a sample dialog:

Enter the root password: **********
Reset configuration to default values (Y/N)? Y

For each of the following questions, you can press <Return> to select the value shown in braces, or you can enter
a new value.

NETWORK INTERFACE PARAMETERS:
Should this target obtain IP settings from the network? [N] y

SECURITY PARAMETERS:

Would you like to update the Root Password? [N[

HARDWARE PARAMETERS:

Set the baud rate of Serial channels [9600]?
The new baud rate is 9600
The baud rate will be changed on next power up
Please set the baud rate for your terminal accordingly

Each development board must have a unique serial number
Set the board’s serial number [N99999999]? N12345678
The board’s new serial number is N12345678

Each development board must have a unique Ethernet MAC address.
Set the board’s Ethernet MAC Address [00:40:9D:BA:DB:AD]?
00:40:9D:12:34:56
This board’s new Ethernet MAC address is 00:40:9D:12:34:56

How long (in seconds) should CPU delay before starting up [5]?

Normally the board will automatically negotiate with the network hub (or switch) to determine the Ethernet duplex
setting; however some hubs do not support autonegotiation.
What duplex setting should be used in this case (Full or Half)? [Full Duplex]

Saving the changes in NV memory...Done.
w w w . d i g i . c o m n n n n n n n 1 7 5

R e s t o r i n g t h e c o n t e n t s o f f l a s h m e m o r y
Restoring the contents of flash memory

Digi Connect and ConnectCore modules ship with a boot ROM program written
in flash memory. The boot ROM program implements support for debugging and
provides an FTP server that you can use to update flash memory.

You restore the original boot ROM program by using a procedure in which you:

1 Configure the target and JTAG debugger.

2 Build the BSP, making sure that you specify the correct platform.

The BSP Makefile automatically builds the bootloader. The bootloader
image is stored in rom.bin in the platform directory.

3 Using the same platform, build the naftpapp application image in
src/examples/naftpapp.

4 Run the naftpapp application using the JTAG debugger. Using a standard FTP
client, log into the module using the root account.

The default password of the root account is password.

5 Download rom.bin from the BSP platform directory in binary mode, and then
quit. Wait for the standard output message saying that the module will
reset.

6 Rerun the naftpapp application using the JTAG debugger. Using the standard
FTP client, download image.bin from the naftpapp/32b sample application in
binary mode. Wait for the standard output that says the module will reset.

7 Remove the JTAG debugger and recycle power. Verify that the module
boots with naftpapp.

The next sections provide details about each step in the procedure.

Note: Be aware that the order of the tasks for restoring the contents of
flash memory is important. You must do the tasks in the order in
which this document presents them.
1 7 6 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

T r o u b l e s h o o t i n g
Step 1: Configure the module and the debugger

 To set up the module and the debugger:

1 Connect the JTAG debugger, Ethernet cable, and serial cable as described
in the Quick Start Guide.

2 Disable flash on the module.

3 Power up the target.

4 Start a HyperTerminal session.

Step 2: Building the bootloader

 To build the bootloader if rom.bin does not already exist in the BSP platform
directory:

1 Edit the bsp_bldr.h, bsp_drivers.h, bsp_net.h, bsp_serial.h and bsp_sys.h files and make sure
the configuration settings are correct.

2 Using the Makefile in the c:/netos/src/bsp directory, build the BSP.

3 To select your platform, use the command-line option and enter:
make PLATFORM = platform-name

Step 3: Building the application image and starting naftpapp

 To build the application image and start the naftpapp application:

1 Change to the naftpapp application directory, c:/netos/src/examples/naftpapp.

2 Edit the appconf.h file for naftpapp, and make sure the application is configured
to generate a configuration dialog.

To generate a dialog, set the constant BSP_DIALOG_PORT in the platform
bsp_sys.h.

(For details about BSP_DIALOG_PORT in bsp_sys.h, see the NET+OS API
Reference.)
w w w . d i g i . c o m n n n n n n n 1 7 7

R e s t o r i n g t h e c o n t e n t s o f f l a s h m e m o r y
3 Rebuild the naftpapp application.

4 Start the debugger and load naftpapp.

5 Enable flash on your module.

6 Start the application.

naftpapp prompts you with the standard NET+OS configuration dialog box
(unless you have disabled this feature).

7 Verify that the network settings are correct, and change them if
necessary.

Step 4: Sending rom.bin to the module

 To send rom.bin of the bootloader to the module:

1 Open a command shell.

2 Change to this directory:

c:/netos/src/bsp/your-platform

where you replace your_platform with the name of your platform.

3 To start the Windows FTP client, enter this command:

FTP a.b.c.d

and press Enter.

where a.b.c.d is your unit’s IP address.

4 When you are prompted for a username and password, use the root
account. The default root password is password.

5 To put ftp in binary mode, enter:

bin

6 To download rom.bin, enter this command:

put rom.bin

7 When the transfer is complete, enter:

quit

8 When the application output reports it is resetting, exit from the
debugger.
1 7 8 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

T r o u b l e s h o o t i n g
Step 5: Verifying the boot ROM image on the module

At this point, the bootloader has been written into the boot sector of flash.
Now you need to write the application into flash.

 To write an application into flash:

1 Restart the naftpapp application in the debugger.

2 Change to this directory:

c:/netos/src/examples/naftpapp/32b

3 To start the Windows FTP client, type this command and press Enter:

ftp a.b.c.d

where a.b.c.d is your module’s IP address.

4 When you are prompted for a username, use the root account.

The default root password is password.

5 To put ftp into binary mode, enter:

bin

6 To download rom.bin, enter this command:

put image.bin

7 When the transfer is complete, enter:

quit

8 When the application output reports that it resetting, exit from the
debugger.

Step 6: Verify the contents of flash

To verify the contents of flash:

1 Remove the debugger.

2 Recycle power.

The naftpapp application now boots from flash.
w w w . d i g i . c o m n n n n n n n 1 7 9

R e s t o r i n g t h e c o n t e n t s o f f l a s h m e m o r y
1 8 0 n n n n n n n N E T + O S P r o g r a m m e r ’ s G u i d e

Index
A
accept function 126

adding devices 153

adding new libraries to the system 96

Advanced Web Server Toolkit
documentation 109

appconf.h file 32, 177

application image

components of 42

header 43, 44

structure 42

application samples

naficgi 112, 123

nahttp_pb 123

nahttp_pd 112

ARM7 platforms, initialization
sequence 17

ARM7-based hardware dependencies

DMA channels 82

endianness 83

interrupts 84

RS-232-style communications 85

serial ports 83

software watchdog 83

system timers 83

ARM9 platforms, initialization
sequence 18

ARM9-based hardware dependencies

DMA channels 87

endianness 88

general purpose timers 88

interrupts 89

system clock 89

system timers 88

array subscripts and MAW module 119,
120

automatic RAM sizing 129

AWS

comment tags 115

custom variables 113

customizable routines 114

data types of 114

function type, specifying 118

phrase dictionary technique 121

B
bind function 126

blerror.c file 48
I - n n n n n n n I n d e x - 1

blmain.c file 48

board support package. See BSP.
boardParams.h 30

boot ROM

and restoring contents of flash
memory 176

application 173

image, verifying 179

boothdr utility 41

boothdr.dat file 6

boothdr.exe 5

bootldr.dat file 46

bootloader Makefiles

organization of 96

bootloader utility

limitations of 47

BSP 3

and NET+OS 3

configuration files, modifying 28

customizing for application
hardware 25

defined 11

tree structure 12

bsp_drivers 26

bsp_sys 32, 33, 173

bsp.c file 89

building

all libraries 94

an individual library 94

C

cgi.c file 112, 123

cleaning libraries 96

close function 153

comment tags 108, 108

compress.exe 5

compression and phrase
dictionaries 121

configuration file 46

configuring the TCP/IP stack 33

connect function 126

contents of flash memory, restoring 176

creating a new platform

copying a similar platform 21

creating a new platform directory 21

updating Makefile.bsp 22

updating Makefile.example 22

updating Makefile.inc 22

updating Makefiles in linkerscripts
directory 22

wireless platform changes 22

creating Web pages 113

crt0.o file 167

crt0.S file 167

custom variables and AWS 113

customization hooks 48

customizeGetMACAddress function 50

customizeLed.c file 29

customizeReset.c file 29

customizing the BSP for application
hardware 25

Cygwin standard C library

and device drivers 153

and startup crt0.o file 166

modifying 166

D
data abort 172
I n d e x - 2 n n n n n n n

data passing functions 165

ddi.h file 153

DDIFirstLevelInitialization 154

DDISecondLevelInitialization 154

debugger initialization scripts 60

debugger_ files file 6

debugging initialization code

ARM7 platforms 64

ARM9 platforms 67

default configuration file 46

device driver functions

deviceClose 159

deviceEnter 156

deviceInit 157

deviceIoctl 164

deviceOpen 158

deviceRead 160

deviceWrite 162

deviceClose function 159

deviceEnter function 156

deviceInfo structure 153

deviceInfo structures 153

deviceInit function 157

deviceIoctl function 164

deviceOpen function 158

deviceRead function 160

devices

adding 153

drivers and ThreadX kernel 167

devices.c file 153

deviceTable array 153

deviceWrite function 162

DHCP/BOOTP client 47

diagnosing errors 172

dialog.c file 32

dictionary, adding new phrases 122

Digi JTAG Link debugger 63

downloadImage routine 48, 56

drivers, enabling 26

E
enabling drivers 26

error

fatal 172

handler, installing 121

error and exception handlers,
modifying 31

Ethernet MAC address, restoring
original 174

exceptions

diagnosing 173

types of 172

F
fast interrupt 173

fatal error 172

file.c file 112, 123

files 177

flash driver

adding or dropping support for a
part 126

flash memory, restoring contents of 176

flashparts.h file 126

function stubs 108
I - n n n n n n n I n d e x - 3

G

generating

an image 45

getDefaultFilename routine 48, 55

getMacAddress routine 48, 50

getpeername function 126

getsockname function 126

getUsername function 114

GPIO configuration, setting 25

gpio.h file 25, 27

H
h files 7

hard-coding the MAC address 50

hardware dependencies for ARM7-based
modules

DMA channels 82

endinanness 83

interrupts 84

RS-232-style communications 85

serial ports 83

software watchdog 83

system timers 83

hardware dependencies for ARM9-based
modules

DMA channels 87

endianness 88

general purpose timers 88

interrupts 89

system clock 89

hardware dependencies of ARM9-based
modules

system timers 88

hierarchy of Makefile 93

hooks, customization 48

hooks. See function stubs.
HyperTerminal 177

I

image, generating 45

INIT.s file 17

Initialization sequence

ARM7 platforms 17

ARM9 platforms 18

Internet Address Manager (IAM) 3, 126

interrupt tables 28

ioctl function 153

isImageValid routine 48, 51

K
keyword/value pairs in configuration

file 47

L
LEDs

and troubleshooting 173

observing during power cycle 173

libc.a file and library 167

libraries

adding new 95

adding new to the system 96

building all 94

building an individual 94

cleaning 96

library makefile variables 95

lilbrary directory structure 95
I n d e x - 4 n n n n n n n

limitations of the bootloader utility 47

list.bat file 110, 122

M
MAC address 48

and hard-coding 50

locating on module 175

restoring to a module 174

Macraigor Raven debugger 63

maintaining Web content 122

MAJIC/MAJICO probe 61

Makefile 177

hierarchy of 92

using 98

Makefile.inc file 22

MAW module

and array subscripts 120

and semaphore timeout 119

error handling 121

mawInstallErrorHandler function 121

mawInstallSubscriptsFunction
function 120

mawInstallTimeoutFunction
function 120

mawSetAccessTimeout routine 119

memory aliasing (ARM7) 70

memory map (ARM9) 72

Mentor Graphics MAJIC/MAGICO
debuggers 63

MIB compiler 5

Microsoft HyperTerminal 177

modifying Cygwin’s standard C library
and startup file 166

modifying error and exception
handlers 31

modifying the POST 33

modifying Web content 122

module

reserializing 173

restoring Ethernet MAC address 174

verifying boot ROM image on 179

N

NABIReportError routine 49

NABlReportError routine 48

naficgi sample application 112, 123

naftpapp application 176, 177, 179

nahttp_pd sample application 112, 123

NET+OS

device driver interface (DDI) 165

supported platforms 16

tree structure 4

netarm1_v.c file 111

netarm1.c file 111

new libraries, adding to the system 96

new platform

configuring 25

new platform, creating 21

O
observing LEDs during power cycle of

module 173

open function 153

original Ethernet MAC address,
restoring 174
I - n n n n n n n I n d e x - 5

P

PbSetUp.txt file 111

PBuilder

linking the application 112

PBuilder utility

described 108

sample applications 123

PBuilder,running 109

pci.c file 28

pci.h public header file 29

phrase dictionaries and compression

example 121

platform 21

platforms supported by NET+OS 16

porting pre-NETOS 7.x PPP
applications 130

POST, modifying 33

power cycling a module, LEDs and 173

Power On Self Test (POST) 18, 19

PPP applications

adding a route 130

adding PAP user/password 130

checking link status 131

closing interface 133

creating interface 131

deleting a route 130

dial string settings 135

getting peer assigned local
address 132

initializing serial port
configuration 134

setting authentication and
compression 133

setting the ring count 134

prefetch abort 172

private structures and routines 109

R
RAM image and bootloader utility 40

read function 153

recvfrom function 126

reserializing a module 173

restoring the contents of flash
memory 176

return values for NET+OS DDI
functions 165

ROM image and bootloader utility 40

rom.bin, sending to module 178

RpFormInput tag 116

RpFormSingleSelect tag 117

RpFormTextAreaBuf tag 116

RpPages.c file 111

RpSingleSelectOption tag 117

RpUsrDct.txt file 111, 121

S
sample applications 112

naficgi 112, 123

nahttp_pd 112, 123

security 118

security realms, defined 112

security.c file 112, 123

semaphore timeout and MAW
module 119

sendto function 126

setting the GPIO configuration 25

setup functions 165

shouldDownloadImage routine 48, 53
I n d e x - 6 n n n n n n n

simpleSerial.c file 29

smidump.exe 5

software interrupt 173

spi_blmain.c file 48

spiboothdr.exe 5

structure of the library directory 95

supported platforms 16

T
TCP/IP stack, configuring 33

TFTP client and bootloader utility 47

ThreadX kernel

and NET+OS device drivers 167

tree structure

BSP 12

NET+OS 4

U
undefined interrupt 173

unexpected exceptions 172

User Datagram Protocol (UDP) stack and
bootloader utility 47

V
v.c file 111

W
Web content

maintaining and modifying 122

Web page

creating 113

file extensions 110

write function 153
I - n n n n n n n I n d e x - 7

I n d e x - 8 n n n n n n n

	NET+OS Introduction
	System components
	ThreadX RTOS kernel
	Advanced Web Server (AWS)
	Internet Address Manager (IAM)
	System requirements
	Working with NET+OS/Digi ESP
	NET+OS tree structure
	bin
	debugger_ files.
	Documentation
	gnusrc
	h
	lib
	mibcomp
	src
	utilities

	BSP Overview
	Overview
	What is the board support package (BSP)?
	BSP tree structure
	Top-level directory
	bootloader subdirectory
	devices directory
	platforms directory

	Platforms
	Initialization
	Initializing hardware
	Initialization sequence for ARM7 platforms
	Initialization sequence for ARM9 platforms

	Creating a New Platform
	Overview
	Creating a new platform
	Step 1: Create a new platform directory
	Step 2: Copy a similar platform into the new directory
	Step 3: Copy a similar JLINK file to your platform
	Step 4: Create a custom platform BSP_BOARD type
	Step 5: Add your platform to naPlatformCodeTable
	Step 6: Rebuild imagehdr utility

	Configuring a New Platform
	Overview
	Customizing the BSP for application hardware
	Task 1: Set the GPIO configuration
	Task 2: Modify the BSP to set up the required drivers
	Task 3: Modify the BSP configuration files
	Task 4: Modify the format of BSP arguments in NVRAM
	Task 5: Modify error and exception handlers
	Task 6: Modify the startup dialog
	Task 7: Modify the POST

	Other BSP customizing
	BSP_NVRAM_DRIVER
	TCP/IP stack
	File system

	Customizing the Bootloader
	Overview
	Bootloader application images
	ROM image
	RAM image

	Application image structure
	Application image header

	Generating an image
	Configuration file
	General bootloader limitations

	Customizing the bootloader utility
	Customization hooks

	Bringing Up New Hardware
	Verify the debugger initialization files
	Using the MAJIC/MAJICO probe
	Debug the initialization code
	Preparing to debug the initialization code
	Debugging the initialization code on ARM7 platforms
	Debug the INIT.s file
	Debug the ncc_init routine
	Debug the NABoardInit routine
	Debug the Ethernet driver startup
	Debugging the initialization code on ARM9 platforms
	Debug the init.arm file
	Debug the nccInit routine
	Debug the NABoardInit routine
	Debug the Ethernet driver startup

	Memory Map
	Memory aliasing (ARM7)
	Memory map (ARM9)

	Adding Flash
	Overview
	Supported flash memory parts
	Flash table data structure
	Supporting larger flash

	Hardware Dependencies for ARM7-based Modules
	Overview
	DMA channels
	Serial ports
	Software watchdog
	Endianness
	System timers
	Interrupts
	RS-232-style communications

	Hardware Dependencies for ARM9-based Modules
	Overview
	DMA channels on the NS9750 and NS9360 Processors
	DMA Channels on the NS9210 and NS9215 Processors
	Endianness
	General purpose timers
	System timers
	All other general purpose timers

	Interrupts
	System clock

	NET+OS Makefile System
	Overview
	Makefile hierarchy
	Building all libraries
	Building individual libraries
	Library directory structure
	Library Makefile variables
	Adding new libraries to the system
	Cleaning libraries

	Bootloader Makefile
	Example: using the Makefile

	Application Makefile
	Building applications
	Application Makefiles
	Definitions of the Makefile
	Makefile hierarchy
	Makefile targets
	Building an application
	Creating .gdbinit files for your debugger
	Cleaning an application
	Porting an application to a new platform

	Using the Advanced Web Server Utility
	Overview
	The PBuilder utility
	Comment tags
	About the Advanced Web Server Toolkit documentation

	Running the PBuilder utility
	Linking the application with the PBuilder output files
	security.c file
	cgi.c and file.c files

	Creating Web pages
	AWS custom variables
	Data types
	Displaying variables
	Changing variables
	Security
	Exceptional cases

	Controlling the MAW module
	Setting the semaphore timeout
	Array subscripts
	Error handling
	Phrase dictionaries and compression

	Maintaining and modifying Web content
	Sample applications

	Porting NET+OS v6.x Applications to NET+OS v7.x
	Changes to the flash driver
	IAM and ACE
	Changes to the sockets API
	Changes to SNMP
	netos/src/bsp/customize directory
	Changes to Makefile variables and defines
	Automatic RAM sizing
	Porting pre-NETOS 7.x PPP applications
	Adding a route
	Deleting a route
	Adding PAP user/password or adding CHAP ID and secret key pair
	Checking link status
	Creating the interface
	Getting the peer assigned local address
	Closing the interface
	Setting authentication and compression
	Initializing serial port configuration
	Setting the ring count
	Dial string settings

	Processor Modes and Exceptions
	Overview
	Vector table
	IRQ handler
	Servicing AHB interrupts in ARM9 based NET+ARM processor
	Servicing Bbus interrupts in ARM9 based NET+ARM processor

	Changing interrupt priority
	Interrupt service routines
	Installing an ISR
	Disabling and removing an ISR

	ARM9 FIQ handlers
	ARM7 FIQ handlers

	Device Drivers
	Overview
	Adding devices
	deviceInfo structure
	Device driver functions

	Return values
	Modifications to Cygwin’s standard C library and startup file
	Modifying the libc.a library and crt0.o startup file
	NET+OS device drivers
	Device driver interface

	Troubleshooting
	Diagnosing errors
	Diagnosing a fatal error
	Diagnosing an unexpected exception

	Reserializing a module
	Observing the LEDs
	Assigning a MAC address to the module

	Restoring the contents of flash memory
	Step 1: Configure the module and the debugger
	Step 2: Building the bootloader
	Step 3: Building the application image and starting naftpapp
	Step 4: Sending rom.bin to the module
	Step 5: Verifying the boot ROM image on the module
	Step 6: Verify the contents of flash

	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

