®
D /(e])
Forth-Systeme GmbH Sistemas Embebidos S.A.
A Digi International Company A Digi International Company

LxNETES™ User’s Guide
UNC90

Seamless migr ionjto total integration.

© Digi International Inc. 2005. All Rights Reserved.

The Digi logo is a registered trademarks of Digi International, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

Information in this document is subject to change without notice and does not represent a commitment on the part of Digi
International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties of fithess or merchantability for a particular purpose. Digi may make improvements and/or changes in this
manual or in the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes may be incorporated in new editions of the publication.

Contents

Chapter 1 INtroduCtion...........cceccveeiieeiiecie e 9
OVBIVIBIV ...ttt sttt e bttt s ae e besbe et e e seesbeenbesneenbeeneesneenseannens 9
Cross-devel opment ENVIFONMENTccvreeieriieiiee e 9
LinUX KEIMEl SOUICES.......ccuiiuiriiiiieieiesie et 10
TeMPIALE PrOJECE ...ttt 10
Example appliCatioNS........cooeeieriieereee e 10
FEALUIES.....ce et n e e e ne e nr e 11
What' SNew IN LXNETES 3.27ooiieeeeeeee et 11
LINUX KEIMNEL ...t st s 11
BOOUOAOE ... e 11

TOOI CNEAIN ...ttt sre e 11
GENEIaAl TEALUINES......c.eieieie ettt st b e e 11
Conventionsused in thiSManualccoceieriiininenen s 13
Acronyms and abDDreVialioNScceeieriineerene e e 14
Chapter 2 ReqUITEMENESceeiieeiee e estee s s 15
System Requirements/Prer€qUISITES........oovi e 15
SYSLEM FEQUITEMIENES.....cueeieeeie et etesiee e ee e ste e ee e te e s e esaeeneesreesesnaens 15
D1 S 0= o= 16
APPHCAIONS & SEIVICEScouviiieiieie sttt st 17
TFTP ABEMON ...t st sr s 17
NS SEIVEL ... nn e 18
JTAG-BOOSIENeiiiieieeeeeiee ettt ettt st e s e e e sbe e e e e e sne e sareesneeenne 19
Chapter 3 Getting Startedcccveeeeiiiiienieeree e 21
(0o [F o 1 o o FO TSP UPRN 21
Connecting host PC with development board............ccccoevviienieevv e 21
Step 1: CONNECE SENTal POIT.......eieeeeieieree e 21

Step 2: Connect Ethernet interface ... 21

Step 3: Configureterminal Client..........coovecevceececere e 21
1Yo o o SRR 22
SEYON ettt h et ae et e be e eaee e Reeaneeebe e snee e reennnan 22
SIEP 4 CONNECE POWEN ...t eiee et sae e s sre e eanes 23

Step 5: Test Ethernet configurationcoccoeceecereenenceseesesee e 24
INSLAIlING LXNETES ...ttt s 25

GUIAE INSEAHELION.....c et e e e e et e e e e e e e e e e e eeeereeeeenaaaans 26

MaANUBL INSEAHBLION ...t e e e e e e e e e e e e e e e eeeeeeens 27

Chapter 4 Building the First Project.........cccooveveiciniinneecec e 29
Building the Default ProjECEccevieiieesie et 29
SteP 1: RUN CONFIQUIE ...t 29
EXAMPIE. e e 29

SEEP 2: RUN MEKE......c.eiceieeieeieeie e eestee e e e ae et ee e nreeneas 30

Step 3: RUNMEKE INSEall ... 30
Chapter 5 Application Development..........cccceeveevieeecieesiee e 31
WIItING APPIICALTONS.coeieiiecieeie et 31
Adding your own appliCationS..........ccceceereereerieeiese e 31
EXAMPIE e 31

L0 LS o [0 USRS 32
Included example apPliCatioNSccveeerereere e 32

(0 Ko = Y S 32
Debugging apPliCaLIONSooueeiirieiieieee e 34
Included pre-built @pPliCaLIONS..........ccceveerece e 36
Shell applications: DUSYDOXcccoieiiiieiieerece e 36
Telnet daemon: ULEINELcoooiieieieee e 36
WED SEIVEN: BOG ...ttt et 36
Debug Server: gaDSEIVEScooeeeceeeeee s 36
NaNO-X/MICTOWINAOWS.......ccueiiiriiesieeie ettt sae e 37
Embedded QUcovieeeeee e e 37
USEfUl @PPIICALIONSceeeiveeieceecie ettt esreenneeneens 38
101 0 USRS TRFTOTRFRPRI 38
Chapter 6 Kernel Development...........cocoveeieiiiennen e 39
Writing Kernel MOAUIESc.ooeiiieieeee e e e 39
What isakernel MOdUIE? ..o s 39
Writing your own Kernel MOdUIES..........ooveiviiiiiiiee e 39
Add YOUr SOUICE FIIES.......eieieiiee et 39
Add the module to the build environment ... 40
Building and loading of kernel modules............ccocoieeiiiininnenenee e 40
Included Kernel MOAUIES..........covoiiriiiieee s 40
MINIME] L.t b e bt e et b 40
Chapter 7 Advanced TOPICS......ccccveierrieeiieseeesieesseesree e see e e 41
Modifying the default ProJECEcov e 41
Building @ CUSIOM PrOJECT......ccueiiiieecieeie et e 43
BOOL PrOCESS.......eeiiiiii ettt e s e st e s nsne e sneeesnneena 44

6 LXNETES User’s Guide

U-BOOL ...t n e ne e e 44
UNGCOD .ottt et e s e e e nae e e e ba e e sne e e sbe e e snree s 45
LinuxX BOOt MELNOUS ..o 45
TRTPINFS. ..o et 46
NAND-FIASN ... 46
NOR FASH ...t 47

U S B ettt bt a et b bbb 47
LiNUX DOOL PIOCESS......eetiiiieiieeieeie sttt sttt sttt sbe et st be e sbe e sreenae e 438
Passing argumentsto the Kernel ... 50
Automating the image download............ccccveeerieiene e 50
Updating the Flash Memory ... e 50
Updating arunning system (the easy Way)ccccceveerenieneeie s 51
Updating arunning system manuallyccccceeceveiieneeinseese e 51
Step 1: Download the new image fileto RAMccocvevirienienece 52

Step 2: Erasethe Flash partitionccccvvevieniene e 52

Step 3: Writetheimageto Flash.........ccoocv e 52
UNCO0 ...ttt a et st tenaeebenreeneeneens 53
U-BOOL ...t 53

KBINEL ... e 53

ROOL FIlE SYSIEM.....ooiieeee e 53
Updating a corrupted system using 2 debUgQErccoeverereereeieeseenieseeseeneesneens 54
UNGCO0 ...ttt e bbb 54
Chapter 8 RO0Ot File System TYPES.......ccceeveeereese s see e 55
I L {0 SR 55
Step 1. Set bootargsto be passed to the kernelccooeveeieeieiiecce 56

Step 2: Download the kernel to RAM VIaTFTPoovevvecieiece e 56

Step 3: Launch the kernel from RAMcooiieiiiineeeeee e 56

JEES2 .. ree e 57
Step 1: Set bootargs to be passed to the kernelccooevvevveececcecee 58

Step 2: Copy the kernel t0 RAM ... 58

Step 3: Launch the kernel from RAMcoovieiinieeeeeee e 58
Chapter 9 Interfaces & DeVICES........ccoeviiirir e 61
SENTAl INLEITACE ... it 61
USB NOSE INTEITACE.......eitiiiiriieee e e 62

D O T 1= g r=or SR 62

S I 1011 = oL TR TRURRRRRRT 62

TOUCH SCIreen INEITACE........cceeceee e 62
Compact flash INtErfaCecoveriii e 62
UNGCO0.... ettt bbbt 62

S D o= 0 N 011 = o S 63
Real time ClOCK (RTC) ..o e e 63
How to set theinitial system date and time..........ccccvevveeeveeveece e 63

[O T = ot S 64
APPENAIX A e re e 65
Related dOCUMENTALIONccuoiiiiiiieeie e 65
(O 0] 1 (= | £ 65
S0 10101 A 66
REINOIES.EXE ... e e b anes 66

1 = S SR 66

0 [0: S 66
101726 TRRT PRSPPI 66
UNGCO0.... ettt sttt ettt et e sre s se e e s e s e nteneeene e 67
=0 V7 67
TN =S S 67

S (] o TSP PRR TR 67

8]0 == 1 0 RSP TRPOTRPPR 67

L L =0 | SR 68
MEMOTY TEYOULS......coiiriieieeieeie ettt b e e bt e sseesreenneenee s 68
Flash memory [aY0ULcccooieiiee e 68
UNGCO0..... ettt ettt ettt esae s e e e e s e neeneenne e 68
SDRAM MEMOIY [@YOUL........coiueiiiieieieeie et 68
UNCO0.... ettt bbbttt e e ne b 69
APPENAIX B ..o e 71
U-B00t COMMEANA FEFEIENCE.cceeiieeie et eneens 71
USEY KBYS ettt sttt b et esae e re et nneen 75

8 LXNETES User’s Guide

Introduction

| ntroduction

C HAPTEIR 1

Overview

The LXNETES package enables you to easily develop software under Linux 2.6 for Digi
International and FS Forth-Systeme embedded modules supported in this rel ease of
LXNETES.

This document assumes that you have basic knowledge of Linux. In addition, it is
recommended that you have experience with compiling a standard Linux kernel on your
host PC. If you are new to Linux, the following books are recommended for resources:

1)) Linux Device Drivers, 3rd Edition, by J. Corbet, A. Rubini, and G. Kroah-Hartman,
ISBN 0-596-00590-3

2.) Debian Reference
http://www.debian.org/doc/manual s/reference/reference.en.html

The following sections explain the several parts that compose the LXNETES package.

Cross-development environment

Whenever you need to generate code for an embedded target on a development system
with a different microprocessor architecture, you need a cross-devel opment environment.
That is, you need a compiler that executesin your devel opment system (for example a x86
PC) but generates code that executes in a different processor (for example your target is
NET+ARM).

LXNETES provides the GNU cross-devel opment tool chain for NET+ARM, ARM, and
X-Scal e, which contains the compiler, linker, assembler, and shared libraries needed to
generate software for the supported platforms.

Overview

Linux kernel sources

The LXNETES package contains the complete source code of the Linux kernel. This
allows you to configure, modify, and create a custom kernel to your specific embedded
system’s needs. Although the kernel sources are the official distribution, some
maodifications have been made to adapt the sources to the supported platforms.

Template project

The philosophy of work in LXNETES environment is linked to the idea of ‘projects’. A
project is actually afolder which contains the custom system for a specific target. This
folder will contain:

m The specific kernel configuration
m Theroot file system, directory structure, and files
m The applications compiled

With one simple command, the compilation process takes care of compiling the kernel,
the applications, generating the target’s file system, and compressing into the final binary
images. The compilation process take place within the project folder with normal user
permissions.

Example applications

As part of the project template, several example applications are included with complete
source code. These examples can be used as templates for your future software
applications. They are distributed in an environment that allows you to compile them for
either of the following systems:

m Thetarget development system (default)
m Thetarget development system with debug information

10 LXNETES User’s Guide

Features

Introduction

What'snew in LXNETES 3.27

Linux Kernel

n Linux Kerndl 2.6.12.5

m Build process based on autoconf

Bootloader

n New U-Boot boot |oader, based on version 1.1.3

Tool chain

[gce-3.4.4 cross compiler for NET+ARM, ARM, and X Scale processors

& For existing LXNETES customers: LXNETES 3.2 uses a different uClibc than
previous versions of LXNETES which is not backwards compatible.
Applications built with old uClibc cannot be used in the new environment;
they have to be rebuilt.

General features

With LXNETES you receive a Development Kit and BSP with the following features:

m Support for Linux kernel 2.6
= Support for the following NET+ARM, ARM, and Intel X-Scale processors:

NetSilicon: NS9750, NS9360
Samsung: S3C2440, S3C2410
Intel: PXA270

Atmel: AT91RM 9200

m Driversfor the following module components and interfaces:

SDRAM memory

11

Features

12

— Flash memory

— Ethernet

— USB Host

- Seid

- l2C

- RTC

- GPIO

— Watchdog

— LCD Framebuffer

— Compact Flash Cards
— SD Cards

- PCl

- SP

— Touch Screen

— User Buttonsif available

U-Boot universal bootloader, capable of booting Linux and other operating
systems from Ethernet, Flash memory and USB.

C and C++ support for application development

gce-3.4.4 cross compiler for Net+ARM, ARM, and X Scale processors
uClibc 0.9.27 for user applications

Pre-built Busybox and other applications

Telnet daemon utelnetd

Web server BOA

Nano-X and QT embedded sample projects

Shared library support

Proj ect-oriented workflow —kernel configuration and rootfs setup are separated
from kernel sources, tool chain sources, thus making it possible to maintain the
project in arevision control system.

Autoconf driven build process

All building can be done without root access

LXNETES User’s Guide

Introduction

n This LXNETES version can coexist with older installations of LXNETES

Conventions used in this manual

Thefollowing isalist of the typographical conventions used in this manual:

Style

Style

Style

(1]

Used for file and directory names, programs and command names,
command-line options, URL, and new terms.

Used in examples to show the contents of files, the output from
commands or in the text the C code.

Used in examples to show the text that should be typed literally by the
user.

This prompt indicates that the listed commands have to be executed as
aroot.

This prompt indicates that listed commands have to be executed as a
normal user.

Used to indicate an item of the reference section.

This manual also uses these frames and symbols:

& This is a warning. It helps you to solve or to avoid common mistakes or

problems.

Q This is a tip. It contains useful information about a topic.

$ This is a host computer session
£ S And this is what you must input (in bold)

%/

This is a target session
And this is what you must input (in bold)

13

Features

Acronyms and abbreviations

CGl
CRAMFS
DHCP
GDB
GPIO
INITRD
IP
JFFS(2)
JTAG
MMU
NFS
ROMFS
ROOTFS
RTC
TFTP
usB

14

Common Gateway Interface
Compressed ROM File system
Dynamic Host Configuration Protocol (RFC 2131)
GNU debugger

General Purpose Input/Output

Initial Ram Disk

Internet Protocol

Journaling Flash File System (version 2)
Joint Test Action Group (IEEE 1149.1)
Memory Management Unit

Network File System

ROM File System

Root File System

Rea Time Clock

Trivia File Transfer Protocol

Universa Serial Bus

LXNETES User’s Guide

Requirements

Requirements

C HAPTEWR 2

System Requirements/Prerequisites

System requirements

Your development system should be a reasonably fast x86-based host PC with an Ethernet
interface, aseria port, and aparallel port.

Different Linux distributions such as SUSE, Debian, or RedHat can be used for the
development. This documentation is based on the Debian Linux distribution; however,
other distributions with minor changes in the settings can aso be used. Please refer to the
manuals of your Linux distribution if settings are not working as described in this
document.

Thefollowing softwareisrequired on your development system:

GNU Cllibrary glibc 2.3

GNU C compiler gcc >= 2.95.3 (3.3 or higher recommended)
GNU make version >= 3.80

awk

perl >=5.6.0

autoconf >=2.59

Terminal client software (such as Minicom or Seyon)

TFTP daemon

NFS daemon

rsync

15

System Requirements/Prerequisites

m DOSor DOS-emulator (such as dosemu)
Optional but recommended components:
= Qt3 development tools

For using LXNETES, arecent Linux distribution based on GNU C Library glibc version
2.3 (afreeimplementation of the Standard C Library) is needed. To find out which glibc
versionisinstalled on your system use the following commands:

1ldd --version
ls -1 /lib/libc*so

Uy Ur

Please make sure that you use GNU M ake version 3.80 or later. Check yours with the
following command:

S make -v

Check the versions of required applications with these commands:

S gcc --version
% S perl -v
e $ autoconf --version
Disk space

The LXNETES installation needs 400 MB of free disk space. Every project you create
needs another 100 M B free disk space. The LXNETES installation and the projects can be
located on different hard disks.
Check if there is enough space available on your drive by executing the following
command:

% $ df -h

16

The* df” command displays the amount of disk space available. The option h displaysthe
space. For detailed information read the man page of “df”.

LXNETES User’s Guide

Requirements

Applications & Services

TFTP daemon

4&3!!

4&3!!

To use this software, your system has to be configured to build a standard Linux 2.6. If
you can build akernel for your development platform, you can be sure that all the
necessary software isinstalled.

Depending on the network services used during the development, additional daemons may
have to beinstalled.

U-Boot is able to write files to the Flash memory of the module. A TFTP server is
required to transport these files from your host computer to the target. Debian users can
execute the following command to install a TFTP server:

apt-get install tftpd
After completing installation, create a directory using the path “/tftboot” where exported
files are located. Your images can be placed in the directory automatically by the
LXNETES build environment. You must be root to create this directory.

mkdir /tftpboot

chmod 1777 /tftpboot

To make sure that your TFTP server is using the “/tftpboot” directory, check the Internet
daemons configuration file "/etc/inetd.conf". It should contain an entry similar to the
following:

tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd -s /tftpboot

If the entry is not there, use an editor and change the file accordingly.

17

System Requirements/Prerequisites

NFS server

18

4&3!!

Use the network file system (NFS) to simplify application debugging on the target. NFS
allows your target to mount its root file system with read/write permissions from the host
computer over Ethernet. NFS also allows you to access the file system from the target and
from the host computer the same time.

The NFS server configuration details are beyond the scope of this User's Manual and are
very specific to the various distributions. This manual only describes the modifications
necessary on hosts running a Debian distribution. Please refer to your Linux distribution
manual to setup a NFS server if you are using a different distribution.

When the NFS server package (Debian package nfs-kernel-server) isinstalled on Debian,
thereis afile"/etc/exports' that contains information on exported directories and its
access rights. Add the following line to thisfile to provide read/write access for your
target:

BOOTDIR IP ADDRESS (rw,all squash,async)

BOOTDIR needs to be replaced with the path to the NFS root directory which is exported
to the target. The IP_ADDRESS needs to be replaced with the | P address of your target.

Please refer to the Linux man pages for detailed information about the /etc/exports file.
The build process copies the NFS root to /export/nfsroot-<platformname>; e.g. to export
the rootfs for cc9p9750, write the following to /etc/exports:

/exports/nfsroot-cc9p9750dev 192.168.42.10(rw,all squash,async)

For simplicity’s sake you can export the whole /exports dir for a complete subnet, e.g.:

/exports 192.168.42.0/24 (rw,all squash,async)

LXNETES User’s Guide

Requirements

After modifying the exportsfile, the NFS server has to be restarted with the following
command:

% # /etc/init.d/nfs-kernel-server restart
&5

JTAG-Booster

The JTAG-Booster software for hardware Flash updates is a DOS application. It must be
installed on anative DOS/ Windows host or avirtual machine like "dosemu" under
Linux.

Execute "dosemu” as root to gain full hardware access. The configuration file of dosemu
needs the entry:

Q!‘

$ ports = "fast range 0x378 0x37a fast range 0x3f8 0x3ff range 0x778 0x77a”

To install the JTAG-Booster software, copy the directory "hardware" from the CD to any
directory on the hard disk. This directory may aso contain afile "Readme.txt" with the
latest instructions. Ensure that the parallel port is accessible for the application. If you are
using Microsoft Windows NT, 2000, or XP, you haveto install the "Kithara DOS Enabler"
which is shipped on the LXNETES CD. A detailed manual can be found on the CD in the
folder "hardware".

19

20 ssssswss LXNETES User’s Guide

Getting Started

Getting Sarted

C HAPTER 3

I ntroduction

This chapter describes how to configure and test your host PC and devel opment board
(target) and how to start up the device for the very first time.

Connecting host PC with development board

Step 1: Connect serial port

Connect the host PC to the development board (target) using a serial null-modem cable.
The serial connection is used to interact with the target device.

Step 2: Connect Ethernet interface

The Ethernet connection can be established by connecting a crossover cable directly to the
development board’s Ethernet port and your host PC. Alternatively, if you already have a
running network configuration, you can connect the development board to your hub or
switch.

Step 3: Configure terminal client

Configure aterminal client to view the serial console output the target prints on the serial
interface. Minicom or Seyon are the most usual applications. Configure the serial
parameters for 38400 baud, no parity, 8 data bits, and 1 stop bit.

21

Introduction

To use aterminal client as non-root user, either you need read/write access to
/dev/ttyS<n> or the client has to be setuid root.

Q Unless otherwise stated, it is assumed your target is connected to the first serial
port (COM 1, ttySO0) of your host. If you use another port, change the “ttyS<n>"
to the appropriate number.

Minicom

To configure minicom, start it as root by entering:

minicom -s
i=
o

Go to “Serial port setup” and change the values to your environment.

A- Serial Device Fdev/ttyS0
B - Lockfile Location Fuarflock
C - Callin Program

D - Callout Program

5= Bps/Par/Bits 38400 81
F - Harduare Flow Control I Mo

G - Software Flow Control @ Mo

Change which setting? ||

Figure 3-4: Minicom settings

Next time start minicom as a standard user with:

% S minicom
£

Start Seyon as a standard user by entering:

% $ seyon -modems /dev/ttySO0
L

Go to “Seyon Command” window and press “Set”. In the “ Settings” window you can
adjust the settings.

22 LXNETES User’s Guide

Getting Started

> " Settings & L&T.vl‘gilei xﬂ
[5trip 8th || Bs—orEL | e
[onorr [crserts | T

[1dleGuard || Baud][Bits | ||[1o2m0][EE
| Parity ||St0p Bits || Common |
| Hewline || Port |

Figure 3-2: Seyon Settings

Step 4: Connect power

Connect the included power supply to the development board. After power-on, the LEDs
on the board will light up and 2-4 seconds later the system will print boot messages on the
console. After 20-25 seconds, the boot loader has unpacked and launched the pre-installed
Linux kernel from the built-in Flash memory.

You will see output on the terminal client similar to the output below.

23

Introduction

24

3
'?R;:L

U-Boot 1.1.3

U-Boot code: 20F00000 -> 20F1529C BSS: -> 20F19A80
RAM Configuration:

Bank #0: 20000000 32 MB

AM29LV128M (16MB)

Flash: 16 MB

In: serial
out: serial
Err: serial

Hit any key to stop autoboot: 0
Booting image at 20100000 ...

Image Name: Linux-2.6.12

Created: 2005-06-17 11:29:13 UTC

Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2478816 Bytes = 2.4 MB

Load Address: 20008000

Entry Point: 20008000

Verifying Checksum ... OK
OK

Starting kernel ...

Linux version 2.6.12 (root@lxnetes) (gcc driver version 3.4.4 executing gcc version 3.4.4
CPU: ARM920Tid(wb) [41129200] revision 0 (ARMv4T)

CPUO: D VIVT write-back cache

CPUO: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

CPUO: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

Machine: ATMEL AT91RM9200

Memory policy: ECC disabled, Data cache writeback

BusyBox v1.00 Built-in shell (ash)
Enter 'help' for a list of built-in commands.

After Linux started successfully, you can enter commands such as"Is", "cd", or "cat"on
the shell.

Step 5: Test Ethernet configuration

The target uses adefault | P address on the 192.168.42.x network. We recommend
configuring a network separate from your company network which is dedicated to the
LXNETES development. You can do this by adding and configuring an additional network
card to use an | P address from the 192.168.42.0 subnet, e.g. 192.168.42.1.

LXNETES User’s Guide

Getting Started

The target network parameters can be changed in U-Boot using the "setenv" command.
You can see the IP address of the target by issuing this command:

ifconfig ethO
Link encap:Ethernet HWaddr 12:34:56:78:9A:BC
inet addr:192.168.42.10 Bcast:192.168.42.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3453 errors:0 dropped:0 overruns:0 frame:0
TX packets:62 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:399740 (390.3 KiB) TX bytes:6726 (6.5 KiB)
Interrupt:24 Base address:0xc000

In this example, the target device has been given an | P address of 192.168.42.10. You can
test the proper functioning of the network by doing a ping to your host machine (Ctrl+C to
stop).

ping 192.168.42.1

PING 192.168.42.1 (192.168.42.1): 56 data bytes

64 bytes from 192.168.42.1: icmp seq=0 ttl=64 time=10.6 ms
64 bytes from 192.168.42.1: icmp seqg=1 ttl=64 time=0.8 ms

64 bytes from 192.168.42.1: icmp seg=2 ttl=64 time=0.8 ms

64 bytes from 192.168.42.1: icmp seqg=3 ttl=64 time=0.9 ms

--- 192.168.42.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.8/3.2/10.6 ms

Installing LXNETES

P

An installation script on the CD will do the installation automatically. However, there are
some things the script cannot do such as setting up your DHCP or NFS server.

To install LXNETES, you must mount the CD. Enter the following:

$ mount /media/cdrom

25

Guided Installation

Q The mount point of the CD drive depends on your distribution. SUSE e.g.
uses "/mnt/cdrom" as the default mount point. Check your "/etc/fstab" or ask
your Administrator to do this for you.

Guided Installation

After mounting the CD you are ready to run the installer. Use the following commands to
start (depending on your distribution’'s mount point):

% S /media/cdrom/install.sh
&

If the script detects a Perl/Tk installation, a graphical installer will start. If it does not
detect that Perl/Tk isinstalled, the installer will run on the console.

Select the directory where LXNETES should beinstalled. Click "Select” or typein the
path. If the directory doesn't exist, the installer will create it for you.

If you plan to be the only developer on your system it isagood ideato install LXNETES
to your home-directory. Otherwise you should use a global directory like "/usr/local”.

Q Write to directories like "/usr/local” by starting the installer as root..

After selecting the installation, click "INSTALL". If an error accurs (e.g. no permissions
to write to the directory) the progress bar will turn red and an error message will appear.

If your system isn't able to run the graphical installer, a shell-installer will run.
The Installer will ask for the directory LXNETES should be installed.

26 LXNETES User’s Guide

Getting Started

M anual Installation

Instead of using the installation script you can do the installation manually. Just copy the
directory "LXNETES" on the CDROM to a directory on your host PC.

27

28 sssmnas LXNETES User’s Guide

Building the First Project

Building the First Project

C H A P TER 4

Building the Default Project

Until now you have worked with the pre-loaded, default kernel image on the target. The
next step isto rebuild it on your development host PC to familiarize yourself with the
build process.

Step 1: Run configure

Start a new shell and change into your LXNETES installation directory.
Create a new directory underneath and change to that directory.

Then execute configure for your platform to configure your project.

Example:

.3 ~$ c¢d $HOME/LxNETES-3.2

E ~/LXNETES-3.2$ mkdir build

~/LxXNETES-3.2$ cd build
~/LXNETES-3.2/build$../configure
checking whether make sets $(MAKE) ... yes

This configures your project for the default platform. If you want to configure another
platform, you have to specify it as a parameter to the configure script, for example

L

‘i ~/LXNETES-3.2/build$../configure --enable-platform=cc9p9750dev
checking whether make sets $(MAKE) ... yes

The names for available platform:

n Unc90: unc90dev

29

Building the Default Project

Please check if the script used the correct platform and detected the right directory to
install the kernel and the nfsroot directory. If you used the suggested paths in the setup of
the TFTPD and NFS server, the output of configure should contain;

checking which directory to install bootfiles to... /tftpboot

checking which directory to install nfsroot to... /exports

If configure returns an error, you can provide the correct paths to use:

--enable-exportdir=/path/to/exportdir
--enable-tftpbootdir=/path/to/tftpbootdir

Step 2: Run make
After configure finished successfully, run make:

~/LxNETES-3.2/build$ make
SHIPPED linux/.config
MAKE ulImage

Thiswill build your first kernel image.

Step 3: Run make install

If the configure script was able to detect the directories for exporting aroot file system via
TFTP and NFS serving, add install to the make command to copy the output files from the
build process to the appropriate locations.

~/LxNETES-3.2/build$ make install

Q You need write permissions in the corresponding directories.

30 LXNETES User’s Guide

Application Development

Application Development

C H A P TER 5

Writing applications

The user applications are stored in subdirectory apps/ of the project folder.

The template project includes several demo applications for use as templates to begin
developing your own programs. They will automatically build and copy to the folder
“Jusr/bin/” of the target when building the system.

Adding your own applications

To add a new application, run the script bin/add_app with the name of the new
application as first parameter.

Example:

~/LxXNETES-3.2/build custom$ bin/add app customapp

This command creates a sample application named ‘ customapp’ in the folder apps/
customapp in the source directory. Edit the file apps/customapp/customapp.c to insert
your application code.

To use more than one source file, just create the source files and modify Makefile.in to
include the files in the build process.

Onthenext call tomake install, the application isadded to your root file system.

31

Writing applications

Using C++

32

A sample C++ application “ hello_world” isincluded in “ apps/misc/src/hello_world” .

You can use this sample application as a template to develop your own C++ applications.

Just use add_app as above and adapt the Makefile.in according to hello_world_cpp/
Makefilein

Included example applications

There are several applications included in the project template with full source code:

display

Thisisasimple application that demonstrates the usage of the Common Gateway
Interface (CGI) to communicate data between the embedded web server (BOA) and a
target’s application.

Open aweb browser in your development PC and type the | P address of the target in the
address box to access the embedded web page of the target.

You may enter any filename on the text box and click the Display button. The filename
will be given to the application which will send the contents of the file to your browser:

LXNETES User’s Guide

Application Development

fproc/cpuinfo

Processor : ARM920Tid{wh) rev 0 {vdl)
BogoMIPS 1 79.25

Features : swp half thumb

CPU implementer : Ox41
CPVU architecture: 4T

CPU variant : Ox1

CPU part : Ox920

CPU revision a1}

Cache type : write-back

Cache clean 1 cplh o7 ops
Cache lockdown : format A

Cache format : Harrard

I =size 16384

I assocC : 64

I line length : 32

I sets HE -

I size : 16384

Ir assoc : 64

I line length 1 32

I sets HE

Hardware : ATMEL AT91BM9200
Rerision : 0000

Serial : 0000000000000000

Table 6-3: /proc/cpuinfo contents

33

Debugging applications

Debugging applications

e

4&]!!

34

The purpose of adebugger isto alow you to see what is going on his own programs while
they execute. For that purpose the GDB debugger is used by means of the gdbserver
application that runs on the target side and communicates with the host computer. This
communication can happen on the serial port or through Ethernet (the latter is preferred
for being much faster).

The use of the GDB debugger is out of the scope of this manual. You can get more
information about it in the standard GDB man pages.

In order to debug an application it has to be rebuilt with debug information. To do that,
enter the target binary build directory (e.g. "apps/mem™) and rebuild the application with
the following command:

~/LXNETES3.2$ rm apps/mem/*.o apps/mem/mem
~/LXNETES3.2$ make apps DEBUG=1 install

A binary mem will be created and copied to the rootfs. Restart the target with the new
rootfs.

Run the debug server on the target with the following commands:

#

gdbserver localhost:2001 /usr/bin/mem
Process /mem created; pid = 39
Listening on port 2001

Remote debugging from host 192.168.42.1

->

Port number 2001 was selected randomly.
Now start the debug client on the host and connect to the target with

~/LxXNETES3.2$../bin/arm-linux-gdb mem

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i386-pc-linux-gnu --target=arm-linux-
uclibc"

(gdb)

LXNETES User’s Guide

Application Development

In the debug interface type

(gdb) set architecture ARCHITECTURE
(gdb) set solib-absolute-prefix <INSTALL DIR>
(gdb) target remote TARGET.IP:2001

Uy Ur Ur

The supported architectures can be displayed with the following command:

S (gdb) set architecture
= Requires an argument. Valid arguments are arm, armv2, armv2a, armv3,
e armv3m, armv4, armv4t, armv5, armv5t, armv5te, xscale, ep9312, iwmmxt,
auto.

Choose the right architecture for your target.

o
Lo
N~
o
(]
Argument Nlo|F3 |9
O] |NN [a
o[X|O|lss |o
O|l0O|Z2|lo0oo |O
O|l0O(D|<< |O
armv4 X X
armvb5te X X
xscale X

Type"c" for continue.

You can now debug your application. Alternatively, you may try an external graphical
debugger like "ddd" or use "arm-linux-gdbtui" on the command line instead of
"arm-linux-gdb"”.

& When debugging with the BDI2000:

On the UNCBAS development board, insert a jumper to close pins 1-2 on connector J1,
to enable the JTAG interface

35

Debugging applications

Included pre-built applications

The sources for the included applications can be found in the software folder on the
LXNETES CD.

Shell applications: busybox

The * busybox” includes all standard shell applicationslike “ cat” , “ chmod”, * echo” ,

“mount” , “sh” and some more. They are linked into one static application to save flash

memory, at the cost of alarger RAM footprint for each application, so thisis not
recommended for daemons. LXNETES has stripped off the less important applicationsin
order to obtain a small busybox binary.

Telnet daemon: utelnetd

Utelnetd is a small telnet daemon. It islaunched by “init”. For login use the Telnet on our
host computer to connect to the target.

You don’'t need to provide username or password.

Web server: Boa

Boaisasmall single-tasking HTTP server. The configuration file “boa.conf” islocated in
the “/etc/boal” directory on the target. It can be modified on the host system. Thereit is
located in “base_rootfs/etc/boal” in the source directory.

Debug server: gdbserver

With gdbserver it is possible to debug on a remote machine while the debugger itself runs
on the host system.

36 LXNETES User’s Guide

Application Development

Nano-X/microwindows

Nano-X makesit possible to write applications using the framebuffer with an API similar
to Xlib. There are two demo applications. To use either you must start with the nano-X
server.

?Pﬁhj # nano-X &

and then the application.

?Pﬁhj # nanox bar &

& On targets with small flash, nano-X is disabled by default. You may pass
“--enable nano-X" to configure, despite the flash size, but you risk overwriting the
rootfs on the target.

For further details see http://www.microwindows.org/

Embedded Qt

Embedded Qt isa small variant from the Troll Tech Cross Platform GUI toolkit. A demo
isincluded. To start the demo enter the following:

}?ﬁh’ # qgthello -qws

& On targets with small flash, Qt is disabled by default. You may pass “--enable qt” to
configure, despite the flash size, but you risk overwriting the rootfs on the target.

For further information see http://www.trolltech.com/products/qt3/embedded/

37

Useful applications

Useful applications

mem
With this application you can read and write the contents of the SDRAM.

All the options of thistool are accessible through acommand line. Just typean 'h'tolist all
the available commands:

¥ # mem
Tl
&;l -> h

c <addr> [<len>]: Display char at

w <addr> [<len>]: Display word at

i <addr> [<len>]: Display int at

s <addr>: Display string at

B <addr> <val> [<len>]: Write byteval at addr
W <addr> <val> [<len>]: Write wordval at addr
I <addr> <val> [<len>]: Write intval at addr
/ <addr> <txt> [<len>]: Search string at

h :Display this help

g :Quit

-> b 0x31000000 32

0x31000000: Oxff Oxff Oxff Oxbf Oxfd 0x7d Oxbf 0xcd 0xf9 0xfb Oxfe O0xfb 0Oxff
0xfb Oxff O0xfb

0x31000010: Oxbf 0xd7 0xf5 Oxff Oxff Oxff 0xf7 Oxff Oxff Oxff Oxee Oxff 0x7f
0x7f Oxff 0xe7

->

38 LXNETES User’s Guide

Kernel Development

Kernel Development

C H A P TER 6

Writing kernel modules

What is a kernel module?

Modules are pieces of code that can beloaded and unloaded into the kernel upon demand. They are useful
because they extend the functionality of the kernel without the need to reboot the system.

A typica kernel module isthe device driver, which allows the kernel to access hardware connected to the
system. Without modules, you would have to build substantial kernels and add new functionality directly
into the kernel image. Besides having extensive kernels, you would be required to rebuild and reboot the
kernel for every new functionality.

Writing your own kernel modules

Some kernel modules are included as examples. They can be found in the modules/ subdirectory of the
project folder. Each kernel module must be stored in a different folder.

The easiest way to create your own kernel module is to clone one of the existing modules:

- ;EL ~/LXNETES3 .23 cd modules
Py
i ~/LXNETES3.2/modules$ cp -r minimal my kmodule

~/LxXNETES3.2/modules$ cd my kmodule

Add your sourcefiles

Add the sources for your kernel module directly to the new folder you’ ve just created, and remove the
original source files of the folder that you cloned.

39

Writing kernel modules

Add the module to the build environment

You have to edit "my_kmodule/Makefile.in" so that the build environment knows what files to build.

To include them for the target build, append them to obj-m like "obj-m += my_module.0". The modules
must be named like their C-source files. Usable object modules will have the extension ".ko".

Add your kernel modules here
¥ = obj-m += my module.o

Then you have to add the module to the list of available modules. Edit the configure.ac and modify the
line adding the module minimal to add your module to the list.

% LXNETES KMODULES ([minimal my kmodule])
v

Building and loading of kernel modules

For building the new kernel module, just rebuild your project by issuing make in the build directory.

If you reboot your target with the newly created rootfs (or if you mount your rootfs via nfs), The
modules can be loaded in the target with "modprobe my kmodule"

Thereis an example "minimal.c" for the most minimalist kernel module. Try it with
"modprobe/minimal "

}}fi\’b # modprobe /minimal

Minimal driver S$Revision: 1.1 $ loaded
cat /proc/modules

minimal 1536 0 - Live 0xbf000000
rmmod minimal

Minimal driver unloaded
cat /proc/modules

Included Kernel modules
minimal

Thisisaminimalist kernel module which actually does nothing. It is only a module to test the
functionality of the load and unload functions of the kernel.

40 LXNETES User’s Guide

Advanced Topics

Advanced Topics

C H A P TER 7

Modifying the default project

The following information is the default kernel configuration for LXNETES:
m serial baudrate 38400 bps

= Ethernet enabled

m usesdevfs per default

The default configuration is made up of 2 layers:

m Kernel command line parameters: set by U-Boot

m Kernel configuration: lowest priority

The kernel command line parameters can overwrite some configurations. However, if
thereisno boot |oader, the only way the kernel command line parameters can be entered is
by compiling them into the kernel.

Finally there are the EEPROM parameters which will override the kernel configurations.

For example, “Use DHCP” isdisabled in the default kernel configuration but enabled in
EEPROM (factory default).

To change the kernel configuration to the needs of your target system, enter the following
commands from the project build directory:

make xconfig

The menu-driven kernel configuration tool “ xconfig” is started. Here you can do your
changes.

41

Modifying the default project

Eile Option Help

il |l E
Option Option |
Code maturi'ty lewvel options L]

General setup
L. Configure standard kernel features (forj
- Loadable module support
- System Type
ATSIRMS200 Implementations
~.UNCS0 Base board
~General setup
{--PCCARD (PCMCIA/CardBus) support
Generic Driver Options
-.Parallel port support
--Memory Technology Devices (MTD)
-.Plug and Play support
-Block devices
L.10 Schedulers
- Multi-device support (RAID and LVM)
—-Networking support
- OJAmateur Radio support
OIrDA (infrared) subsystem support
OEluetooth subsystern support
- ATASATAPIMFM/RLL support
- 5C5] device support
-..Fusion MPT device support
IEEE 1354 (FireWire) support AT91RM9200 Implementations
-.120 device support
- |SON subsystemn
Input device support
-Hardware {0 ports
Character devices
- Serial drivers
1FMI
Watchdog Cards
Ftape, the floppy tape device driver
TPM devices
-.|12C support

Multimedia devices
i..Digital Video Broadcasting Devices |§|

Figure 8-1: Kernel configuration

--Select AT91RM9200-based board
Lot Atmel AT91RM9200-DK Development board
CAtmel AT91IRMSZ00-EK Evaluation Kit
2 Cogent CSB337 board
(3 Cogent CSB637 board
- @UNC90 module

Once you have configured the kernel to your system needs, save the configuration and
exit. To rebuild the kernel use one of the build commands seen before.

S make (to build the entire project)
$ make uImage (to build only the linux kernel)

42 sumnnnn LXNETES User’s Guide

Advanced Topics
Building a custom project

To create a custom project, that is a project for your custom hardware, first configure the
default project. Follow the steps described in "Building the Default Project” up to running
configure. Then run:

$ ~/LxXNETES-3.2/build$ bin/add platform -b cc9p9360dev custom
S checking whether make sets $(MAKE) ... yes
S

Q!

In this example, ConnectCore 9P 9360 dev modul e (cc9p9360dev) was used as the template
project. Substitute the platform that is most similar to the platform you intend to create.

Then create a new build directory and configure for your custom platform:

~/LxNETES-3.2/build$ cd ..
~/LxXNETES-3.2$ mkdir build custom
~/LxXNETES-3.2$ cd build custom

Q!

~/LxXNETES-3.2/build custom$../configure --enable-platform=custom

Check the detected settings are correct in the new run of configure.

Now you can reconfigure your custom kernel by running:

~/LxNETES-3.2/build custom$ make xconfig

Q!

You need QT installed to run make xconfig (Debian package libqt3-mt-dev). If you don't
have it, use menuconfig (requiring ncurses, Debian package libncurses5-dev).

>

You have to run make xconfig in the build directory. Running in other directories (e.g.
~/LXNETES-3.2/build_custom, ~/LXNETES-3.2/build_custom/linux, or ~/LXNETES-3.2/
linux) will fail.

>

You can build and install the project for the default platform after the previous steps are
complete.

43

Boot process

Boot process

Introduction

U-Boot

44

This chapter describes the boot process of U-Boot and Linux.

A boot loader is asmall piece of software that executes soon after powering up a
computer. On a desktop PC it resides on the master boot record (MBR) of the hard drive
and is executed after the PC BIOS performs various system initializations. The boot
loader then passes system information to the kernel and then executes the kernel. For
instance, the boot loader tells the kernel which hard drive partition to mount as root.

In an embedded system the role of the boot loader is more complicated since these
systems do not have a BIOS to perform the initial system configuration. The low level
initialization of the microprocessor, memory controllers and other board specific hardware
varies from board to board and CPU to CPU. These initializations must be performed
before a Linux kernel image can execute.

At aminimum, a boot loader for an embedded system performs the following functions:
m [nitidize the hardware, especially the memory controller.

m Provides boot parameters for the operating system image.

m Startsthe operating system image.

Additionally, most boot |oaders also provide convenient features that simplify
development and update of the firmware:

m Reading and writing arbitrary memory locations.
m Uploading new binary images to the board's RAM viaaserial line or Ethernet
m Copying binary images from RAM to Flash memory.

After power-up or reset the processor loads the U-Boot boot |oader. Thisis performed in
different steps and depends on the target.

LXNETES User’s Guide

UNC90

-
'P;-.ﬁ“___l‘_-.

Advanced Topics

On the UNC module, U-Boot is executed in NOR flash to initialize the RAM. After that
U-Boot is copied to RAM.

In the next step, U-Boot configures the serial console, the Ethernet interface and the Flash
memory and loads the settings stored as environment variables in the nonvolatile memory.

Then, it waits some seconds (programmable) before it loads and starts the operating
system image. You can stop the auto-boot process by sending a character to the seria port
(pressing a key on the serial console connected to the target). If stopped, U-Boot displays
acommand line console similar to this:

U-Boot 1.1.3 (Sep 15 2005 - 17:02:40) FS.1
CC9P9360 module on ASM9750DEV_1 development board
CPLD Version: 2.1

FPGA Version: 2.1

U-Boot code: 00080000 -> 000A6020 BSS: -> 000B8AOO
RAM Configuration:

Bank # 0: 00000000 32 MB

NAND: 32 MB

In: serial
out: serial
Err: serial

Hit any key to stop autoboot: 0
CC9P9360 #

Linux boot methods

Linux is booted by U-Boot in one of the following ways:
u TFTP/INFS

= Flash memory

m USB storage device (e.g. an USB memory stick)

45

Linux boot methods

TFTP/NFS

The following information describes each boot method.

With this method, the Linux kernel is downloaded through Ethernet via TFTP protocol
from the server's TFTP folder.

Use the "tftp" command from the U-Boot command line to copy akernel image from your
TFTP server to the target's RAM. Then use "bootm™ to execute it.

setenv bootargs console=...

ip=$ (ipaddr) : $ (serverip) : : $ (netmask) :2440:eth0:0ff root=nfs
nfsroot=$ (serverip) :$ (npath)

tftp <load addr> <kernel image>

bootm <load addr>

Q A faster way to do this is to use the "boot_net" macro, which loads a kernel image from your
TFTP server to the target's RAM and then connect to a root file system via NFS.

NAND-Flash

This method will load the Linux kernel and the root file system from NAND Flash.
Use the "nand read.jffs2" command to load the kernel from the NAND flash.
After copying the kernel image from NAND to flash you can run it with "bootm™.

» |

setenv bootargs console=...

ip=$ (ipaddr) :$ (serverip) : :$ (netmask) :2440:eth0:0ff root=/dev/mtdblock2
rootfstype=jffs2

nand read.jffs2s <load addr> <start flash> <kernel image size>

bootm <load addr>

Q A faster way to do this is to use the "boot_flash" macro.

46

LXNETES User’s Guide

NOR Flash

%ij-,

Advanced Topics

Use the following commands if you have NOR Flash (similar to booting from NAND).

setenv bootargs console=...

ip=$ (ipaddr) : $ (serverip) : : $ (netmask) :2440:eth0:0ff root=/dev/mtdblock2
rootfstype=jf£fs2

cp.b <start flash> <load addr> <kernel image size>

bootm <load addr>

Q A faster way to do this is to use the "boot_flash" macro.

uSB

)

%ij-,

)

It is possible to load a kernel image from a USB storage device. Copy the kernal to the
FAT partition of the USB device.

Copy the kernal to the USB stick.
The commands update_kernel_usb and guu are provided.

Enter the following to copy the kernel from the USB stick to the memory.

run guu

The image can now be executed with the bootm command.

Thereisaso amacro for boot_usb which does both steps. It is run boot_usb.
run boot usb

Update the kenel from the USB stick to the memory and write it to flash memory.
run update kernel usb

47

Linux boot process

Linux boot process

The command “bootm” uncompress the kernel and runs the function start_kernel(). Once
the kernel is started, several options are given to the kernel: machine type, command line
and ATAG list. The kernel itself does some basic initiaization;

[MMU

= Machine Type

= Interrupt Handler
m Timer

m Loading drivers

48 LXNETES User’s Guide

Advanced Topics

Uncompressing
: T o Y
}ﬁéfb done, booting the kernel.

Linux version 2.6.12.5-fs.1 (jdietsch@onyx.fsforth.de) (gcc version 3.4.4) #1
Mon Sep 19 17:30:44 CEST 2005

CPU: ARM926EJ-Sid (wb) [41069264] revision 4 (ARMV5TEJ)

CPUO: D VIVT write-back cache

CPUO: I cache: 8192 bytes, associativity 4, 32 byte lines, 64 sets
CPUO: D cache: 4096 bytes, associativity 4, 32 byte lines, 32 sets
Machine: A9M9360

Memory policy: ECC disabled, Data cache writeback

NS9360 Rev. 0, running at 176 MHz

Built 1 zonelists

Kernel command line: console=ttyS0,38400
1p=192.168.42.10:192.168.42.1:192.168.42.1:255.255.255.0:a9m9360:eth0:0ff
nfsroot=192.168.42.1:/exports/nfsroot-cc9p9360dev root=nfs

PID hash table entries: 256 (order: 8, 4096 bytes)

Console: colour dummy device 80x30

Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)
Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)
Memory: 32MB = 32MB total

Memory: 29756KB available (2097K code, 387K data, 104K init)
Mount -cache hash table entries: 512

CPU: Testing write buffer coherency: ok

NET: Registered protocol family 16

SCSI subsystem initialized

usbcore: registered new driver usbfs

Freeing init memory: 104K

Mounting kernel filesystems: proc sysfs /dev/pts.

Starting syslog daemon: syslogd.

Starting boa webserver: boa.

Starting telnet server: utelnetd.

BusyBox v1.00 (2005.09.05-08:11+0000) Built-in shell (ash)

Enter 'help' for a list of built-in commands.

/ #

49

Linux boot process

If awrong command line parameter for "console=" is used, nothing will be displayed after
"done, booting the kernel”. The system may continue to boot. You may connect to the
target by Telnet after telnetd is configured .

After finishing the initialization, the filesystems are mounted and the process "/sbin/init"
is started with process ID 0. Init runs all applications stated in "/etc/inittab", e.g. "/etc/
init.d/rcS", the various daemons like telnetd and shells on the serial consoles.

Passing argumentsto the kernel

?riﬁb

Depending on the kernel settings, additional command line arguments may be given to the
kernel. This can be modified by editing the std_bootarg environment variable. For
example, to enable a console on a different serial port than the standard one when Linux
boots, add ‘console=ttyS1":

setenv std bootarg console=ttySl
saveenv

Automating the image download

?riﬁb

0

It isalso possible to automate the boot process to always boot by network when the target
isreset. Adjust the environment variable "bootcmd” to contain the " run boottftp” script
seen before:

setenv bootcmd run boot net
saveenv

Don't forget "saveenv” to store your settings.

If you want to store a script with several commands into a variable, separate each
command with a semicolon prefixed with a "\" to prevent ending the setenv
command itself. (i.e. setenv MyCommand cmd1\;cmd2\;cmd3)

Updating the Flash memory

50

This chapter describes how you can update the U-Boot boot loader, the Linux kernel, and
the root file system in the Flash memory of the module.

It is strongly recommended that you test your images before updating the Flash memory
by downloading them over Ethernet using TFTP.

LXNETES User’s Guide

Advanced Topics

Updating a running system (the easy way)

A

)

}%-.\;;-,

On arunning system, that is a system able to start the boot loader, U-Boot contains pre-
defined macros that can update the on-module flash memory.

If the boot loader is corrupted, you have to first use a debugger to restore

the boot loader which then can be used to restore the remaining images.

Power up (or reset) the target. After 2-4 seconds, the boot loader messages appear on the
seria port. Hit any key to interrupt the auto-boot process. You can break into the U-Boot
command line interface by pressing any key.

There are 3 main flash partitions: U-Boot, kernel image, and aroot file system. To update
apartition using a TFTP server, run one or more of the following macros from the U-Boot
prompt:

H+ HF H

run
run
run

update uboot tftp
update kernel tftp
update rootfs tftp

You can also copy the images onto a vfat formatted usb-stick, connect it to the target, and
run one or more of these macros from the U-Boot prompt:

H+ H H

run
run
run

update uboot usb
update kernel usb
update rootfs usb

Updating a running system manually

Advanced users may want to have more control over the flash update process. In this case,
use the steps below to update an image on arunning system. It is presumed you are using
the memory layout as described in Appendix A of this document.

For more information about the use of U-Boot commands, refer Appendix A or
the related documentation in Appendix B.

51

Linux boot process

S

)

}};@J

S

52

Step 1: Download the new image file to RAM

Thefirst step is to download the image into RAM. Specify the start address, the end
address, and the size of the image in RAM, for example:

H+ FHF H FHF

mw.l <start address in RAM> <end address in RAM> <image size>
tftp <start address> <image name>

Filename <image name>.

Load address: <memory address>

Loading:

R
R

HUHHAFHAH A H A HAHHEH A H S H A S HEH A H S RS H
done

Step 2: Erase the Flash partition

The second step isto erase the Flash partition sectors. Specify the start address and the end
address of the range to be deleted.

For modules with NAND flash, use this command:

nand erase <start address in Flash> <size>

For modules with NOR flash, use this command:

erase <start address in Flash> <end address in Flash>

Step 3: Write the image to Flash

After theimage is downloaded into RAM and the flash erased, the new image can be
copied into Flash.

For modules with NAND flash, use this command:

nand write.jffs2 <start address in RAM> <start address in Flash> <image
size>

LXNETES User’s Guide

UNC90

Advanced Topics

For modules with NOR flash, use this command:

cp.b <start address in RAM> <start address in Flash> <image size>

The following commands are to update the U-Boot |oader, Kernel image, and Root file
system.

U-Boot

To update the U-Boot boot |oader, type:

tftp 20100000 <u-boot image>

protect off 1:0-3

erase 10000000 1003FFFF

cp.b 20100000 10000000 u-boot image size

reset

Kernel

To update the Linux kernel image, type:

tftp 20100000 <kernel image>
erase 10040000 1033ffff
cp.b 20100000 10040000 kernel image size

Root File System

To update the root file system, type:

tftp 20100000 <rootfs image>
erase 10340000 1063ffff
cp.b 20100000 10340000 rootfs image size

53

Updating a corrupted system using a debugger

Updating a corrupted system using a debugger

UNC90

54

If the flash is corrupted and the system cannot boot, then the flash must be reprogrammed
using the JTAG interface and a debugger such as the BDI2000.

Connect the JTAG adapter on the UNCBAS_3 base board, as described in the Hardware
Reference Manual for the UNC90.

The appropriate BD12000 config file must be used to flash the U-Boot boot loader. Itis
important that the Flash sectors be erased before they can be programmed.

After asuccessful programming of U-Boot, the kernel and the Root File System can be
updated (if they were corrupted, too) as described in 0.

LXNETES User’s Guide

NFSROOT

Root File System Types

Root File System Types

C H A P TER 8

The following describes the different possibilities which can be used as root file system.
The type of rootfs must be passed as an argument to kernel by means of the bootargs
environment variable of U-Boot.

The rootfs may be in a different computer on the network and not within the target. This
can be useful if, for example, aRAM disk istoo small to include all the necessary files, or
allow rapid turnaround during testing and development.

An NFSroot allows quick kernel downloads, helps ensure file system integrity (since the
server is basically impervious to crashes by the client), and provides virtualy infinite
storage.

During development it feel free to use an NFS directory as root file system. This avoids
unnecessary flash erases, which on a power failure will result in the need to re-program
the kernel into flash. It also increases the lifetime of the modul e because the flash has a
limited number of erase cycles. Initialization scripts may be quickly modified since a
failure will not result in an unusable system. Initialization scripts can be fixed on the host
then reset the target.

Theroot file system can be installed to "/exports/BOOTDIR" issuing this command in the
project directory

$

){J!‘

make install-nfsroot

To test the new image run the following command at the U-Boot prompt in your target:

55

56

run boot_net

This script does three steps (that you can also do manually):

Step 1: Set bootargs to be passed to the kernel

The environmental variable bootargs must be updated to tell Linux that the rootfsis taken
viaNFS. To manually do this enter the following commands (it is supposed that the
network variables serverip and nfspath have been aready set). The values for ip and
console have to be filled depending on the platform.

setenv bootargs nfsroot=$ (serverip) :$ (nfspath) root=nfs ip=... console=...
saveenv

Step 2: Download the kernel to RAM via TFTP

The following commands download the “ /tftpboot/ulmage-unc90” image to RAM
memory

tftp 20100000 uImage-unc90dev

Step 3: Launch the kernel from RAM

Now that the kernel image has been downloaded to RAM, we can execute Linux with the
following command

bootm 20100000

Remember that you must have the U-Boot network environment variables properly
configured (ipaddr, serverip,...).

LXNETES User’s Guide

JFFS2

Q!

Root File System Types

JFFSisalog-structured journaling flash file system which was designed to be used on
Flash devicesin embedded systems. It was originally developed for the 2.0 kernel by Axis
Communications. JFFS2 is an improved version of JFFS which includes compression and
improved read/write access.

Find more about JFFS2 at http://sourceware.org/jffs2

NAND chips are not guaranteed to be error free and most chips have bad blocks.
Therefore, U-Boot aswell as Linux has to know how to handle these bad blocks. Both use
JFFS2 for this purpose.

U-boot provides the commands "nand read.jffs2.s" and "nand write.jffs2". Both
commands are skipping bad blocks. Therefore, there must be some space left for reserve
blocks. In U-Boot you can run the "nand bad" command for a summary of known bad
blocks on the flash device.

In Linux a JFFS2 driver for NOR and NAND chips can be used.

If ajffs2 image should be copied to a partition it must be ensured that the image was
created with the correct erase size of the used chip. Otherwise Linux will print error
messages on the screen.

To reduce memory alocation Linux uses avirtual erase size if the physical erase size of
the chipisto small. A message like the one below may be printed on the console

jffs2: Erase block size too small (XXKiB. Using virtual blocks size (XXKiB)
instead

Another message which could be printed on the console is

Empty flash at O0xXXXXXXXX ends at 0xXXXXXXXXX

This message doesn't indicate a problem. Instead, itis printed if ablock of datais partially
written. These messages will disappear when the garbage collection restructures the
remaining space

57

58

jffs2 get inode nodes(): Data CRC failed on node at O0xXX XXXXXX: Read
O0XXXXXXXXX, calculated O0xXXXXXXXXX

The message above is printed if the file system was not cleanly unmounted. The system
should not be powered off before all partitions are unmounted. After a clean unmount, the
message should disappear.

Step 1: Set bootargs to be passed to the kernel

The environmental variable bootargs must be updated to tell Linux that the rootfsistaken
from Flash and it is stored in JFFS2 file system. Enter the following commands to
manually initate these commands:

setenv bootargs root=/dev/mtdblock3 rw rootfstype=jffs2 ip=... console=...
saveenv

Step 2: Copy the kernel to RAM

Depending on the flash type of your platform, use for NOR flash the following command
to copy the kernel from Flash to RAM memory:

cp.b <startaddr> <loadaddr> <image size>

For NAND flash use the following command:

nand read.jffs2s <loadaddr> <startaddr> <image size>

Step 3: Launch the kernel from RAM

Now that the kernel image has been copied to RAM, we can execute Linux with the
following command:

bootm <loadaddr>

LXNETES User’s Guide

Root File System Types

& You should use a separate data partition for your data which is frequently updated so
your rootfs does not get corrupted.

59

60 sssmnns LXNETES User’s Guide

Interfaces & Devices

| nterfaces & Devices

C HAPTEWR 9

The following interfaces and devices are supported in the current LXNETES version:

ad9m2410 a9m?2440 cc9c cc9p9360 cc9p9750 ccxp270 unc90

only available

Compact Flash X X X X X ONCBASCF
base board

Ethernet X X X X X X X

2C Interface X X X X X X X

LCD X X X X X

PCI n/a n/a n/a n/a X n‘a n/a

RTC X X X X X X

SD card X X n/a

Serial X X X X X X X

SPI X X X X

Touch screen X X X X

USB Host X X X X X X X

Refer to the documentation that came with the development board for the location of the
interfaces on the board as well as any board configuration required to enable these
interfaces.

Serial interface

A driver for the serid interfacesisincluded and enabled in the default kernel
configuration. Devices can be accessed via/dev/ttyS<n>.

61

USB host interface

A USB host driver isincluded and enabled in the default kernel configuration. To operate
multiple USB devices simultaneously, connect a USB hub to the USB host port.

A memory stick can be mounted as followed

lxmount usb
£ # 1ls -1 /media/usbdisk

|2C interface

SPI interface

LCD interface

A driver for the 12C interface isincluded and enabled in the default kernel configuration.
Devices attached to the 12C interface can be accessed via/sys/bus/i2c/device/<your
device>.

A driver for the SPI interfaceis included and enabled in the default kernel configuration.
It can be accessed via/sys/bus/spi/device/<your device>.

A LCD frame buffer driver isincluded and enabled in the default Linux kernel
configuration.

Touch screen interface

Compact flash interface

62

UNC90

Thedriver for the internal Compact Flash (CF) card interface is disabled in the default
kernel configuration. You must use the UNCBA SCF development board to be able to
access the Compact Flash card interface.

A CF card can be mounted as follows

LXNETES User’s Guide

Interfaces & Devices

lxmount cf
1ls -1 /media/cf

SD card interface

A SD card can be mounted as follows:

lxmount sd
1ls -1 /media/sd

Real time clock (RTC)

A driver for the RTC, which is connected to the 12C interface, isincluded and enabled in
the default kernel configuration.

The system time and date is automatically set to the values of the RTC when the kernel
boots. Thisis done by calling /shin/hwclock -s.

How to set theinitial system date and time

Q!

Initially, the RTC doesn’'t have a correct time/date value, so establish the correct time/date
on the Linux system using the date command. The parameters are given in the format
MMDDhhmmYYYY (month,day,hour,minutes,year). For example, if the dateis June, 3
2005, at 13:22 enter:

date 060313222005
Fri Jun 3 13:22:00 UTC 2005

The next step isto store thisinformation into the RTC. Use the application hwclock:

hwclock
Fri Jun 3 13:22:44 UTC 2005 0.000000 seconds

Now you can reset or power off your target. The small battery on the development board
will keep the correct time/date values and are saved when you power up your target again.

63

PCI interface

64

A driver for the PCI interface can be enabled in the kernel configuration. You can use
Mini-PCl cards with the Mini-PCI slot on the development board.

LXNETES User’s Guide

Appendix A

Related documentation

http://www.modarm9.com ModARM9 home page for forum, download area and FAQs
http://www.fsforth.de Manufacturer of UNC20, ModNET50, ModARM9
http://www.kernel .org Homepage of the Linux Kernel

http://u-boot.sourceforge.net Homepage of the U-Boot L oader

Homepage of the user library and user applications. Toolchain

http:/wwiw. uclibe.org is also created by uclibc's build flow

http://www.abatron.ch Manufacturer of the BDI12000 for debugging via JTAG
http://www.samsung.com Manufacturer of S3C2410 processor
http://www.netsilicon.com Manufacturer of NS9750/ NS9360 processor
http://www.atmel.com Manufacturer of AT91RM 9200 processor

Linux Device Drivers ISBN 0-596-00590-3

http://sourceware.org/jffs2 JFFS2 overview

http://sources.redhat.com/jffs2 Detailed Information about JFFS2

http://www.gnu.org/software/gdb/

. GDB debugger documentation
documentation

CD contents
The CD contains al the necessary software and documentation needed for LXNETES.

Note: Thefolders'images, 'LXNETES and 'hardware' contain their own readme.txt file
including additiona information about the directory content.

Related documentation

Readme.txt

RelNotes.txt

install.sh

docs

images

66

There following folders are on the CD:

Briefly describes LXNETES and lists the CD contents.

Contains the last release information.

A script to install LXNETES on your host computer. For more information see chapter 4
(installation).

The doc folder contains this User's Manual and additional documentation.

Thisfolder contains pre-built images for your target platform. These images are already
programmed into the Flash memory on all modules shipped with a development kit.

Thefilesin the imags folder are named according to the following scheme:

File Description

u-boot-<platform>.bin | U-Boot boot loader image for <platform>

ulmage-<platform> Linux kernel image for <platform>

rootfs-<platform> Root file system for <platform>

LXNETES User’s Guide

UNC90

File Description

U-Boot boot loader image for the UNC90 module on the UNCBAS 3

u-boot-unc90dev.bin development board.

Linux kernel image for the UNC90 module onthe UNCBAS 3

ulmage-unca0dev development board.

rootfs-unc90dev .jffs2 Root file system for the UNC90 module.

hardware

Thisfolder contains hardware specific content. The JTAG Booster software (if
supported by the target platform) is located here, hardware reference manuals
and (depending on your target platform) filesfor CPLD logic.

Please refer to the documentation in this directory for more information.

LXNETES

These files will be installed on the development host computer during the
installation process. Thisincludes source code and the environment to build the
complete LXNETES distribution

setup

Thisfolder contains files needed to install LXNETES

upstream

LXNETES s based on various open source projects. The original source code
from these projectsis stored in this folder. The following source code is
included:

Linux
Buildroot

67

Memory layouts

U-Boot

Thisfolder contains the source code of U-Boot including all patches which are
necessary for the specific target.

Memory layouts

Flash memory layout

The partitioning of the nonvolatile memory is described in this following table.

UNC90
Flash Start Address Size Partition Name mtdblock/
0x10000000 0x1000000 all 0
0x10000000 0x00040000 u-boot 1
0x10040000 0x300000 kernel 2
0x10340000 0x300000 rootfs 3
0x10640000 0x200000 flash_rw 4
0x10840000 0x200000 flash_ro 5
0x10a40000 0x200000 flash_rw2 6

SDRAM memory layout

The following tables describe some typical addresses in memory used by U-Boot and
Linux.

68 LXNETES User’s Guide

UNC90

RAM Start RAM End .
Address Address Description Used by
0x20ec0000 0x20f00000 U-Boot stack
0x20f00000 TEXT_BASE U-Boot
0x20f00000 0x20f40000 U-Boot
default load addressin
0x20100000 U-Boot for Linux kernel .
entry point of the Linux
0x20008000 decompressed kernel

69

70 ssnmnns LXNETES User’s Guide

Appendix B

U-Boot command reference

This chapter gives an overview of common used U-Boot commands. Detailed information
can be found at:

http://www.denx.de/wiki/view/DUL G/M anual ?sti ckboard=tgm8xx|

To get to the U-Boot prompt press any key immediately after you have powered the target
on or pressed reset. At the prompt type “help” or “?’ to get an overview of the supported
commands.

71

http://www.denx.de/wiki/view/DULG/Manual?stickboard=tqm8xxl

U-Boot command reference

help
?

@B autoscr -
base =
bdinfo -
boot =
bootd =
bootelf -
bootm =
bootp -
bootvx -
cmp -
coninfo -
cp -
crc32 =
date =
echo =
eeprom -
fatinfo -
fatload -
fatls =
fsinfo -
fsload -
go -
help -
al(chacle]
iloop -
imd -
iminfo -
imls -
imm -
imw -
inm -
iprobe -
itest -
loadb =
loads =
loop =
1s =
md =
mm =
mtest =
mw =
nand =
nboot =
nfs =
nm =
ping =
printenv-
rarpboot -
reset =
run =
saveenv -
setenv -
sleep =
tftpboot
usb
usbboot -
version -

HHEH A HAFHAFHAFTHAFHFEFHAFTHAFHFEFHAFTHAFHFEFHFFTHEAFTHFEFEHFTHEAFTHFEFEHFFHEHFFEFEFFEFEHFEHFEHEHF A

alias for 'help'

run script from memory

print or set address offset

print Board Info structure

boot default, i.e., run 'bootcmd'

boot default, i.e., run 'bootcmd'

Boot from an ELF image in memory

boot application image from memory

boot image via network using BootP/TFTP protocol
Boot vxWorks from an ELF image

memory compare

print console devices and information
memory copy

checksum calculation

get/set/reset date & time

echo args to console

EEPROM sub-system

print information about filesystem

load binary file from a dos filesystem
list files in a directory (default /)
print information about filesystems

load binary file from a filesystem image
start application at address 'addr'

print online help

checksum calculation

infinite loop on address range

i2¢c memory display

print header information for application image
list all images found in flash

i2c memory modify (auto-incrementing)
memory write (£ill)

memory modify (constant address)

probe to discover valid I2C chip addresses
return true/false on integer compare

load binary file over serial line (kermit mode)
load S-Record file over serial line
infinite loop on address range

list files in a directory (default /)
memory display

memory modify (auto-incrementing)

simple RAM test

memory write (£ill)

NAND sub-system

boot from NAND device

boot image via network using NFS protocol
memory modify (constant address)

send ICMP ECHO_REQUEST to network host
print environment variables

boot image via network using RARP/TFTP protocol
Perform RESET of the CPU

run commands in an environment variable
save environment variables to persistent storage
set environment variables

delay execution for some time

boot image via network using TFTP protocol
USB sub-system

boot from USB device

print monitor version

72 EEEEEEN

LXNETES User’s Guide

Each of these commands has additional help available, which can be viewed by entering

help <command>.

All numeric values, which are needed for different commands, are interpreted as
HEX values. Entering 30100000 means 0x30100000.To speed up programming,
the real size of the image files can be used. In the commands above we have
used the maximum size of the partition instead of the actual size of the image

files (0x180000 words = 3 Mb)

The following table explains some of the more often used commands:

boots image from ADDR passing arguments ARG. ARG isthe

bootm ADDR ARG address of the initrd image

boot, bootd boots image via running default bootcmd

nand bad printsalist of bad blocks on the current device
nand erase OFF SIZE erase SIZE bytes from OFF

nand erase clean

erase entire NAND Flash
WARNING: &fter this command, U-Boot has to be reprogrammed

nand read ADDR OFF SIZE

read SIZE bytes from OFF in NAND flash to ADDR. If there are
bad blocks the command stops with an error.

nand read.jffs2s ADDR OFF SIZE

read SIZE bytesfrom OFF in NAND flashto ADDR. Bad blocksare
skipped.

nand write ADDR OFF SIZE

write SIZE bytes from ADDR to OFF in NAND flash. If there are
bad blocks or writing fails the command stops with an error.

nand write,jffs2 ADDR OFF SIZE

write SIZE bytes from ADDR to OFF in NAND flash. Bad blocks
are skipped.

printenv

prints the environment variables

saveenv

stores the changed environment variables persistently

setenv VARIABLE VALUE

sets the environment variable VARIABLE to the given value
VALUE. If asemicolon isused, to set different variables, it hasto
be masked with “\”

run VARIABLE

executes the commands of VARIABLE like a script

tftp ADDR image

loadsimageto ADDR vianetwork using TFTP and the environment
variables“ipaddr’ and “serverip”

usb reset enables and resets the USB interface
usb scan scans the bus for attached USB storage devices
usb tree shows the connected devices

73

U-Boot command reference

74

fatload usb DEV:PART ADDR
image

loads image to ADDR from USB storage device DEV with the
partiton number PART to ADDR

help

shows all of the available commands

help ITEM

showsall of the available commands belonging to aparticular item.
e.g. help nand

Note that not all U-Boot commands are supported by every platform. The following table

shows which are available:

e] g

o) g 8 N N o

3 3 2 3 3 3

o o =) < <)
? X X X X X X
autoscr X X X X X X
base X X X X X X
bdinfo X X X X X
boot X X X X X X
bootd X X X X X X
bootelf X X X X
bootm X X X X X
bootp X X X X X
bootvx
cm p X X X X X
coninfo X X X X X
cp X X X X X
crc32 X X X X X
date X X X X
echo X X X X X
eeprom X X X
fatin fo X X X X X
fatload X X X X X
fatls X X X X X
fs in fo X X X X
fs load X X X X
go X X X X X
help X X X X X
icrc32 X X X X X
iloop
im d X
im in fo X X X X
im Is X
im m X
im w X
inm X
iprobe X X X X X
ite st X X X X X
loadb X X X X X
loads
loop X
I's X X X X
m d X X X X X
m m X X X X X
m test X X X X X
m w X X X X
nand X X X
nboot X X X
n fs X X X X X
nm X
ping X X X X X
printenyv X X X X X
rarpboot X
reset X X X X X
run X X X X X
saveeny X X X X X
setenyv X X X X X
sleep X X X X
tftpboot X X X X X
usb X X X X X

LXNETES User’s Guide

The command “run” allows to execute variables as sequence od commands.
Here values of other variables could be used to simplify the scripts. (e.g. $(filesize))

Example (A9M24x0):
The following variables are available:

ipaddr = 192.168.42.10
serverip = 192.168.42.1
loadaddress = 0x30100000
bootfile = ulmage-a9m2410dev

setenv bootcmd tftp\;bootm

This command isidentica with:

setenv bootcmd tftp 30100000 ulmage-a9m2410dev\;bootm 30100000
and:

setenv bootcmd tftp 30100000 $(bootfile)\;bootm 30100000

User keys
Note: CC9P9360/9750 and A9M 2410/2440 only
There are two User Keys on the devel opment board, which can be used with functions
from U-Boot. It is common to use them for booting different kernel versions or using
different rootfs. For example:
- # setenv keyl run boot_ usb

.?}_S,L # setenv key2 run boot_net
saveenv

When User Key 1 is pressed in the start phase of U-Boot, the contents of the variable
“keyl” isexecuted, i.e. the target will boot from a USB medium.

When User Key 2 is pressed the target boots via TFTP/NFS.

	Introduction
	Overview
	Cross-development environment
	Linux kernel sources
	Template project

	Features
	What’s new in LxNETES 3.2?
	General features
	Conventions used in this manual
	Acronyms and abbreviations

	Requirements
	System Requirements/Prerequisites
	System requirements
	Disk space
	Applications & Services
	TFTP daemon
	NFS server
	JTAG-Booster

	Getting Started
	Introduction
	Connecting host PC with development board
	Minicom
	Seyon

	Installing LxNETES
	Guided Installation
	Manual Installation

	Building the First Project
	Building the Default Project

	Application Development
	Writing applications
	Adding your own applications
	Using C++

	Debugging applications
	Included pre-built applications
	Shell applications: busybox
	Telnet daemon: utelnetd
	Web server: Boa
	Debug server: gdbserver
	Nano-X/microwindows
	Embedded Qt

	Useful applications
	mem

	Kernel Development
	Writing kernel modules
	What is a kernel module?
	Writing your own kernel modules
	Add your source files
	Add the module to the build environment
	Building and loading of kernel modules
	Included Kernel modules
	minimal

	Advanced Topics
	Modifying the default project
	Building a custom project
	Boot process
	Introduction

	U-Boot
	UNC90

	Linux boot methods
	TFTP/NFS
	NAND-Flash
	NOR Flash
	USB

	Linux boot process
	Passing arguments to the kernel
	Automating the image download
	Updating the Flash memory
	Updating a running system (the easy way)
	Updating a running system manually
	UNC90

	Updating a corrupted system using a debugger
	UNC90

	Root File System Types
	NFSROOT
	JFFS2

	Interfaces & Devices
	Serial interface
	USB host interface
	I2C interface
	SPI interface
	LCD interface
	Touch screen interface
	Compact flash interface
	SD card interface
	Real time clock (RTC)
	How to set the initial system date and time
	PCI interface
	Related documentation
	CD contents
	Readme.txt
	RelNotes.txt
	install.sh
	docs
	images
	UNC90
	hardware
	LxNETES

	Memory layouts
	Flash memory layout
	UNC90
	SDRAM memory layout
	UNC90

	U-Boot command reference
	User keys

