Source-level debugging of ROM images using a Majic (Green Hills)

Majic along with the MULTTI debugger allows for debugging binary images from ROM.
To debug your ROM code (set breakpoints, single-step, etc) with source-level symbolic
debug information perform the following steps:

Preparing to debug

The following steps need to be done prior to starting a debug session. Note that you need
to make changes to the startice.cmd file, when you go back to debugging from RAM you
need to undo these changes, so it’s a good idea to back up this file before starting.

1. First build and program your image into ROM. NET+OS typically first loads a
bootloader (rom.bin) and then a compressed image (image.bin), follow the normal
procedure for downloading to flash.

2. Edit the startice.cmd file, when you setup the connection organizer you selected
the location of this file. Comment out the line ‘fr ¢ ns9xxx.cmd’ this is done by
placing a ‘//’ before this command . You are commenting out the reading of the
initialization script which initializes RAM since the ROM image will now
initialize RAM. This line is shown below:

// fr ¢ ns9xxx.cmd
Debug Session
1. Power the board ON.
Start MULTI as normal and navigate to your application (if you are using

netcentral). If you want to debug the bootloader, navigate into the bootloader
directory as shown below:

B C:¥netos63_branch4inetosinetosins9750_a.gpj - MULTI Project Builder |Z||E|E|
File Edit Build Connect Debug Tools Windows Help

Z = % B 3| R 2, H 2

[Find || ~|

Mame Type | Options
B ./ns9750_a/32kb/template.gp] Project —I.\build\nsg?SD_a\SZIﬂ
tool.gp] Project -I.%build :sourcebir=
B system.gp] Project —-I.%build :sourcebir=
library.gp] Project -I.%build :sourcebir=
E platform.gp] Project -I.%build :sourcebir=
B standard bsp.gp] Project -I.%build) comoon, 32k
reset.gp] Singleton Library :outputDir=.%sroihsph
mwemspyY. op Singleton Library routputDir=.%srehbaphc
bsp.gpd Library routputDir=.vsrchbap'
H hootloader.gp]i Project rzourcelir=.%srehbapil
L e Lhnethnet.gp] Library -I.%srcihepihoot loades:
LW ramImaget b lram. gpl Frogram -I.hsrevbepibhootloade:
L LW spiBootRamImagelblram. gpd Prograt —-I.Ysrebbhsphhootloade:
Bl . .5 . .Y romImageh com. gp] Program o sphhoot loades
rofrnain. o &
... W commont reset. s Assembly
customize. lx Linker Directiwves
hlrom. 1x Linker Directives
LGramlmagebblram. o Chiect
LN eommon appeont_api.e C
LJinainet.o C
LJinavait.o C

LGl Ly ik arweh 32k ghsh likfls Prebuilt Library
e e G W ik arm@y 320 ghsh Llibpos Prebuilt Library
LWL L ik arweh 32k ghsthsph n: Prebuilt Library

... Y EpiBootRomImage’ com. gpd Program -I.%srchbhepihootloade ¥
4 3
Initializing Debugger... done.
Initializing Editor... done.
C:hnetosh3_branchdhnetoshnetosharchbephbootloadersromlmagetrom. apj ARM Thread:

98]

Go into the connection organizer by clicking on Connect->Connection Organizer.

4. Inthe ‘User Methods” window double click on the connection which you setup in
the tutorial.

5. Inthe ‘Connect for:’ list click on the ‘Attach (Debug application already on

target)’ button as shown below.

ARMulator (rdiserv) Connection Editor

Mame: | nzJumy 2.2a

Type: | ARMulator [rdizery]

[Log Cannection b file: |

W

Target Setup zoript: |
f* MULTI i Legacy
Connect for: ¢ Download [Download and debug application)

f+ Attach [Debug application already on target
" Board Setup [Debug board initialization sequence]

Connection Download l.ﬁ.dvanced] Del:uug]

Load Sections:
[v Text
[v Data
[BSS

| mode=download rdizery -cpu ARMITDMI -bigendian -dll C:AERISR DI rdimaiic.

Connect 2k, | Eancell Fievertl Apply |

6. Click OK

7. Right mouse click on your user method and select Connect to Target, you should
see the RDI server window.

8. Load the symbol file for the image you wish to debug; symbols are in the output
file for your project. You see the name of the output file for your project by right
mouse clicking on your project (rom.gpj) and select ‘Set Options’ as shown
below:

¥ % Build Options for rom.gpj

Basic Optionz Al Options | Maodified Dptions]

Option Categories: Build Options in Category:
Target Name Walue
Project output Filensme Jsrehwbsphboot loader romimage’ rom
Optimization Chject File Output Directory Jvarchbspibootloader’ romimage objsh ghs' §PLATF
Debugging Source Root
Freprocessor Include Directories P T 3 af 0 T3 JA N B N F A W a}-31]
CA/C++ Compiler Library Directories Loh . N LWy LikY $PROCESSORY 32kbY ghs, . .4 . L4 . 4 Liky
Assenbler Likraries libsflash.=a
Linker Source Directories Relative to ., ..%..%..\srcVhspibootloader,..by..%..\srevbs

Compiler Diagnostics Iptermediate Output Directory .\ srebhspibootloader' romimage' obis' ghsh §PLATF
HTHML Compiler

Advanced

.| 2l
[[
e @ % % e 1P
Procezsing which will create: S\srchbsphbootloadertromimagehrom “

Thiz partial cormmand line omits the contained objects.
The complete cormmand can be obtained fram an Advanced Build with -infa -comnmands.

Crh ghsh armd0sh cotxarm -MD -I.%sre\wbapibootloader) romImage b
—-sys_include directory .\srehbspibootloader -I.Ysrci\bspibootloader) j
Command Line [ocumentation

9. To load the symbols click on
Debug->Load Symbols->Select Symbols To Load

10. Select your rom file (output files) and click ‘Load’ You should see the following
after you click load:

Loading symbols for

C:\netos63 branch4\netos\netos\src\bsp\bootloader\romImage\rom.

Symbols loaded.

PC

0

12. Next set the program counter by typing
$pc=0x50000000

Now you can start stepping through ROM code. You can only set two breakpoints at
a time. To break on main, type ‘b main’ as you normally would, this gets converted
automatically to a hardware breakpoint. The rom file is the ROM image portion of
the bootloader, if you wish to debug the RAM image portion of the bootloader or the
RAM image application you will need to reload symbols for that image.

Tips

Only have two breakpoints at a time, ARM only supports two hardware
breakpoints.

If you have optimization turned ON, you can expect to see the program counter
‘jump around’ while single stepping, to disable optimization right mouse click on
your project select ‘Set Options’ and set the Optimization Strategy to ‘No
Optimizations’ and rebuild your application.

Make sure that you exit the RDI Majic console window between debug sessions,
it does not always shutdown gracefully, and if it’s still open it won’t allow you to
start another debug session.

Also, make sure you set the program counter to 0x50000000 before you start
stepping.

Make sure that flash is enabled.

