Source-level debugging of ROM images using a Majic (Green Hills)

Majic along with the MULTTI debugger allows for debugging binary images from ROM.
To debug your ROM code (set breakpoints, single-step, etc) with source-level symbolic
debug information perform the following steps:

Preparing to debug

The following steps need to be done prior to starting a debug session. Note that you need
to make changes to the startice.cmd file, when you go back to debugging from RAM you
need to undo these changes, so it’s a good idea to back up this file before starting.

1. First build and program your image into ROM. NET+OS typically first loads a
bootloader (rom.bin) and then a compressed image (image.bin), follow the normal
procedure for downloading to flash.

2. Edit the startice.cmd file, when you setup the connection organizer you selected
the location of this file. Comment out the line ‘fr ¢ ns9xxx.cmd’ this is done by
placing a ‘//’ before this command . You are commenting out the reading of the
initialization script which initializes RAM since the ROM image will now
initialize RAM. This line is shown below:

// fr ¢ ns9xxx.cmd
Debug Session
1. Power the board ON.
Start MULTI as normal and navigate to your application (if you are using

netcentral). If you want to debug the bootloader, navigate into the bootloader
directory as shown below:
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Go into the connection organizer by clicking on Connect->Connection Organizer.

4. Inthe ‘User Methods” window double click on the connection which you setup in
the tutorial.

5. Inthe ‘Connect for:’ list click on the ‘Attach (Debug application already on

target)’ button as shown below.
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6. Click OK

7. Right mouse click on your user method and select Connect to Target, you should
see the RDI server window.

8. Load the symbol file for the image you wish to debug; symbols are in the output
file for your project. You see the name of the output file for your project by right
mouse clicking on your project (rom.gpj) and select ‘Set Options’ as shown
below:
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9. To load the symbols click on
Debug->Load Symbols->Select Symbols To Load

10. Select your rom file (output files) and click ‘Load’ You should see the following
after you click load:

Loading symbols for

C:\netos63 branch4\netos\netos\src\bsp\bootloader\romImage\rom.

Symbols loaded.

PC

0

12. Next set the program counter by typing
$pc=0x50000000

Now you can start stepping through ROM code. You can only set two breakpoints at
a time. To break on main, type ‘b main’ as you normally would, this gets converted
automatically to a hardware breakpoint. The rom file is the ROM image portion of
the bootloader, if you wish to debug the RAM image portion of the bootloader or the
RAM image application you will need to reload symbols for that image.



Tips

Only have two breakpoints at a time, ARM only supports two hardware
breakpoints.

If you have optimization turned ON, you can expect to see the program counter
‘jump around’ while single stepping, to disable optimization right mouse click on
your project select ‘Set Options’ and set the Optimization Strategy to ‘No
Optimizations’ and rebuild your application.

Make sure that you exit the RDI Majic console window between debug sessions,
it does not always shutdown gracefully, and if it’s still open it won’t allow you to
start another debug session.

Also, make sure you set the program counter to 0x50000000 before you start
stepping.

Make sure that flash is enabled.



