PRODUCT MANUAL

ynamic

Integrated C Development System
For Rabbit® 4000, 5000 and 6000 Microprocessors

Function Reference
Manual

90001215_C

Dynamic C Function Reference Manual

Part Number 90001215 « Printed in U.S.A.

Digi International Inc.€ 2013 « All rights reserved.

Digi International Inc reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
RabbitSys™ is a trademark of Digi International Inc.

Rabbit and Dynamic C® are registered trademarks of Digi International Inc.

®

Windows™ is a registered trademark of Microsoft Corporation

The latest revision of this manual is available at www.digi.com.

http://www.digi.com/docs/

TABLE OF CONTENTS

Function Descriptions 10
ADS ceeiee 11 CloselnputCompressedFile...................... 35
ACOS cuvreureeieeeteerieesteeteenteeeteetaeenteenbeenneas 11 CoBegIN ..ot 36
ACOT.ueeeieieeireeeriieeetteeetreeeteeeereeenabeeenaeeens 12 COE SETXEELC .vvvieeiiieiiieeeiie e 37
ACSCunteenteenteeeieeeteesiteeteesteeeteebeesateenbeenneas 12 COf SErXEets ...oovvivriiiiieieeieeeeeee e, 38
AESdectyptdx4.....coocvievieeiieiieiieeieeee 13 COf SErXPutC...ccvveviieiieieeieeeeeieeiee e, 39
AESdecryptStream4x4 CBC.................... 14 COt SETXPULS c..vveeeeiieeiieeeiie e 40
AESencryptdx4......cccceevveviiieiieniinieeeene 15 cof serXread.......ccooevvieninniiiieeieeeeee, 41
AESencryptStream4x4 CBC.................... 16 COT SErXWIILe...ccvveeiieiieeieeie e 42
AESexpandKey4.........ccccoevveeiieciieniennnnn. 17 COPaAUSEoeovvieiieiieeieeeee e 43
AESinitStream4x4ccccccovvveecrieeeieeenen. 18 CORESEL ... 43
ASCHIME .ot 19 CORESUME......oouveiiiiiiiciiceeeeee 44
ASEC..eeiuurieriieeniteerree e sttt ettt 20 COS tntteuteeteenite et e st e st et e et et st e e 44
ASIMN ceeeeiiieeereeeeree e e e e ere e e e e e e e e eaae s 20 COSN Lot 45
ALAN .o 21 CHIME. .ttt 46
ALAND ..o 22 defineErrorHandlerccccovvevrennnnnnen. 47
ALOT e, 23 AEg .o 48
ALOT 1ttt 23 DelayMSs......coeciieviieiieiieeeeeee e 48
ALOL 1 24 DelaySec.....ovvvveeiieiieieeeeee e 49
DIt e 25 DelayTicks ...oooveevieiiiiieiieceeee 50
BitRAPOItE ... 26 dIfftime. ..o 50
BitRAPOItI ..o 26 Disable HW_WDTcccocooiiiiiiiiiene. 51
BitWrPOrtEoooeiii, 27 disablelODbusccceeevveerciieecie e 51
BitWrPortloooviiiiiiiee 28 DMAAIIOC ..o 52
CalculateECC256........ooeevveeeeiieeiieeiene 29 DMAcompletedccovveeveeeeiieeiieeneen. 53
CEILuuiiiiiiiieie e 29 DMAhandle2chan............cccceeeevieenreeneen. 53
chk timeoutccccveeeiieriiiiieieeieeeeee, 30 DMAIOE2MEMeeeevieniieiiieieeeiie e 54
ChkCorrectECC256coouvveiiiiiiieicnee, 31 DMAIOI2MEeMeeeeiieiiiiiienieeiieeieeiee 56
chkHardReset..........ccccovveveviiiciieiiiecie, 31 DMAIloadBufDescc.ccoeveeeeveeeciieeenneen. 57
chkSoftResetcccveviieniiiiiiieieee, 32 DMAmatchSetupcoovevveeviienieeiiene, 57
ChKWDTO ..o, 33 DMAMEM210€covuveiiieiiiaieeiieeieeiee 58
ClEATEIT ..ot 33 DMAMEM2101....ccecuvieeiiieeiieeeiie e 59
ClOCK ..ttt 34 DMAMEM2Mmemcoceeverveneeneenienieenne. 60
clockDoublerOffcccvveeiiiiniiiciee 34 DMADPOIL....oviiiiiieieeeeee e, 61
clockDoublerOn........cccccoceeveniininicncennen. 35 DMAprintBufDesc.........coceverienenvicnnenne. 62

Dynamic C Function Reference Manual digi.com 3

http://www.digi.com

DMADPIINtREES.covveeiiieierieeeieeee 62

DMAsetBufDesc......ccccoeveeiieinieniccieenen, 63
DMASEtDIreCt....c..covveveieiieienieieniesieeene 64
DMAsetParameters..........cccceeveenieeieennee. 65
DMASEartAutocoevveveeriieeiieeeieeeieeene 66
DMAStartDIrectcoceeveeeeneenenieneenene 67
DMASEOD .vveeeiieeeiieeeiieeeiee et 68
DMAStOpDIrectcccceeveeeeeeiienieeieeee. 68
DMAtIMErSetup.cccveereeeveeiieeieeieeenn. 69
DMAUNAIIOC ..o 69
Enable HW WDT......cccoooiiiiiiiieeee, 70
enablelObuscoceveeviiieniiiicees 70
EITOT TNESSAZE .vvveeeenevreeeeriereeeerirreeeenneeeens 71
EXCEPLION ..ottt 72
EXIE wvettereeiteritete ettt 73
(04 o SRS 74
£ADS e, 75
fat AutoMount..........ccceeeveeeiiieiieniieieeen. 76
fat ClOSE ...veevvieeeiieiieeieeeeee e 78
fat CreateDIrcccoeceevieveniiniiiiiicceee 79
fat_CreateFile........ccccoovvviieiiiniiiiiiiee, 80
fat CreateTimeccoccveevvveeniieeiiecieens 81
fat Delete......ooveeeiieiiieiieiieieeee, 82
fat EnumDeviceccoecveviieiiieniieieeen. 83
fat EnumPartition..........ccccoevevevvenieeneennen. 84
fat FileSizeccccooeviineeiiiniiiiiicicce 85
fat FormatDevicecccevvvviiiienieeieenen. 86
fat FormatPartition...........cccccoevvvveennennne. 87
fat Free ..oooooovieiiiieeeee, 88
fat GetAr .ccveeeieeiieeeeee e, 89
fat GetName.......cccoeeevevevveeeiieeeieeeeee, 90
fat GetPartition.........cccceceeveevienienenicnnene 91
fat Init..ooooeeiieeiieeeeeeee e, 92
fat InitUCOSMUteX.......ccoeecveeveernreenreennen. 93
fat ISClosedcocceveenieeiienieniiicnicccee 94
fat ISOPen....c.ceeveeiieeiieieeeeeee e, 94
fat LastACCEeSS..ccovverveeeiieeiieeeiieeeiee e 95
fat LastWritecooveeviieieeiiiecceee, 95
fat MountPartition...........cccceeeevvenieeneenen. 96
fat OPeN.....ccocveeeviieeieeeieeee e 97
fat OpenDIrccccovvevieiinieniiccee 98
fat_PartitionDevice........c.coeeuvevienireneenen. 98
fat Read......cccoovvevvieeiieceeeeeee e, 100
fat ReadDir.......coooveeiiiiiiiiiieie 101
fat Seek ..ccvovvvieeiieiieieeeeee 103
fat SEtAtr...cccieeeieeeee e 105
fat SPlit..coeeviiiiiiee 106

fat Statusccceeeiieeiiieee e, 107
fat SyncFile......coovvvviiiiiiiiiiieeeee, 108
fat_ SyncPartitionc.ccoeevevvieiiiennnnnne. 109
fat Tell...oooieoieieeieeeceee e 110
fat ticK .ooooveeeiieeeie e 111
fat Truncate........ccceevveeeiieriienieeiieee, 112
fat UnmountDevice..........ccceeveeereennnnne. 113
fat UnmountPartitionc.ccceceeevennnnee. 114
fat WIite ...ooviieiieeieeeceeeeeee 115
fat XRead.....ccccocvveiieniieeiieieceeeee, 116
fat XWIIte ..o 117
fClOS@ ..o 118
fEOf i 118
TRITOT v 119
FITUSh o, 119
1 11670) ' GNP 120
FICPIXINY ...t 121
fitreal......oooveveiiei 122
fitrealinycoocoveeiieiieee, 123
FEELC e 124
FEEtPOS..eeeeieeiieieee e 125
FEOES et 126
flash_erasechipccccoevieiieniiiiniennee 127
flash_erasesector..........ccccvevveerveenuiennnnne. 127
flash gEttypPe...ccveeveeriieeiieiieeieeeei, 128
flash N1toooieiiiiiiii 129
flash read.......ccceeviievieiiiiiieeee, 130
flash readsector.........cccecveeveerieeiiennnnnne 131
flash_sector2xwindowcc.cccecvenueenne. 132
flash Writesector.........ccecuverueerveeniiennnnne. 133
FlOOT i 134
MO ..., 135
fOPEN i 136
forceSoftReset........coveeriiiiiiniinicne 137
fprintf ..o 137
TPULC oo 138
TPULS et 139
fread ..veeeieeeee 140
fTEOPEN ..ot 141
17504 0 S UR SRRSO 142
fscanf.......cocoovoieiiiee e, 143
£S€CK it 147
TSEEPOS woeeeieeeiie et 148
1 15] | SRRSO 149
FWIIER . 150
get cpu frequency......oocveeeeveeeeieeeenenn, 151
getchar... ..o 151

Dynamic C Function Reference Manual

digi.com

http://www.digi.com

gps_get utc
gps_ground_distance
hanneplX.......ocoeeveieiieniiiiieeeeeeee
hannreal..........coocooviiiiniii
HDLCabortX
HDLCcloseX
HDLCdropX
HDLCerrorX.....ccoooeeviiiiniiiieeieeeen,
HDLCextClockX
HDLCopenX......coocevvviieeiieeiieeieeeee,
HDLCpeekX
HDLCreceiveX
HDLCsendX
HDLCsendingX
heXStrtobyte........ccoecveeriieniienieeiieeieeies
hitwd
12c_check ack.....ccccovviiniiiiiiiniiiiies
i2¢_init
i2¢ read char........cccocveviieciiiniccieees
12c_send _ack.......ccceviiiiiiiiiiiiniiiiiees
i2¢_send nak
12C_Start tX.ieooieeecieeeiieeeeee e e
12C_StArtW tX..oovoeieiieeieeiieeiceee e
12C_STOP X iiiiiieiieiiecieeieeeee e
i2c_write char
IntervalMs.......coooviiiiiiiiiieceeeee

isalpha
iscntrl
isCoDone
isCoRunning
isdigit
1SEAPN...cciii e
ISIOWET ..ot

1] 0] 810 SRRSO 180
ISPUNCE..eeivieeeiie ettt 181
ISSPACE ..eenveeeereeniieeireeieeeteeteeeere e eeee e 182
ISUPPCT ..eeeveeeireeeiteeeireeeieeeereeeeiveesaeeeens 182
ISXAIGIL oo 183
KDRit .o 184
1abS .o 185
1dEXD cvveeieeee e, 185
localtimecoceveevieienieinicccee, 186
JOE oot 186
10Z10 . 187
1ONGIMP oo 187
loophead.......c..cccveeiieiiiiiieieeeee, 188
100PINIt...eeiiiiiiiieieeee e 188
ISQIT et 189
mbr_CreatePartition.............ceeeveereveennnnn. 190
mbr EnumDevice.........cccceveiieiieniinin. 191
mbr FormatDevice.........cccceevrevuienneennnnne 192
mbr MountPartitioncceeeeeveennnnn. 193
mbr_UnmountPartition............c.cccenee. 193
mbr_ValidatePartitionscccceeueneee. 194
md5_append.........cccceeeviieiieniieiieniee, 194
md5_finish ... 195
MAS NIt 195
MEMCHT ..o 196
100151010211 o SO PR UROPPRR 197
INEIMNCPY +eenvreeenireenireerieeesreeesreeesineesnneeas 198
MEMIMOVE ...envieireeiieeniteeieeniieeieenieesaeens 199
10015010 1] SRR 200
MKEME oo 201
MKEM e 203
MO ... 204
nf eraseBlocKocoevviiiiiiiiiiieiie 205
nf getPageCount........c.coeevvvvviiennieennnnn. 206
nf getPageSizecccocvevveviiiiniininne, 206
nf INItDEVICE ..ooovvieiiiiieiiecieeeeieee 207
nf INitDIIvVercooeveeiiiieieeeeeeee 209
nf isBusyRBHW ... 210
nf iSBusyStatuscooceevieviieciienieeee 211
nf readPageccoeevveviiiiiiiiee 212
nf writePageocoeviiiiinie 213
nf XD Detect....coerieeiieniieiieeiieeieeiens 214
OpenlnputCompressedFile 215
OS_ENTER_CRITICAL.........cceeuennenee. 216
OS _EXIT CRITICAL.....cccecvevverenenne. 216
OSFlagACCePt..cccvieeciieeeiie e 217
OSFlagCreate........ccccevvervveneeneneeneennennn 218

Dynamic C Function Reference Manual

digi.com

http://www.digi.com

OSFIagDelcccveviieiieieeiieieeieeis 219

OSFlagPendcccoeovvvveeiieiiieeieeee, 220
OSFIagPostccccoecvierieeiieieeiieee, 221
OSFIagQUuerycoecvveveieeiieiieereeee e 222
OSINIE. et 222
OSMDbOXACCEPL ..ovvveeieeiieeiieeiieeieeieens 223
OSMDbOXCIEatecooeuvveeeeeieeeeeeeieeeeeenns 224
OSMDOXDE]oooiiiiiiiiiiiieieiieeeeeee, 225
OSMboxPend..........ccoouveveeevniiieciiiiieeeenn, 226
OSMDOXPOSt.....ovvveeieieieeeeieeeeeeeeeee 227
OSMboXPOStOPL......coverieiiiricieeieenne 228
OSMDbOXQUETYccvieiieeireiieeieeeee e 229
OSMemCreateccoovvvvveeeeeeeeeerrrenennen. 230
OSMEMGELtueeneeneeeneaeaes 231
OSMemPUL.........ccoovvvirriieiieeeeeeecrreeeee, 232
OSMemMQUETY ...ccvveeeeieeeiieeeiee e 233
OSMUtEXACCEPL..cuveeererreenrerieeneeeieene 234
OSMutexCreatecccvvvveeeeeeeeeeecvvenennnnn. 235
OSMutexDelcooovviiieeiiiiieeeieeeeennee, 236
OSMutexPend.......ccooovvvvviieiiiviiiiiinenennn, 237
OSMUteXPoOSt......ccoeverrrieeieeeeeeerreeeenee. 238
OSMUteXQUETYoveeevreeeeieeeiieeeiee e 239
OSQACCEPL .. 239
OSQCreate......ccuvveeeecereeeeeeieee e 240
OSQDEI....oviieiieeeeeeeceeee e 241
OSQFIush.....ccvoiieiiiiiiieeeceeeeee 242
OSQPendcveveeieieiieeeece e, 243
OSQPOSt....eieceiieeiieeceeee e 244
OSQPoOStFront.........ccccvveeeiiiiieeeiieeeenns 245
OSQPOStOPL....ccoviieeiiieeieeeiieeeiee e, 246
OSQQUETY ...ovveeieeiieiieeieeee e 247
OSSchedLocKcoovvevviviiiiiiiieiiiiieeen, 247
OSSchedUnlocK.......ccoeeeeeeveeeeeeiieeeenee, 248
OSSEeMACCEPL..ccvviiiriieeiieeieeeiee e 248
OSSemCreate......cooeeeeeeeeeeeeenes 249
OSSemPendcooevvviiiieiiiiieieeeee, 249
OSSemPOSt ...cveviieieeieieieeeeeeee 250
OSSemQUETY ..c..eevvieiiriicieeieeee 251
OSSetTickPerSec......ccoeeeevvveeeeeciieeeeeennn, 252
OSStart...ccovveeeeeeeee e 252
OSStatInit......oeeeeeeiiviiiiiiiiieeeeeeeeeieee, 253
OSTaskChangePrio.........cccccveevveeieennnnns 253
OSTaskCreatecoovvvvvvveeeeeeeiiereneeenn. 254
OSTaskCreateEXt.....cccouvvvvveieiiiiiiiniinennen. 255
OSTaskCreateHOOKccceeeeeevveeeennne. 256
OSTaskDel........cocoovivviiiiiiiiiiiiieiiieeen, 257
OSTaskDelHOOK......cccuvvvvveeiiiiiiniiiineenn, 258

OSTaskDelReqccveevverrieiienieeiieieee, 259
OSTaskIdleHoOoKccocueeiieniiiiianne 260
OSTaskQUETYcocovveriieeiieiieeieeie e 260
OSTaskResume.........ccceeveeieenieniieennnenne 261
OSTaskStatHoOKccoceeeiieniiiiienne 261
OSTaskStkChKccoevverieniniiiiiiene, 262
OSTaskSuspend........ccccecvveerienieenreennnnne. 263
OSTaskSWHOOKccevvvieiieniiiiienne, 263
OSTCBINitHOOKcoveieiiinieieiicne, 264
OSTIMEDIY ...cccvviiiieiiiieeeeeee 264
OSTimeDIyHMSM......coccoviniiniiiinnnne. 265
OSTimeDlyResume...........c.ccccveeurennnnne. 266
OSTIMeDIySec.....ccevveriierieeieeiieiee 267
OSTIMEGEtooveeeiieiieeiieieeeee 267
OSTImeSet....covireieiiiienieeeeeeeeeee 268
OSTImeETick .ooovevieiiiiiiieeeceee, 268
OSTimeTickHoOoK........c.ccoeeueeniiiiiennnnne 269
OSVErSioN.cccveveeeieniienieeienieeeeseee 269
PAAAL ..o 270
PAllOC. .. i 270
palloc_fast........ccceeviieiiiniieiieieee, 271
PAVALL .ot 272
pavail _fast.......ccccooiiiiiiiii 273
PCAllOC ... it 274
0118 () S S 275
PATS e 276
prirst fast.......ccooeiiiiiiiee 277
PITCC oo 278
pfree fastcccoooieiiiniii 279
PRWIM Lo 280
PlaSt..eeeieeee 281
plast fast......occoviiiiii 282
pmMovebetweenccecveevveeiieiienieeies 283
pmovebetween fast...........cccoeeieeiieins 285
PNEL e 286
PIEXE ceeiiiieiiieeeiie et 287
pnext fast.......ccooeviiiiiiiiine e, 288
POLY e 289
pool _append.........ccoeviiiiiiiiiiniieieee 290
POOL TNt ..iiiiiiiieiieeiieiieeeeie e 291
POoOol 1Nk ..o 292
pool xappend..........ccoeeeeriieiiieniieieees 293
JooTe) D €113 1 S 294
POW ittt 295
POW2 ettt 295
POWIO e 296
POWETSPECTIUM..c.ueveeenirieiiiieeiiee e 297

Dynamic C Function Reference Manual

digi.com

http://www.digi.com

PPICV ittt 298
PPIEV_fast....oovciieeiieeieeee e 299
PPULLASE. ..ot 300
pputlast fast........cccccceevviieiieniiiiiieieee, 301
PIEMAIN ..eeeiiieeiiieeiiee e eree e 301
PIEOTART ..ottt 302
PNt e 304
PULC ettt 308
PUtCharoooeiiiiiie 309
PULS ottt e e 309
PWIML_INTE et 309
PWITL S ..eoiiiieiiieeiieeeiieeeiee e 310
pxalloc fast.......cccoeevvevieiciieiiieiieeieees 311
PXCALOC ...ciiiieiieiie 312
PXEITSE e 313
PXITEE et 314
pxfree fastoocccoveiiiiiiiii 315
PXIAST ..ot 316
pxlast fast......cccoceevieiieniiieiieeeeee 317
PXNEXL. ittt 318
PXNEXt faSt....cccoeviieiiiiiiiiieie e 319
104 0] () NP 320
PXPIeV_fast.....ccoevieiieniiiiieieeceee e 321
Qd _eTTOT....eiieiiiiieeieeeee e 322
Qd NIt e 323
qQd read......coooiieiiiei e 324
QA ZETO0..cceieeiieieeeeee e 324
[0 1Y) o USSR 325
1A oo 326
TAISE c.eeeteeieeeiteeniee et eniee et e siee et e eneens 327
TANA .o 328
1andb ..o 328
randf ... 329
TANAE oot 329
RAPOIE.......coiiiiieieeee 330
RAPOILL....cviiiiiiiieiee 330
1€ TC viveiieiieiie et 331
ReadCompressedFileccccveenennene. 331
readUserBlockccooceeverieninncnicnenne 332
readUserBlockArraycccceeevveenveennnnns 333
registry enumerate..........cceeeveeveeeeeeennennns 334
registry finish read...........cccooeveeiieninns 335
registry finish write.........ccccoeevveeeneenee. 336
TEZISITY Gt .ouiiiiiiiiieiieeeee e 337
registry _prep readccocceeevevieeiiiennens 338
TegiStry prep Writ€.....cvvveevveeeveeernveeennee. 341
registry readccocvevievieeiieieeieeiee 343

registry updatecooeveeeieniieiiienieeies 344

TEEISITY WITLE c.evvieeiieeiiee e 345
TEIMOVE ..envrinieeieeeiteenieeeteenieeereenaeesneens 348
TENAIMIE. ...eeueieeiieeieeeteeniteeiee e et esieeeaeens 349
TS cuutteeiteeeitee ettt e sttt e et e et e st e et saneees 350
RES .o 350
TEWINA .t 351
TOOt2VIAMeeiuiiieiiieeniie et 352
TOOL2XIMEM ettt 353
ItC tIMEZONE ..veeveveeereeiieeieeeire e eere e 354
TUNWALCH ..o 354
sdspi_debounce..........cccceeeiieriiniieienen. 355
sdspi_get €Sd...evvviereiieiieieeieeeee e 356
SASPT_GEt SCT.cuviiiieeiiieiieeieeiee e 357
sdspi_getSectorCountcccecvrenneenee. 357
sdspi_get Status Ieg.......ccvevvervreveennen. 358
sdspi_init card.......c.cceeveeriieenieniieeeen. 358
sdspi_InitDevVICeccoevveevieriieeiieieenee. 359
sAdspi_ISWIItING ..ccvveevieiiieiieiieeieeieeee 359
SASpl_NOtBUSY ...eovvvviiiieiieiieeieeeeeee 360
sdspi_print dev.......ccceeeeeeeiienienieeieenen. 360
sdspi_process_command 361
sdspi_read SECtOT........cccevvevevieeriieieannn. 362
sdspi_reset card.......cccoccveeiieniieniieieenen. 363
sdspi_sendingAP.........cceevvievieiiieneenen. 363
sdspi_set _block length..........cccceeneene. 364
sdspi_SEtLEDcccoovieviieiieieeiieeee, 364
sdspi_WriteContinuecccceeevrenneenne. 365
sdspi_Write SECtOrccvueevveeieerieeieenee. 366
SETAXBreakcooovevvienieniiiieeceee 367
serCheckParity.........cccoeevveviienieeciieneeee. 367
servo_alloc table........cccoeeeiiiiiinnnnn. 368
servo_closedloopccceeeveeiieriieniieieene. 368
servo_disable 0cccoeveviienieniieieenen. 369
servo_disable 1cccoooiiiiiiiiiiiiien, 370
servo_enable 0cccoeevvviienieniieieenen. 371
servo_enable 1ccccoevvviievienciieieenen. 372
SEIVO ZEATueeiirieeriieeenireeeneeeenireesnireeens 373
SEIVO_ raph......cccccevevuienieeiieieeieeieeene 374
SETVO NIt .eiiiiiieiiieeeiie e 375
servo_millirpm2vemd...........cceeceeenneenen. 375
SETVO_MOVE t0...eeeeiiieeiiiieeiiieniieeniieenns 376
SETVO_OPENlOOPceveveeeeiieeiieeiee e, 377
servo _qd zero O......cccoeevviiienieniiieieenen, 378
servo qd zero l.....ccocvvvienieniiienieennen, 378
servo_read table........cccccceeeviiiiiiiieiiien, 379
servo_set coeffsccovviviiiiiiiniieee, 380

Dynamic C Function Reference Manual

digi.com

http://www.digi.com

SETVO_ SET POS..eiieireeriieeniieenieeenereeeaneens 380 sf readRAMoooviviiiiieieeeeeee, 420

SETVO_SEt Vel uvvveiiieciiieciieeeee e 381 sf writeDeviceRAM........c.ccceevvieeennenns 421
SErvVo_StatS TeSEt.....ccccverieeiiieniieeiieinans 381 sf writePagecccoevveviieii, 422
SEIVO TOTQUE...ccuvieereeereereeenreeneeeeveeneanns 382 Sf WIiteRAMoooviiiiciieeee 423
SETXClOSE...vveeeiieeiieeeie e 382 STSP1 NIt eeviiiiiiiecce e 423
serXdatabitsccceevieeiiieniieeiieie 383 SIENAL...eiiiiiiiiiiee e, 424
serXdmaOff ..o 383 SIMe ittt ettt ettt e 425
$erXdmaOnccceeveveeeeiieeciieeieeeee, 384 SINN...eiiiiiie e 426
serXflowcontrolOff.............ccceeveriieens 385 SNPTINE .ot 426
serXflowcontrolOncccceeveeienieennnne. 386 SPINIE ..ot 426
SEIXZELC ot 387 SPIR€Adeovvieiiiiiiciceiceccce 427
SErXEEtEITOr . ..cuiiiiieiieieeceeee, 388 SPIWTIE ..oovvieiiieiieeieeiieee e 428
SCIXOPCN ..viviieiieeiieeireeieeereeeeeeaeeaee e 389 SPIWTIRA.....oiiiiiiiiiieieece e 429
SEIXPATILY ..eeivieiieeiiesiie ettt 390 SPIANtE ..o, 429
SEIXPEEK . 391 SOTE eveeereeiee et et e ete et sire et nenas 430
SCIXPULC ..vvieiiieeiieeieeeiteeieeeee e eve e 392 STANA....vieiieeiiieieeeie e 430
SETXPULS .ttt 393 SEICAL...eeiiiie ittt 431
serXrdFlush.......ccccooveeviniininiiie, 394 SEICHT Lo 432
SErXTAFTee .ooovviiiieiieieeeeeeceee 394 SEICINP wvvevveeeiieeieeeeie et 433
SerXrdUsedcoceveevieniineenieniireeiee 395 SEECINPT et 434
SEIXreadovveeiiriieiiiieneeeeeee e 396 SEECOIL oot 435
SETXSIICAM ..t 397 SETCPY -vveeereeeeiieeeteeeeteeeereeerareeenereeenaeeeens 436
serXwrFlush........cocoooiiiiiiniis 397 SEICSPIL ettt 437
SEIXWIFTEE.....coviiiiiiiiciiicicec 398 SETETTOT ...ttt 437
SCIXWIILE ..ot 399 SEEHME .o 438
SETXWIUSEdoveeiieeeiieeeiie e 400 SEELEN .o 441
S ettt 400 SEINCAL ...t 442
SET oot 401 1817671001 o SO SRRURRR 443
set32kHzDividerccoeveeeiienieiiieeas 401 SEINCINPT ceeeiieiieiie et 444
setClockModulation...........cccceeveeieenennns 402 13016] 0) Z USRS 445
set_cpu_power Modecceeevveeeveennnnnns 402 SEPDIK oo, 446
SEtOUL ... 405 SEITCRT e 447
SCLIIMP ..ottt ettt 406 SEESPI. ettt 448
SetSerial TATxRValuesccccevvennnee. 407 SEESTE oottt 449
Set tIMEOUL ...eoveeieiieieeiieeeee e 408 SEEOd .o 450
SEtVDUL ..ot 409 SEITOK .ot 452
SetVectEXternccovvvevveenieniicenienenne 410 SEIEO] e 453
SetVectInternccccoveveeciieeeeecieeeeee, 412 SEIEOUL .o 455
sf getPageCount.........cccvvevuieniieniennnnnne 414 SEXITM. e 457
sf getPageSize......cccooovveeiieiiiiiiiis 414 _sysIsSoftReset......cceevveeeriieiniieeieee, 458
ST NIt .o 415 sysResetChain.........ccceeveverienennieneenns 458
st initDeVICe....ccuvvvieeiieieciieieeee, 416 11 RSO UURURURURRRRPR 459
ST ASWTItING c.evveeiieeieeeecee e, 417 tanh Lo, 460
sf pageTORAMccccceviiviniiniiinee, 417 TATIR SetValueccoceeverieneiicnncnne. 461
sf RAMToPagecccceevuveeiieiieieeene 418 TIMIC .ottt e 462
sf readDeviceRAMccccccvvvviviennenns 419 M T, 462
sf readPage.......cccccoevviieiiiiiiiiieeee 420 tMPTILE. ..o 463

Dynamic C Function Reference Manual digi.com

http://www.digi.com

19001000 F:1 1 1 (USRS 463
1900 [U UURRUPPRRN 464
tOLOWET ..o 465
170101 o) 012 SRR 465
UNZELC ..uvieeeeiiiieeeeriieeeeeieeeeeeieeeeeenereeeeens 466
updateTImersoceveeveverieeiieiieeieeies 467
USE32KHZOSC ..o, 467
useClockDividercoovvvvvvvvieeeiiiiinnnnen, 468
useClockDivider3000cccceeeeennneenn. 469
USEMAINOSC wovveeeeieiieeeeieeeeeeeeee e 470
VdGetFreeWd........coovvvvvvviieiiiiiiiiinee, 471
VAHitWd.....ccoooiieieeeeee 472
VAINIE e 472
VdReleaseWdcooovvvvviiiiiiiiiiiininnnn, 473
VIPTINtE ..o 473
VPIINEE e 474
VIAMZ2T00tcooiiiiiiiiiiiiii 475

Software License Agreement

Index

VSNPIINtE .o, 476

VSPIINEE .o, 476
WIIEE TEC..ouiieiieiieeiieeiieeieeeiie e 476
writeUserBlocKcoovvviviviiviiiiiiiiien, 477
writeUserBlockArray.......ccccoeevveeevveenneen. 479
WIPOIE ..., 480
WIPOItL .., 481
XAOC..iiiiiiiiecii e 482
_XAllOC. i 483
Xalloc Statsooocveeeiieeiieiecie e 484
XAVALLeoiiiiiiii 484
XAVt 485
xCalculateECC256ooevvveivieiecineenn, 485
XChkCorrectECC256.....uuuvvveeeeiiieennnee, 486
XMEM2TOO0 ...uuvivrreeeeeeeeeeiirrreeeeeeeeeeeennnnees 487
XMEM2XIMEIN o.vvveeeeeeeeeneireeeeeeeeeeernareneess 488
XIEIEASE .o 489
490
494

Dynamic C Function Reference Manual digi.com

http://www.digi.com

Function Descriptions

This chapter includes detailed descriptions for Dynamic C API functions. Not all API functions are
included. For example, board-specific functions are described in the board’s user manual.

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.digi.com/products/dc/ or call 1.530.757.8400.

Dynamic C Function Reference Manual digi.com 10

http://www.digi.com/products/wireless-wired-embedded-solutions/software-microprocessors-accessories/software/dynamicc#overview
http://www.digi.com

abs

int abs(int x);

DESCRIPTION

Computes the absolute value of an integer argument.
PARAMETERS
X Integer argument

RETURN VALUE

Absolute value of the argument.

HEADER
math.h

SEE ALSO
fabs, labs

acos

double acos (double x);
float acosf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the arccosine of real f1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument in radians.
If % is out of bounds, the function returns O and signals a domain error.

HEADER
math.h

SEE ALSO

cos, cosh, asin, atan

Dynamic C Function Reference Manual digi.com

11

http://www.digi.com

acot

float acot(float x);

DESCRIPTION

Computes the arccotangent of real f1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Assumed to be between -INF and +INF.

RETURN VALUE

Arccotangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, atan

acsc

float acsc(float x);

DESCRIPTION

Computes the arccosecant of real f1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Assumed to be between -INF and +INF.

RETURN VALUE

The arccosecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin

Dynamic C Function Reference Manual digi.com

12

http://www.digi.com

AESdecryptdx4

void AESdecrypt4x4(char far * expandedkey, char far * crypt,
char far * plain);

DESCRIPTION

Decrypts a block of data using an implementation of the Rijndael AES cipher with a 128-bit key and

block size.

The encrypted block of data may be overwritten by the decrypted block of data.

PARAMETERS

expandedkey

crypt

plain

LIBRARY
AES CORE.LIB

A set of round keys (generated by AESexpandKey4 ()) from a 16-byte
(128 bit) key.

Total of 176 bytes (44 longwords)

Note: When using an AESstreamState structure (e.g. “state”) then
call this function using:

AESdecrypt4x4 (state->expanded key, plain, crypt)

A block of 16 bytes of ciphertext to be decrypted; “crypt” and “plain” may
point to the same place.

A block of 16 bytes of resulting plaintext data; crypt and plain may
point to the same place.

14

Dynamic C Function Reference Manual digi.com

13

http://www.digi.com

AESdecryptStream4x4 CBC

int AESdecryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned int count);

DESCRIPTION
Perform an AES-CBC decryption operation.

See Samples\Crypt\AES STREAMTEST.C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS

state The AESstreamState structure, initialized via
AESinitStreamidx4 ().
This memory must be allocated in the program code before calling
AESdecrptyStreamd4x4 CBC():

static AESstreamState decrypt state;

message Cipher-text message (an xmem buffer)

output Output buffer, for return of decrypted text (in xmem). Must be as large as
the cipher-text buffer. May be the same as the cipher-text buffer.

count Length of the message. Must a multiple of AES CBC BLK Sz (16).

RETURN VALUE

0 on success, non-zero on failure

LIBRARY
AES CORE.LIB

Dynamic C Function Reference Manual digi.com 14

http://www.digi.com

AESencryptdx4

void AESencrypté4x4(char far * expandedkey, char far * plain,
char far * crypt)

DESCRIPTION

Encrypts a block of data using an implementation of the Rijndael AES cipher with 128-bit key and
block size. The block of data may be overwritten by the encrypted block of data.

PARAMETERS

expandedkey

plain

crypt

RETURN VALUE

None.

LIBRARY
AES CORE.LIB

A set of round keys (generated by AESexpandKey4 ()) from a 16-byte
(128 bit) key.

Total of 176 bytes (44 longwords)

Note: When using an AESstreamState structure (e.g., “state’”) then
call this function using:

AESencryptdx4 (state->expanded key, plain, crypt)

A block of 16 bytes of data to be encrypted; crypt and plain may point
to the same place.

A block of 16 bytes of resulting encrypted data; crypt and plain may
point to the same place.

’

Dynamic C Function Reference Manual digi.com

15

http://www.digi.com

AESencryptStream4x4 CBC

int AESencryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned int count);

DESCRIPTION
Perform an AES-CBC encryption operation on XMEM data. Encryption is not “in-place.”

See Samples\Crypt\AES STREAMTEST.C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS

state An AES stream state structure, initialized via AESinitStreamd4x4 ().
This memory must be allocated in the program code before calling
AESencrptyStream():

static AESstreamState encrypt state;

message The message in plaintext (an xmem buffer)

output The output buffer, for return of encrypted text (in xmem), must be as large
as the plaintext buffer, and may be the same as the plaintext buffer.

count The length of the message. Must be a multiple of AES CBC BLK SZ

(16).
RETURN VALUE

0 on success, non-zero on failure (count was not multiple of 16)

LIBRARY
AES CORE.LIB

Dynamic C Function Reference Manual digi.com 16

http://www.digi.com

AESexpandKey4

void AESexpandKey4 (char far * expanded, char far * key);

DESCRIPTION

Prepares a key for use by expanding it into a set of round keys. A key is a “password” to decipher
encoded data.

This function is specific to AES with 128-bit key. See AESexpandKey () for a more general
function (available with Rabbit Embedded Security Pack).

PARAMETERS
expanded A buffer for storing the expanded key. The size of the expanded key, for a
128-bit key, is 176 bytes. Other key sizes are not supported by this
function.
Note: When using an AESstreamState structure (e.g., state) then
call this function using:
AESexpandKey4 (state->expanded key, key);
key The cipher key, 16 bytes
RETURN VALUE
None.
LIBRARY

AES CORE.LIB

Dynamic C Function Reference Manual digi.com 17

http://www.digi.com

AESinitStreamdx4

void AESinitStreamd4x4 (AESstreamState far * state,

char far * init_vector);

DESCRIPTION

char far * key,

Sets up a stream state structure to begin encrypting or decrypting a stream using AES with a 128-
bit key and block size. A particular stream state can only be used for one direction.

See Samples\Crypt\AES STREAMTEST.C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS

state

key

init_vector

RETURN VALUE

None.

LIBRARY
AES CORE.LIB

An AESstreamState structure to be initialized. This memory must be
allocated in the program code before calling AESinitStreamé4x4 ().

The 16-byte cipher key, using a null pointer, will prevent an existing key
from being recalculated.

A 16-byte array representing the initial state of the feedback registers. Both
ends of the stream must begin with the same initialization vector and key.

For security, it is very important never to use the same initialization vector
twice with the same key.

Dynamic C Function Reference Manual digi.com

18

http://www.digi.com

asctime

char *asctime(const struct tm far *timeptr)

DESCRIPTION

Converts the broken-down time in t imeptr into a string in the form:
Sun Sep 16 01:03:52 1973\n\0

Equivalent to calling strftime () with a format string of:

"

o°
o

b

o\
o©

a e $H:%M:%S $Y\n"

Note: ctime (), localtime () and gmtime () all share the same static struct tm. A
call to any of those functions will alter the contents of the struct tm pointed to by previous
localtime () and gmtime () calls.

PARAMETERS
timeptr Non-NULL pointer to time to convert.

RETURN VALUE
Pointer to a static buffer with the time in string form.

HEADER

time.h

SEE ALSO

clock, difftime, mktime, time, ctime, localtime, strftime

Dynamic C Function Reference Manual digi.com

19

http://www.digi.com

asecC

float asec(float x);

DESCRIPTION

Computes the arcsecant of real f1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Assumed to be between -INF and +INF.

RETURN VALUE

The arcsecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

cos, acos

asin

double asin(double x);
float asinf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the arcsine of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Assumed to be between -1 and +1.

RETURN VALUE

The arcsine of the argument in radians.

HEADER
math.h

SEE ALSO

sin, acsc

Dynamic C Function Reference Manual digi.com

20

http://www.digi.com

atan

double atan (double x);
float atanf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the arctangent of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
x Assumed to be between -INF and +INF.

RETURN VALUE

The arctangent of the argument in radians.

HEADER
math.h

SEE ALSO

tan, acot

Dynamic C Function Reference Manual digi.com

21

http://www.digi.com

atan2

double atan2 (double y, double x);
float atan2f (float y, float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the arctangent of real £1oat value y/x to find the angle in radians between the x-axis
and the ray through (0,0) and (x,y).

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
y The point corresponding to the y-axis
X The point corresponding to the x-axis

RETURN VALUE

Ifboth y and x are zero, the function returns O and signals a domain error. Otherwise the arctangent
of y/x is returned as follows:

Returned Value
. . Parameter Values
(in Radians)

angle x#20,y#0
P12 x=0,y>0
—P1/2 x=0,y<
0 x>0,y=0
PI x<0,y=0

HEADER

math.h
SEE ALSO

acos, asin, atan, cos, sin, tan

Dynamic C Function Reference Manual digi.com 22

http://www.digi.com

atof

double atof(const char far * sptr)

Note: By default, atof () isdefinedto n atof ().

DESCRIPTION

Converts the initial portion of the string sptr to a floating point value. It is equivalent to:
strtod(sptr, NULL)

RETURN VALUE

The converted floating value.

HEADER
stdlib.h

SEE ALSO

atoi, atol, strtod

atoi

int atoi(const char far * sptr);

Note: By default, atoi () isdefinedto n atoi ().

DESCRIPTION
Converts the initial portion of the string sptr to an integer value. It is equivalent to:
(int) strtol(sptr, NULL, 10)
RETURN VALUE

The converted integer value.

HEADER
stdlib.h

SEE ALSO
atol, atof, strtod

Dynamic C Function Reference Manual digi.com

23

http://www.digi.com

atol

long atol(const char far * sptr);

DESCRIPTION

Converts the initial portion of the string sptr to a long integer value. It is equivalent to:
strtol (sptr, NULL, 10)

RETURN VALUE

The converted long integer value.

HEADER
stdlib.h

SEE ALSO

atoi, atof, strtod

Dynamic C Function Reference Manual digi.com

24

http://www.digi.com

B

bit

unsigned int bit(void * address, unsigned int bit);
unsigned int BIT(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline.

Reads specified bit at memory address. bit may be from 0 to 31. This is equivalent to the following
expression, but more efficient:

(* (long *)address >> bit) & 1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit

RETURN VALUE
1: Specified bit is set.
0: Bit is clear.
LIBRARY
UTIL.LIB

Dynamic C Function Reference Manual digi.com 25

http://www.digi.com

BitRdPortE

root int BitRdPortE(unsigned int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified external I/O port.

PARAMETERS
port Address of external parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: The value of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, WrPortkE,
BitWrPortE

BitRdPortI

int BitRdPortI(int port, int bitnumber) ;

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified internal 1/O port.

PARAMETERS
port Address of internal parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: The value of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE, WrPortkE,
BitWrPortE

Dynamic C Function Reference Manual digi.com 26

http://www.digi.com

BitWrPortE

void BitWrPortE (unsigned int port, char * portshadow, int value, int
bitcode) ;

DESCRIPTION

Updates shadow register at bitcode with value (0 or 1) and copies shadow to register.

WARNING!! A shadow register is required for this function.

PARAMETERS
port Address of external parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0-7.
LIBRARY
SYSIO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE,
WrPortE

Dynamic C Function Reference Manual digi.com 27

http://www.digi.com

BitWrPortI

void BitWrPortI(int port, char * portshadow, int value, int bitcode)

DESCRIPTION

Updates shadow register at position bitcode with value (0 or 1); copies shadow to register.

WARNING!! A shadow register is required for this function.

PARAMETERS
port Address of internal parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0-7.
LIBRARY
SYSTIO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitRdPortE, RdPortE, WrPortkE,
BitWrPortE

Dynamic C Function Reference Manual digi.com

28

http://www.digi.com

C

CalculateECC256

long CalculateECC256(void * data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capability)
value for a 256 byte (2048 bit) data buffer located in root memory.

PARAMETERS
data Pointer to the 256 byte data buffer

RETURN VALUE
The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result.

Note: The MSB (i.e., B) of the long result is always zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

ceil

double ceil (double x);
float ceil(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the smallest integer greater than or equal to the given number.
PARAMETERS
X Number to round up.

RETURN VALUE

The rounded up number.
HEADER

math.h

SEE ALSO

floor, fmod

Dynamic C Function Reference Manual digi.com 29

http://www.digi.com

chk timeout

int chk_timeout (unsigned long timeout);

DESCRIPTION

Check a previously set (+0/-1 millisecond precision) time-out for expiry. The following
example code snippet sets a ten second time-out and then busy-waits until the time-out has
expired:

unsigned long my timeout;

my timeout = set timeout (100U);
while (!chk timeout (my timeout))

{; // may do something here while busy-waiting for time-out expiry}

PARAMETER
timeout : The time-out value to be checked for expiry. Normally, the time-out value
is the result of a previous set_timeout() function call.
RETURN VALUE

0: time-out has not expired.
1: time-out has expired.

LIBRARY
STDVDRIVER.LIB

SEE ALSO:

set timeout

Dynamic C Function Reference Manual digi.com

30

http://www.digi.com

ChkCorrectECC256

void ChkCorrectECC256(void * data, void * old_ecc, void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary and
possible (1 bit correction, 2 bit detection), corrects the data in the specified root memory buffer.

PARAMETERS
data Pointer to the 256 byte data buffer
old_ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

chkHardReset

int chkHardReset(void) ;

DESCRIPTION
This function determines whether this restart of the board is due to a hardware reset. Asserting the
RESET line or recycling power are both considered hardware resets. A watchdog timeout is not a
hardware reset.

RETURN VALUE
1: The processor was restarted due to a hardware reset.
0: Ifit was not.

LIBRARY
SYS.LIB

SEE ALSO
chkSoftReset, chkWDTO, sysIsSoftReset

Dynamic C Function Reference Manual digi.com 31

http://www.digi.com

chkSoftReset

int chkSoftReset(void) ;

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from Dynamic
Coracallto forceSoftReset ().

RETURN VALUE

1: The board was restarted due to a soft reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkWDTO, sysIsSoftReset

Dynamic C Function Reference Manual digi.com 32

http://www.digi.com

chkWDTO

int chkWDTO(wvoid) ;

DESCRIPTION

This function determines whether this restart of the board is due to a watchdog timeout.

Note: A watchdog timeout cannot be detected on a BL2000 or SmartStar.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, sysIsSoftReset

clearerr

void clearerr(FILE far *stream)

DESCRIPTION

Stream to clear errors on.

RETURN VALUE

None.

HEADER
stdio.h

SEE ALSO

feof, ferror, perror

Dynamic C Function Reference Manual digi.com

33

http://www.digi.com

clock

clock t clock(void)

DESCRIPTION

Returns the number of clock ticks of elapsed processor time, counting from program startup.

RETURN VALUE

Number of ticks since startup. The macro CLOCKS PER_SEC defines the number of ticks in a
second.

HEADER

time.h

SEE ALSO

asctime, gmtime, localtime, difftime, mktime, time, ctime,
localtime, strftime

clockDoublerOff

void clockDoublerOff(void) ;

DESCRIPTION

Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no effect. Also

attempts to adjust the communication rate between Dynamic C and the board to compensate for the

frequency change. User serial port rates need to be adjusted accordingly. Also note that single-

stepping through this routine will cause Dynamic C to lose communication with the target.
LIBRARY

SYS.LIB

SEE ALSO
clockDoublerOn

Dynamic C Function Reference Manual digi.com 34

http://www.digi.com

clockDoublerOn

void clockDoublerOn(void) ;

DESCRIPTION

Enables the Rabbit clock doubler. If the doubler is already enabled, there will be no effect. Also

attempts to adjust the communication rate between Dynamic C and the board to compensate for the

frequency change. User serial port rates need to be adjusted accordingly. Also note that single-

stepping through this routine will cause Dynamic C to lose communication with the target.
LIBRARY

SYS.LIB

SEE ALSO
clockDoublerOff

CloseInputCompressedFile

void CloseInputCompressedFile(ZFILE * ifp);

DESCRIPTION

Close an input compression file opened by OpenInputCompressionFile (). This function
should be called for each open import ZFILE once it is done being used to free up the associated
input buffer.

PARAMETERS
ifp File descriptor of an input compression ZFILE.

RETURN VALUE

None

LIBRARY
LzZSS.LIB

Dynamic C Function Reference Manual digi.com 35

http://www.digi.com

CoBegin

void CoBegin(CoData * p);

DESCRIPTION

Initialize a costatement structure so the costatement will be executed next time it is encountered.
PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

Dynamic C Function Reference Manual digi.com

36

http://www.digi.com

cof serXgetc

int cof_serXgetc(void); where Xis A-F

DESCRIPTION

This single-user cofunction yields to other tasks until a character is read from port X. This function
only returns when a character is successfully written. It is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXgetc (int port), where port is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

An integer with the character read into the low byte.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main () {
int c;
serXopen (19200) ;
loopinit () ;
while (1) {
loophead() ;
wfd ¢ = cof serAgetc();
wfd cof serAputc(c);
}

serAclose () ;

Dynamic C Function Reference Manual digi.com 37

http://www.digi.com

cof serXgets

int cof_serXgets(char * s, int max, unsigned long tmout); whereXis A-F

DESCRIPTION

This single-user cofunction reads characters from port X until a null terminator, linefeed, or carriage
return character is read, max characters are read, or until tmout milliseconds transpires between
characters read. A timeout will never occur if no characters have been received. This function is
non-reentrant. It yields to other tasks for as long as the input buffer is locked or whenever the buffer
becomes empty as characters are read. s will always be null terminated upon return.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXgets (int port, ...),where port isone of the
macros SER_PORT A through SER_PORT F.

PARAMETERS
s Character array into which a null terminated string is read.
max The maximum number of characters to read into s.
tmout Millisecond wait period between characters before timing out.

RETURN VALUE

1: If CR or max bytes read into s.
0: If function times out before reading CR or max bytes.

LIBRARY
RS232.LIB
EXAMPLE
main () { // echoes null terminated character strings
int getOk;

char s[16];
serAopen (19200) ;
loopinit () ;
while (1) {
loophead() ;
costate {
wfd getOk = cof serAgets (s, 15, 20);

if (getOk)
wfd cof serAputs(s);
else { // timed out: s null terminated, but incomplete
}
}
}
serAclose () ;

Dynamic C Function Reference Manual digi.com 38

http://www.digi.com

cof serXputc

void cof_serXputc (int c); where Xis A-F

DESCRIPTION

This single-user cofunction writes a character to serial port X, yielding to other tasks when the input

buffer is locked. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXputc (int port,
macros SER_PORT A through SER_PORT _F.

PARAMETERS

c Character to write.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main () {
int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead() ;

wfd ¢ = cof serAgetc();

wfd cof serAputc(c);

}

serAclose () ;

. ..),where port is one of the

Dynamic C Function Reference Manual

digi.com

39

http://www.digi.com

cof serXputs

void cof_serXputs(char * str); whereXis A-F

DESCRIPTION

This single-user cofunction writes a null terminated string to port X. It yields to other tasks for as
long as the input buffer may be locked or whenever the buffer may become full as characters are
written. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXputs (port, ...),where port isone of the macros
SER_PORT A through SER_PORT _F.

PARAMETERS
str Null terminated character string to write.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null terminated character string, repeatedly
main () {
const char s[] = "Hello Rabbit";
serAopen (19200) ;
loopinit () ;
while (1) {
loophead() ;
costate {
wfd cof serAputs(s);
}
}

serAclose () ;

Dynamic C Function Reference Manual digi.com 40

http://www.digi.com

cof serXread

int cof_ serXread(void * data, int length, unsigned long tmout);
where X is A to F

DESCRIPTION

This single-user cofunction reads 1ength characters from port X (where XisA, B, C, D, E
or F)oruntil tmout milliseconds transpires between characters read. It yields to other tasks for as
long as the input buffer is locked or whenever the buffer becomes empty as characters are read. A
timeout will never occur if no characters have been read. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXread(int port, ...),whereport is one of the
macros SER_PORT A through SER_PORT F.

PARAMETERS
data Data structure into which characters are read.
length The number of characters to read into data.
tmout Millisecond wait period to allow between characters before timing out.

RETURN VALUE

Number of characters read into data.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a block of characters
main () {
int n;
char s[1l6];
serAopen (19200) ;
loopinit () ;
while (1) {
loophead() ;
costate {
wfd n = cof serAread(s, 15, 20);
wfd cof serAwrite(s, n);

}

serAclose () ;

Dynamic C Function Reference Manual digi.com 41

http://www.digi.com

cof serXwrite

void cof_ serXwrite(void * data, int length); whereXis A-F

DESCRIPTION

This single-user cofunction writes 1ength bytes to port X. It yields to other tasks for as long as the
input buffer is locked or whenever the buffer becomes full as characters are written. This function
is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for X in the function name, the prototype of the gen-
eralized function is: cof serXwrite (int port, ...), whereport isone of the
macros SER_PORT A through SER_PORT F.

PARAMETERS
data Data structure to write.
length Number of bytes in data to write.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main () {
const char s[] = "Hello Rabbit";
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAwrite(s, strlen(s));
}
}

serAclose () ;

Dynamic C Function Reference Manual digi.com 42

http://www.digi.com

CoPause

void CoPause(CoData * p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next time it is encountered unless and
until CoResume (p) or CoBegin (p) are called.

PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

CoReset

void CoReset(CoData * p);

DESCRIPTION

Initializes a costatement structure so the costatement will not be executed next time it is
encountered.

PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

Dynamic C Function Reference Manual digi.com 43

http://www.digi.com

CoResume

void CoResume(CoData * p);

DESCRIPTION

Resume execution of a costatement that has been paused.
PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

cos

double cos(double x);
float cosf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the cosine of real float value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
X Angle in radians.

RETURN VALUE

Cosine of the argument.

HEADER
math.h

SEE ALSO

acos, cosh, sin, tan

Dynamic C Function Reference Manual digi.com

44

http://www.digi.com

cosh

double cosh (double x);
float coshf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the hyperbolic cosine of real float value x. This functions takes a unitless number as a
parameter and returns a unitless number.

PARAMETERS
x Value to compute.

RETURN VALUE

Hyperbolic cosine.
If |%| > 89.8 (approx.), the function returns INF and signals a range error.

HEADER
math.h

SEE ALSO

cos, acos, sin, sinh, tan, tanh

Dynamic C Function Reference Manual digi.com 45

http://www.digi.com

ctime

char *ctime(const time t far *timer)

DESCRIPTION

Converts the calendar time pointed to by t imer to local time in the form of a string. It is equivalent

to:
asctime(localtime(timer));

Note: ctime (), localtime () and gmtime () all share the same static struct tm. A
call to any of those functions will alter the contents of the struct tm pointed to by previous
localtime () and gmtime () calls.

Note: ctime () and asctime () share the same static character buffer. A call to either
function will alter the contents of the string pointed to by previous ctime () and
asctime () calls.

PARAMETERS

timer Pointer to time to convert.
RETURN VALUE

The string returned by asctime ().

HEADER

time.h

SEE ALSO

clock, difftime, mktime, time, asctime, gmtime, localtime,
strftime

Dynamic C Function Reference Manual digi.com

46

http://www.digi.com

D

defineErrorHandler

void defineErrorHandler(void * errfcn);

DESCRIPTION

Sets the BIOS function pointer for runtime errors to the function pointed to by err fcn. This user-
defined function must be in root memory. Specify root at the start of the function definition to
ensure this. When a runtime error occurs, the following information is passed to the error handler
on the stack:

Stack Position Stack Contents
SP+0 Return address for exceptionRet
SP+2 Error code
SP+4 0x0000 (can be used for additional information)
SP+6 LXPC when exception () was called (upper byte)
SP+8 Address where exception () was called
PARAMETERS
errfcn Pointer to user-defined run-time error handler.

LIBRARY
ERRORS.LIB

Dynamic C Function Reference Manual digi.com 47

http://www.digi.com

deg

float deg(float x);

DESCRIPTION

Changes float radians x to degrees
PARAMETERS
x Angle in radians.

RETURN VALUE
Angle in degrees (a £1oat).

LIBRARY
MATH.LIB

SEE ALSO

rad

DelayMs

int DelayMs(long delayms) ;

DESCRIPTION

Millisecond time mechanism for the costatement wait for constructs. The initial call to this
function starts the timing. The function returns zero and continues to return zero until the number
of milliseconds specified has passed.

Note that milliseconds timing starts immediately, without waiting for the current millisecond to
elapse. In the case that the current millisecond is just about to end, the perceived elapsed time may
be as much as 1 millisecond shorter than the requested delay.

PARAMETERS
delayms The number of milliseconds to wait.

RETURN VALUE
1: The specified number of milliseconds have elapsed.
0: The specified number of milliseconds have not elapsed.

LIBRARY
COSTATE.LIB

Dynamic C Function Reference Manual digi.com 438

http://www.digi.com

DelaySec

int DelaySec(long delaysec);

DESCRIPTION

Second time mechanism for the costatement wa it for constructs. The initial call to this function
starts the timing. The function returns zero and continues to return zero until the number of seconds
specified has passed.

Note that seconds timing starts immediately, without waiting for the current second to elapse. In the
case that the current second is just about to end, the perceived elapsed time may be as much as 1
second shorter than the requested delay. For more precise delays of up to 24 days duration, consider
using DelayMs () instead of DelaySec ().

PARAMETERS
delaysec The number of seconds to wait.

RETURN VALUE

1: The specified number of seconds have elapsed.

0: The specified number of seconds have not elapsed.
LIBRARY

COSTATE.LIB

Dynamic C Function Reference Manual digi.com 49

http://www.digi.com

DelayTicks

int DelayTicks(unsigned ticks)

DESCRIPTION

Tick time mechanism for the costatement wa it for constructs. The initial call to this function
starts the timing. The function returns zero and continues to return zero until the number of ticks
specified has passed.

1 tick = 1/1024 second.

Note that tick timing starts immediately, without waiting for the current tick to elapse. In the case
that the current tick is just about to end, the perceived elapsed time may be as much as 1 tick shorter
than the requested delay.

PARAMETERS
ticks The number of ticks to wait.

RETURN VALUE

1: The specified tick delay has elapsed.

0: The specified tick delay has not elapsed.
LIBRARY

COSTATE.LIB

difftime

double difftime(time_t timel, time_t timeO)

DESCRIPTION

Computes the difference between two calendar times.

PARAMETERS
timel A time_t value (seconds since 1/1/1980).
timeO The time_t value to subtract from timel.

RETURN VALUE

timel-time0 as a floating point value.

HEADER

time.h

SEE ALSO

clock, mktime, time, asctime, ctime, gmtime, localtime, strftime

Dynamic C Function Reference Manual digi.com 50

http://www.digi.com

Disable HW WDT

void Disable HW WDT(void);

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog will be
enabled again just by hitting it. The watchdog is hit by the periodic interrupt, which is on by default.
This function is useful for special situations such as low power “sleepy mode.”

LIBRARY
SYS.LIB

disableIObus

void disableIObus(void) ;

DESCRIPTION

This function disables external I/O bus and normal data bus operations resume.

The external I/0O bus must be disabled during normal bus operations with other devices and must be
enabled during any external I/O bus operation.

This function is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.

Parallel port A is set to a byte-wide input and parallel port B data direction register (PBDDR) is set
to an unknown state, which must be set by the user.

LIBRARY
ExternIO.LIB

SEE ALSO
enableIObus

Dynamic C Function Reference Manual digi.com 51

http://www.digi.com

DMAalloc

dma chan_t DMAalloc(char channel mask, int highest);

DESCRIPTION

This function returns a handle to an available channel. The handle contains the channel number and
a validation byte to prevent use of an old handle after deallocation.

PARAMETERS
channel mask Mask of all the acceptable channels to choose from.

highest Bool indicating whether to search for an available channel from 8 or from
0.

RETURN VALUE

Returns a handle to a DMA channel if one is available. If none are available it returns
DMA CHANNEL_NONE.

LIBRARY
DMA.LIB

SEE ALSO
DMAunalloc, DMAhandleZchan

Dynamic C Function Reference Manual digi.com 52

http://www.digi.com

DMAcompleted

int DMAcompleted(dma_ chan t handle, unsigned int * len);

DESCRIPTION

This function checks to see if a channel is finished with its DMA operation. If complete, the number
of bytes transferred in the last operation is returned in * 1en (if 1en isnot NULL), and 1 is returned.

PARAMETERS
handle Handle for channel to check
len Pointer to the value to be filled with the number of bytes last transferred

RETURN VALUE

1: DMA operation is complete
0: Allocated channel has never been used or is currently running
-EINVAL: Invalid handle
LIBRARY
DMA.LIB

SEE ALSO
DMAstop

DMAhandle2chan

int DMAhandle2chan(dma_chan_t handle);

DESCRIPTION

This function checks the validity of a handle and returns the channel number if it is valid.
PARAMETER
handle Handle to convert to channel number

RETURN VALUE

0-7: Valid channel number
DMA CHANNEL NONE: The channel is invalid

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAunalloc

Dynamic C Function Reference Manual digi.com 53

http://www.digi.com

DMAioe2mem

int DMAioe2mem(dma_chan_ t handle, dma_addr_ t dest, unsigned int src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from external I/O to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src External I/O location source address
len Length to send (cannot equal zero)
flags Various flag options.

DMA_F_REPEAT

DMA F INTERRUPT

DMA F_LAST SPECIAL

DMA_F_SRC_DEC

DMA_F_DEST_DEC

DMA_F_STOP_MATCH

indicates that the transfer will be a cycle

indicates an interrupt will be triggered at the completion of
the transfer. The interrupt vector and function must be set
up in the user's code.

(only for Ethernet or HDLC peripherals)

Internal Source: Status byte written to initial buffer
descriptor before last data.

Internal Destination: Last byte written to offset address
for frame termination.

All Others: no effect.

only for transfers with memory source. Indicates the source
address should be decremented. (If not specified, a memory
source address is incremented.)

only for transfers with memory destination. Indicates the
destination address should be decremented. (If not
specified, a memory destination address is incremented.)

indicates whether or not to stop the dma transfer when a
character is reached. The match byte and mask should have
previously been set by calling the DMAmatchSetup ()
function.

Dynamic C Function Reference Manual

digi.com

54

http://www.digi.com

DMA F TIMER indicates the DMA timer will be used. The divisor should
have already been set by calling the DMAtimerSetup ()
function.

DMA F_TIMER_ 1BPR indicates that the timed transfers will send one byte per
request instead of the entire descriptor.

Only one of the following flags (if any) should be set. They indicate that
the DMA transfer is gated using the named pin:

DMA F_PD2
DMA F_PE2
DMA F PE6
DMA F_PD3
DMA F_PE3
DMA F_PE7

The following flags indicate the polarity of the gating signal:

DMA F_FALLING (default)
DMA F RISING
DMA F_LOW
DMA F HIGH

RETURN VALUE

0: Success

-EINVAL: Invalid handle

-EBUSY: Resources are busy
LIBRARY

DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Function Reference Manual digi.com

55

http://www.digi.com

DMAioi2mem

int DMAioi2mem(dma_chan_ t handle, dma_addr_ t dest, unsigned int src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from internal I/O to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Internal I/O location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMA1oe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success

-EINVAL: Invalid handle

-EBUSY: Resources are busy
LIBRARY

DMA.LIB

SEE ALSO
DMAmemZ2mem, DMAcompleted, DMAstop

Dynamic C Function Reference Manual digi.com 56

http://www.digi.com

DMAloadBufDesc

void DMAloadBufDesc(int dmaChannel, dma addr_ t * bufPtr);

DESCRIPTION

This function loads the appropriate DMA Initial Address Registers for the requested DMA channel
with the address provided.

PARAMETERS
dmaChannel DMA channel number to load
bufPtr Pointer to variable containing physical address of DMA buffer

LIBRARY
DMA.LIB

SEE ALSO
DMAsetBufDesc, DMAsetDirect

DMAmatchSetup

int DMAmatchSetup(dma_chan_ t handle, int mask, int byte);

DESCRIPTION

This function sets up the mask and match registers for the DMA. These registers are only used when
the DMA F STOP_MATCH flag is passed to the transfer function.

PARAMETERS
handle Handle for the DMA channel.
mask Mask for termination byte (parameter 3). A value of all zeros disables the
termination byte match feature. A value of all ones uses the full termination
byte for comparison.
byte Byte that, if matched, will terminate the buffer.
LIBRARY
DMA.LIB
SEE ALSO

DMAmemZ2mem, DMAtimerSetup

Dynamic C Function Reference Manual digi.com 57

http://www.digi.com

DMAmem2ioe

int DMAmem2ioe (dma_chan_ t handle, unsigned int dest, dma_addr_t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to external 1/O.

PARAMETERS
handle Handle for channel to use in transfer
dest External I/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMA1oe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success

-EINVAL: Invalid handle

-EBUSY: Resources are busy
LIBRARY

DMA.LIB

SEE ALSO
DMAmemZ2mem, DMAcompleted, DMAstop

Dynamic C Function Reference Manual digi.com 58

http://www.digi.com

DMAmem2ioi

int DMAmem2ioi (dma_chan_t handle, unsigned int dest, dma_addr_t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to internal 1/O.

PARAMETERS
handle Handle for channel to use in transfer
dest Internal I/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMA1oe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success

-EINVAL: Invalid handle

-EBUSY: Resources are busy
LIBRARY

DMA.LIB

SEE ALSO
DMAmemZ2mem, DMAcompleted, DMAstop

Dynamic C Function Reference Manual digi.com 59

http://www.digi.com

DMAmem2mem

int DMAmem2mem(dma_ chan_t handle, dma addr_ t dest, dma_addr_t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Memory location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMA1oe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success

-EINVAL: Invalid handle

-EBUSY: Resources are busy
LIBRARY

DMA.LIB

SEE ALSO
DMAcompleted, DMAstop

Dynamic C Function Reference Manual digi.com 60

http://www.digi.com

DMApoll

word DMApoll(int dmaChannel, word * bufCount);

DESCRIPTION

This is a low-level DMA function for determining how much data has been transferred by the

specified DMA channel. Since DMA is asynchronous to the CPU, this returns a lower bound on the
actually completed transfer.

PARAMETERS

IMPORTANT: Owing to the way the DMA channels are designed, this function
will not give a valid result for the first buffer in a linked list or chain, or if there is
only one buffer defined (with no link or array sequencing). To get around this lim-
itation, define the first buffer as a dummy transfer of one byte from memory to the
same memory, and link this initial dummy buffer to the desired list or array of buf-
fer descriptors. Take the dummy buffer into account when interpreting the
bufCount value returned. If you service an interrupt from the dummy buffer
completion, you will know when it is valid to poll.

This function is mainly intended for endless DMA loops (e.g., receiving into a cir-
cular buffer from a serial port) thus the above restriction should not be too onerous
in practice.

dmaChannel DMA channel number to poll (0-7).

bufCount

RETURN VALUE

The number of bytes remaining in the buffer indicated by *bufCount. This ranges from 0, if

in this buffer. The buffer count wraps around modulo 256.

Pointer to variable in which the completed buffer count will be written. The
return value contains the number of bytes remaining (not yet transferred)

completed, up to the total size of the buffer, if not yet started. If the size of any single transfer was
65536 bytes, then the return value is ambiguous as to whether it means “0” or “65536.”

LIBRARY

DMA.LIB

SEE ALSO

DMAloadBufDesc, DMAsetDirect

Dynamic C Function Reference Manual digi.com

61

http://www.digi.com

DMAprintBufDesc

void DMAprintBufDesc(void * dr, long dp);

DESCRIPTION

This is a debugging function only. It formats and prints the contents of the buffer descriptor at *dr
or *dp, using bit 6 of the chanControl field to determine whether to assume a short or long
format. If dr is not NULL, then the buffer descriptor is in root memory and *dr is used. Otherwise,
dp is assumed to be the physical address of the buffer descriptor in xmem.

PARAMETERS
dr Pointer to buffer descriptor in root memory.
dp Address of buffer descriptor in physical memory.

LIBRARY
DMA.LIB

SEE ALSO
DMAprintRegs

DMAprintRegs

void DMAprintRegs(int chan, int masters);

DESCRIPTION

This is a debugging function only. This prints the values of the hardware registers for the specified
channel. If masters is true, then it also prints the values of the master DMA control registers.

Note that the Source and Destination Address registers are write only and read as zero.

PARAMETERS
chan Channel number to print
masters A bool to determine whether or not to print out the master registers shared
between all channels
LIBRARY
DMA.LIB
SEE ALSO
DMAprintBufDesc

Dynamic C Function Reference Manual digi.com 62

http://www.digi.com

DMAsetBufDesc

int DMAsetBufDesc(char chanControl, unsigned int bufLength,
dma_addr_t srcAddress, dma_addr t destAddress, dma_addr_t

linkAddress, dma_addr t bufPtr, int bufSize);

DESCRIPTION

This function loads a DMA buffer descriptor in memory with the values provided. The buffer needs
to be described as either 12 or 16 bytes in size.

PARAMETERS
chanControl
bufLength
srcAddress
destAddress
linkAddress
bufPtr
bufSize

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO

DMA channel control value

DMA buffer length

DMA source address

DMA destination address

DMA link address (of next buffer descriptor)
Physical address of buffer descriptor to fill

Size of buffer descriptor in bytes (12 or 16 only)

DMAloadBufDesc, DMAsetDirect

Dynamic C Function Reference Manual digi.com

63

http://www.digi.com

DMAsetDirect

void DMAsetDirect(int channel, char chanControl, unsigned int
bufLength, dma_addr_t srcAddress, dma_addr t destAddress,
dma_addr_t linkAddress);

DESCRIPTION

This function sets up a DMA channel with the values provided.

PARAMETERS
channel
chanControl
buflLength
srcAddress
destAddress
linkAddress

LIBRARY
DMA.LIB

SEE ALSO

DMA channel to set

DMA channel control value

DMA buffer length

DMA source address

DMA destination address

DMA link address (of next buffer descriptor)

DMAloadBufDesc, DMAsetBufDesc

Dynamic C Function Reference Manual digi.com

64

http://www.digi.com

DMAsetParameters

int DMAsetParameters(unsigned int transfer pri, unsigned int
interrupt pri, unsigned int inter dma pri, unsigned int
chunkiness, unsigned int min cpu pct);

DESCRIPTION

This function sets up DMA parameters. The chunkiness parameter determines the amount of
CPU time needed to transfer data according to this chart:

chunkiness 1 2 3 4 8 16 32 64

CPU cycles 11 15 19 23 39 71 135 | 263

Themin cpu pct parameter determines the minimum time between bursts and is calculated
with this formula:

o (CPU cycles - min cpu pct)
(100 — min_cpu_pct)

cpu free tim:

This is then rounded up to the nearest value out of 12, 16, 24, 32, 64, 128, 256, or 512.
PARAMETERS

transfer pri DMA transfer priority (0, 1, 2 or 3), transfers can occur when the CPU
interrupt priority is less than or equal to this value.

interrupt pri DMA interrupt priority (0, 1, 2, or 3); a value of 0 will disable the DMA
interrupts.

inter dma pri Relative prioritization amongst the DMA channels. It is one of the
following constants:

« DMA_IDP FIXED
fixed priorities, with higher channel numbers taking precedence;
« DMA_IDP ROTATE FINE
priorities are rotated after every byte transferred;
+ DMA_IDP_ ROTATE_COARSE
priorities rotated after every transfer request, the size of which is
determined by the “chunkiness” parameter.

chunkiness Maximum transfer burst size. Allowed values are 1, 2, 3, 4, 8, 16, 32, or
64. Other numbers will be rounded down to the nearest allowed value.

min_cpu_pct A number between 0 and 100 describing the minimum (worst-case) rela-
tive amount of time that the CPU will control the bus versus the DMA time.
Internally, this function uses this figure to determine the 'minimum clocks
between bursts' hardware setting. The figure will be rounded in favor of the
CPU, up to the maximum possible hardware setting.

Dynamic C Function Reference Manual digi.com 65

http://www.digi.com

RETURN VALUE

O: Success
-EINVAL: for an error

LIBRARY
DMA.LIB

DMAstartAuto

void DMAstartAuto(int channel);

DESCRIPTION

This function is defined to the following:
WrPortI (DMALR, NULL, 1 << channel);

Start (using auto-load) the corresponding DMA channel, using the buffer descriptor in memory
addressed by the Initial Address Register. This command should only be used after the Initial
Address has been loaded.

PARAMETER
channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartDirect, DMAstopDirect

Dynamic C Function Reference Manual digi.com

66

http://www.digi.com

DMAstartDirect

void DMAstartDirect(int channel);

DESCRIPTION

This function is defined to the following:
WrPortI (DMCSR, NULL, 1 << channel);

Start (or restart) the corresponding DMA channel using the contents of the DMA channel registers.
This command should only be used after all the DMA channel registers have been loaded.

PARAMETER
channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstopDirect

Dynamic C Function Reference Manual digi.com 67

http://www.digi.com

DMAstop

int DMAstop(dma_chan_ t handle);

DESCRIPTION

Stop a DMA operation started with one of the DMAmem?2ioe series functions. DMAcompleted ()

will return TRUE after for an operation stopped with this function, but with less data length than the

original request. It is OK to stop an operation that has currently completed; this has no effect.

DMAcompleted () may be called to determine the actual amount of data transferred.
PARAMETER

Handle for channel to stop.

RETURN VALUE

0: Success
-EINVAL: Invalid handle

LIBRARY
DMA.LIB

SEE ALSO
DMAcompleted, DMAstopDirect

DMAstopDirect

void DMAstopDirect(int channel);

DESCRIPTION

This function is defined to the following:
WrPortI (DMHR, NULL, 1 << channel);

Halt the corresponding DMA channel. The DMA registers obtain the current state and the DMA can
be restarted using the DMCSR.

PARAMETER
channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstartDirect

Dynamic C Function Reference Manual digi.com 68

http://www.digi.com

DMAtimerSetup

void DMAtimerSetup(unsigned int divisor);

DESCRIPTION

This function sets up the DMA 16-bit divisor. To use the divisor, the DMA F TIMER flag must be
passed to the transfer function.

PARAMETER
divisor 16-bit divisor for the DMA timer

LIBRARY
DMA.LIB

SEE ALSO
DMAmemZ2mem, DMAmatchSetup

DMAunalloc

int DMAunalloc(dma_chan_ t handle);

DESCRIPTION

This function deallocates a handle, effectively closing the DMA channel to which it was associated.
PARAMETER
handle Handle for DMA channel; returned by DMAalloc ().

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAhandleZchan

Dynamic C Function Reference Manual digi.com 69

http://www.digi.com

E

Enable_HW_WDT

void Enable HW WDT(void);

DESCRIPTION

Enables the hardware watchdog timer on the Rabbit processor. The watchdog is hit by the periodic
interrupt, which is on by default.

LIBRARY
SYS.LIB

enableIObus

void enableIObus(void) ;

DESCRIPTION

This function enables external I/O bus operation. The external I/O bus must be enabled during any
external I/O bus operation and disabled during normal bus operations with other devices.

Parallel port A becomes the I/O data bus and parallel port B bits 7:2 becomes the /O address bus.
This function is non-reentrant.

Port A and B data shadow register values are NOT saved or restored in this function call.

If the macro PORTA AUX IO has been previously defined, this function should not be called.

LIBRARY
ExternIO.LIB

SEE ALSO
disableIObus

Dynamic C Function Reference Manual digi.com 70

http://www.digi.com

error message

unsigned long error message(int message_ index);

DESCRIPTION

Returns a physical pointer to a descriptive string for an error code listed in errno . h. The sample
program Samples\ErrorHandling\error message test. c illustrates the use of
error message (). The error message strings are defined in errors. 1ib. Consider using
strerror() instead, as it will always return a printable string (and is therefore appropriate for passing
to one of the printf() functions).

PARAMETER
message_index Positive or negative value of error return code.

RETURN VALUE

Physical address of string, or zero if error code is not listed.

LIBRARY
ERRORS.LIB

SEE ALSO

strerror, perror

Dynamic C Function Reference Manual digi.com 71

http://www.digi.com

exception

int exception(int errCode);

DESCRIPTION

This function is called by Rabbit libraries when a runtime error occurs. It puts information relevant

to the runtime error on the stack and calls the default runtime error handler pointed to by the
ERROR_EXIT macro. To define your own error handler, see the defineErrorHandler ()

function.

When the error handler is called, the following information will be on the stack:

Location on Stack Description
SP+0 Return address for error handler call
SP+2 Runtime error code
SP+4 (can be used for additional information)
SP+6 LXPC when exception () was called
SP+8 Address where exception () was called from

RETURN VALUE

Runtime error code passed to it.

LIBRARY
ERRORS.LIB

SEE ALSO

defineErrorHandler

Dynamic C Function Reference Manual

digi.com

72

http://www.digi.com

exit

void exit(int status);

DESCRIPTION

Stops the program and returns status to Dynamic C. If not debugging, exit () will run an
infinite loop, causing a watchdog timeout if the watchdog is enabled.

Before termination, exit () first calls all functions registered with atexit (), in the reverse
order of registration.

Next, all open streams are flushed, closed and files created with tmpfile () are deleted.

PARAMETERS

Exit code to pass to Dynamic C. Can be either EXIT SUCCESS or EXIT FAILURE (for general
success/failure conditions) or a specific, negated error macro (like —-ETIME to report a timeout).

exitcode Error code passed by Dynamic C.

HEADER
stdlib.h

SEE ALSO

abort, atexit

Dynamic C Function Reference Manual digi.com 73

http://www.digi.com

exp

double exp (double x);
float expf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the exponential of real £1oat value x.
PARAMETERS
x Value to compute

RETURN VALUE

Returns the value of e*.

HEADER
math.h

SEE ALSO
log, loglO, frexp, ldexp, pow, powlO, sqgrt

Dynamic C Function Reference Manual digi.com

74

http://www.digi.com

fabs

double fabs (double x);
float fabsf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the float absolute value of float x.
PARAMETERS
x Value to compute.

RETURN VALUE

x,1fx >=0,

else -x.
HEADER

math.h
SEE ALSO

abs

Dynamic C Function Reference Manual digi.com

75

http://www.digi.com

fat AutoMount

int fat AutoMount(word flags);

DESCRIPTION

Initializes the drivers in the default drivers configuration listin fat config.lib and
enumerates the devices in the default devices configuration list, then mounts partitions on
enumerated devices according to the device's default configuration flags, unless overridden by the
specified run time configuration flags. Despite its lengthy description, this function makes
initializing multiple devices using the FAT library as easy as possible. The first driver in the
configuration list becomes the primary driver in the system, if one is not already set up.

After this routine successfully returns, the application can start calling directory and file functions
for the devices' mounted partitions.

If devices and/or partitions are not already formatted, this function can optionally format them
according to the device's configuration or run time override flags.

This function may be called multiple times, but will not attempt to remount device partitions that it
has already mounted. Once a device partition has been mounted by this function, unmounts and
remounts must be handled by the application.

Even though this function may be called multiple times, it is not meant to be used as a polling or
status function. For example, if you are using removable media such as an SD card, you should call
sdspi debounce () to determine when the card is fully inserted into the socket.

There are two arrays of data structures that are populated by calling fat AutoMount (). The
array named fat part mounted[] is an array of pointers to fat part structures. A

fat part structure holds information about a specific FAT partition. The other array,

_fat device table[],is composed of pointers to mbr dev structures. Anmbr dev
structure holds information about a specific device. Partition and device structures are needed in
many FAT function calls to specify the device and partition to be used.

An example of using fat part mounted][] was shown in the sample program

fat create.c. FAT applications will need to scan fat part mounted[] to locate valid
FAT partitions. A valid FAT partition must be identified before any file and directory operations can
be performed. These pointers to FAT partitions may be used directly by indexing into the array or
stored in a local pointer. The fat shell. c sample uses an index into the array, whereas most
other sample programs make a copy of the pointer.

An example of using fat device table[] isinthe sample program fat shell.c. This
array is used in FAT operations of a lower level than fat part mounted[]. Specifically, when
the device is being partitioned, formatted and/or enumerated. Calling fat AutoMount ()
relieves most applications of the need to directly use fat device table[].

Dynamic C Function Reference Manual digi.com 76

http://www.digi.com

PARAMETERS

flags Run-time device configuration flags to allow overriding the default device
configuration flags. If not overriding the default configuration flags, spec-
ify FDDF_USE_DEFAULT. To override the default flags, specify the
ORed combination of one or more of the following:

FDDF MOUNT PART_0: Mount specified partition
FDDF_MOUNT PART 1:

FDDF_MOUNT_ PART 2:

FDDF_MOUNT PART 3:

FDDF MOUNT PART ALL: Mount all partitions

FDDF_MOUNT DEV_0: Apply to specified device
FDDF_MOUNT DEV 1:

FDDF_MOUNT DEV_2:

FDDF MOUNT DEV 3:

FDDF MOUNT DEV_ALL: Apply to all available devices

FDDF NO RECOVERY: Use norecovery if fails first time

FDDF COND DEV FORMAT: Format device if unformatted
FDDF COND_PART FORMAT: Format partition if unformatted
FDDF_UNCOND DEV_ FORMAT: Format device unconditionally
FDDF UNCOND PART FORMAT: Format partition unconditionally

Note: The FDDF MOUNT PART _* flags apply equally to all FDDF_MOUNT DEV_*
devices which are specified. If this is a problem, call this function multiple times with a
single DEV flag bit each time.

Note: Formatting the device creates a single FAT partition covering the entire device. It is
recommended that you always set the * PART FORMAT flag bit if you set the corre-
sponding * DEV FORMAT flag bit.

RETURN VALUE

0: success
—-EBADPART: partition is not a valid FAT partition
—-EIO: Device I/O error
-EINVAL: invalid prtTable
-EUNFORMAT: device is not formatted
-ENOPART: no partitions exist on the device

-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete the

close.

Any other negative value means that an I/O error occurred when updating the directory entry. In this

case, the file is forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat EnumPartition, fat MountPartition

Dynamic C Function Reference Manual digi.com

77

http://www.digi.com

fat Close

int fat Close(FATfile *file);

DESCRIPTION
Closes a currently open file. You should check the return code since an I/0 needs to be performed
when closing a file to update the file's EOF offset (length), last access date, attributes and last write
date (if modified) in the directory entry. This is particularly critical when using non-blocking mode.

PARAMETERS

file Pointer to the open file to close.

RETURN VALUE

0: success.

-EINVAL: invalid file handle.
-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete the

close.

Any other negative value means that an I/O error occurred when updating the directory entry. In this
case, the file is forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir

Dynamic C Function Reference Manual digi.com 78

http://www.digi.com

fat CreateDir

int fat CreateDir(fat_part *part, char *dirname);

DESCRIPTION
Creates a directory if it does not already exist. The parent directory must already exist.
In non-blocking mode, only one file or directory can be created at any one time, since a single static

FATfile isused for temporary storage. Each time you call this function, pass the same dirname
pointer (not just the same string contents).

PARAMETERS
part Handle for the partition being used.
dirname Pointer to the full path name of the directory to be created.

RETURN VALUE

0: success.

-EINVAL: invalid argument. Trying to create volume label.

—~ENOENT: parent directory does not exist.

-EPERM: the directory already exists or is write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: if non-blocking, but a previous sequence of calls to this function (or

fat CreateFile ())hasnot completed and you are trying to create a different file or directory.
You must complete the sequence of calls for each file or directory i.e., keep calling until something
other than -EBUSY is returned.

Other negative values are possible from fat Open ()/fat Close () calls.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat CreateFile

Dynamic C Function Reference Manual digi.com 79

http://www.digi.com

fat CreateFile

int fat CreateFile(fat part * part, char * filename, long
alloc_size, FATfile * file);

DESCRIPTION

Creates a file if it does not already exist. The parent directory must already exist.

In non-blocking mode, if file is NULL, only one file or directory can be created at any one time,
since a single static FATf1 1e is used for temporary storage. Each time you call this function, pass
the same dirname pointer (not just the same string contents).

Valid filenames are limited to an 8 character filename and 3 character extension separated by a
period; this is commonly known as the “8.3” format. Examples include but are not limited to
“12345678.123”, “filename.txt”, and “webpagel.htm”.

PARAMETERS

part Pointer to the partition being used.

filename Pointer to the full pathname of the file to be created.

alloc_size Initial number of bytes to pre-allocate. Note that at least one cluster will be
allocated. If there is not enough space beyond the first cluster for the
requested allocation amount, the file will be allocated with whatever space
is available on the partition, but no error code will be returned. If not even
the first cluster is allocated, the ~-ENOSPC error code will return. This
initial allocation amount is rounded up to the next whole number of
clusters.

file If not NULL, the created file is opened and accessible using this handle.

If NULL, the file is closed after it is created.

RETURN VALUE

0: success.

-EINVAL: part, filename, alloc_size, or file contain invalid values.

~ENOENT: the parent directory does not exist.

-ENOSPC: no allocatable sectors were found.

-EPERM: write-protected, trying to create a file on a read-only partition.

-EBUSY: the device is busy (non-blocking mode only).

-EFSTATE: if non-blocking, but a previous sequence of calls to this function (of fat_CreateFile)
has not completed but you are trying to create a different file or directory. You must complete the
sequence of calls for each file or directory i.e. keep calling until something other than ~EBUSY is
returned. This code is only returned if you pass a NULL file pointer, or if the file pointer is not
NULL and the referenced file is already open.

-EPATHSTR: Bad file/directory path string. Valid filenames are limited to the 8.3 format.

Other negative values indicate /O error, etc.

Dynamic C Function Reference Manual digi.com 80

http://www.digi.com

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat ReadDir, fat Write

fat CreateTime

int fat CreateTime(fat _dirent *entry, struct tm *t);

DESCRIPTION

This function puts the creation date and time of the entry into the system time structure t. The
function does not fill in the tm wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

Dynamic C Function Reference Manual digi.com

81

http://www.digi.com

fat Delete

int fat Delete(fat part *part, int type, char *name);

DESCRIPTION

Deletes the specified file or directory. The t ype must match or the deletion will not occur. This
routine inserts a deletion code into the directory entry and marks the sectors as available in the FAT
table, but does not actually destroy the data contained in the sectors. This allows an undelete
function to be implemented, but such a routine is not part of this library. A directory must be empty
to be deleted.

PARAMETERS
part Handle for the partition being used.
type Must be a FAT file (FAT FILE) or a FAT directory (FAT DIR),
depending on what is to be deleted.
name Pointer to the full path name of the file/directory to be deleted.

RETURN VALUE

0: success.

-EI0: device I/O error.

-EINVAL: part, type, or name contain invalid values.

-EPATHSTR: name is not a valid path/name string.

-EPERM: the file is open, write-protected, hidden, or system.

-ENOTEMPTY: the directory is not empty.

-ENOENT: the file/directory does not exist.

-EBUSY: the device is busy. (Only if non-blocking.)

-EPSTATE: if the partition is busy; i.e., there is an allocation in progress. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Split, fat Truncate, fat Close

Dynamic C Function Reference Manual digi.com 82

http://www.digi.com

fat EnumDevice

int fat EnumDevice(mbr_drvr *driver, mbr_dev *dev, int devnum,
char *sig, int norecovery);

DESCRIPTION

This routine is called to learn about the devices present on the driver passed in. The device will be
added to the linked list of enumerated devices. Partition pointers will be set to NULL, indicating
they have not been enumerated yet. Partition entries must be enumerated separately.

The signature string is an identifier given to the write-back cache, and must remain consistent
between resets so that the device can be associated properly with any battery-backed cache entries
remaining in memory.

This function is called by fat AutoMount () and fat Init ().

PARAMETERS

driver Pointer to an initialized driver structure set up during the initialization of
the storage device driver.

dev Pointer to the device structure to be filled in.

devnum Physical device number of the device.

sig Pointer to a unique signature string. Note that this value must remain the
same between resets.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value

except zero.

RETURN VALUE

0: success.

—-ETIO: error trying to read the device or structure.

-EINVAL: devnum invalid or does not exist.

-ENOMEM: memory for page buffer/RJ is not available.

-EUNFORMAT: the device is accessible, but not formatted. You may use it provided it is
formatted/partitioned by either this library or by another system.

-EBADPART: the partition table on the device is invalid.

—~ENOPART: the device does not have any FAT partitions. This code is superseded by any other error
detected.

—-EEXIST: the device has already been enumerated.

-EBUSY: the device is busy (nonblocking mode only).

LIBRARY
FAT.LIB

SEE ALSO
fat AutoMount, fat Init, fat EnumPartition

Dynamic C Function Reference Manual digi.com 83

http://www.digi.com

fat_EnumPartition

int fat EnumPartition(mbr_dev *dev, int pnum, fat part *part);

DESCRIPTION

This routine is called to enumerate a partition on the given device. The partition information will be
put into the FAT partition structure pointed to by part. The partition pointer will be linked to the
device structure, registered with the write-back cache, and will then be active. The partition must be
of a valid FAT type.

This function is called by fat AutoMount () and fat Init ().

PARAMETERS
dev Pointer to an MBR device structure.
pnum Partition number to link and enumerate.
part Pointer to an FAT partition structure to be filled in.

RETURN VALUE

0: success.

—-EIO0: error trying to read the device or structure.

-EINVAL: partition number is invalid.

-EUNFORMAT: the device is accessible, but not formatted.

-EBADPART: the partition is not a FAT partition.

-EEXIST: the partition has already been enumerated.
-EUNFLUSHABLE: there are no flushable sectors in the write-back cache.
-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat FormatPartition, fat MountPartition

Dynamic C Function Reference Manual digi.com 84

http://www.digi.com

fat_FileSize

int fat FileSize(FATfile *file, unsigned long *length);

DESCRIPTION

Puts the current size of the file in bytes into 1length.

PARAMETERS
file Handle for an open file.
length Pointer to the variable where the file length (in bytes) is to be placed.

RETURN VALUE

0: success.
-EINVAL: file is invalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Seek

Dynamic C Function Reference Manual digi.com

85

http://www.digi.com

fat FormatDevice

int fat FormatDevice(mbr_ dev *dev, int mode);

DESCRIPTION

Formats a device. The device will have a DOS master boot record (MBR) written to it. Existing
partitions are left alone if the device was previously formatted. The formatted device will be
registered with the write-back cache for use with the FAT library. The one partition mode will
instruct the routine to create a partition table, with one partition using the entire device. This mode
only works if the device is currently unformatted or has no partitions.

If needed (i.e., there is no MBR on the device), this function is called by fat AutoMount () if
its flags parameter allows it.

PARAMETERS
dev Pointer to the data structure for the device to format.
mode Mode:
0 = normal (use the partition table in the device structure)
1 = one partition using the entire device (errors occur if there are already
partitions in the device structure)
3 = force one partition for the entire device (overwrites values already in
the device structure)
RETURN
0: success.

—-EIO: error trying to read the device or structure.
-EINVAL: device structure is invalid or does not exist.
-ENOMEM: memory for page buffer/RJ is not available.
-EEXIST: the device is already formatted.

-EPERM: the device already has mounted partition(s).
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat EnumDevice, fat PartitionDevice,
fat FormatPartition

Dynamic C Function Reference Manual digi.com 86

http://www.digi.com

fat FormatPartition

int fat FormatPartition(mbr_ dev *dev, fat part *part, int pnum,
int type, char *label, int (*usr) ())

DESCRIPTION

Formats partition number pnum according to partition type. The partition table information in the
device must be valid. This will always be the case if the device was enumerated. The partition type
must be a valid FAT type. Also note that the partition is nof mounted after the partition is formatted.
If —-EBUSY is returned, the partition structure must not be disturbed until a subsequent call returns
something other than ~-EBUSY.

If needed (i.e., fat MountPartition () returned error code ~EBADPART), this function is
called by fat AutoMount ().

PARAMETERS

dev Pointer to a device structure containing partitions.

part Pointer to a FAT partition structure to be linked. Note that opstate must
be set to zero before first call to this function if the library is being used in
the non-
blocking mode.

pnum Partition number on the device (0-3).

type Partition type.

label Pointer to a partition label string.

usr Pointer to a user routine.

RETURN VALUE

0: success.

—-ETIO: error in reading the device or structure.

—~EINVAL: the partition number is invalid.

-EPERM: write access is not allowed.

-EUNFORMAT: the device is accessible, but is not formatted.
—-EBADPART: the partition is not a valid FAT partition.
-EACCES: the partition is currently mounted.

-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat FormatDevice, fat EnumDevice,
fat PartitionDevice, fat EnumPartition

Dynamic C Function Reference Manual digi.com 87

http://www.digi.com

f at Free

int fat Free(fat part *part);

DESCRIPTION

This function returns the number of free clusters on the partition.

PARAMETERS
part Handle to the partition.

RETURN VALUE

Number of free clusters on success
0: partition handle is bad or partition is not mounted.

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition

Dynamic C Function Reference Manual digi.com

88

http://www.digi.com

fat GetAttr

int fat GetAttr(FATfile *file);

DESCRIPTION

This function gets the given attributes to the file. Use the defined attribute flags to check the value:

* FATATTR READ ONLY - The file can not be modified.

* FATATTR HIDDEN - The file is not visible when doing normal operations.
* FATATTR SYSTEM - This is a system file and should be left alone.

* FATATTR VOLUME ID - This is the name of a logical disk.

e FATATTR DIRECTORY - This is a directory and not a file.

* FATATTR ARCHIVE - This tells you when the file was last modified.

* FATATTR LONG NAME - This is a FAT32 or long file name. It is not supported.

PARAMETERS
file Handle to the open file.

RETURN VALUE

Attributes on success
-EINVAL: invalid file handle.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Function Reference Manual digi.com

89

http://www.digi.com

fat GetName

int fat GetName(fat _dirent *entry, char *buf, word flags);

DESCRIPTION

Translates the file or directory name in the fat dirent structure into a printable name. FAT file
names are stored in a strict fixed-field format in the fat dirent structure (returned from
fat Status, for example). This format is not always suitable for printing, so this function should
be used to convert the name to a printable null-terminated string.

PARAMETERS
entry Pointer to a directory entry obtained by fat Status ().
buf Pointer to a char array that will be filled in. This array must be at least 13
characters long.
flags May be one of the following:

e 0 - standard format, e.g., AUTOEXEC .BAT or XYZ.GIF
* FAT LOWERCASE - standard format, but make lower case.
RETURN VALUE

0: success.
-EINVAL: invalid (NULL) parameter(s).

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status

Dynamic C Function Reference Manual digi.com 90

http://www.digi.com

fat GetPartition

int fat GetPartition (fat part **part, char **file, char *
fullpath) ;

DESCRIPTION

Split a full pathname (e.g., “a:/filename.txt”) into a partition and filename.

Examples (with FAT USE FORWARDSLASH defined):

a:/filename.txt > partition A, /filename.txt
/b/filename.txt > partition B, /filename.txt
C:filename.txt > partition C, /filename.txt

Examples (without FAT USE FORWARDSLASH defined):

a:\filename.txt > partition A, \filename.txt
\b\filename.txt > partition B, \filename.txt
C:filename.txt > partition C, \filename.txt

PARAMETERS
part Memory location to store a pointer to the fat partition (drive letter).
file Memory location to store a pointer into fullpath (parameter 3) where the
filename begins.
fullpath Pathname to parse.

RETURN VALUE

0: Success
-EINVAL: unable to parse fullpath

LIBRARY
FAT.LIB

Dynamic C Function Reference Manual digi.com

http://www.digi.com

fat_Init

int fat Init(int pnum, mbr drvr *driver, mbr dev *dev, fat part
*part, int norecovery);

DESCRIPTION

Initializes the default driver in MBR_ DRIVER INIT, enumerates device 0, then enumerates and
mounts the specified partition. This function was replaced with the more powerful
fat AutoMount ().

fat Init () will only work with device 0 of the default driver. This driver becomes the primary
driver in the system.

The application can start calling any directory or file functions after this routine returns successfully.

The desired partition must already be formatted. If the partition mount fails, you may call the
function again using a different partition number (pnum). The device will not be initialized a second

time.
PARAMETERS
pnum Partition number to mount (0-3).
driver Pointer to the driver structure to fill in.
dev Pointer to the device structure to fill in.
part Pointer to the partition structure to fill in.
norecovery Boolean flag - set to True to ignore power-recovery data. True is any value

except zero.

RETURN VALUE

0: success.

-EI0: device I/O error.

-EINVAL: pnum, driver, or device, or part is invalid.
~EUNFORMAT: the device is not formatted.

-EBADPART: the partition requested is not a valid FAT partition.
-ENOPART: no partitions exist on the device.

-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat EnumDevice, fat EnumPartition,
fat MountPartition

Dynamic C Function Reference Manual digi.com 92

http://www.digi.com

fat InitUCOSMutex

void fat InitUCOSMutex(int mutexPriority);

DESCRIPTION

This function was introduced in FAT version 2.10. Prior versions of the FATfile system are
compatible with pC/OS-II only if FAT API calls are confined to one nC/OS-II task. The FAT API
is not reentrant from multiple tasks without the changes made in FAT version 2.10. If you wish to
use the FAT file system from multiple pC/COS tasks, you must do the following:

1. The statement #define FAT USE UCOS MUTEX must come before the statement:
fuse FAT.LIB

2. After calling 0SInit () and before starting any tasks that use the FAT, call
fat InitUCOSMutex (mutexPriority).The parameter mutexPriority isa uC/OS-II
task priority that must be higher than the priorities of all tasks that call FAT API functions.

3. You must not call low-level, non-API FAT or write-back cache functions. Only call FAT functions
appended with “fat ** and with public function descriptions.

4. Run the FAT in blocking mode (#define FAT BLOCK).
Mutex timeouts or other errors will cause a run-time error —-ERR_FAT MUTEX ERROR.
uC/OS-II may raise the priority of tasks using mutexes to prevent priority inversion.

The default mutex time-out in seconds is given by FAT MUTEX TIMEOUT SEC, which defaults
to 5 seconds if not defined in the application before the statement #use FAT.LIB.

PARAMETERS

mutexPriority A pC/OS-II task priority that MUST be higher than the priorities of all
tasks that call FAT API functions.
RETURN VALUE

None: success.
-ERR_FAT MUTEX ERROR: A run-time error causes an exception and the application will exit
with this error code.
LIBRARY
FAT.LIB

SEE ALSO
fat AutoMount, fat Init

Dynamic C Function Reference Manual digi.com 93

http://www.digi.com

fat IsClosed

int fat IsClosed(FATfile far * file);

DESCRIPTION
Returns non-zero if the FATfile passed is closed and zero if open

(Currently implemented as a macro, but may be modified to be an actual function in a future
release.)

PARAMETER
file Pointer to a FATfile structure to check.

RETURN VALUE
10: file is closed
0: file is open
LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

fat IsOpen

int fat IsOpen(FATfile far * file);

DESCRIPTION
Returns non-zero if the FATfile passed is open and zero if closed.

(Currently implemented as a macro, but may be modified to be an actual function in a future
release.)

PARAMETER
file Pointer to a FATfile structure to check.

RETURN VALUE

10 if file is open
0 if file is closed

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

Dynamic C Function Reference Manual digi.com

94

http://www.digi.com

fat LastAccess

int fat LastAccess(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the last access date of the specified entry into the system time structure t. The time is always
set to midnight. The function does not fill in the tm wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastWrite

fat_LastWrite

int fat LastWrite(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the date and time of the last write for the given entry into the system time structure t. The
function does not fill in the tm wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY
FAT.LIB
SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastAccess

Dynamic C Function Reference Manual digi.com 95

http://www.digi.com

fat MountPartition

int fat MountPartition(fat part *part);

DESCRIPTION
Marks the enumerated partition as mounted on both the FAT and MBR level. The partition MUST
be previously enumerated with fat EnumPartition ().

This function is called by fat AutoMount () and fat Init ().

PARAMETER

part Pointer to the FAT partition structure to mount.

RETURN VALUE

0: success.

-EINVAL: device or partition structure or part is invalid.

-EBADPART: the partition is not a FAT partition.

-ENOPART: the partition does not exist on the device.

-EPERM: the partition has not been enumerated.

-EACCESS: the partition is already linked to another fat part structure.
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat UnmountPartition

Dynamic C Function Reference Manual digi.com 96

http://www.digi.com

fat Open

int fat Open(fat part *part, char *name, int type, int ff,

FATfile *file,

DESCRIPTION

long *prealloc);

Opens a file or directory, optionally creating it if it does not already exist. If the function returns
-EBUSY, call it repeatedly with the same arguments until it returns something other than ~-EBUSY.

PARAMETERS
part

name

type
ff

file

prealloc

RETURN VALUE

0: success.

Handle for the partition being used.
Pointer to the full path name of the file to be opened/created.
FAT FILE or FAT DIR, depending on what is to be opened/created.

File flags, must be one of:

* FAT OPEN - Object must already exist. If it does not exist, -ENOENT
will be returned.

* FAT CREATE - Object is created only if it does not already exist
* FAT MUST CREATE - Object is created, and it must not already exist.

* FAT READONLY - No write operations (this flag is mutually exclusive
with any of the CREATE flags).

* FAT SEQUENTIAL - Optimize for sequential reads and/or writes. This
setting can be changed while the file is open by using the
fat fentl () function.

Pointer to an empty FAT file structure that will act as a handle for the newly
opened file. Note that you must memset this structure to zero when you
are using the non-blocking mode before calling this function the first time.
Keep calling until something other than ~-EBUSY is returned, but do not
change anything in any of the parameters while doing so.

An initial byte count if the object needs to be created. This number is
rounded up to the nearest whole number of clusters greater than or equal to
1. This parameter is only used if one of the * CREATE flag is set and the
object does not already exist. On return, *prealloc is updated to the
actual number of bytes allocated. May be NULL, in which case one cluster
is allocated if the call is successful.

-EINVAL: invalid arguments. Trying to create volume label, or conflicting flags.

—~ENOENT: file/directory could not be found.

-EPATHSTR: Invalid path string for parent directory

-EEXIST: object existed when FAT MUST CREATE flag set.

-EPERM: trying to create a file/directory on a read-only partition.

-EMFILE - too many open files. If you get this code, increase the FAT MAXMARKERS definition

Dynamic C Function Reference Manual digi.com 97

http://www.digi.com

in the BIOS.
Other negative values indicate /O error, etc.
Non-blocking mode only:

-EBUSY: the device is busy (nonblocking mode only).

-EFSTATE - file structure is not in a valid state. Usually means it was not zerod before calling this

function for the first time (for that file) struct, when in non-blocking mode; can also occur if the
same file struct is opened more than once.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Close

fat OpenDir

int fat OpenDir(fat part *part, char *dirname, FATfile *dir);

DESCRIPTION
Opens a directory for use, filling in the FATf 1 1e handle.

PARAMETERS
part Pointer to the partition structure being used.
dirname Pointer to the full path name of the directory to be opened or created.
dir Pointer to directory requested.

RETURN VALUE

0: success

-EINVAL: invalid argument.

—-ENOENT: the directory cannot be found.

-EBUSY: the device is busy (Only if non-blocking).

Other negative values are possible from the fat Open () call.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat Close

fat_PartitionDevice

Dynamic C Function Reference Manual digi.com

98

http://www.digi.com

int fat PartitionDevice(mbr dev *dev, int pnum);

DESCRIPTION

This function partitions the device by modifying the master boot record (MBR), which could
destroy access to information already on the device. The partition information contained in the
specifiedmbr dev structure must be meaningful, and the sizes and start positions must make sense
(no overlapping, etc.). If this is not true, you will get an ~-EINVAL error code. The device being
partitioned must already have been formatted and enumerated.

This function will only allow changes to one partition at a time, and this partition must either not
exist or be of a FAT type.

The validity of the new partition will be verified before any changes are done to the device. All other
partition information in the device structure (for those partitions that are not being modified) must
match the values currently existing on the MBR. The type given for the new partition must either
be zero (if you are deleting the partition) or a FAT type.

You may not use this function to create or modify a non-FAT partition.

PARAMETERS
dev Pointer to the device structure of the device to be partitioned.
pnum Partition number of the partition being modified.

RETURN VALUE

0: success.

-EIO0: device I/O error.

-EINVAL: pnum or device structure is invalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition is a non-FAT partition.
-EPERM: the partition is mounted.

-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat FormatDevice, fat EnumbDevice, fat FormatPartition

Dynamic C Function Reference Manual digi.com 99

http://www.digi.com

fat Read

int fat Read(FATfile *file, char *buf, int len);

DESCRIPTION

Given file, buf, and 1en, this routine reads 1en characters from the specified file and places
the characters into buf. The function returns the number of characters actually read on success.
Characters are read beginning at the current position of the file and the position pointer will be left
pointing to the next byte to be read. The file position can be changed by the fat Seek () function.
If the file contains fewer than 1en characters from the current position to the EOF, the transfer will
stop at the EOF. If already at the EOF, 0 is returned. The 1en parameter must be positive, limiting
reads to 32767 bytes per call.

PARAMETERS
file Handle for the file being read.
buf Pointer to the buffer where data are to be placed.
len Length of data to be read.

RETURN VALUE

Number of bytes read: success. May be less than the requested amount in non-blocking mode, or if
EOF was encountered.

-EEOF: starting position for read was at (or beyond) end-of-file.
-EIO: device I/O error.

-EINVAL: file, buf, or len, contain invalid values.

-EPERM: the file is locked.

-ENOENT: the file/directory does not exist.

-EFSTATE: file is in inappropriate state (Only if non-blocking).
LIBRARY

FAT.LIB

SEE ALSO
fat Open, fat Write, fat Seek

Dynamic C Function Reference Manual digi.com 100

http://www.digi.com

fat ReadDir

int fat ReadDir(FATfile *dir, fat dirent *entry, int mode);

DESCRIPTION

Reads the next entry of the desired type from the given directory, filling in the entry structure.

PARAMETERS
dir Pointer to the handle for the directory being read.
entry Pointer to the handle to the entry structure to fill in.
mode 0 = next active file or directory entry including read only (no hidden, sys,

label, deleted or empty)

A nonzero value sets the selection based on the following attributes:

L]

FATATTR_READ_ ONLY - include read-only entries
FATATTR_HIDDEN - include hidden entries
FATATTR _SYSTEM - include system entries
FATATTR_VOLUME ID - include label entries
FATATTR _DIRECTORY - include directory entries
FATATTR ARCHIVE - include modified entries
FAT FIL RD_ONLY - filter on read-only attribute
FAT FIL HIDDEN - filter on hidden attribute

FAT FIL SYSTEM - filter on system attribute
FAT FIL LABEL - filter on label attribute

FAT FIL DIR - filter on directory attribute

FAT FIL ARCHIVE - filter on modified attribute

The FAT INC_ * flags default to FAT INC ACTIVE if none set:

FAT INC _DELETED - include deleted entries
FAT INC EMPTY - include empty entries
FAT INC_LNAME - include long name entries
FAT INC_ACTIVE - include active entries

The following predefined filters are available:

FAT INC ALL - returns ALL entries of ANY type

FAT INC_DEF - default (files and directories including read-only and
archive)

Note: Active files are included by default unless FAT INC DELETED,
FAT INC EMPTY, or FAT INC LNAME is set. Include flags become the desired filter
value if the associated filter flags are set.

Dynamic C Function Reference Manual digi.com

101

http://www.digi.com

EXAMPLES OF
FILTER BEHAVIOR

mode = FAT INC DEF | FATFIL HIDDEN | FATATTR HIDDEN
would return the next hidden file or directory (including read-only and archive)

mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|FATATTR HIDDEN
would return next hidden directory (but would not return any hidden file)

mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|FATATTR HIDDEN &
~FATATTR DIRECTORY

would return next hidden file (but would not return any hidden directory)

mode = FAT INC ALL & ~FAT INC EMPTY
would return the next non-empty entry of any type

RETURN VALUE

0: success.

-EINVAL: invalid argument.

-ENOENT: directory does not exist

-EEOF: no more entries in the directory

-EFAULT: directory chain has link error

-EBUSY: the device is busy (non-blocking mode only)

Other negative values from the fat Open () call are also possible.

LIBRARY
FAT.LIB

SEE ALSO
fat OpenDir, fat Status

Dynamic C Function Reference Manual digi.com 102

http://www.digi.com

fat Seek

int fat_Seek(FATfile *file, long pos, int whence);

DESCRIPTION

Positions the internal file position pointer. fat Seek () will allocate clusters to the file if
necessary, but will not move the position pointer beyond the original end of file (EOF) unless doing
a SEEK_RAW. In all other cases, extending the pointer past the original EOF will preallocate the
space that would be needed to position the pointer as requested, but the pointer will be left at the
original EOF and the file length will not be changed. If this occurs, an EOF error will be returned
to indicate the space was allocated but the pointer was left at the EOF.

PARAMETERS
file Pointer to the file structure of the open file.
pos Position value in number of bytes (may be negative). This value is
interpreted according to the third parameter, whence.
whence Must be one of the following:

* SEEK SET - pos is the byte position to seek, where 0 is the first byte
of the file. If pos is less than 0, the position pointer is set to 0 and no
error code is returned. If pos is greater than the length of the file, the
position pointer is set to EOF and error code -EEOF is returned.

* SEEK CUR - seek pos bytes from the current position. If pos is less
than 0 the seek is towards the start of the file. If this goes past the start
of the file, the position pointer is set to 0 and no error code is returned.
If pos is greater than 0 the seek is towards EOF. If this goes past EOF the
position pointer is set to EOF and error code ~EEOF is returned.

* SEEK_END - seek to pos bytes from the end of the file. That is, for a
file that is x bytes long, the statement:

fat Seek (&my file, -1, SEEK END);

will cause the position pointer to be set at x-1 no matter its value prior
to the seek call. If the value of pos would move the position pointer past
the start of the file, the position pointer is set to 0 (the start of the file)
and no error code is returned. If pos is greater than or equal to 0, the
position pointer is set to EOF and error code —-EEOF is returned.

* SEEK RAW - is similar to SEEK_SET, but if pos goes beyond EOF,
using SEEK_RAW will set the file length and the position pointer to pos.

Dynamic C Function Reference Manual digi.com 103

http://www.digi.com

RETURN VALUE

0: success.

-EI0: device I/O error.

-EINVAL: file, pos, or whence contain invalid values.
-EPERM: the file is locked or writes are not permitted.
-ENOENT: the file does not exist.

-EEOF: space is allocated, but the pointer is left at original EOF.
—-ENOSPC: no space is left on the device to complete the seek.
-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat xWrite

Dynamic C Function Reference Manual digi.com 104

http://www.digi.com

fat SetAttr

int fat_SetAttr(FATfile *file, int attr);

DESCRIPTION

This function sets the given attributes to the file. Use defined attribute flags to create the set values.

PARAMETERS
file Handle to the open file.

attr Attributes to set in file. For attribute description see fat GetAttr ().
May be one or more of the following:

* FATATTR READ ONLY
* FATATTR HIDDEN

e FATATTR SYSTEM

e FATATTR VOLUME ID
e FATATTR DIRECTORY
* FATATTR ARCHIVE

e FATATTR LONG NAME

RETURN VALUE

0: Success

-EIO: on device IO error

-EINVAL: invalid open file handle

-EPERM: if the file is locked or write not permitted

-EBUSY: if the device is busy. (Only if non-blocking)
LIBRARY

FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Function Reference Manual digi.com

105

http://www.digi.com

fat Split

int fat_Split(FATfile *file, long where, char *newfile);

DESCRIPTION

Splits the original file at where and assigns any left over allocated clusters to newfile. As the
name implies, newfile is a newly created file that must not already exist. Upon completion, the
original file is closed and the file handle is returned pointing to the created and opened new file. The
file handle given must point to a file of type FAT FILE. There are internal static variables used in
this function, so only one file split operation can be active. Additional requests will be held off with
-EBUSY returns until the active split completes.

PARAMETERS

file Pointer to the open file to split.

where May be one of the following:
* >0 - absolute byte to split the file. If the absolute byte is beyond the

EOF, file is split at EOF.

« FAT BRK_END - split at EOF.
* FAT BRK_POS - split at current file position.

newfile Pointer to the absolute path and name of the new file created for the split.

RETURN VALUE

0: success.

-EIO0: device I/O error.

-EINVAL: file has invalid references.

-EPATHSTR: newfile is not a valid path/name string.

-EEOF: no unused clusters are available for newfile. £ile will be unchanged and open,
newfile is not created.

-EPERM: file is in use, write-protected, hidden, or system.
-ENOENT: file does not exist.

-ETYPE: file is not a FAT file type.

-EBUSY: the device is busy (Only non-blocking mode).
-EFSTATE: if file in inappropriate state (Only non-blocking mode).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Truncate, fat Close

Dynamic C Function Reference Manual digi.com 106

http://www.digi.com

fat Status

int fat_Status(fat_part *part, char *name, fat_ dirent *entry);

DESCRIPTION
Scans for the specified entry and fills in the entry structure if found without opening the directory
or entry.
PARAMETERS
part Pointer to the partition structure being used.
name Pointer to the full path name of the entry to be found.
entry Pointer to the directory entry structure to fill in.

RETURN VALUE

0: success.

-EIO0: device I/O error.

-EINVAL: part, filepath, or entry are invalid.

—~ENOENT: the file/directory/label does not exist.

-EBUSY: the device is busy (Only non-blocking mode). If you get this error, call the function again
without changing any parameters.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir

Dynamic C Function Reference Manual digi.com 107

http://www.digi.com

fat _SyncFile

int fat_SyncFile(FATfile *file);

DESCRIPTION

Updates the directory entry for the given file, committing cached size, dates, and attribute fields to
the actual directory. This function has the same effect as closing and re-opening the file.

PARAMETERS

file Pointer to the open file.

RETURN VALUE

0: success.

-EINVAL: file is invalid.

-EPERM - this operation is not permitted on the root directory.

-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the update.
-EFSTATE - file not open or in an invalid state.

Any other negative value: I/O error when updating the directory entry.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat Open, fat OpenDir

Dynamic C Function Reference Manual digi.com 108

http://www.digi.com

fat SyncPartition

int fat_SyncPartition(fat part *part);

DESCRIPTION

Flushes all cached writes to the specified partition to the actual device.
PARAMETER
part Pointer to the partition to be synchronized.

RETURN VALUE

0: success.
-EINVAL: part is invalid.

-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the sync.

Any other negative value: I/O error when updating the device.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat SyncFile, fat UnmountPartition

Dynamic C Function Reference Manual digi.com

109

http://www.digi.com

fat Tell

int fat Tell(FATfile *file, unsigned long *pos);

DESCRIPTION

Puts the value of the position pointer (that is, the number of bytes from the beginning of the

file) into pos. Zero indicates the position pointer is at the beginning of the file.

pC/OS-1I USERS:

e The FAT API is not reentrant. To use the FAT from multiple uC/OS-II tasks, put the
following statement in your application:

#define FAT USE UCOS_ MUTEX

e Mutex timeouts or other mutex errors will cause the run-time error

ERR_FAT MUTEX ERROR. The default mutex timeout is 5 seconds and can be changed by

#define'ing a different value for FAT MUTEX TIMEOUT SEC.

* YouMUSTcall fat InitUCOSMutex () aftercalling 0OSInit () and before calling any

other FAT API functions.
* You must run the FAT in blocking mode (#define FAT BLOCK).

¢ You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “fat > and with public function descriptions.

PARAMETERS
file Pointer to the file structure of the open file
pos Pointer to the variable where the value of the file position pointer is to be

placed.

RETURN VALUE

0: success.
-EI0: position is beyond EOF.
-EINVAL: file is invalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Seek, fat Read, fat Write, fat xWrite

Dynamic C Function Reference Manual digi.com

http://www.digi.com

fat tick

int fat_tick(wvoid);

DESCRIPTION

Drive device 1/0 completion and periodic flushing. It is not generally necessary for the application
to call this function; however, if it is called regularly (when the application has nothing else to do)
then file system performance may be improved.

RETURN VALUE
Currently always 0.

LIBRARY
FATWTC.LIB

Dynamic C Function Reference Manual digi.com 111

http://www.digi.com

fat_Truncate

int fat Truncate(FATfile *file, long where);

DESCRIPTION
Truncates the file at where and frees any left over allocated clusters. The file mustbe a FAT FILE
type.
PARAMETERS
file Pointer to the open file to truncate.
where One of the following:

* >0 - absolute byte to truncate the file. The file is truncated at EOF if the
absolute byte is beyond EOF.

* FAT BRK_ END - truncate at EOF.
* FAT BRK_POS - truncate at current file position.

RETURN VALUE

0: success.

—-EI0: device 1/O error.

-EINVAL: file is invalid.

-EPERM: file is in use, write-protected, hidden, or system.
—-ENOENT: the file does not exist.

-ETYPE: file is not a FAT file type.

-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Split

Dynamic C Function Reference Manual digi.com 112

http://www.digi.com

fat UnmountDevice

int fat UnmountDevice(mbr_dev * dev);

DESCRIPTION

Unmounts all FAT partitions on the given device and unregisters the device from the cache system.
This commits all cache entries to the device and prepares the device for power down or removal.
The device structure given must have been enumerated with fat EnumDevice ().

This function was introduced in FAT module version 2.06. Applications using prior versions of the
FAT module would call fat UnmountPartition () instead.

PARAMETER
dev Pointer to a FAT device structure to unmount.

RETURN VALUE

0: success.
-EINVAL: device structure (dev) is invalid.
-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat AutoMount, fat UnmountPartition

Dynamic C Function Reference Manual digi.com 113

http://www.digi.com

fat UnmountPartition

int fat UnmountPartition(fat part *part);

DESCRIPTION

Marks the enumerated partition as unmounted on both the FAT and the master boot record levels.
The partition must have been already enumerated using fat EnumPartition () (which
happens when you call fat AutoMount ()).

To unmount all FAT partitions on a device call fat UnmountDevice (), a function introduced
with FAT version 2.06. It not only commits all cache entries to the device, but also prepares the
device for power down or removal.

Note: The partitions on a removable device must be unmounted in order to flush data
before removal. Failure to unmount a partition that has been written could cause damage
to the FAT file system.

PARAMETERS
part Pointer to a FAT partition structure to unmount.

RETURN VALUE

0: success.

-EINVAL: device or partition structure or pnum is invalid.
-EBADPART: the partition is not a FAT partition.
-ENOPART: the partition does not exist on the device.
-EPERM: the partition has not been enumerated.

-EBUSY: the device is busy (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition, fat UnmountDevice

Dynamic C Function Reference Manual digi.com 114

http://www.digi.com

fat Write

int fat Write(FATfile *file, char *buf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in the
file. Characters will be copied from the string pointed to by buf. The 1en variable controls how
many characters will be written. This can be more than one sector in length, and the write function
will allocate additional sectors if needed. Data is written into the file starting at the current file
position regardless of existing data. Overwriting at specific points in the file can be accomplished
by calling the fat Seek () function before calling fat Write ().

PARAMETERS
file Handle for the open file being written.
buf Pointer to the buffer containing data to write.
len Length of data to be written.

RETURN VALUE

Number of bytes written: success (may be less than 1en, or zero if non-blocking mode)
-EI0: device I/O error.

-EINVAL: file, buf, or len contain invalid values.

-ENOENT: file does not exist.

-ENOSPC: no space left on the device to complete the write.

-EFAULT: problem in file (broken cluster chain, etc.).

-EPERM: the file is locked or is write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat xWrite, fat Seek

Dynamic C Function Reference Manual digi.com 115

http://www.digi.com

fat xRead

fat xRead(FATfile * file, char far * buf, int len);

DESCRIPTION

Given file, buf and 1en, this routine reads len characters from the specified file and places the
characters into string buf. Returns the number of characters actually read on success.

Characters will be read beginning at the current position of the file and the position pointer will be
left pointing to the next byte to be read. The file position can be manually set with the

fat Seek () function. If the file contains less the 1en characters from the current position to the
end of the file (EOF), then the transfer will stop at the EOF. If already at the EOF, -EEOF is returned.
The len parameter must be positive, limiting reads to 32767 bytes per call.

nC/OS-11 USERS:

e The FAT API is not reentrant from multiple tasks. To use the FAT from multiple nC/OS-I1
tasks, put the following statement in your application:

#define FAT USE UCOS MUTEX

* Mutex timeouts or other mutex errors cause a run-time error ERR_FAT MUTEX ERROR.
The default mutex timeout is 5 seconds and can be changed by #define'ing a different value
for FAT MUTEX TIMEOUT SEC.

* YouMUST call fat InitUCOSMutex () aftercalling OSInit () and before calling any
other FAT API functions.

* You must run the FAT in blocking mode (#define FAT BLOCK).

* You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “fat_* and with public function descriptions.

PARAMETERS
file Handle for the file being read
buf Pointer to buffer where data is to be placed. May be NULL in order to
discard data
len Length of data to be read. If this is zero, then the return code will be 1” if

not at EOF, or ‘0’ if at EOF.

RETURN VALUE

Number of bytes read on Success. May be less than the requested amount in non-blocking mode, or
if EOF was encountered.

-EEOF': stating position for read was at (or beyond) EOF.
-EIO: on device 1O error

-EINVAL: if file, buf, or len contain invalid values
-EPERM: if the file is locked

—-ENOENT: if file/directory does not exist

-EFSTATE: if file in inappropriate state (non-blocking)

Dynamic C Function Reference Manual digi.com 116

http://www.digi.com

SEE ALSO
fat Open, fat Read, fat Write, fat xWrite, fat Seek

fat_xWrite

int fat xWrite(FATfile *file, long xbuf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in the file.
Characters will be copied from the xmem string pointed to by xbuf. The 1en variable controls how
many characters will be written. This can be more than one sector in length, and the write function
will allocate additional sectors if needed. Data will be written into the file starting at the current file
position regardless of existing data. Overwriting at specific points in the file can be accomplished
by calling the fat Seek () function before calling fat xWrite ().

PARAMETERS
file Handle for the open file being written.
xbuf xmem address of the buffer to be written.
len Length of data to write.

RETURN VALUE

Number of bytes written: success. (may be less than 1en, or zero if non-blocking mode)
-EIO0: device /O error.

-EINVAL: file, xbuf, or len contain invalid values.

—-ENOENT: the file/directory does not exist.

-ENOSPC: there are no more sectors to allocate on the device.

-EFAULT: there is a problem in the file (broken cluster chain, etc.).

-EPERM: the file is locked or write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat Seek

Dynamic C Function Reference Manual digi.com 117

http://www.digi.com

fclose

int fclose(FILE far *stream)

DESCRIPTION

Flushes st ream and closes the associated file. This function will block while writing buffered data
to the stream. Any unread buffered data is discarded. The stream is disassociated with the file.

PARAMETERS
stream Stream to close.

RETURN VALUE

0 if the stream was successfully closed or EOF if any errors were detected.

HEADER
stdio.h

feof

int feof(FILE far *stream)

DESCRIPTION

Tests the end-of-file indicator for stream.
PARAMETERS
stream Stream to test.

RETURN VALUE

0 if end-of-file indicator is not set, non-zero if it is.

HEADER
stdio.h

SEE ALSO

ferror, clearerr, perror

Dynamic C Function Reference Manual digi.com 118

http://www.digi.com

ferror

int ferror(FILE far *stream)

DESCRIPTION

Tests the error indicator for stream.
PARAMETERS
stream Stream to test.

RETURN VALUE

0 if error indicator is not set, non-zero if it is.

HEADER
stdio.h

SEE ALSO

ferror, clearerr, perror

fflush

fflush(FILE far *stream)

DESCRIPTION

If stream is an output stream or an update stream that was most recently written to, the
fflush () function writes any buffered data for that stream out to the filesystem.

PARAMETERS

stream Stream to flush or NULL to flush all streams with buffered (unwritten)
data.

RETURN VALUE

0 on success, EOF if a write error occurs.

HEADER
stdio.h

Dynamic C Function Reference Manual digi.com 119

http://www.digi.com

fftecplx

void fftecplx(int * x, int N, int * blockexp);

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x and returns
the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid N causes a
RANGE exception. The N-point complex sequence in array x is replaced with its N-point complex
spectrum. The value of blockexp is increased by 1 each time array x has to be scaled, to avoid
arithmetic overflow.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array x.
blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Function Reference Manual digi.com 120

http://www.digi.com

fftceplxinv

void fftcplxinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the array x and
returns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid N
causes a RANGE exception. The value of blockexp is increased by 1 each time array x has to
be scaled, to avoid arithmetic overflow. The value of blockexp is also decreased by logsN to
include the 1/N factor in the definition of the inverse DFT

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array x.
blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

Dynamic C Function Reference Manual digi.com 121

http://www.digi.com

fftreal

void fftreal(int * x, int N, int * blockexp)’

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real sequence in array
x. The 2N-point real sequence in array x is replaced with its N-point positive-frequency complex
spectrum. The value of blockexp is increased by 1 each time array x has to be scaled, to avoid
arithmetic overflow.

The imaginary part of the X[0] term (stored in x[1]) is set to the real part of the finax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is stored
in x [0], the first element in x [1], and the kth element in x[£].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to 2N-point sequence of real fractions.

N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Function Reference Manual digi.com 122

http://www.digi.com

fftrealinv

void fftrealinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency complex
spectrum in array X. The N-point, positive-frequency spectrum contained in array x is replaced with
its corresponding 2N-point real sequence. The value of blockexp is increased by 1 each time
array x has to be scaled, to avoid arithmetic overflow. The value of blockexp is also decreased
by log,N to include the 1/N factor in the definition of the inverse DFT.

The function expects to find the real part of the finax term in the imaginary part of the zero-
frequency X [0] term (stored x[11]).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is stored
in x [0], the first element in x [1], and the kth element in x [k].

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftecplx, fftcplxinv, fftreal, hanncplx, hannreal, powerspectrum

Dynamic C Function Reference Manual digi.com 123

http://www.digi.com

fgetc

int fgetc(FILE far *stream)

int getc(FILE far *stream)

int getchar(wvoid)
DESCRIPTION

These functions are used to read a character from a stream and advance the associated file position
indicator.

fgetc - read a character from a stream.
getc - a faster, macro version of fgetc().
getchar - equivalent to passing stdin to getc().

Note: getc () may evaluate st ream more than once, so the argument should never be
an expression with side effects.

PARAMETERS
stream Stream to read from.

RETURN VALUE

The next character from stream (if present) as an unsigned char, converted to an int.

If the stream is at end-of-file, the end-of-file indicator is set and fgetc () returns EOF. If a read
error occurs, the error indicator for the stream is set and fgetc () returns EOF.

HEADER
stdio.h

SEE ALSO

getchar, ungetc, fgets, gets, fread, fputc, putc, putchar,
fputs, puts, fwrite

Dynamic C Function Reference Manual digi.com 124

http://www.digi.com

fgetpos

int fgetpos(FILE far *stream, fpos_t *pos)

DESCRIPTION

Store the current file position in a buffer passed by the caller. Since the contents of an fpos_t
object are only used by fsetpos (), fgetpos () will return an error on unseekable streams.

PARAMETERS
stream Stream to get the position of.
pos Buffer for position storage. This buffer contains unspecified information

used by fsetpos () to restore the position to the current location.

RETURN VALUE

0 on success, non-zero on failure.
On failure, errno is set to one of the following:

EPERM -- stream is not seekable
EBADF -- stream is invalid
EOVERFLOW -- position overflowed (> LONG_MAX)

And -errno is returned.

HEADER
stdio.h

SEE ALSO
fseek, ftell, rewind, fsetpos

Dynamic C Function Reference Manual digi.com 125

http://www.digi.com

fgets

char far *fgets(char far *s, int n, FILE far *stream)

DESCRIPTION

Reads no more than (n-1) characters from stream into the character buffer s. No additional
characters are read after a newline character (which is retained) or end-of-file.

A null character is written immediately after the last character read into the array.
PARAMETERS

Parameter 1 Buffer to store characters read from stream. Must be able to hold n
characters (including null terminator).

Parameter 2 Maximum number of characters to write to s.
Parameter 3 Stream to read from.

RETURN VALUE

Returns s if successful, NULL on failure. If end-of-file is encountered before any characters have
been read, the contents of s remain unchanged.

HEADER
stdio.h

SEE ALSO

fgetc, getchar, ungetc, gets, fread, fputc, putc, putchar,
fputs, puts, fwrite

Dynamic C Function Reference Manual digi.com 126

http://www.digi.com

flash erasechip

void flash erasechip(FlashDescriptor * £fd);

DESCRIPTION

Erases an entire flash memory chip.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
fd Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasesector, flash gettype, flash init, flash read,
flash readsector, flash sectorZxwindow, flash writesector

flash_erasesector

int flash erasesector(FlashDescriptor * fd, word which);

DESCRIPTION

Erases a sector of a flash memory chip.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
fd Pointer to flash descriptor of the chip to erase a sector of.
which The sector to erase.

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash gettype, flash init, flash read,
flash readsector, flash sectorZxwindow, flash writesector

Dynamic C Function Reference Manual digi.com

127

http://www.digi.com

flash gettype

int flash gettype(FlashDescriptor * fd);

DESCRIPTION
Returns the 16-bit flash memory type of the flash memory.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the memory to query.

RETURN VALUE
The integer representing the type of the flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash init, flash read,
flash readsector, flash sectorZxwindow, flash writesector

Dynamic C Function Reference Manual digi.com

128

http://www.digi.com

flash_init

int flash init(FlashDescriptor * fd, int mb3cr);

DESCRIPTION

Initializes an internal data structure of type FlashDescriptor with information about the flash

memory chip. The Memory Interface Unit bank register (MB3CR) will be assigned the value of
mb3cr whenever a function accesses the flash memory referenced by £d. See the Rabbit 2000
Users Manual for the correct chip select and wait state settings.

Note: Improper use of this function can cause your program to be overwritten or operate
incorrectly. This and the other flash memory access functions should not be used on the
same flash memory that your program resides on, nor should they be used on the same
region of a second flash memory where a file system resides.

Use WriteFlash () to write to the primary flash memory.

PARAMETERS
fd This is a pointer to an internal data structure that holds information about
a flash memory chip.
mb3cr This is the value to set MB3CR to whenever the flash memory is accessed.

0xc2 (i.e., CS2,/OEQ0, /WEOQ0, 0 WS) is a typical setting for the second flash
memory on the TCP/IP Dev Kit, the Intellicom, the Advanced Ethernet
Core, and the RabbitLink.

RETURN VALUE

0: Success.
1: Invalid flash memory type.
-1: Attempt made to initialize primary flash memory.
LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash read,
flash readsector, flash sectorZxwindow, flash writesector

Dynamic C Function Reference Manual digi.com 129

http://www.digi.com

flash read

int flash read(FlashDescriptor * fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION

Reads data from the flash memory and stores it in buf fer.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See the flash init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the flash memory to read from.

sector The sector of the flash memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start
reading at.

buffer The physical address of the destination buffer. TIP: A logical address can
be changed to a physical with the function paddr.

length The number of bytes to read.

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash readsector, flash sectorZxwindow, flash writesector,
paddr

Dynamic C Function Reference Manual digi.com 130

http://www.digi.com

flash readsector

int flash readsector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION

Reads the contents of an entire sector of flash memory into a buffer.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory to read from.
sector The source sector to read.
buffer The physical address of the destination buffer. TIP: A logical address can

be changed to a physical with the function paddr ().

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash inift,
flash read, flash sectorZxwindow, flash writesector

Dynamic C Function Reference Manual digi.com

131

http://www.digi.com

flash_sector2xwindow

void * flash sector2xwindow(FlashDescriptor * fd, word sector);

DESCRIPTION

This function sets the MB3CR and XPC value so the requested sector falls within the XPC window.
The MB3CR is the Memory Interface Unit bank register. XPC is one of four Memory Management
Unit registers. See £1lash init description for restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory.
sector The sector to set the XPC window to.

RETURN VALUE
The logical offset of the sector.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash writesector

Dynamic C Function Reference Manual digi.com 132

http://www.digi.com

flash writesector

int flash writesector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION

Writes the contents of buf fer to sector on the flash memory referenced by £d.

Note: £d must have already been initialized with f1ash init before calling this func-
tion. See flash init description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory to write to.
sector The destination sector.
buffer The physical address of the source. TIP: A logical address can be changed

to a physical address with the function paddr ().

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash inift,
flash read, flash readsector, flash sectorZ2xwindow

Dynamic C Function Reference Manual digi.com 133

http://www.digi.com

floor

double floor (double x);
float floorf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the largest integer less than or equal to the given number.
PARAMETERS
X Value to round down.

RETURN VALUE

Rounded down value.

HEADER
math.h

SEE ALSO

ceil, fmod

Dynamic C Function Reference Manual digi.com

134

http://www.digi.com

fmod

double fmod(double x, double y);
float fmodf (float x, float y);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Calculates modulo math.

PARAMETERS
x Dividend
Yy Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of y have been removed.
For example, if x is 22.7 and y is 10.3, the integral division result is 2. Then the remainder is: 22.7

—-2x103=2.1.
HEADER
math.h

SEE ALSO

ceil, floor

Dynamic C Function Reference Manual digi.com

135

http://www.digi.com

fopen

FILE far *fopen(const char *filename, const char *mode)

DESCRIPTION

Opens a file in the FAT filesystem as a stream.

PARAMETERS
Parameter 1

Parameter 2

rb
wb
ab
r+
w+
a+
r+b or rb+
w+b or wb+

a+b or ab+

Opening a file with read mode (x as the first character in the mode argument) fails if the file

Name of file to open

A string beginning with one of the following sequences (additional
characters may follow):

Open text file for reading.

Create (or truncate to zero length) a text file for writing.
Open or create a text file for writing at end-of-file.

Open binary file for reading.

Create (or truncate to zero length) a binary file for writing.
Open or create a binary file for writing at end-of-file.
Open text file for update (read and write).

Create (or truncate to zero length) a text file for update.
Open or create a text file for update, writing at end of file.
Open binary file for update (read and write).

Create (or truncate to zero length) a binary file for update.

Open or create a binary file for update, writing at end of file.

does not exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) causes all

subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to the fseek function.

When a file is opened with update mode (+ as the second or third character in the mode argument),
both read and write may be performed on the associated stream. However, write may not be directly

followed by input without an intervening call to the £ £1ush function or to a file positioning

function (£seek, fsetpos, or rewind), and read may not be directly followed by write without
an intervening call to a file positioning function, unless the input operation encounters end-of-file.

Dynamic C Function Reference Manual digi.com

136

http://www.digi.com

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device (e.g., stdin, stdout). The error and end-of-file indicators for the stream are
cleared.

RETURN VALUE

Returns a pointer (FILE far *) to the object controlling the stream. On error, returns NULL.

HEADER
stdio.h

SEE ALSO

freopen, fread, fwrite, fseek, fclose

forceSoftReset

void forceSoftReset(wvoid) ;

DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB
fprintf
SEE
printf

Dynamic C Function Reference Manual digi.com 137

http://www.digi.com

fputc

int fputc(int ¢, FILE far *stream)int putc(int c¢, FILE far
*stream)int putchar(int c)

DESCRIPTION

Writes character ¢ (converted to an unsigned char) to st ream, and advances the file position
indicator. If the stream doesn't support positioning requests, or the stream was opened in append
mode, the character is appended to the output stream.

fputc - write ¢ to stream.
putc - a faster, macro version of fputc().
putchar - equivalent to passing stdout to putc().

Note: putc () may evaluate st ream more than once, so the argument should never be
an expression with side effects.

PARAMETERS
c Character to write.
stream Stream to write ¢ to.

RETURN VALUE

Returns the character written. Returns EOF and sets the error indicator for st ream if a write error
occurs.

HEADER
stdio.h

SEE ALSO

fgetc, getchar, ungetc, gets, fread, fputc, putc, putchar,
fputs, puts, fwrite

Dynamic C Function Reference Manual digi.com 138

http://www.digi.com

fputs

int fputs(const char far *s, FILE far *stream)
int puts(const char far *s)

DESCRIPTION

Writes a string to a stream. Does not write the null terminator.

fputs - writes s to stream
puts - writes s and a newline to stdout

If the macros ANSI STRICT or ANSI PUTS aredefined, puts () will append a
newline to the string. If not defined, puts () follows legacy Dynamic C behavior of not appending

a newline.

PARAMETERS
s Null-terminated string to write.
stream Stream to write to.

RETURN VALUE

EOF if a write error occurs, otherwise a non-negative value.

Note: For backward compatibility with earlier versions of Dynamic C, puts () returns 1
on success.

HEADER
stdio.h

Dynamic C Function Reference Manual digi.com 139

http://www.digi.com

fread

size_t fread(void far *ptr, size_t membsize, size t nmemb,
FILE far *stream)

DESCRIPTION

Reads up to nmemb elements of membsize bytes from st ream and stores them in the buffer ptr.
Advances the file position indicator for the number of bytes read.

If an error occurs, the file position indicator is indeterminate. If a partial element is read, its value
is indeterminate.

PARAMETERS
ptr 1 Buffer to store data from st ream. Must be at least (membsi ze* nmemb)
bytes large.
membsize Size of each member (record) to read from the stream.
nmemb Number of members (records) to read.
stream Stream to read from.

RETURN VALUE

Returns the number of elements successfully read, which may be less than nmemb if a read error or
end-of-file is encountered.

If nmemb or membsize are zero, the contents of ptr and the st ream remain unchanged and
fread () returns zero.

HEADER
stdio.h
SEE ALSO

fgetc, getchar, ungetc, fgets, gets, fread, fputc, putc,
putchar, fputs, puts, fwrite

Dynamic C Function Reference Manual digi.com 140

http://www.digi.com

freopen

FILE far *freopen(const char *filename, const char *mode, FILE far
*stream)

DESCRIPTION

Opens £ilename and associates it to stream.

PARAMETERS
filename Name of file to open
mode Identical to the mode parameter to fopen ().
stream Stream to associate with open file. This should be a value returned from a
previous call to fopen () or one of the macros stdin, stderr or
stdout.

RETURN VALUE

NULL if opening the file fails, st ream on success.
HEADER

stdio.h
SEE ALSO

fopen, fread, fseek, fwrite, fclose

Dynamic C Function Reference Manual digi.com 141

http://www.digi.com

frexp

double frexp(double x, int *n);
float frexpf(float x, int *n);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Splits x into a fraction and exponent, f * (2").

PARAMETERS
X Number to split
n Address to receive integer exponent.

RETURN VALUE

The function returns the exponent in the integer *n and the fraction between 0.5, inclusive and 1.0.

HEADER
math.h
SEE ALSO
exp, ldexp

Dynamic C Function Reference Manual digi.com

142

http://www.digi.com

fscanf

int
int
int
int
int
int
int

scanf (const char far *format, ...)

vscanf (const char far *format, va_list argqg)

sscanf (const char far *s, const char far *format, ...)

_f sscanf(const char far * str, const char far * format,)
vsscanf (const char far *s, const char far *format, va_list arg)

fscanf(FILE far *stream, const char far *format, ...)

vEscanf(FILE far *stream, const char far *format, va_ list arg)

Note: Use of vEscanf () requires you to #include stdarg.h in your program
before creating a va_1ist variable.

DESCRIPTION

The formatted input functions scan and parse input text into separate fields.

scanf () scans stdin, takes variable arguments

vscanf () scans stdin, takesava list

sscanf () scans a character buffer, takes variable arguments
_f sscanf () islike sscanf, but all arguments are far pointers
vsscanf () scans a character buffer, takesava list

fscanf () scans any readable file stream, takes variable arguments
vfscanf () is the underlying function called by the others

PARAMETERS
stream The stream to read from.
s A string to use as the data source (instead of a stream).
Variable arguments to match the conversion specifiers in format.
arg A va list objectinitialized by the va start () macro and pointing
to the arguments to receive the converted input. vfscanf () doesnot call
the va_end () macro.
format A string that specifies the admissible input sequences and how they are to
be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input.
FORMAT:

The format is composed of zero or more directives: one or more white-space characters, an ordinary
character (neither $ nor a white-space character), or a conversion specification. Each conversion

specification is introduced by the character $. After the %, the following appear in sequence:

* An optional assignment-suppressing character *.

e An optional decimal integer greater than zero that specifies the maximum field width (in
characters).

¢ An optional F to indicate that the argument for the specifier is a far pointer.
¢ An optional length modifier that specifies the size of the receiving object.

Dynamic C Function Reference Manual digi.com

143

http://www.digi.com

1 (lowercase L):

11:

hh:

The corresponding argument forn, d, i, o, u and
x conversion specifiers is a pointer to a long int or
unsigned long int. The argument fore, £ and g specifiers
is a pointer to a double (instead of a float).

Since Dynamic C does not support the 1ong long type,
this modifier has the same meaning as a single 1.

Since a short int and an int are the same size, this
modifier is ignored.

The corresponding argument forn, d, i, o, u and
x conversion specifiers is a pointer to a signed or unsigned
char.

Same behavior as a single 1. j refers to the intmax_t or
uintmax t type and t refers tothe ptrdiff t type.

Since Dynamic C does not support the 1ong double
type, these modifiers are ignored.

Since the size t type is the same as the int type, this
modifier is ignored.

e A conversion specifier character that specifies the type of conversion to be applied.

The fscanf function executes each directive of the format in turn until reaching the end, or a

directive fails. The £scanf function can return early on an input failure (unavailability of input
characters) or matching failure (inappropriate input).

A directive composed of one or more white-space characters reads all whitespace from the input.

A directive that is an ordinary character reads the next character from the source. If the character
differs, it is returned to the source and generates a matching failure.

A directive that is a conversion specification (starting with %) defines a set of matching input
sequences, as described below for each specifier. A conversion is executed in the following steps.

e Unless the specifieris [, ¢ or n, skip input white-space characters (as specified by the
isspace function) unless the specifier is [, ¢ or n.

¢ Unless the specifier is n, an input item is read from the source. An input item is defined as
the longest matching sequence of input characters, limited by a specified field width. The
first character, if any, after the input item remains unread.

¢ [fthe length of the input item is zero, it generates a matching failure, unless an error
prevented input from the source (e.g., stream at EOF) in which case it generates an input

failure.

e Except in the case of a $% directive, the input item (or, in the case of a $n directive, the
count of input characters) is converted to a type appropriate to the conversion specifier.

Dynamic C Function Reference Manual

digi.com

144

http://www.digi.com

e Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the next argument to the function (or next variable argument in

the va list).

e Trailing white space (including newline characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the $n directive.

SPECIFIERS:

%

d,i,o,u,p

The %% directive matches a single % character. No conversion assignment
occurs.

The $n directive doesn't consume characters from the source. The
corresponding argument is a pointer to an integer where fscanf will
write the number of characters read from the input source so far. Execution
of the %n directive does not increment the assignment count returned at
completion of the function.

The following specifiers match an optionally signed integer with a format
identical to the subject sequence of the strtol (if signed) or strtoul (if
unsigned) function with the given base. The corresponding argument is a
pointer to an integral type.

specifier type base signed?
d decimal 10 yes
i (any) 0 yes
o octal 8 no
u decimal 10 no
X hexadecimal 16 no
P pointer 16 no

The e, £ and g specifiers match an optionally signed floating point number
with a format identical to the subject sequence of the st rtod function.
The corresponding argument is a pointer to a floating type.

Matches a sequence of characters of exactly the field width (or 1 if the
width isn't specified).

Matches a sequence of non-white-space characters.

Matches a non-empty sequence of characters from a set of expected
characters (the scanset). The specifier includes all subsequent characters in
the format string, up to and including the matching right bracket ().

The characters between the brackets (the scanlist) compose the scanset,
unless the first character is a circumflex (#), in which case the scanset
contains all characters NOT in the scanlist between the circumflex and
matching right bracket.

If the specifier starts with [] or [], the right bracket is in the scanlist and
the next following right bracket character is the matching right bracket that
ends the specification.

If a dash (-) character is in the scanlist and is not the first (after optional
circumflex) nor the last, it indicates a range of characters, including the
character immediately before and after the dash.

E,F,G,X The conversion specifiersE, F, G and X are equivalent to the

lowercase specifierse, £, g and x.

The function will return ~-EINVAL for an unrecognized specifier.

RETURN VALUE

EOF if an input failure occurs before any conversion. Otherwise, returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

DYNAMIC C DIFFERENCES FROM THE C99 STANDARD:

LIBRARY

We don't support the a and A specifiers for parsing a floating point value written in
hexadecimal.

We support the F modifier to designate a far pointer.
We recognize (but ignore) the q prefix as an alias for L (long double).
Since our int is equivalent to a short int, the optional h prefix is ignored.

Since we don't support the 1ong long type, the optional 11 prefix is treated the same as a
single 1.

Since we don't support the long double type, the optional L prefix is ignored.

Since we don't support multibyte characters, we ignore the optional 1 prefix onthe [, ¢
and s specifiers.

stdio.h

fseek

int fseek(FILE far *stream, long int offset, int whence)

DESCRIPTION

Sets the file position indicator for a stream.

A successful call to fseek () clears the end-of-file indicator for the stream and undoes any effects
of ungetc () on the stream.

Examples:

// seek to start of file
fseek(stream, 0, SEEK SET);

// seek to end of file
fseek(stream, 0, SEEK END);

// seek to last 10 bytes of file
fseek(stream, -10, SEEK END);

// skip over 512 bytes in file
fseek(stream, 512, SEEK CUR);

PARAMETERS
Parameter 1 Stream to seek.

Parameter 2 Number of bytes to move. Positive values move toward the end of the file,
negative values move toward the beginning of the file. of £ set is relative
to position indicated by whence.

Parameter 3 One of the following macros:

SEEK SET - seek from beginning of file

SEEK CUR - seek from the current offset

SEEK _END - seek from end of file
RETURN VALUE

0 on success, non-zero on failure

—-EBADF if the stream is not valid

—-EPERM if the stream is not seekable

-EINVAL if whence is not a valid macro
HEADER

stdio.h

SEE ALSO
ftell, rewind, fgetpos, fsetpos

fsetpos

int fsetpos(FILE far *stream, const fpos_t *pos)

DESCRIPTION

Sets the file position indicator for st ream to pos, a value obtained from an earlier call to
fgetpos ().

A successful call to fsetpos () clears the end-of-file indicator for st ream and undoes any
effects of the ungetc function on stream.

After an fsetpos call, the next operation on an update stream may be either input or output.

PARAMETERS
stream Stream to set position on.
pos Position to set. Must point to an fpos_ t object set by fgetpos.

RETURN VALUE

0 on success, non-zero on failure.

—-EBADF if the stream is not valid

—-EPERM if the stream is not seekable
HEADER

stdio.h

SEE ALSO
fseek, ftell, rewind, fgetpos

ftell

long int ftell(FILE far *stream)

DESCRIPTION
Report the current file offset.

PARAMETERS
Parameter 1 Stream to report position of.

RETURN VALUE

Current file offset (>= 0) or -1 on failure.

On failure, errno is set to:

EBADF -- stream was invalid

EOVERFLOW -- position overflowed (> LONG MAX)
HEADER

stdio.h

SEE ALSO

fseek, rewind, fgetpos, fsetpos

fwrite

size t fwrite(const void far *ptr, size_t membsize, size_ t nmemb,
FILE far *stream)

DESCRIPTION

Writes up to nmemb elements of membsize bytes to st ream from the buffer pt r. The file
position indicator is advanced by the number of characters successfully written.

If an error occurs, the file position indicator is indeterminate.

To know for certain how much data was written, set membsize to 1 oruse fseek () and
ftell () on errors to determine how many bytes have been written to the stream.

PARAMETERS
ptr Source of data to write to st ream.
membsize Size of each member (record) to write to the stream.
nmemb Number of members (records) to write.
stream Stream to write to.
RETURN VALUE

The number of elements successfully written, which will be less than nmemb only if a write error
is encountered.

HEADER
stdio.h

SEE ALSO

fgetc, getchar, ungetc, fgets, gets, fread, fputc, putc,
putchar, fputs, puts

G

get cpu_ frequency

unsigned long get_cpu_ frequency() ;

DESCRIPTION

Returns the clock speed of the CPU as calculated by the BIOS, adjusted for the clock doubler if it
is enabled. Due to the limited precision of the clock speed calculation, the calculated and actual
clock speeds may differ slightly.

RETURN VALUE

The clock speed of the CPU in Hz.

LIBRARY
SYS.LIB
getchar
SEE
fgetc

Dynamic C Function Reference Manual digi.com 151

http://www.digi.com

getcrc

int getcrc(char * dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (maximum 255)
of data in buffer. Calls to getcrc can be “concatenated” using accum to compute the CRC for a

large buffer.
PARAMETERS
dataarray Data buffer
count Number of bytes. Maximum is 255.
accum Base CRC for the data array.

RETURN VALUE
CRC value.

LIBRARY
MATH.LIB

getdivider19200

char getdivider19200(void);

DESCRIPTION

This function returns a value that is used in baud rate calculations.

The correct value is returned regardless of the compile mode. In separate 1&D space mode, the

divider value is stored as a define byte in code space, so directly accessing the variable will result

in an incorrect load (from constant data space). This function uses the 1dp instruction, which

circumvents the separate I&D default loading scheme so that the correct value is returned.
RETURN VALUE

The value used in baud rate calculation.

LIBRARY
SYS.LIB

Dynamic C Function Reference Manual digi.com 152

http://www.digi.com

gets

char *gets(char *s)

DESCRIPTION

Reads characters from stdin (the STDIO Window in Dynamic C, or a serial port if STDIO was
redirected) and stores them in the character buffer s, until a newline character is read.

The newline character is discarded and a null terminator is written to the buffer before returning.

Echos characters read to stdout and processes backspace characters by deleting the last character
entered.

Use fgets () instead of gets () to avoid overflowing the buffer.
Note: fgets () includes the newline but gets () does not.
Echos input to stdout. If you don't want input echoed, use fgets () instead.

For backward compatibility, gets () only works with near pointers. Use fgets () instead of
gets () toread into a far buffer.

PARAMETER
Parameter 1 Buffer to hold characters read from stdin.

RETURN VALUE

Returns s, the buffer passed as parameter 1. Blocks until a newline is received.

Returns NULL on error (for example, if stdin has been closed or redirected to a file that reaches
EOF).

HEADER

stdio.h

SEE ALSO

fgetc, getchar, ungetc, fgets, fread, fputc, putc, putchar, fputs,
puts, fwrite

Dynamic C Function Reference Manual digi.com 153

http://www.digi.com

_GetSysMacrolIndex

int _GetSysMacrolIndex(int n, char * buf, uint32 * value);

DESCRIPTION

Skips to the nth macro entry and retrieves the macro name (as defined by the compiler), and the
value of the macro as defined in the system macro table. The system macro table contains board

specific configuration parameters that are defined by the compiler and can be retrieved at runtime
through this interface. The flash driver must be initialized and the System ID block must be read
before this function will return accurate results.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
n

buf

value

RETURN VALUE

0: If successful

The index in the system macro table.

Character array to contain and return macro name (copied from system
macro table). MUST BE AT LEAST SYS MACRO_LENGTH bytes or
function will overflow buffer and can crash system!

Pointer to macro value to return to caller.

-1: Invalid address or range (use to find end of table)
-2: ID block or macro table invalid

LIBRARY
IDBLOCK.LIB

SEE ALSO

_GetSysMacroValue

Dynamic C Function Reference Manual digi.com

154

http://www.digi.com

_GetSysMacroValue

int _GetSysMacroValue(char * name, long * value);

DESCRIPTION

Finds the system table macro named by the first parameter (as defined by the compiler) and retrieves
the value of the macro as defined in the system macro table. The system macro table contains board
specific configuration parameters that are define by the compiler and can be retrieved at runtime
through this interface. The flash driver must be initialized and the System ID block must be read
before this function will return accurate results.

See writeUserBlockArray for more details.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
name Name of System ID block macro (acts as lookup key).
value Pointer to macro value to return to caller.

RETURN VALUE

0: If successful
-1: Macro name not found
-2: No valid ID block found (block version 3 or later)
-3: First parameter is a bad macro name
LIBRARY

IDBLOCK.LIB

SEE ALSO

writeUserBlockArray

Dynamic C Function Reference Manual digi.com 155

http://www.digi.com

GetVectExtern

unsigned GetVectExtern(int interruptNum) ;

DESCRIPTION

Reads the address of an external interrupt table entry.
PARAMETER
interruptNum Interrupt number. Should be 0 or 1.

RETURN VALUE

Jump address in vector table. The value at address:
(external vector table base) + (interruptNum * 8) + 1

LIBRARY
SYS.LIB

SEE ALSO
SetVectExtern, SetVectlIntern, GetVectIntern

GetVectIntern

unsigned (*) ()GetVectIntern(int vectNum) ;

DESCRIPTION

Reads the address of the internal interrupt table entry and returns whatever value is at the address:
(internal vector table base) + (vectNum*1l6) + 1
PARAMETER
vectNum Interrupt number; should be 0-0x1F.

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
SetVectIntern

Dynamic C Function Reference Manual digi.com 156

http://www.digi.com

gmtime

struct tm *gmtime(const time_t far *timer)

DESCRIPTION

Converts the calendar time at t ime r into a broken-down time, expressed as Coordinated Universal
Time (UTC).

Note: ctime (), localtime () and gmtime () all share the same static struct tm. A
call to any of those functions will alter the contents of the struct tm pointed to by previous
localtime () and gmtime () calls.

PARAMETER
Parameter 1 Non-NULL pointer to time to convert.

RETURN VALUE

Pointer to broken-down time.

HEADER

time.h

SEE ALSO

clock, difftime, mktime, time, asctime, ctime, localtime,
strftime

gps_get position

int gps_get position(GPSPositon * newpos, char * sentence);

DESCRIPTION

Parses a sentence to extract position data. This function is able to parse any of the following GPS
sentence formats: GGA, GLL or RMC.

PARAMETERS
newpos A GPSPosition structure to fill.
sentence A string containing a line of GPS data in NMEA-0183 format.

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.
LIBRARY
GPS.LIB

Dynamic C Function Reference Manual digi.com 157

http://www.digi.com

gps_get utc

int gps_get utc(struct tm * newtime, char * sentence);

DESCRIPTION

Parses an RMC sentence to extract time data.

PARAMETERS
newtime tm structure to fill with new UTC time.
sentence A string containing a line of GPS data in NMEA-0183 format (RMC

sentence).

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.
LIBRARY
GPS.LIB

gps_ground_distance

float gps_ground _distance(GPSPosition * a, GPSPosition * b);

DESCRIPTION

Calculates ground distance (in km) between two geographical points. (Uses spherical earth model.)

PARAMETERS
a First point.
b Second point.

RETURN VALUE

Distance in kilometers.

LIBRARY
GPS.LIB

Dynamic C Function Reference Manual digi.com 158

http://www.digi.com

H

hanncplx

void hanncplx(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered spectrum
replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corresponding time
sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18 db
per octave.

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, powerspectrum,
hannreal

Dynamic C Function Reference Manual digi.com 159

http://www.digi.com

hannreal

void hannreal(int * x, int N, int * blockexp)

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann kernel. The
function produces the same results as would be obtained by multiplying the corresponding time
sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18 db
per octave.

The imaginary part of the dc term (stored in x [1]) is considered to be the real part of the fimax term.
The dc and fmax spectral components take part in the convolution along with the other spectral
components. The real part of finax component affects the real part of the X[N-1] component (and
vice versa), and should not arbitrarily be set to zero unless these components are unimportant.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array x.
blockexp Pointer to integer block exponent.

RETURN VALUE

None. The filtered spectrum replaces the original spectrum.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

Dynamic C Function Reference Manual digi.com 160

http://www.digi.com

HDLCabortX

void HDLCabortX(void); whereXis Eor F

DESCRIPTION

Immediately stops any transmission. An HDLC abort code will be sent if the driver was in the
middle of sending a packet.

LIBRARY
HDLC PACKET.LIB

HDLCcloseX

void HDLCcloseX(void); whereXis EorF

DESCRIPTION
Disables the HDLC port (E or F). If it was used, the TAT1R resource (timer A1 cascade) is released.
This function is non-reentrant.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
TATIR SetValue

Dynamic C Function Reference Manual digi.com 161

http://www.digi.com

HDLCdropX

int HDLCdropX(void); where Xis EorF

DESCRIPTION

Drops the next received packet, freeing up its buffer. This must be used if the packet has been
examined with HDLCpeekX () and is no longer needed. A call to HDLCreveiceX () isthe only
other way to free up the buffer.

RETURN VALUE

1: Packet dropped.
0: No received packets were available.

LIBRARY
HDLC PACKET.LIB

HDLCerrorX

int HDLCerrorX(unsigned long * bufptr, int * lenptr); whereXisEorF

DESCRIPTION

This function returns a set of possible error flags as an integer. A received packet with errors is
automatically dropped.

Masks are used to check which errors have occurred. The masks are:

* HDLC NOBUFFER - driver ran out of buffers for received packets.
* HDLC OVERRUN - a byte was overwritten and lost before the ISR could retreive it.
* HDLC OVERFLOW - a received packet was too long for the buffers.
* HDLC ABORTED - a received packet was aborted by the sender during tranmission.
e HDLC BADCRC - a packet with an incorrect CRC was received.

RETURN VALUE

Error flags (see above).

LIBRARY
HDLC PACKET.LIB

Dynamic C Function Reference Manual digi.com 162

http://www.digi.com

HDILCextClockX

void HDLCextClockE(int ext _clock) where Xis Eor F

DESCRIPTION
Configures HDLC to be either internally (default) or externally clocked. This should be called after
HDLCopenX ().
PARAMETER
ext clock 1 for externally clocked
0 for internally clocked
LIBRARY

HDLC PACKET.LIB

Dynamic C Function Reference Manual digi.com 163

http://www.digi.com

HDLCopenX

int HDLCopenX(long baud, char encoding, unsigned long buffers, int
buffer count, int buffer size); whereXisEorF

DESCRIPTION

Opens serial port E or F in HDLC mode. Sets up buffers to hold received packets. Please see the
chip manuals for more details on HDLC and the bit encoding modes to use.

PARAMETERS

baud The baud rate for the serial port. Due to imitations in the baud generator,
non-standard baud rates will be approximated within 5% of the value
requested.

encoding The bit encoding mode to use. Macro labels for the available options are:

* HDLC NRZ

HDLC_ NRZI

+ HDLC MANCHESTER

« HDLC BIPHASE SPACE
+ HDLC_BIPHASE MARK

buffers A pointer to the start of the extended memory block containing the receive
bufters. This block must be allocated beforehand by the user. The size of
the block should be:

(# of buffers) * ((size of buffer) + 4)
buffer count The number of buffers in the block pointed to by buffer.
buffer size The capacity of each buffer in the block pointed to by buffer.

RETURN VALUE

1: Actual baud rate is within 5% of the requested baud rate,
0: Otherwise.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
SetSerialTATxRValues, TATIR SetValue

Dynamic C Function Reference Manual digi.com 164

http://www.digi.com

HDLCpeekX

int HDLCpeekX(unsigned long * bufptr, int * lenptr); where XisEorF

DESCRIPTION

Reports the location and size of the next available received packet if one is available. This function
can be used to efficiently inspect a received packet without actually copying it into a root memory
buffer. Once inspected, the buffer can be received normally (see HDLCreceiveX ()), or dropped
(see HDLCdropX ()).

PARAMETERS
bufptr Pointer to location in xmem of the received packet.
lenptr Pointer to the size of the received packet.

RETURN VALUE

1: The pointers bufptr and lenptr have been set for the received packet.
0: No received packets available.

LIBRARY
HDLC PACKET.LIB

Dynamic C Function Reference Manual digi.com 165

http://www.digi.com

HDLCreceiveX

int HDLCreceiveX(char *rx buffer, int length); where Xis EorF

DESCRIPTION

Copies a received packet into rx_buffer if there is one. Packets are received in the order they
arrive, even if multiple packets are currently stored in buffers.

PARAMETERS
rx_buffer Pointer to the buffer to copy a received packet into.
length Size of the buffer pointed to by rx buffer.

RETURN VALUE

>0: Size of received packet.
-1: No packets are available to receive.—2: The buffer is not large enough for the received packet.
In this case, the packet remains in the receive bufter)
LIBRARY
HDLC PACKET.LIB

Dynamic C Function Reference Manual digi.com 166

http://www.digi.com

HDLCsendX

int HDLCsendX(char * tx buffer, int length); whereXis EorF

DESCRIPTION

Transmits a packet out serial port E or F in HDLC mode. The tx_buffer is read directly while
transmitting, therefore it cannot be altered until a subsequent call to HDL.CsendingX () returns
false, indicating that the driver is done with it.

PARAMETERS
tx_buffer A pointer to the packet to be sent. This buffer must not change while
transmitting (see above.)
length The size of the buffer (in bytes).

RETURN VALUE

1: Sending packet.
0: Cannot send, another packet is currently being transmitted.

LIBRARY
HDLC PACKET.LIB

HDLCsendingX

int HDLCsendingX(void); whereXis Eor F

DESCRIPTION

Returns true if a packet is currently being transmitted.

RETURN VALUE

1: Currently sending a packet.
0: Transmitter is idle.

LIBRARY
HDLC PACKET.LIB

Dynamic C Function Reference Manual digi.com 167

http://www.digi.com

hexstrtobyte

int hexstrtobyte (char far *p);

DESCRIPTION
Converts two hex characters (0-9A-Fa-f) to a byte.
RETURN VALUE

The byte (0-255) represented by the two hex characters or -1 on error (invalid character, string less
than 2 bytes).

EXAMPLES

hexstrtobyte("FF") returns 255
hexstrtobyte("0") returns -1 (error because < 2 characters)
hexstrtobyte("ABCDEF") returns OxAB (ignores additional chars)

hitwd

void hitwd(void);

DESCRIPTION

Hits the watchdog timer, postponing a hardware reset for 2 seconds. Unless the watchdog timer is
disabled, a program must call this function periodically, or the controller will automatically reset
itself. If the virtual driver is enabled (which it is by default), it will call hitwd in the background.
The virtual driver also makes additional “virtual” watchdog timers available.

LIBRARY

VDRIVER.LIB

Dynamic C Function Reference Manual digi.com 168

http://www.digi.com

i2c_check_ack

int i2c_check_ack(void);

DESCRIPTION
Checks if slave pulls data low for ACK on clock pulse. Allows for clocks stretching on SCL going
high.

RETURN VALUE

0: ACK sent from slave.
1: NAK sent from slave.
—-1: Timeout occurred.
LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_init

void i2c_init(void);

DESCRIPTION
Sets up the SCL and SDA port pins for open-drain output.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Function Reference Manual digi.com 169

http://www.digi.com

i2c_read_char

int i2c¢_read char(char * ch);

DESCRIPTION

Reads 8 bits from the slave. Allows for clocks stretching on all SCL going high. This is not in the
protocol for I°C, but allows I°C slaves to be implemented on slower devices.

PARAMETERS
ch A one character return buffer.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_send_ack

int i2c_send_ack(void);

DESCRIPTION
Sends ACK sequence to slave. ACK is usually sent after a successful transfer, where more bytes are
going to be read.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Function Reference Manual digi.com 170

http://www.digi.com

i2c_send_nak

int i2c_send nak(void);

DESCRIPTION

Sends NAK sequence to slave. NAK is often sent when the transfer is finished.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_start_tx

int i2c_start tx(void);

DESCRIPTION

Initiates I°C transmission by sending the start sequence, which is defined as a high to low transition
on SDA while SCL is high. The point being that SDA is supposed to remain stable while SCL is
high. If it does not, then that indicates a start (S) or stop (P) condition. This function first waits for
possible clock stretching, which is when a bus peripheral holds SCK low.

RETURN VALUE

0: Success.

-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Function Reference Manual digi.com 171

http://www.digi.com

i2c_ startw_tx

int i2c_startw_tx(void);

DESCRIPTION

Initiates I°C transmission by sending the start sequence, which is defined as a high to low transition
on SDA while SCL is high. The point being that SDA is supposed to remain stable while SCL is
high. If it does not, then that indicates a start (S) or stop (P) condition. This function first waits for
possible clock stretching, which is when a bus peripheral holds SCK low.

This function is essentially the same as 12c_start tx () with the addition of a clock stretch
delay, which is 2000 “counts,” inserted after the start sequence. (A count is an iteration through a
loop.)

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2¢c_stop_tx

void i2c_stop_tx(void);

DESCRIPTION

Sends the stop sequence to the slave, which is defined as bringing SDA high while SCL is high, i.e.,
the clock goes high, then data goes high.

LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Function Reference Manual digi.com 172

http://www.digi.com

i2 c_write_ char

int i2c_write_char(char d);

DESCRIPTION

Sends 8 bits to slave. Checks if slave pulls data low for ACK on clock pulse. Allows for clocks
stretching on SCL going high.

PARAMETERS
d Character to send

RETURN VALUE

0: Success.
-1: Clock stretching timeout.
1: NAK sent from slave.
LIBRARY
I2C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Function Reference Manual digi.com 173

http://www.digi.com

IntervalMs

int IntervalMs(long ms);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for use with waitfor.
PARAMETERS
ms The number of milliseconds to wait.

RETURN VALUE

0: Not finished.

1: Delay has expired.
LIBRARY

COSTATE.LIB

IntervalSec

int IntervalSec(long sec);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for use with waitfor.
PARAMETERS
sec The number of seconds to delay.

RETURN VALUE

0: Not finished.

1: Delay has expired.
LIBRARY

COSTATE.LIB

Dynamic C Function Reference Manual digi.com

174

http://www.digi.com

IntervalTick

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with waitfor.
A tick is 1/1024 seconds.

PARAMETERS
tick The number of ticks to delay

RETURN VALUE

0: Not finished.

1: Delay has expired.
LIBRARY

COSTATE.LIB

ipres

void ipres(void);

DESCRIPTION

Dynamic C expands this call inline. Restore previous interrupt priority by rotating the IP register.

LIBRARY
UTIL.LIB

SEE ALSO
ipset

Dynamic C Function Reference Manual digi.com 175

http://www.digi.com

ipset

void ipset(int priority)

DESCRIPTION

Dynamic C expands this call inline. Replaces current interrupt priority with another by rotating the
new priority into the IP register.

PARAMETERS
priority Interrupt priority range 03, lowest to highest priority.

LIBRARY
UTIL.LIB

SEE ALSO

ipres

isalnum

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (Ato Z,atozand 0 to 9).
PARAMETERS
c Character to test.

RETURN VALUE

0: If not an alphabetic or numeric character.
! 0: Otherwise.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit, isspace, ispunct,
isprint, isgraph, iscntrl

Dynamic C Function Reference Manual digi.com 176

http://www.digi.com

isalpha

int isalpha(int c);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or a to z).
PARAMETERS
c Character to test.

RETURN VALUE

0: If not a alphabetic character.
! 0: Otherwise.

HEADER
ctype.h

SEE ALSO

islower, isupper, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl

iscntrl

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <= ¢ <= 31 or c == 127.
PARAMETERS
c Character to test.

RETURN VALUE

0: If not a control character.
! 0: Otherwise.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph

Dynamic C Function Reference Manual digi.com 177

http://www.digi.com

isCoDone

int isCoDone(CoData * p);

DESCRIPTION

Determine if costatement is initialized and not running.
PARAMETERS
P Address of costatement

RETURN VALUE

1: Costatement is initialized and not running.
0: Otherwise.

LIBRARY
COSTATE.LIB

isCoRunning

int isCoRunning(CoData * p);

DESCRIPTION

Determine if costatement is stopped or running.
PARAMETERS
P Address of costatement.

RETURN VALUE

1: If costatement is running.
0: Otherwise.

LIBRARY
COSTATE.LIB

Dynamic C Function Reference Manual digi.com

178

http://www.digi.com

isdigit

int isdigit(int c);

DESCRIPTION
Tests for a decimal digit: 0 - 9

PARAMETERS
c Character to test.

RETURN VALUE

0: if not a decimal digit.
! 0: otherwise.

HEADER
ctype.h

SEE ALSO

islower, isalpha, isxdigit, isspace, isalnum, isspace, ispunct,
isprint, isgraph, isupper, iscntrl

isgraph

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= c <= 126
PARAMETERS
c Character to test.

RETURN VALUE

0: c is not a printing character.
10: c is a printing character.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit, isalnum, isspace,
ispunct, isgraph, iscntrl

Dynamic C Function Reference Manual digi.com 179

http://www.digi.com

islower

int islower(int c);

DESCRIPTION

Tests for lower case character.
PARAMETERS
c Character to test.

RETURN VALUE

0: If not a lower case character.
! 0: Otherwise.

HEADER
ctype.h

SEE ALSO

isalpha, isdigit, isxdigit, tolower, toupper, isspace, isalnum,
isgraph, isupper, iscntrl

isprint

int isprint(int c);

DESCRIPTION

Tests for printing character, including space: 32 <= c <= 126
PARAMETERS
c Character to test.

RETURN VALUE

0: If not a printing character, ! 0 otherwise.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit, isalnum, isspace,
ispunct, isgraph, iscntrl

Dynamic C Function Reference Manual digi.com 180

http://www.digi.com

ispunct

int ispunct(int c);

DESCRIPTION

Tests for a punctuation character.

Character Decimal Code
space 32

1"#8% &' ()F+,-./ 33<=c<=47
3 <=>?@ 58 <=c<=64
N~ 9l <=c<=96
{1} ~ 123 <=c <= 126

PARAMETERS
c Character to test.

RETURN VALUE

0: Not a character.
! 0: Is a character.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit,

isprint, isgraph,

iscntrl

isspace, isalnum,

Dynamic C Function Reference Manual

digi.com

181

http://www.digi.com

isspace

int isspace(int c);

DESCRIPTION

Tests for a white space, character, tab, return, newline, vertical tab, form feed, and space:
9<=c<=13and c ==32.

PARAMETERS
c Character to test.

RETURN VALUE
0: If not
! 0: Otherwise.
HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isxdigit, isalnum, ispunct,
isprint, isgraph, iscntrl

isupper

int isupper(int c);

DESCRIPTION

Tests for upper case character.
PARAMETERS
c Character to test.

RETURN VALUE

0: Is not an uppercase character.
1 0: Is an uppercase character.

HEADER
ctype.h

SEE ALSO

islower, isalpha, isdigit, isxdigit, isspace, isalnum, ispunct,
isprint, isgraph, iscntrl

Dynamic C Function Reference Manual digi.com 182

http://www.digi.com

isxdigit

int isxdigit(int c);

DESCRIPTION
Tests for a hexadecimal digit: 0-9, A-F,a-f

PARAMETERS
c Character to test.

RETURN VALUE

0: Not a hexadecimal digit.
10: Is a hexadecimal digit.

HEADER
ctype.h

SEE ALSO

islower, isupper, isalpha, isdigit, isspace, isalnum, ispunct,
isprint, isgraph, iscntrl

Dynamic C Function Reference Manual digi.com 183

http://www.digi.com

kbhit

int kbhit(wvoid) ;

DESCRIPTION

Detects keystrokes in the Dynamic C Stdio window.

RETURN VALUE

10: If a key has been pressed
0: Otherwise.

LIBRARY
STDIO.LIB

Dynamic C Function Reference Manual digi.com 184

http://www.digi.com

labs

long labs(long x);

DESCRIPTION

Computes the long integer absolute value of long integer x.
PARAMETERS
x Number to compute.

RETURN VALUE
x: Ifx>0.
-x: Otherwise.
HEADER
math.h

SEE ALSO

ctime, fabs

ldexp

double ldexp(double x, int exp);
float ldexpf(float x, int exp);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes x* (2").

PARAMETERS
X The value between 0.5 inclusive, and 1.0
n An integer

RETURN VALUE
The result of x* (27).

HEADER
math.h

SEE ALSO

Dynamic C Function Reference Manual digi.com

185

http://www.digi.com

frexp, exp

localtime

struct tm *localtime(const time t far *timer)

DESCRIPTION

Converts the calendar time at t imer into a broken-down time, adjusted for the current timezone.
Uses the function rtc_timezone (), which uses either the timezone provided by the DHCP
server, or by the macro TIMEZONE.

Note: ctime (), localtime () and gmtime () all share the same static struct tm. A
call to any of those functions will alter the contents of the struct tm pointed to by previous
localtime () and gmtime () calls.

PARAMETERS
timer Non-NULL pointer to time to convert.

RETURN VALUE
Pointer to broken-down time or NULL if timer was NULL.

HEADER

time.h

SEE ALSO

clock, difftime, mktime, time, asctime, ctime, gmtime, strftime

log

double log(double x);
float logf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the logarithm, base e, of real f1oat value x.
PARAMETERS
X Float value

RETURN VALUE

The function returns —INF and signals a domain error when x < 0.

HEADER

Dynamic C Function Reference Manual digi.com 186

http://www.digi.com

math.h
SEE ALSO
exp, loglO

loglo

double 1logl0(double x);
float loglOf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the base 10 logarithm of real f1oat value x.
PARAMETERS
x Value to compute

RETURN VALUE
The log base 10 of x.

The function returns —INF and signals a domain error when x < 0.

HEADER

math.h
SEE ALSO

log, exp

longjmp

void longjmp(jmp_buf env, int val);

DESCRIPTION

Restores the stack environment saved in array jump buffer env [1. See the description of setjmp
for details of use.

Note: you cannot use 1ongjmp () to move out of slice statements, costatements, or
cofunctions.

PARAMETERS

env Environment previously saved with setjmp ().

Dynamic C Function Reference Manual digi.com 187

http://www.digi.com

val Integer result of setjmp ().
HEADER
setjmp.h

SEE ALSO
setjmp

loophead

void loophead(void);

DESCRIPTION

This function should be called within the main loop in a program. It is necessary for proper single-
user cofunction abandonment handling.

When two costatements are requesting access to a single-user cofunction, the first request is
honored and the second request is held. When 1oophead () notices that the first caller is not being
called each time around the loop, it cancels the request, calls the abandonment code and allows the
second caller in.

See Samples\Cofunc\Cofaband. c for sample code showing abandonment handling.

LIBRARY
COFUNC.LIB

loopinit

void loopinit(void);

DESCRIPTION

This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes internal data structures that are used by 1oophead ().

LIBRARY
COFUNC.LIB

Dynamic C Function Reference Manual digi.com 188

http://www.digi.com

lsqgrt

unsigned int l1lsqrt(unsigned long x);

DESCRIPTION

Computes the square root of x. Note that the return value is an unsigned int. The fractional portion
of the result is truncated.

PARAMETERS
b4 long int input for square root computation

RETURN VALUE

Square root of x (fractional portion truncated).

LIBRARY
MATH.LIB

Dynamic C Function Reference Manual digi.com 189

http://www.digi.com

mbr_CreatePartition

int mbr_ CreatePartition(mbr_ drive *drive, int pnum, char type);

DESCRIPTION

Creates or modifies the partition specified. The partition being modified must not be mounted, and
should be released by filesystem use (that is, its £s_part pointer must be null). The new partition
values should be placed in the appropriate partition structure within the drive structure. For

example,

drive
drive
drive
drive
drive
drive
drive
drive

.part[partnum
.part[partnum
.part[partnum
.part[partnum
.part[partnum
.part[partnum
.part[partnum
.part[partnum

]
]
]
]
]
]
]
]

.bootflag = 0;
.starthead =
.startseccyl = 0;
.parttype =
.endhead =
.endseccyl = 0;
.startsector =
.partsecsize =
mbr CreatePartition(&drive, partnum,

Oxfe;

Oxda;
Oxfe;

start;
((PART S7)
Oxda) ;

/ 512) + 1;

For more information on the partition structure (mbr part)lookin part defs.lib.

The t ype parameter should match the type as it currently exists on the drive, unless this is unused.
Some values for the t ype parameter are already in use. A list of known partition types is at:

www.win.tue.nl/~aeb/partitions/partition types-1.html

Note: Starting with Dynamic C 9.01, this function BLOCKS!

PARAMETERS
drive
pnum
type

RETURN VALUE

0: For success

Pointer to a MBR drive structure
Partition number to be created or modified

Type that exists on the physical drive partition now

—-EI0: For Error trying to read drive/device or structures.

—-EINVAL: If drive structure, pnum or type is invalid.

-EPERM: If the partition has not been enumerated or is currently mounted.
-EUNFORMAT: If the drive is accessible, but not formatted.

-EBUSY: If the device is busy. (Valid prior to Dynamic C 9.01)

LIBRARY
PART.LIB

Dynamic C Function Reference Manual

digi.com 190

http://www.digi.com
http://www.win.tue.nl/~aeb/partitions/partition_types-1.html

mbr EnumDevice

mbr EnumDevice(mbr_ drvr *driver, mbr_dev *dev, int devnum, int
(*checktype) ());

DESCRIPTION

This routine is called to learn about devices present on the driver passed in. The device will be added
to the linked list of enumerated devices. Partition information will be filled in from the master boot
record (MBR). Pointers to file system level partition information structures will be set to NULL.

PARAMETERS
driver Pointer to a DOS contoller structure (setup during init of storage device
devicer.)
dev Pointer to a drive structure to be filled in.
devnum Physical device number of device on the driver.
checktype Routine that takes an unsigned char partition type and returns 1 if of sought

type and zero if not. Pass NULL for this parameter to bypass this check.

RETURN VALUE

0: For success

-EIO: For Error trying to read the device or structure.

-EINVAL: If devnum invalid or does not exist.

-ENOMEM: If memory for page buffer is not available.

-EUNFORMAT: If the device is accessible, but not formatted. You can use it provided it is
formatted/partitioned by either this library or another system.

-EBADPART: If the partition table on the device is invalid

-ENOPART: If the device does not have any sought partitions, If checktype parameter is NULL, this
test is bypassed. This code is superseded by any other error detected.

-EXIST: If the device has already been enumerated.

-EBUSY: If the device is busy.

LIBRARY
PART.LIB

Dynamic C Function Reference Manual digi.com 191

http://www.digi.com

mbr FormatDevice

int mbr FormatDevice(mbr dev * dev);

DESCRIPTION

Creates or rewrites the Master Boot Record on the device given. The routine will only rewrite the
Boot Loader code if an MBR already exists on the device. The existing partition table will be
preserved. To modify an existing partition table use mbr_CreatePartion.

Note: This routine is NOT PROTECTED from power loss and can make existing parti-
tions inaccessible if interrupted.

Note: This function is BLOCKING.

PARAMETERS

dev Pointer to MBR device structure

RETURN VALUE

0: For success.

-EEXIST: If the MBR exists, writing Boot Loader only
—-ETIO0: For Error trying to read the device or structure
-EINVAL: If the Device structure is not valid

-ENOMEM: If memory for page buffer is not available
-EPERM: If drive has mounted or FS enumerated partition(s)

LIBRARY
PART.LIB

Dynamic C Function Reference Manual digi.com 192

http://www.digi.com

mbr_MountPartition

int mbr_MountPartition(mbr_drive * drive, int pnum);

DESCRIPTION

Marks the partition as mounted. It is the higher level codes responsibility to verify that the
fs_part pointer for a partition is not in use (null) as this would indicate that another system is in
the process of mounting this device.

PARAMETERS
drive Pointer to a drive structure
pnum Partition number to be mounted

RETURN VALUE

0: For success
—-EINVAL: If Drive or Partition structure or pnum is invalid.
—-ENOPART: If Partition does not exist on the device.
LIBRARY
PART.LIB

mbr_UnmountPartition

int mbr UnmountPartition(mbr_drive * drive, int pnum);

DESCRIPTION

Marks the partition as unmounted. The partition must not have any user partition data attached
(through mounting at a higher level). If the £s_part pointer for the partition being unmounted is
not null, an EPERM error is returned.

PARAMETERS
drive Pointer to a drive structure containing the partition
pnum Partition number to be unmounted

RETURN VALUE

0: For success
-EINVAL: If the Drive structure or pnum is invalid.
-ENOPART: If the partition is enumerated at a higher level.
LIBRARY
PART.LIB

Dynamic C Function Reference Manual digi.com 193

http://www.digi.com

mbr ValidatePartitions

int mbr ValidatePartitions(mbr_drive * drive);

DESCRIPTION

This routine will validate the partition table contained in the drive structure passed. It will verify
that all partitions fit within the bounds of the drive and that no partitions overlap.

PARAMETERS
drive Pointer to a drive structure

RETURN VALUE

0: For success
—-EINVAL: If the partition table in the drive structure is invalid.

LIBRARY
PART.LIB

md5_append

void md5 append(md5 state t * pms, char * data, int nbytes);

DESCRIPTION

This function will take a buffer and compute the MDS5 hash of its contents, combined with all
previous data passed to it. This function can be called several times to generate the hash of a large
amount of data.

PARAMETERS

md5_append Pointer to the md5 state_t structure that was initialized by

md5 init.
data Pointer to the data to be hashed.
nbytes Length of the data to be hashed.
LIBRARY
MD5.LIB

Dynamic C Function Reference Manual digi.com 194

http://www.digi.com

md5_ finish

void md5 finish(md5_ state_t * pms, char digest[1l6])

DESCRIPTION

Completes the hash of all the received data and generates the final hash value.

PARAMETERS
pms Pointer to the md5 state t structure that was initialized by
md5 init.
digest The 16-byte array that the hash value will be written into.
LIBRARY
MD5.LIB

md5_init

void md5 _init(md5 state t * pms);

DESCRIPTION

Initialize the MDS5 hash process. Initial values are generated for the structure, and this structure will
identify a particular transaction in all subsequent calls to the md5 library.

PARAMETER
pms Pointer to the md5 state t structure.

LIBRARY
MD5.LIB

Dynamic C Function Reference Manual digi.com 195

http://www.digi.com

memchr

NEAR SYNTAX: void * n memchr(const void * src, int ch, size_ t n);
FAR SYNTAX: void far * _f memchr(const void far * src, int ch,
size t n);

Note: By default, memchr () is definedto n memchr ().

DESCRIPTION

Searches up to n characters at memory pointed to by src for character ch.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytes to search.

RETURN VALUE

Pointer to first occurrence of ch if found within n characters. Otherwise returns null.

HEADER
string.h

SEE ALSO

strstr, strchr, strtok, strcspn, strspn

Dynamic C Function Reference Manual digi.com 196

http://www.digi.com

memcmp

int memcmp(const void far * sl, const void far * s2, size_ t n)

Note: By default, memcmp () is definedto n memcmp ().

DESCRIPTION

Performs unsigned character by character comparison of two memory blocks of length n.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytes to compare.

RETURN VALUE

<0: A character in s1 is less than the corresponding character in s2.
0: s1 is identical to s2.
>0: A character in s1 is greater than the corresponding character in s2.

HEADER
string.h

SEE ALSO

strncmp

Dynamic C Function Reference Manual digi.com

197

http://www.digi.com

memcpy

NEAR SYNTAX: void * n memcpy(void *dst, const void *src, unsigned
int n);

FAR SYNTAX: void far *_f memcpy(void far *dst, const void far *src,
size_t n);

Note: By default, memcpy () is defined to n memcpy ().

DESCRIPTION

Copies a block of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE

Pointer to destination.

HEADER
string.h

SEE ALSO

memmove, memset

Dynamic C Function Reference Manual digi.com 198

http://www.digi.com

memmove

NEAR SYNTAX: void *_n memmove(void *dst, void *src, unsigned int n);
FAR SYNTAX: void far *_f memmove(void far * dst, void far * src,
size t n);

Note: By default memmove () is definedto n memmove ().

DESCRIPTION

Copies a block of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE

Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memcpy, memset

Dynamic C Function Reference Manual digi.com 199

http://www.digi.com

memset

NEAR SYNTAX: void * n memset(void * dst, int chr, unsigned int n);
FAR SYNTAX: void far * _f memset(void far * dst, int chr, size_t n);

Note: By default, memset () is defined to n memset ().

DESCRIPTION
Sets the first n bytes of a block of memory pointed to by dst to the character chr.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with f strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Block of memory to set
chr Character that will be written to memory
n Amount of bytes to set

RETURN VALUE

dst: Pointer to block of memory.

HEADER
string.h

Dynamic C Function Reference Manual digi.com 200

http://www.digi.com

mktime

time t mktime(struct tm far *timeptr)

DESCRIPTION

Normalizes t imeptr so all values are within their valid ranges (e.g., minutes between 0 and 59,
correct days per month, etc.). Sets the tm wday and (if ANST TIME is defined) the tm yday

members of timeptr.

This function is useful for performing math on dates. For example, to find the correct date for 90

days from today:

struct tm t, *tp;
time t now;
now = time (NULL) ;

t = *tp; // make a copy of struct
t.tm mday += 90; // add 90 days from now

tp = localtime(&now);
if (! tp) printf("error calling localtime()\n");
else {

mktime (&t); // normalize

printf("In 90 days it will be %s\n",

}

Note: mktime () cannot represent times from before the Rabbit's epoch of January 1,
1980. Dynamic C does not support Daylight Savings Time, so mktime () does not mod-

ify tm_isdst.

STRUCT TM:

The struct tm object holds a date/time broken down into component parts. Past versions of
Dynamic C used a declaration that isn't compatible with the ANSI C90 standard.

asctime (

Dynamic C Function Reference Manual digi.com

201

http://www.digi.com

If the macro ANSI TIME is defined, struct tm is declared as:

struct tm

{

int tm_sec; // seconds after minute [0, 60]
(60 = leap second)

int tm min; // minutes after the hour [0, 59]

int tm hour; // hours since midnight [0, 23]

int tm mday; // day of the month [1, 31]

int tm mon; // months since January [0, 11]

int tm year; // years since 1900

int tm wday; // days since Sunday [0, 6]
int tm yday; // days since January 1 [0, 365]
int tm isdst; // Daylight Savings Time flag
// >0 if in effect, 0 if not in effect,
<0 if unknown

}i
If ANSI_TIME is not defined, the legacy declaration is used:

struct tm

{

char tm sec; // seconds after minute [0, 60]
(60 = leap second)

char tm min; // minutes after the hour [0, 59]

char tm hour; // hours since midnight [0, 23]

char tm mday; // day of the month [1, 31]

char tm mon; // months since January [1, 12]

char tm year; // years since 1900
char tm wday; // days since Sunday [0, 6]
i

tm_mon in ANSI Standard struct ranges from 0 to 11.
tm_mon in the legacy struct ranges from 1 to 12.

The ANSI Standard struct includes tm_yday and tm_isdst members.
PARAMETERS
Parameter 1 Pointer to broken-down time to normalize and convert to time t.

RETURN VALUE

The specified calendar time encoded as a value of type time_t.
Returns -1 if the calendar time cannot be represented.

HEADER

time.h

SEE ALSO

clock, difftime, time, asctime, ctime, gmtime, localtime, strftime

Dynamic C Function Reference Manual digi.com 202

http://www.digi.com

mktm

unsigned int mktm(struct tm * timeptr, unsigned long time);

DESCRIPTION
Converts the seconds (t ime) to date and time and fills in the fields of the tm structure with the
result.
PARAMETERS
timeptr Address to store date and time into structure:
time Seconds since January 1, 1980.

RETURN VALUE
0

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktime, tm rd, tm wr, gmtime, localtime

Dynamic C Function Reference Manual digi.com 203

http://www.digi.com

modf

double modf (double x, double *n);
float modff (float x, float *n);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Splits x into a fraction and integer, £ + n.

WARNING!! Previous versions of Dynamic C defined this function as:

float modf (float x, int *n);

This version of Dynamic C uses the C89/C90 definition instead.

PARAMETERS
x Floating-point integer
n An integer

RETURN VALUE

The integer part in *n and the fractional part satisfies |[f| < 1.0

HEADER
math.h

SEE ALSO
fmod, ldexp

Dynamic C Function Reference Manual digi.com

204

http://www.digi.com

N

nf_eraseBlock

int nf eraseBlock(nf device * dev, long page);

DESCRIPTION

Erases the block that contains the specified page on the specified NAND flash device. Check for
completion of the erase operation using either nf isBusyRBHW () ornf isBusyStatus().

Normally, this function will not allow a bad block to be erased. However, when
NFLASH CANERASEBADBLOCKS is defined by the application, the bad block check is not
performed, and the application is allowed to erase any block, regardless of whether it is marked

good or bad.
PARAMETERS
dev Pointer to an initialized nf device structure
page Page specifies the zero-based number of a NAND flash page in the block

to be erased, relative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
LIBRARY

NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC25¢0,

Dynamic C Function Reference Manual digi.com 205

http://www.digi.com

nf getPageCount

long nf getPageCount(nf device * dev);

DESCRIPTION
Returns the number of program pages on the particular NAND flash device.

PARAMETERS
dev Pointer to an nf device structure for an initialized NAND flash device.

RETURN VALUE
The number of program pages on the NAND flash device.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC256

nf getPageSize

long nf getPageSize(nf device * dev);

DESCRIPTION

Returns the size in bytes (excluding “spare” bytes) of each program page on the particular NAND
flash device.

PARAMETERS
dev Pointer to an nf _device structure for an initialized NAND flash device.

RETURN VALUE
The number of data bytes in the NAND flash's program page, excluding the “spare” bytes used for
ECC storage, etc.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC256

Dynamic C Function Reference Manual digi.com 206

http://www.digi.com

nf initDevice

int nf initDevice(nf_ device * dev, int which);

DESCRIPTION

Initializes a particular NAND flash device. This function must be called before the particular
NAND flash device can be used. See nf devtable[] in NFLASH.LIB for the user-updatable
list of supported NAND flash devices. Note that xalloc is called to allocate buffer(s) memory for
each NAND flash device; a run time error will occur if the available xmem RAM is insufficient.

There are two modes of operation for NAND flash devices: FAT and direct. If you are using the FAT
file system in the default configuration, i.e., the NAND flash has one FAT partition that takes up the
entire device, you do not need to callnf initDevice (). You only need to call

nf InitDriver (), which is the default device driver for the FAT file system on a NAND flash
device.

Configurations other than the default one require more work. For example, having two partitions on
the device, one a FAT partition and the other a non-FAT partition, require you to know how to fit
more than one partition on a device. A good example of how to do this is in the remote application
upload utility. The function d1m_initserialflash() in
/LIB/RCM3300/downloadmanager. lib is where to look for code details.The upload utility
is specifically for the RCM3300; however, even without the RCM3300, the utility is still useful in
detailing what is necessary to manage multiple partitions.

The second mode of operation for NAND flash devices is direct access. An application that directly
accesses the NAND flash (using calls such as nf readPage () and nf writePage ()) may
define NFLASH USEERASEBLOCKSIZE to be either 0 (zero) or 1 (one) before NFLASH.LIB is
#used, in order to set the NAND flash driver's main data program unit size to either the devices'
program page size of 512 bytes or to its erase block size of 16 KB.

If not defined by the application, NFLASH USEERASEBLOCKSIZE is set to the value 1 in
NFLASH. LIB; this mode should maximize the NAND flash devices' life.

NFLASH USEERASEBLOCKSIZE value 1 sets the driver up to program an erase block size at a
time. This mode may be best for applications with only a few files open in write mode with larger
blocks of data being written, and may be especially good at append operations. The trade off is
reduced flash erasures at the expense of chunkier overhead due to the necessity of performing all 32
pages' ECC calculations for each programming unit written.

NFLASH USEERASEBLOCKSIZE value 0 sets the driver up to program a program page size at a
time. This mode may be best for applications with more than a few files open in write mode with
smaller blocks of data being written, and may be especially good at interleaved file writes and/or
random access write operations. The trade off is increased flash erasures with the benefit of spread
out overhead due to the necessity of performing only 1 page's ECC calculations per programming
unit written.

Dynamic C Function Reference Manual digi.com 207

http://www.digi.com

PARAMETERS

dev Pointer to an nf device structure that will be filled in. An initialized
nf device struct acts as a handle for the NAND flash device.

which Number of the NAND flash device to initialize. Currently supported
device numbers are 0 for the soldered-on device or 1 for the socketed
NAND flash device.

RETURN VALUE

0: Success
-1: Unknown index or bad internal I/O port information
-2: Error communicating with flash chip
-3: Unknown flash chip type
LIBRARY

NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC256

Dynamic C Function Reference Manual digi.com

208

http://www.digi.com

nf_InitDriver

int nf InitDriver(mbr drvr * driver, void * device_list);

DESCRIPTION

Initializes the NAND flash controller.

PARAMETERS

driver

device_ list

RETURN VALUE

0: Success

Empty mbr drvr structure. It must be initialized with this function
before it can be used with the FAT file system. More information on this
structure can be found in the Dynamic C Module document titled, “FAT
File System User’s Manual,” available on the Rabbit Semiconductor
website.

If not null, this is a pointer to the head of a linked list of nf device
structures for NAND flash devices that have each already been initialized
by calling nf initDevice ().

If device 1list isnull, then this function attempts to initialize all
NAND flash devices and provide a default linked list of nf device
structures in order from device number 0 on up. If the initialization of a
NAND flash device is unsuccessful, thenits nf device structure is not
entered into the linked list.

<0: Negative value of a FAT file system error code

LIBRARY

NFLASH FAT.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Function Reference Manual digi.com

209

http://www.digi.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

nf isBusyRBHW

int nf isBusyRBHW(nf device * dev);

DESCRIPTION

Returns 1 ifthe specified NAND flash device is busy. Uses the hardware Ready/Busy check method,
and can be used to determine the device's busy status even at the start of a read page command. Note
that this function briefly enforces the Ready/Busy input port bit, reads the pin status, and then
restores the port bit to its previous input/output state. There should be little or no visible disturbance
of the LED output which shares the NAND flash's Ready/Busy status line.

PARAMETERS

dev Pointer to an initialized nf device structure for the particular NAND
flash chip.
RETURN VALUE

1: Busy
0: Ready, (not currently transferring a page to be read, or erasing or writing a page)
-1: Error (unsupported Ready/Busy input port)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

nf isBusyStatus

Dynamic C Function Reference Manual digi.com 210

http://www.digi.com

nf isBusyStatus

int nf isBusyStatus(nf _device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy erasing or writing to a page. Uses the software
status check method, which can not (must not) be used to determine the device's busy status at the
start of a read page command.

PARAMETERS

dev Pointer to an initialized nf device structure for the particular NAND
flash chip

RETURN VALUE
1: Busy
0: Ready (not currently erasing or writing a page)
LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf isBusyRBHW

Dynamic C Function Reference Manual digi.com 211

http://www.digi.com

nf readPage

int nf readPage(nf_device * dev, long buffer, long page);

DESCRIPTION

Reads data from the specified NAND flash device and page to the specified buffer in xmem. Note
that in the case of most error results at least some of the NAND flash page's content has been read
into the specified buffer. Although the buffer content must be considered unreliable, it can
sometimes be useful for inspecting page content in “bad” blocks.

PARAMETERS
dev Pointer to an initialized nf device structure
buffer Physical address of the xmem buffer to read data into
page Specifies the zero-based number of a NAND flash page to be read, relative

to the first “good” page’s number.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
-4: Page read time out error
-5: Uncorrectable data or ECC error

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC256

Dynamic C Function Reference Manual digi.com 212

http://www.digi.com

nf writePage

int nf writePage(nf device * dev, long buffer, long page);

DESCRIPTION

Writes data to the specified NAND flash device and page from the specified buffer in xmem. Check
for completion of the write operation using nf isBusyRBHW () ornf isBusyStatus ().

PARAMETERS
dev Pointer to an initialized nf device structure
buffer Physical address of the xmem data to be written
page Specifies the zero-based number of a NAND flash page to be written,

relative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
-4: XMEM/root memory transfer error
-5: Erase block or program page operation error.

LIBRARY
NEFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
CalculateECC256, ChkCorrectECC256

Dynamic C Function Reference Manual digi.com 213

http://www.digi.com

n f_XD_De tect

long nf XD Detect(int debounceMode) ;

DESCRIPTION
This function attempts to read the xD card ID and searches the internal device table for that ID in
detect mode 1. In detect mode 0 it just uses the xD card detect.

Assumes only one XD card present.

WARNING!! This should not be called to determine if it is safe to do write operations if
there is a chance a removable device might be pulled between calling it and the write. It is
best used to determine if a device is present to proceed with an automount after a device
has been unmounted in SW and removed.

PARAMETERS

debounceMode 0 - no debouncing
1 - busy wait for debouncing interval
2 - for use if function to be called until debouncing interval is done, e.g.,

waitfor (rc = nf XD Detect(l) != -EAGAIN);
-EAGAIN will be returned until done.

RETURN VALUE

>0: The ID that was found on the device and in the table

-EBUSY: NAND flash device is busy

-ENODEV: No device found

-EAGAIN: if debounceMode equals 2, then not done debouncing, try again

LIBRARY
NFLASH FAT.LIB

Dynamic C Function Reference Manual digi.com 214

http://www.digi.com

O

OpenInputCompressedFile

int OpenInputCompressedFile(ZFILE * ifp, long fn);

DESCRIPTION

Opens a file for input. This function sets up the LZ compression algorithm window associated with
the ZFILE file. The second parameter is the address (# zimport) of the input file to be opened. If
the file is already compressed, after calling this function the file can be decompressed by calling
ReadCompressedFile ().

The INPUT COMPRESSION BUFFERS macro controls the memory allocated by this function. It
defaults to 1.

PARAMETERS
ifp ZFILE file descriptor
fn Address or handle of input file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LzZSS.LIB

SEE ALSO

CloselInputCompressedFile, ReadCompressedFile

Dynamic C Function Reference Manual digi.com 215

http://www.digi.com

OS_ENTER CRITICAL

void OS_ENTER CRITICAL(void);

DESCRIPTION

Enter a critical section. Priority 1 interrupts will be disabled until OS_EXIT CRITICAL() is called.
Task switching is disabled. This function must be used with great care, since misuse can greatly
increase the latency of your application. Note that nesting OS_ ENTER CRITICAL() calls will
work correctly.

LIBRARY
UCOS2.LIB

OS_EXIT CRITICAL

void OS_EXIT CRITICAL(void);

DESCRIPTION

Exit a critical section. If the corresponding previous OS_ENTER CRITICAL() call disabled
priority 1 interrupts (that is, interrupts were not already disabled), then priority 1 interrupts will be
enabled. Otherwise, priority 1 interrupts will remain disabled. Hence, nesting calls to

OS ENTER CRITICAL() will work correctly.

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 216

http://www.digi.com

OSFlagAccept

OS_FLAGS OSFlagAccept(OS_FLAG_GRP * pgrp, OS_FLAGS flags, INT8U
wait_type, INT8U * err);

DESCRIPTION

This function is called to check the status of a combination of bits to be set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bits to be set/cleared.

This call does not block if the desired flags are not present.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags Bit pattern indicating which bit(s) (i.e. flags) you wish to check. E.g., if
your application wants to wait for bits 0 and 1 then £1ags should be 0x03.

wait type Specifies whether you are checking for ALL bits to be set/cleared or ANY
of the bits to be set/cleared. You can specify the following argument:

* OS_FLAG WAIT CLR ALL- Youwillcheck ALL bitsin f1ags tobe
clear (0)

* OS_FLAG WAIT CLR ANY - You will check ANY bit in flags to
be clear (0)

* OS_FLAG WAIT SET ALL - You will check ALL bits in f1ags to
beset (1)

* OS _FLAG WAIT SET ANY - You will check ANY bit in flags to
be set (1)

Note: Add OS_FLAG_CONSUME if you want the event flag to be
consumed by the call. Example, to wait for any flag in a group AND
then clear the flags that are present, set the wait type parameter
to:

0S_FLAG WAIT SET ANY + OS_FLAG CONSUME

err Pointer to an error code. Possible values are:

* OS_NO ERR - No error
* OS_ERR EVENT TYPE - Not pointing to an event flag group

* OS FLAG ERR WAIT TYPE -Properwait type argumentnot
specified.

* OS_FLAG INVALID PGRP - null pointer passed instead of the event
flag group handle.

* OS_FLAG ERR_NOT_ RDY - Flags not available.
RETURN VALUE

The state of the flags in the event flag group.
LIBRARY
0S _FLAG.C (Prior to DC 8:UC0OS2.LIB)

Dynamic C Function Reference Manual digi.com 217

http://www.digi.com

OSFlagCreate

OS_FLAG_GRP * OSFlagCreate(OS_FLAGS flags, INT8U * err);

DESCRIPTION

This function is called to create an event flag group.

PARAMETERS
flags Contains the initial value to store in the event flag group.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - The call was successful.

* OS_ERR CREATE ISR - Attempt made to create an Event Flag from
an ISR.

* OS_FLAG_GRP DEPLETED - There are no more event flag groups

RETURN VALUE

A pointer to an event flag group or a null pointer if no more groups are available.

LIBRARY
0S _FLAG.C (Prior to DC 8:UC0OS2.LIB)

Dynamic C Function Reference Manual digi.com

218

http://www.digi.com

OSFlagDel

OS_FLAG_GRP * OSFlagDel(OS_FLAG_GRP * pgrp, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes an event flag group and readies all tasks pending on the event flag group. Note

that:

e This function must be used with care. Tasks that would normally expect the presence of the
event flag group must check the return code of OSFlagAccept () and OSFlagPend ().

¢ This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the event flag group.

PARAMETERS
pPgrp Pointer to the desired event flag group.
opt May be one of the following delete options:
* OS _DEL NO PEND - Deletes the event flag group only if no task
pending
* OS_DEL ALWAYS - Deletes the event flag group even if tasks are
waiting. In this case, all the tasks pending will be readied.
err Pointer to an error code. May be one of the following values:

RETURN VALUE

pevent

OS_NO_ERR - Success, the event flag group was deleted

OS_ERR DEL ISR -Ifyou attempted to delete the event flag group
from an ISR

OS_FLAG_INVALID PGRP -If pgrp is a null pointer.
OS_ERR_EVENT TYPE - You are not pointing to an event flag group
OS_ERR_EVENT_ TYPE - If you didn't pass a pointer to an event flag
group

OS_ERR_INVALID OPT - Invalid option was specified

OS_ERR_TASK WAITING - One or more tasks were waiting on the
event flag group.

Error.

(OS_EVENT *)0 Semaphore was successfully deleted.

LIBRARY

OS _FLAG.C (Prior to DC 8:UC0OS2.LIB)

Dynamic C Function Reference Manual digi.com

219

http://www.digi.com

OSFlagPend

OS_FLAGS OSFlagPend(OS_FLAG GRP * pgrp, OS_FLAGS flags, INT8U
wait_type, INT16U timeout, INT8U * err);

DESCRIPTION

This function is called to wait for a combination of bits to be set in an event flag group. Your
application can wait for ANY bit to be set or ALL bits to be set.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags Bit pattern indicating which bit(s) (i.e. flags) you wish to wait for. E.g. if
your application wants to wait for bits 0 and 1 then £1ags should be 0x03.

wait_type Specifies whether you want ALL bits to be set or ANY of the bits to be set.
You can specify the following argument:

* OS_FLAG_WAIT CLR_ALL - You will wait for ALL bits in mask to be clear (0)
* OS_FLAG _WAIT SET ALL - You will wait for ALL bits in ma sk to be set (1)
* OS_FLAG _WAIT CLR_ANY - You will wait for ANY bit in mask to be clear (0)
* OS_FLAG _WAIT SET ANY - You will wait for ANY bit in mask to be set (1)

Note: Add OS_FLAG_CONSUME if you want the event flag to be
consumed by the call. E.g., to wait for any flag in a group AND then
clear the flags that are present, set the wait type parameter to:

0S_FLAG WAIT SET ANY + OS_FLAG CONSUME

timeout An optional timeout (in clock ticks) that your task will wait for the desired
bit combination. If you specify 0, however, your task will wait forever at
the specified event flag group or, until a message arrives.

err Pointer to an error code. Possible values are:
OS_NO_ERR - The desired bits have been set within the specified time-out.
OS_ERR_PEND_ ISR -Ifyou tried to PEND from an ISR.
OS_FLAG INVALID PGRP -If pgrp is anull pointer.
OS_ERR_EVENT TYPE - You are not pointing to an event flag group
OS_TIMEOUT - The bit(s) have not been set in the specified time-out.

OS_FLAG_ERR_WAIT TYPE - You didn't specify a proper
walit type argument.
RETURN VALUE

The new state of the flags in the event flag group when the task is resumed or, 0 if a timeout or an
error occurred.

LIBRARY
OS _FLAG.C (Prior to DC 8:UC0OS2.LIB)

Dynamic C Function Reference Manual digi.com 220

http://www.digi.com

OSFlagPost

OS_FLAGS OSFlagPost(OS_FLAG GRP * pgrp, OS_FLAGS flags, INT8U opt,
INT8U * err);

DESCRIPTION

This function is called to set or clear some bits in an event flag group. The bits to set or clear are
specified by a bitmask. Warnings:

e The execution time of this function depends on the number of tasks waiting on the event flag
group.

¢ The amount of time interrupts are DISABLED depends on the number of tasks waiting on
the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.

flags If opt (see below) is OS_FLAG_SET, each bit that is setin flags will
set the corresponding bit in the event flag group. E.g., to set bits 0, 4 and 5
you would set f1ags to:

0x31 (note, bit 0 is least significant bit)

If opt (see below) is OS_FLAG_CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. E.g., to clear bits 0,
4 and 5 you would specify flags as:

0x31 (note, bit 0 is least significant bit)

opt Indicates whether the flags will be:

set (0S_FLAG SET), or cleared (0OS_FLAG CLR)

err Pointer to an error code. Valid values are:

* OS_NO_ERR - The call was successful.

* OS _FLAG INVALID PGRP - null pointer passed.

* OS_ERR EVENT TYPE - Not pointing to an event flag group

* OS_FLAG INVALID OPT - Invalid option specified.
RETURN VALUE

The new value of the event flags bits that are still set.

LIBRARY
OS FLAG.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Function Reference Manual digi.com 221

http://www.digi.com

OSFlagQuery

OS_FLAGS OSFlagQuery(OS_FLAG_GRP * pgrp, INT8U * err);

DESCRIPTION

This function is used to check the value of the event flag group.

PARAMETERS
porp Pointer to the desired event flag group.
err Pointer to an error code returned to the called:

* OS_NO_ERR - The call was successful
* OS FLAG INVALID PGRP - null pointer passed.
* OS_ERR _EVENT TYPE - Not pointing to an event flag group

RETURN VALUE

The current value of the event flag group.

LIBRARY
0S _FLAG.C (Prior to DC 8:UC0OS2.LIB)

OSInit

void OSInit(void);

DESCRIPTION
Initializes pC/OS-II data; must be called before any other pC/OS-II functions are called.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

Dynamic C Function Reference Manual digi.com 222

http://www.digi.com

OSMboxAccept

void * OSMboxAccept(OS_EVENT * pevent);

DESCRIPTION

Checks the mailbox to see if a message is available. Unlike OSMboxPend (), 0SMboxAccept ()

does not suspend the calling task if a message is not available.
PARAMETERS

pevent Pointer to the mailbox’s event control block.
RETURN VALUE

!'= (void *)0 Thisis the message in the mailbox if one is available. The mailbox is
cleared so the next time OSMboxAccept() is called, the mailbox
will be empty.

== (void *)0 The mailbox is empty, or pevent is a null pointer, or you didn't pass
the proper event pointer.

LIBRARY
0S MBOX.C (Prior to DC 8:UC0OS2.LIB)

SEE ALSO
OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

Dynamic C Function Reference Manual digi.com

223

http://www.digi.com

OSMboxCreate

OS_EVENT * OSMboxCreate(void * msg);

DESCRIPTION

Creates a message mailbox if event control blocks are available.
PARAMETERS

msg Pointer to a message to put in the mailbox. If this value is set to the null
pointer (i.e., (void *) 0) then the mailbox will be considered empty.

RETURN VALUE

'= (void *)0 A pointerto the event control clock (OS EVENT) associated with the
created mailbox.

== (void *)0 No event control blocks were available.

LIBRARY
0S MBOX.C (Prior to DC 8:UC0OS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxPend, OSMboxPost, OSMboxQuery

Dynamic C Function Reference Manual digi.com

224

http://www.digi.com

OSMboxDel

OS_EVENT * OSMboxDel (OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes a mailbox and readies all tasks pending on the mailbox. Note that:

¢ This function must be used with care. Tasks that would normally expect the presence of the
mailbox MUST check the return code of 0OSMboxPend ().

e OSMboxAccept () callers will not know that the intended mailbox has been deleted unless
they check pevent to see that it's a null pointer.

e This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mailbox.

* Because ALL tasks pending on the mailbox will be readied, you MUST be careful in
applications where the mailbox is used for mutual exclusion because the resource(s) will no
longer be guarded by the mailbox.

PARAMETERS
pevent Pointer to the event control block associated with the desired mailbox.
opt May be one of the following delete options:
* OS_DEL NO PEND - Delete mailbox only if no task pending
* OS_DEL ALWAYS - Deletes the mailbox even if tasks are waiting. In
this case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following values:

* OS_NO_ERR - Call was successful; mailbox was deleted
* OS_ERR DEL ISR - Attempt to delete mailbox from ISR
* OS_ERR _INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - One or more tasks were waiting on the
mailbox

* OS_ERR _EVENT_ TYPE - No pointer passed to a mailbox
* OS_ERR PEVENT NULL - If pevent is a null pointer.

RETURN VALUE

'= (void *)0 Isapointer to the event control clock (OS_EVENT) associated with
the created mailbox

== (void *)0 Ifno event control blocks were available

LIBRARY
0S_MBOX.C

Dynamic C Function Reference Manual digi.com 225

http://www.digi.com

OSMboxPend

void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits for a message to be sent to a mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
timeout Allows task to resume execution if a message was not received by the
number of clock ticks specified. Specifying 0 means the task is willing to
wait forever.
err Pointer to a variable for holding an error code. Possible error messages are:

* OS_NO_ERR: The call was successful and the task received a message.

* OS_TIMEOUT: A message was not received within the specified
timeout.

* OS_ERR _EVENT TYPE: Invalid event type.

* OS_ERR PEND ISR: Ifthis function was called from an ISR and the
result would lead to a suspension.

* OS_ERR PEVENT NULL: If pevent is a null pointer.

RETURN VALUE
'= (void *)0 A pointer to the message received.

== (void *)0 No message was received, or pevent is a null pointer, or the proper
pointer to the event control block was not passed.

LIBRARY
0S MBOX.C (Prior to DC 8:UC0OS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

Dynamic C Function Reference Manual digi.com 226

http://www.digi.com

OSMboxPost

INT8U OSMboxPost(OS_EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to message to be posted. A null pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_MBOX FULL The mailbox already contains a message. Only one
message at a time can be sent and thus, the message MUST
be consumed before another can be sent.

OS_ERR EVENT TYPE Attempting to post to a non-mailbox.
OS_ERR PEVENT NULL If pevent is a null pointer
OS_ERR POST NULL PTR If you are attempting to post a null pointer

LIBRARY
0S_MBOX.C

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

Dynamic C Function Reference Manual digi.com

227

http://www.digi.com

OSMboxPostOpt

INT8U OSMboxPostOpt(OS_EVENT * pevent, void * msg, INT8U opt);

DESCRIPTION

This function sends a message to a mailbox.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” The interrupt dis-
able time is proportional to the number of tasks waiting on the mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT_NONE - POST to a single waiting task (Identical to
0S_MboxPost ())

* OS_POST OPT BROADCAST - POST to ALL tasks that are waiting on
the mailbox

RETURN VALUE
OS_NO_ERR The call was successful and the message was sent.

OS_MBOX FULL The mailbox already contains a message. Only one
message at a time can be sent and thus, the message MUST
be consumed before another can be sent.

OS_ERR EVENT TYPE Attempting to post to a non-mailbox.
OS_ERR PEVENT NULL If pevent is a null pointer
OS_ERR POST NULL PTR If you are attempting to post a null pointer

LIBRARY
0S MBOX.C (Prior to DC 8:UC0OS2.LIB)

Dynamic C Function Reference Manual digi.com 228

http://www.digi.com

OSMboxQuery

INT8U OSMboxQuery(OS_EVENT * pevent, OS_MBOX DATA * pdata);

DESCRIPTION

Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdata Pointer to a data structure for information about the message mailbox

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.
OS_ERR EVENT TYPE Attempting to obtain data from a non mailbox.
LIBRARY
UCOS2.LIB
SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

Dynamic C Function Reference Manual digi.com

229

http://www.digi.com

OSMemCreate

OS_MEM * OSMemCreate(void * addr, INT32U nblks, INT32U blksize,
INT8U * err);

DESCRIPTION
Creates a fixed-sized memory partition that will be managed by pC/OS-II.

PARAMETERS
addr Pointer to starting address of the partition.
nblks Number of memory blocks to create in the partition.
blksize The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE
Pointer to the created memory partition control block if one is available, null pointer otherwise.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemGet, OSMemPut, OSMemQuery

Dynamic C Function Reference Manual digi.com 230

http://www.digi.com

OSMemGet

void * OSMemGet(OS_MEM * pmem, INT8U * err);

DESCRIPTION

Gets a memory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE

Pointer to a memory block or a null pointer if an error condition is detected.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemPut, OSMemQuery

Dynamic C Function Reference Manual digi.com

231

http://www.digi.com

OSMemPut

INT8U OSMemPut(OS_MEM * pmem, void * pblk);

DESCRIPTION

Returns a memory block to a partition.

PARAMETERS
pmem Pointer to the partition’s memory control block.
pblk Pointer to the memory block being released.

RETURN VALUE

OS_NO_ERR The memory block was inserted into the partition.

OS_MEM FULL If returning a memory block to an already FULL memory partition.

(More blocks were freed than allocated!)

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemQuery

Dynamic C Function Reference Manual digi.com

232

http://www.digi.com

OSMemQuery

INT8U OSMemQuery(OS_MEM * pmem, OS MEM DATA * pdata);

DESCRIPTION

Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdata Pointer to structure for holding information about the partition.

RETURN VALUE
OS_NO_ERR This function always returns no error.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemPut

Dynamic C Function Reference Manual digi.com

233

http://www.digi.com

OSMutexAccept

INT8U OSMutexAccept(OS_EVENT * pevent, INT8U * err);

DESCRIPTION

This function checks the mutual exclusion semaphore to see if a resource is available. Unlike
OSMutexPend (), OSMutexAccept () does not suspend the calling task if the resource is not
available or the event did not occur. This function cannot be called from an ISR because mutual
exclusion semaphores are intended to be used by tasks only.

PARAMETERS
pevent Pointer to the event control block.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR EVENT TYPE -if pevent is not a pointer to a mutex
* OS_ERR PEVENT NULL - pevent is a null pointer

* OS_ERR PEND ISR -ifyou called this function from an ISR

RETURN VALUE

1: Success, the resource is available and the mutual exclusion semaphore is acquired.
0: Error, either the resource is not available, or you didn't pass a pointer to a mutual exclusion
semaphore, or you called this function from an ISR.

LIBRARY

0S_MUTEX.C

Dynamic C Function Reference Manual digi.com 234

http://www.digi.com

OSMutexCreate

OS_EVENT *OSMutexCreate(INT8U prio, INT8U * err);

DESCRIPTION

This function creates a mutual exclusion semaphore. Note that:

e The LEAST significant 8 bits of the OSEventCnt field of the mutex’s event control block are
used to hold the priority number of the task owning the mutex or OxFF if no task owns the
mutex.

e The MOST significant 8 bits of the OSEventCnt field of the mutex’s event control block are
used to hold the priority number to use to reduce priority inversion.

PARAMETERS

prio The priority to use when accessing the mutual exclusion semaphore. In
other words, when the semaphore is acquired and a higher priority task
attempts to obtain the semaphore then the priority of the task owning the
semaphore is raised to this priority. It is assumed that you will specify a
priority that is LOWER in value than ANY of the tasks competing for the
mutex.

err Pointer to error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.
* OS_ERR_CREATE ISR -you attempted to create a mutex from an ISR

* OS_PRIO_EXIST - a task at the priority inheritance priority already
exist.

* OS_ERR PEVENT NULL - no more event control blocks available.

* OS_PRIO INVALID - if the priority you specify is higher that the
maximum allowed (i.e. > 0S_ LOWEST PRIO)

RETURN VALUE

'= (void *)0 Pointer to the event control clock (OS EVENT) associated with the
created mutex.

== (void *)0 Error detected.

LIBRARY
0S_MUTEX.C

Dynamic C Function Reference Manual digi.com 235

http://www.digi.com

OSMutexDel

OS_EVENT *OSMutexDel(OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes a mutual exclusion semaphore and readies all tasks pending on it. Note that:

¢ This function must be used with care. Tasks that would normally expect the presence of the
mutex MUST check the return code of OSMutexPend ().

¢ This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mutex.

e Because ALL tasks pending on the mutex will be readied, you MUST be careful because the
resource(s) will no longer be guarded by the mutex.

PARAMETERS
pevent Pointer to mutex’s event control block.
opt May be one of the following delete options:
* OS_DEL NO_PEND - Delete mutex only if no task pending
* OS_DEL ALWAYS - Deletes the mutex even if tasks are waiting. In this
case, all pending tasks will be readied.
err Pointer to an error code that can contain one of the following values:
* OS_NO_ERR - The call was successful and the mutex was deleted
* OS_ERR DEL ISR - Attempted to delete the mutex from an ISR
* OS_ERR INVALID OPT - An invalid option was specified
* OS_ERR TASK WAITING - One or more tasks were waiting on the
mutex
* OS_ERR_EVENT_ TYPE -Ifyou didn't pass a pointer to a mutex pointer.
RETURN VALUE
pevent On error.

(OS_EVENT *)0 Mutex was deleted.

LIBRARY
0S MUTEX.C

Dynamic C Function Reference Manual digi.com

236

http://www.digi.com

OSMutexPend

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

This function waits for a mutual exclusion semaphore. Note that:

* The task that owns the Mutex MUST NOT pend on any other event while it owns the mutex.
e You MUST NOT change the priority of the task that owns the mutex.

PARAMETERS
pevent

timeout

err

LIBRARY
0S MUTEX.C

Pointer to mutex’s event control block.

Optional timeout period (in clock ticks). If non-zero, your task will wait for
the resource up to the amount of time specified by this argument. If you
specify 0, however, your task will wait forever at the specified mutex or,
until the resource becomes available.

Pointer to where an error message will be deposited. Possible error
messages are:

OS_NO_ERR - The call was successful and your task owns the mutex
OS_TIMEOUT - The mutex was not available within the specified time.
OS_ERR_EVENT TYPE - If you didn't pass a pointer to a mutex
OS_ERR_PEVENT NULL - pevent is a null pointer

OS_ERR_PEND_ ISR -Ifyou called this function from an ISR and the
result would lead to a suspension.

Dynamic C Function Reference Manual digi.com

237

http://www.digi.com

OSMutexPost

INT8U OSMutexPost(OS_EVENT * pevent);

DESCRIPTION

This function signals a mutual exclusion semaphore.
PARAMETERS
pevent Pointer to mutex’s event control block.
RETURN VALUE
OS_NO_ERR The call was successful and the mutex was signaled.
OS_ERR_EVENT TYPE If you didn't pass a pointer to a mutex
OS_ERR_PEVENT_ NULL pevent is a null pointer
OS_ERR _POST_ISR Attempted to post from an ISR (invalid for mutexes)
OS_ERR NOT MUTEX OWNER The task that did the postis NOT the owner of the MUTEX.

LIBRARY
0S MUTEX.C

Dynamic C Function Reference Manual digi.com 238

http://www.digi.com

OSMutexQuery

INT8U OSMutexQuery(OS_EVENT * pevent, OS_MUTEX DATA * pdata);

DESCRIPTION

This function obtains information about a mutex.

PARAMETERS
pevent Pointer to the event control block associated with the desired mutex.
pdata Pointer to a structure that will contain information about the mutex.

RETURN VALUE
OS_NO_ERR The call was successful and the message was sent
OS_ERR_QUERY ISR Function was called from an ISR
OS_ERR_PEVENT_ NULL pevent is a null pointer
OS_ERR_EVENT TYPE Attempting to obtain data from a non mutex.

LIBRARY
O0S MUTEX.C

OSQAccept

void * OSQAccept(OS_EVENT * pevent);

DESCRIPTION

Checks the queue to see if a message is available. Unlike 0OSQPend (), with OSQAccept () the
calling task is not suspended if a message is unavailable.

PARAMETERS
pevent Pointer to the message queue’s event control block.

RETURN VALUE
Pointer to message in the queue if one is available, null pointer otherwise.
LIBRARY

0S_Q.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
O0SQCreate, 0OSQFlush, 0SQPend, OSQPost, OSQPostFront, 0OSQQuery

Dynamic C Function Reference Manual digi.com 239

http://www.digi.com

OSQCreate

OS_EVENT * OSQCreate(void ** start, INT16U gsize);
DESCRIPTION

Creates a message queue if event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The storage
area MUST be declared an array of pointers to void: void
*MessageStorage[gsize].
gsize Number of elements in the storage area.
RETURN VALUE

Pointer to message queue’s event control block or null pointer if no event control blocks were
available.

LIBRARY

0OS_Q.C (Prior to DC 8:UC0S2.LIB)
SEE ALSO

OSQAccept, OSQFlush, 0OSQPend, 0OSQPost, OSQPostFront, 0OSQQuery

Dynamic C Function Reference Manual digi.com

240

http://www.digi.com

OSQDel

OS_EVENT * OSQDel(OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

Deletes a message queue and readies all tasks pending on the queue. Note that:

This function must be used with care. Tasks that would normally expect the presence of the
queue MUST check the return code of 0SQPend () .

0SQAccept () callers will not know that the intended queue has been deleted unless they
check pevent to see that it's a null pointer.

This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the queue.

Because all tasks pending on the queue will be readied, you must be careful in applications
where the queue is used for mutual exclusion because the resource(s) will no longer be
guarded by the queue.

If the storage for the message queue was allocated dynamically (i.e., using amalloc ()
type call) then your application must release the memory storage by call the counterpart call
of the dynamic allocation scheme used. If the queue storage was created statically then, the
storage can be reused.

PARAMETERS
pevent Pointer to the queue’s event control block.
opt May be one of the following delete options:
* OS_DEL NO_PEND - Delete queue only if no task pending
* OS_DEL ALWAYS - Deletes the queue even if tasks are waiting. In this
case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following:

* OS_NO_ERR - Call was successful and queue was deleted
* OS_ERR DEL ISR - Attempt to delete queue from an ISR
* OS_ERR INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - One or more tasks were waiting on the
queue

* OS_ERR EVENT TYPE - You didn't pass a pointer to a queue
* OS_ERR PEVENT NULL - If pevent is a null pointer.

RETURN VALUE

LIBRARY

pevent Error

(OS_EVENT *)0 The queue was successfully deleted.

0OS_Q.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Function Reference Manual digi.com

241

http://www.digi.com

OSQFlush

INT8U OSQFlush(OS_EVENT * pevent);

DESCRIPTION

Flushes the contents of the message queue.
PARAMETERS
pevent Pointer to message queue’s event control block.
RETURN VALUE
OS_NO_ERR Success.
OS_ERR EVENT TYPE A pointer to a queue was not passed.
OS_ERR_PEVENT_ NULL If pevent is a null pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, 0SQPend, OSQPost, OSQPostFront, OSQQuery
Dynamic C Function Reference Manual digi.com 242

http://www.digi.com

OSQPend

void * OSQPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION

Waits for a message to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
timeout Allow task to resume execution if a message was not received by the
number of clock ticks specified. Specifying 0 means the task is willing to
wait forever.
err Pointer to a variable for holding an error code.

RETURN VALUE

Pointer to a message or, if a timeout occurs, a null pointer.

LIBRARY
0OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0SQCreate, OSQFlush, 0OSQPost, OSQPostFront, OSQQuery

Dynamic C Function Reference Manual digi.com 243

http://www.digi.com

OSQPost

INT8U OSQPost(OS_EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

0S_Q FULL The queue cannot accept any more messages because it is
full.

OS_ERR_EVENT TYPE If a pointer to a queue not passed.

OS_ERR_PEVENT_ NULL If pevent is a null pointer.
OS_ERR POST NULL PTR If attempting to post to a null pointer.

LIBRARY
0S_Q.C

SEE ALSO
OSQAccept, 0SQCreate, OSQFlush, 0SQPend, OSQPostFront, OSQQuery

Dynamic C Function Reference Manual digi.com 244

http://www.digi.com

OSQPostFront

INT8U OSQPostFront(OS_EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue, but unlike 0SQPost (), the message is posted at the front
instead of the end of the queue. Using OSQPostFront () allows 'priority' messages to be sent.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

O0S_Q FULL The queue cannot accept any more messages because it is
full.

OS_ERR EVENT TYPE A pointer to a queue was not passed.

OS_ERR_PEVENT_ NULL If pevent is a null pointer.
OS_ERR POST NULL PTR Attempting to post to a non mailbox.

LIBRARY
0S_Q.C

SEE ALSO
OSQAccept, 0OSQCreate, 0OSQFlush, 0SQPend, OSQPost, 0OSQQuery

Dynamic C Function Reference Manual digi.com 245

http://www.digi.com

OSQPostOpt

INT8U OSQPostOpt(OS_EVENT * pevent, void * msg, INT8U opt)

DESCRIPTION

This function sends a message to a queue. This call has been added to reduce code size since it can
replace both OSQPost () and OSQPostFront (). Also, this function adds the capability to
broadcast a message to all tasks waiting on the message queue.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” In fact, the inter-
rupt disable time is proportional to the number of tasks waiting on the queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT NONE - POST to a single waiting task (Identical to
0OSQPost ())

* OS_POST OPT BROADCAST - POST to ALL tasks that are waiting on
the queue

* OS_POST OPT_ FRONT - POST as LIFO (Simulates
OSQPostFront ())

The last 2 flags may be combined:

« 0S_POST OPT FRONT+O0S POST OPT BROADCAST -isidentical
to OSQPostFront () except that it will broadcast msg to all waiting
tasks.

RETURN VALUE
OS_NO_ERR The call was successful and the message was sent.
O0S_Q FULL The queue is full, cannot accept any more messages.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.

OS_ERR_PEVENT_ NULL If pevent is a null pointer.
OS_ERR POST NULL PTR Attempting to post a null pointer.

LIBRARY
0OS_Q.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Function Reference Manual digi.com 246

http://www.digi.com

OSQQuery

INT8U OSQQuery(OS_EVENT * pevent, OS_Q DATA * pdata);

DESCRIPTION

Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdata Pointer to a data structure for message queue information.

RETURN VALUE
OS_NO_ERR The call was successful and the message was sent
OS_ERR_EVENT TYPE Attempting to obtain data from a non queue.
OS_ERR_PEVENT_ NULL If pevent is a null pointer.

LIBRARY
0OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, 0OSQFlush, 0SQPend, OSQPost, OSQPostFront

OSSchedLock

void OSSchedLock (void) ;

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until it is ready
for them. There must be a matched call to 0SSchedUnlock () for every call to
0OSSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
OSSchedUnlock

Dynamic C Function Reference Manual digi.com 247

http://www.digi.com

OSSchedUnlock

void 0OSSchedUnlock(void) ;

DESCRIPTION
Allow task rescheduling. There must be a matched call to 0SSchedUnlock () for every call to
0OSSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
OSSchedLock

OSSemAccept

INT16U OSSemAccept(OS_EVENT * pevent);

DESCRIPTION

This function checks the semaphore to see if a resource is available or if an event occurred. Unlike
0SSemPend (), 0SSemAccept () does not suspend the calling task if the resource is not
available or the event did not occur.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value:
If >0, semaphore value is decremented; value is returned before the decrement.
If 0, then either resource is unavailable, event did not occur, or null or invalid pointer was passed to
the function.
LIBRARY

UCOS2.LIB

SEE ALSO
OSSemCreate, 0OSSemPend, OSSemPost, OSSemQuery

Dynamic C Function Reference Manual digi.com 248

http://www.digi.com

OSSemCreate

OS_EVENT * OSSemCreate(INT16U cnt);

DESCRIPTION

Creates a semaphore.
PARAMETERS
cnt The initial value of the semaphore.

RETURN VALUE
Pointer to the event control block (OS_EVENT) associated with the created semaphore, or null if no
event control block is available.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, 0SSemPend, OSSemPost, OSSemQuery

OSSemPend

void OSSemPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION

Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
timeout Time in clock ticks to wait for the resource. If 0, the task will wait until the
resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2.LIB
SEE ALSO

OSSemAccept, OSSemCreate, 0OSSemPost, O0SSemQuery

Dynamic C Function Reference Manual digi.com 249

http://www.digi.com

OSSemPost

INT8U OSSemPost(OS_EVENT * pevent);

DESCRIPTION

This function signals a semaphore.
PARAMETERS
pevent Pointer to the desired semaphore’s event control block
RETURN VALUE
OS_NO_ERR The call was successful and the semaphore was signaled.

OS_SEM OVF If the semaphore count exceeded its limit. In other words,
you have signalled the semaphore more often than you
waited on it with either OSSemAccept () or
0OSSemPend ().

OS_ERR_EVENT TYPE If a pointer to a semaphore not passed.
OS_ERR_PEVENT_ NULL If pevent is a null pointer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, 0OSSemPend, O0SSemQuery

Dynamic C Function Reference Manual digi.com

250

http://www.digi.com

OSSemQuery

INT8U OSSemQuery(OS_EVENT * pevent, OS_SEM DATA * pdata);

DESCRIPTION

Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdata Pointer to a data structure that will hold information about the semaphore.

RETURN VALUE
OS_NO_ERR The call was successful and the message was sent.
OS_ERR_EVENT TYPE Attempting to obtain data from a non semaphore.
OS_ERR_PEVENT_ NULL If the pevent parameter is a null pointer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, 0OSSemPend, OSSemPost

Dynamic C Function Reference Manual digi.com

251

http://www.digi.com

OSSetTickPerSec

INT16U OSSetTickPerSec(INT16U TicksPerSec) ;

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaults to 64. If this function
isused, the #define OS TICKS PER_SEC needs to be changed so that the time delay functions
work correctly. Since this function uses integer division, the actual ticks per second may be slightly
different that the desired ticks per second.

PARAMETERS
TicksPerSec Unsigned 16-bit integer.

RETURN VALUE

The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSStart

OSStart

void OSStart(void) ;

DESCRIPTION

Starts the multitasking process, allowing nC/OS-II to manage the tasks that have been created.
Before OSStart () iscalled, 0SInit () MUST have been called and at least one task MUST
have been created. This function calls 0SStartHighRdy which calls 0STaskSwHook and sets
OSRunning to TRUE.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreatelExt

Dynamic C Function Reference Manual digi.com 252

http://www.digi.com

OSStatInit

void OSStatInit(void) ;

DESCRIPTION

Determines CPU usage.

LIBRARY
UCOS2.LIB

OSTaskChangePrio

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

DESCRIPTION
Allows a task's priority to be changed dynamically. Note that the new priority MUST be available.

PARAMETERS
oldprio The priority level to change from.
newprio The priority level to change to.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_INVALID The priority specified is higher that the maximum allowed
(i.e.20S_LOWEST PRIO).

OS_PRIO_EXIST The new priority already exist

OS_PRIO_ERR There is no task with the specified OLD priority (i.e. the
OLD task does not exist).

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 253

http://www.digi.com

OSTaskCreate

INT8U OSTaskCreate(void (*task) (), void *pdata, INT16U stk size,
INT8U prio);

DESCRIPTION

Creates a task to be managed by pC/OS-II. Tasks can either be created prior to the start of
multitasking or by a running task. A task cannot be created by an ISR.

PARAMETERS
task Pointer to the task’s starting address.
pdata Pointer to a task’s initial parameters.
stk_size Number of bytes of the stack.
prior The task’s unique priority number.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_EXIT Task priority already exists (each task MUST have a unique
priority).

OS_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e. >0S_LOWEST PRIO).

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateExt

Dynamic C Function Reference Manual digi.com

254

http://www.digi.com

OSTaskCreateExt

INT8U OSTaskCreateExt(void (* task) (), void * pdata, INT8U prio,
INT16U id, INT16U stk _size, void * pext, INT16U opt);

DESCRIPTION

Creates a task to be managed by pC/OS-II. Tasks can either be created prior to the start of
multitasking or by a running task. A task cannot be created by an ISR. This function is similar to
OSTaskCreate () except that it allows additional information about a task to be specified.

PARAMETERS
task Pointer to task’s code.
pdata Pointer to optional data area; used to pass parameters to the task at start of
execution.
prio The task’s unique priority number; the lower the number the higher the
priority.
id The task’s identification number (0...65535).
stk_size Size of the stack in number of elements. If OS_STK is set to INT8U,
stk _size corresponds to the number of bytes available. If OS STK is
setto INT16U, stk _size contains the number of 16-bit entries
available. Finally, if OS_STK is set to INT32U, stk _size contains the
number of 32-bit entries available on the stack.
pext Pointer to a user-supplied Task Control Block (TCB) extension.
opt The lower 8 bits are reserved by pC/OS-I1. The upper 8 bits control
application-specific options. Select an option by setting the corresponding
bit(s).
RETURN VALUE
OS_NO_ERR The call was successful.
OS_PRIO_EXIT Task priority already exists (each task MUST have a unique
priority).
OS_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e.>0S_LOWEST PRIO).

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate

Dynamic C Function Reference Manual digi.com 255

http://www.digi.com

OSTaskCreateHook

void OSTaskCreateHook(OS_TCB * ptcb);

DESCRIPTION

Called by uC/OS-II whenever a task is created. This call-back function resides in UCOS2 .LIB and
extends functionality during task creation by allowing additional information to be passed to the
kernel, anything associated with a task. This function can also be used to trigger other hardware,
such as an oscilloscope. Interrupts are disabled during this call, therefore, it is recommended that
code be kept to a minimum.

PARAMETERS
ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskDelHook

Dynamic C Function Reference Manual digi.com 256

http://www.digi.com

OSTaskDel

INT8U OSTaskDel (INT8U prio)

DESCRIPTION

Deletes a task. The calling task can delete itself by passing either its own priority number or
OS_PRIO_SELF ifitdoesn’t know its priority number. The deleted task is returned to the dormant
state and can be re-activated by creating the deleted task again.

PARAMETERS
prio Task’s priority number.

RETURN VALUE

OS_NO_ERR The call was successful.
OS_TASK DEL IDLE Attempting to delete pC/OS-II's idle task.
OS_PRIO_INVALID The priority specified is higher than the maximum allowed
(i.e.>0S LOWEST PRIO)or,0S PRIO SELF not
specified.
OS_TASK DEL_ERR The task to delete does not exist.
OS_TASK DEL_ ISR Attempting to delete a task from an ISR.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDelReqg

Dynamic C Function Reference Manual digi.com 257

http://www.digi.com

OSTaskDelHook

void OSTaskDelHook(OS_TCB * ptcb);

DESCRIPTION

Called by pC/OS-II whenever a task is deleted. This call-back function resides in UCOS2 .LIB.
Interrupts are disabled during this call, therefore, it is recommended that code be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.
LIBRARY

UCOS2.LIB
SEE ALSO

OSTaskCreateHook

Dynamic C Function Reference Manual digi.com 258

http://www.digi.com

OSTaskDelReq

INT8U OSTaskDelReqg(INT8U prio);

DESCRIPTION

Notifies a task to delete itself. A well-behaved task is deleted when it regains control of the CPU by

calling 0OSTaskDelReqg (OSTaskDelReq) and monitoring the return value.
PARAMETERS

prio The priority of the task that is being asked to delete itself.
OS_PRIO_SELF is used when asking whether another task wants the
current task to be deleted.

RETURN VALUE
OS_NO_ERR The task exists and the request has been registered.

OS_TASK NOT_EXIST The task has been deleted. This allows the caller to know
whether the request has been executed.

OS_TASK DEL _IDLE If requesting to delete uC/OS-II's idletask.
OS_PRIO_INVALID The priority specified is higher than the maximum allowed
(i.e.20S_LOWEST PRIO)or,O0S PRIO SELF isnot
specified.
OS_TASK DEL_REQ A task (possibly another task) requested that the running
task be deleted.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDel

Dynamic C Function Reference Manual digi.com

259

http://www.digi.com

OSTaskIdleHook

void OSTaskIdleHook(wvoid) ;

DESCRIPTION

This function is called by the idle task. This hook has been added to allow you to do such things as
STOP the CPU to conserve power. Interrupts are enabled during this call.

LIBRARY
UCOS2.LIB

OSTaskQuery

INT8U OSTaskQuery(INT8U prio, OS_TCB * pdata);

DESCRIPTION
Obtains a copy of the requested task's task control block (TCB).

PARAMETERS
prio Priority number of the task.
pdata Pointer to task’s TCB.

RETURN VALUE
OS_NO_ERR The requested task is suspended.

OS_PRIO_INVALID The priority you specify is higher than the maximum
allowed (i.e. 2 0S_ LOWEST PRIO) or,
OS_PRIO_SELF is not specified.

OS_PRIO_ERR The desired task has not been created.

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 260

http://www.digi.com

OSTaskResume

INT8U OSTaskResume (INT8U prio);

DESCRIPTION

Resumes a suspended task. This is the only call that will remove an explicit task suspension.
PARAMETERS
prio The priority of the task to resume.
RETURN VALUE
OS_NO_ERR The requested task is resumed.

OS_PRIO_INVALID The priority specified is higher than the maximum allowed
(i.e.>0S_LOWEST_ PRIO).

OS_TASK NOT_SUSPENDED The task to resume has not been suspended.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskSuspend

OSTaskStatHook

void OSTaskStatHook(wvoid) ;

DESCRIPTION

Called every second by uC/OS-II's statistics task. This function resides in UCOS2 . LIB and allows
an application to add functionality to the statistics task.

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 261

http://www.digi.com

OSTaskStkChk

INT8U OSTaskStkChk(INT8U prio, OS_STK DATA * pdata);

DESCRIPTION

Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio The task’s priority.
pdata Pointer to a data structure of type OS_STK DATA.

RETURN VALUE
OS_NO_ERR The call was successful.

OS_PRIO_INVALID The priority you specify is higher than the maximum
allowed (i.e. > 0S_LOWEST PRIO)or,
OS_PRIO_SELF not specified.

OS_TASK_NOT_EXIST The desired task has not been created.

OS_TASK_OPT_ERR IfOS_TASK OPT_ STK CHK was NOT specified when
the task was created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateExt

Dynamic C Function Reference Manual digi.com

262

http://www.digi.com

OSTaskSuspend

INT8U OSTaskSuspend(INT8U prio);

DESCRIPTION

Suspends a task. The task can be the calling task if the priority passed to 0OSTaskSuspend () is
the priority of the calling task or OS_ PRIO SELF. This function should be used with great care. If
a task is suspended that is waiting for an event (i.e., a message, a semaphore, a queue...) the task will
be prevented from running when the event arrives.

PARAMETERS
prio The priority of the task to suspend.

RETURN VALUE

OS_NO_ERR The requested task is suspended.
OS_TASK_SUS_IDLE Attempting to suspend the idle task (not allowed).
OS_PRIO_INVALID The priority specified is higher than the maximum allowed
(i.e.20S_LOWEST PRIO)or,0S PRIO SELF is not
specified.
OS_TASK_SUS_PRIO The task to suspend does not exist.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskResume
OSTaskSwHook

void OSTaskSwHook (void) ;

DESCRIPTION
Called whenever a context switch happens. The task control block (TCB) for the task that is ready
to run is accessed via the global variable OSTCBHighRdy, and the TCB for the task that is being
switched out is accessed via the global variable OSTCBCur.

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 263

http://www.digi.com

OSTCBInitHook

void OSTCBInitHook(OS_TCB * ptcb);

DESCRIPTION

This function is called by OSTCBInit () after setting up most of the task control block (TCB).
Interrupts may or may not be enabled during this call.

PARAMETER
ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

OSTimeDly

void OSTimeDly(INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will resultif ticks
1s 0. If ticks is >0, then a context switch will result.

PARAMETERS
ticks Number of clock ticks to delay the task.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDlyHMSM, OSTimeDlyResume, OSTimeDlySec

Dynamic C Function Reference Manual digi.com 264

http://www.digi.com

OSTimeD1lyHMSM

INT8U OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli) ;

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allows the delay to be
specified in hours, minutes, seconds and milliseconds instead of ticks. The resolution on the
milliseconds depends on the tick rate. For example, a 10 ms delay is not possible if the ticker
interrupts every 100 ms. In this case, the delay would be set to 0. The actual delay is rounded to the
nearest tick.

PARAMETERS
hours Number of hours that the task will be delayed (max. is 255)
minutes Number of minutes (max. 59)
seconds Number of seconds (max. 59)
milli Number of milliseconds (max. 999)

RETURN VALUE
OS_NO_ERR Execution delay of task was successful
OS_TIME INVALID MINUTES Minutes parameter out of range
OS_TIME INVALID SECONDS Seconds parameter out of range
OS_TIME INVALID MS Milliseconds parameter out of range
OS_TIME_ZERO_DLY

LIBRARY
OS TIME.C (Prior to DC 8:ucos2.lib)

SEE ALSO
OSTimeDly, OSTimeDlyResume, OSTimeDlySec

Dynamic C Function Reference Manual digi.com 265

http://www.digi.com

OSTimeDlyResume

INT8U OSTimeDlyResume (INT8U prio) ;

DESCRIPTION

Resumes a task that has been delayed through a call to either OSTimeD1ly () or
0STimeD1yHMSM () . Note that this function MUST NOT be called to resume a task that is waiting
for an event with timeout. This situation would make the task look like a timeout occurred (unless
this is the desired effect). Also, a task cannot be resumed that has called 0STimeD1yHMSM () with
a combined time that exceeds 65535 clock ticks. In other words, if the clock tick runs at 100 Hz
then, a delayed task will not be able to be resumed that called

OSTimeDlyHMSM (0, 10, 55, 350) or higher.

PARAMETERS
prio Priority of the task to resume.

RETURN VALUE

OS_NO_ERR Task has been resumed.
OS_PRIO_INVALID The priority you specify is higher than the maximum
allowed (i.e. 2 0S_LOWEST_ PRIO).
OS_TIME NOT DLY Task is not waiting for time to expire.
OS_TASK_NOT_EXIST The desired task has not been created.
LIBRARY
UCOS2.LIB
SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlySec

Dynamic C Function Reference Manual digi.com 266

http://www.digi.com

OSTimeDlySec

INT8U OSTimeDlySec(INT16U seconds) ;

DESCRIPTION

Delays execution of the task until seconds expires. This is a low-overhead version of
0STimeD1yHMSM for seconds only.

PARAMETERS
seconds The number of seconds to delay.

RETURN VALUE

OS_NO_ERR The call was successful.
OS_TIME ZERO DLY A delay of zero seconds was requested.
LIBRARY
UCOS2.LIB
SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

OSTimeGet

INT32U OSTimeGet (void) ;

DESCRIPTION

Obtain the current value of the 32-bit counter that keeps track of the number of clock ticks.

RETURN VALUE

The current value of OSTime.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeSet

Dynamic C Function Reference Manual digi.com 267

http://www.digi.com

OSTimeSet

void OSTimeSet (INT32U ticks);

DESCRIPTION
Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS
ticks The value to set OSTime to.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeGet

OSTimeTick

void OSTimeTick(void) ;

DESCRIPTION

This function takes care of the processing necessary at the occurrence of each system tick. This

function is called from the BIOS timer interrupt ISR, but can also be called from a high priority task.

The user definable 0STimeTickHook () is called from this function and allows for extra

application specific processing to be performed at each tick. Since OSTimeTickHook () iscalled

during an interrupt, it should perform minimal processing as it will directly affect interrupt latency.
LIBRARY

UCOS2.LIB

SEE ALSO
OSTimeTickHook

Dynamic C Function Reference Manual digi.com 268

http://www.digi.com

OSTimeTickHook

void OSTimeTickHook(void) ;

DESCRIPTION

This function, as included with Dynamic C, is a stub that does nothing except return. It is called
every clock tick. Code in this function should be kept to a minimum as it will directly affect interrupt
latency. This function must preserve any registers it uses other than the ones that are preserved at
the beginning of the periodic interrupt (periodic isrin VDRIVER.LIB), and therefore should
be written in assembly. At the time of this writing, the registers saved by periodic_ isr are:
AF,IP,HL,DE and IX.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeTick

OSVersion

INT16U OSVersion(void) ;

DESCRIPTION

Returns the version number of pC/OS-II. The returned value corresponds to uC/OS-II's version
number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOS2.LIB

Dynamic C Function Reference Manual digi.com 269

http://www.digi.com

P

paddr

unsigned long paddr(const void * pointer);

DESCRIPTION

Converts a logical pointer into its physical address. This function is compatible with both shared
and separate 1&D space compile modes. Use caution when converting a pointer in the xmem
window, i.e., in the range 0XxE000 to OXFFFF, as this function will return the physical address based
on the XPC on entry.

PARAMETERS
pointer The pointer to convert.

RETURN VALUE
The physical address of the logical address that is pointed to by pointer.

LIBRARY
XMEM.LIB

palloc

void * palloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should return
this element to the pool using pfree () to avoid memory leaks.

Assembler code can call palloc fast () instead.
PARAMETERS
P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements available
Otherwise, pointer to an element

LIBRARY
POOL.LIB

SEE ALSO

Dynamic C Function Reference Manual digi.com 270

http://www.digi.com

pool init, pcalloc, pfree, phwm, pavail, palloc fast, pool link

palloc_ fast

DESCRIPTION

Return next available free element from the given pool, which must be a root pool.
This is an assembler-only version of palloc ().
WARNING!! Do not call this function from C.

palloc fast does not perform any IPSET protection, parameter validation, or update the high-
water mark. palloc fast is aroot function. The parameter must be passed in IX, and the
returned element address is in HL.

REGISTERS

Parameter in IX

Trashes F, BC, DE

Return value in HL, carry flag.
EXAMPLE

1d ix,my_pool

Icall palloc_fast
jre,.no_free

; HL points to element

PARAMETERS
IX Pool handle structure, as previously passed to pool init ().

RETURN VALUE

C flag set: no free elements were available.
C flag clear (NC): HL points to an element.

If the pool is not linked, your application can use this element provided it does not write more than
p->elsize bytes to it (this was the e1size parameter passed to pool init ()). Ifthe poolis
linked, you can write p->elsize-4 bytes to it.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, palloc

Dynamic C Function Reference Manual digi.com 271

http://www.digi.com

pavail

word pavail(Pool t * p);

DESCRIPTION

Return the number of elements that are currently available for allocation.
PARAMETERS

P Pool handle structure, as previously passed to pool init ()or
pool xinit ().

RETURN VALUE

Number of elements available for allocation.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

Dynamic C Function Reference Manual digi.com 272

http://www.digi.com

pavail fast

DESCRIPTION

Return the number of elements that are currently available for allocation.
This is an assembler-only version of pavail ().
WARNING!! Do not call this function from C.

REGISTERS

Parameter in IX
Trashes F, DE
Return value in HL, Z flag

EXAMPLE

1d ix,my_pool
Icall pavail fast
; HL contains number of available elements

PARAMETERS

IX Pool handle structure, as previously passed to pool init ()or
pool xinit ().
RETURN VALUE

Number of elements available for allocation. The return value is placed in HL. In addition, the 'Z'
flag is set if there are no free elements.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

Dynamic C Function Reference Manual digi.com 273

http://www.digi.com

pcalloc

void * pcalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should return
this element to the pool using pfree () to avoid memory leaks.

The element is set to all zero bytes before returning.
PARAMETERS
P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements were available
Otherwise, pointer to an element. If the pool is not linked, your application must not write more than
p->elsize bytes to the element (this was the e1size parameter passed to pool init ()).
The application can write up to (p—>elsize—-4) bytes to the element if the pool is linked. (An
element in root memory has 4 bytes of overhead when the pool is linked.)

LIBRARY

POOL.LIB

SEE ALSO

pool init, palloc, pfree, phwm, pavail

Dynamic C Function Reference Manual digi.com 274

http://www.digi.com

perror

void perror(const char far *s)

DESCRIPTION

Uses the variable errno (defined in errno . h) and parameter s to send an error message,
followed by a newline character, to stderr. The error messages are the same as those returned by
calling strerror(errno).

PARAMETERS

Parameter 1 String to use as a prefix (followed by a colon and a space) to the error
message. Ignored if NULL or empty.

RETURN VALUE

None.

HEADER
stdio.h

SEE ALSO

feof, ferror, clearerr, strerror

Dynamic C Function Reference Manual digi.com 275

http://www.digi.com

pfirst

void * pfirst(Pool t * p);
DESCRIPTION
Get the first allocated element in a root pool. The pool MUST be set to being a linked pool using:
pool link(p, non-zero)
Otherwise, the result is undefined.
PARAMETERS
P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: There are no allocated elements
Otherwise, pointer to first (i.e., oldest) allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, plast, pnext, pprev

Dynamic C Function Reference Manual digi.com 276

http://www.digi.com

pfirst fast

DESCRIPTION
Get the first allocated element in a root pool. The pool MUST be set to being a linked pool by using:
pool link(p, non-zero);
Otherwise the results are undefined.
This is an assembler-only version of pfirst ().
WARNING!! Do not call this function from C.

REGISTERS

Parameter in X
Trashes F, DE
Return value in HL, carry flag

EXAMPLE

1d ix,my pool

lcall pfirst fast

jr ¢, .no_elems

; HL points to first element

PARAMETERS
IX Pool handle structure, as previously passed to pool init ().

RETURN VALUE

C flag set, HL=0: There are no allocated elements.
C flag clear (NC): HL points to first element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, pfirst, pnext fast

Dynamic C Function Reference Manual digi.com 277

http://www.digi.com

pfree

void pfree(Pool t * p, void * e);

DESCRIPTION

Free an element that was obtained via palloc (). Note: if you free an element that was not
allocated from this pool, or was already free, or was outside the pool, then your application will
crash! You can detect most of these programming errors by defining the following symbols before
#use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS

P Pool handle structure, as previously passed to palloc ().
e Element to free, which was returned from palloc ().

RETURN VALUE

None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pcalloc, phwm, pavail

Dynamic C Function Reference Manual digi.com 278

http://www.digi.com

pfree fast

DESCRIPTION
Free an element that was previously obtained via palloc ().
This is an assembler-only version of pfree ().
WARNING!! Do not call this function from C.

pfree fast doesnot perform any IPSET protection or parameter validation. pfree fastisa
xmem function. The parameters must be passed in machine registers.

REGISTERS

Parameters in IX, DE respectively
Trashes BC, DE, HL

EXAMPLE
1d ix,my pool
1d de, (element addr)
lcall pfree fast
PARAMETERS
IX Pool handle structure, as previously passed to pool_alloc()or palloc_fast.
This must be in the [X register.
DE Element to free, which was returned from palloc(). This must be in the DE

register.

RETURN VALUE

None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc fast, pavail fast, pxfree fast

Dynamic C Function Reference Manual digi.com 279

http://www.digi.com

phwm

word phwm(Pool t * p);

DESCRIPTION

Return the largest number of elements ever simultaneously allocated from the given pool, i.e., the
pool high water mark.

You can use this function to help size a pool, since it may be difficult to determine the optimum
number of elements without running a trial program.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

RETURN VALUE

Maximum number of elements ever allocated.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Dynamic C Function Reference Manual digi.com 280

http://www.digi.com

plast

void * plast(Pool t * p);

DESCRIPTION

Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.

PARAMETERS
P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

NULL: There are no allocated elements
INULL: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst

Dynamic C Function Reference Manual digi.com 281

http://www.digi.com

plast fast

DESCRIPTION

Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero) ; otherwise, the results are undefined.

This is an assembler-only version of plast ().
WARNING!! Do _not_ call this function from C.
Registers

Parameter in IX
Trashes F, DE
Return value in HL, carry flag

Example

1d ix,my pool

lcall plast fast

jr ¢, .no_elems

; HL points to last element

PARAMETERS
IX Pool handle structure, as previously passed to pool init ().

RETURN VALUE
C flag set, HL=0: there are no allocated elements
C flag clear (NC): HL points to last element.
LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, plast, pprev fast

Dynamic C Function Reference Manual digi.com 282

http://www.digi.com

pmovebetween

void * pmovebetween(Pool t * p, void * e, void * 4, void * £);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it between allocated elements “d” and “f.”
“Atomically” means that the POOL_IPSET level is used to lock out other CPU contexts from
altering the pool while this operation is in progress. In addition, “d” and “f” are checked to ensure
that the following conditions still hold:

pprev(p, f) == d
and
pnext (p, d) ==

in other words, “f” follows “d.” This is useful since your application may have determined “d” and
“f” some time ago, but in the meantime some other task may have re-ordered the queue or deleted
these elements. In this case, the return value will be null. Your application should then re-evaluate
the appropriate queue elements and retry this function.

The pool MUST be set to being a linked pool by using:
pool link(p, non-zero)
Otherwise the results are undefined.
PARAMETERS
P Pool handle structure, as previously passed to pool init ().

e Address of element to move, obtained by, e.g., plast (). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast () would
return). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably
catastrophic).

Ife == dore == f,then there is no action except to check whether “f”
follows “d.” This parameter may refer to an unlinked (but allocated)
element.

d First reference element. The element “e” will be inserted after this element.
On entry, it must be true that pnext (p, d) == f.Otherwise, null is
returned. If this parameter is null, then “f” must point to the first element
in the list, and “e” is inserted at the start of the list.

£ Second reference element. The element “e” will be inserted before this
element. On entry, it must be true that pprev (p, f) == d. Otherwise,
null is returned. If this parameter is null, then “d” must point to the last
element in the list, and “e” is inserted at the end of the list.

Note: If both “d” and “f” are null, then it must be true that there are no allocated elements

Dynamic C Function Reference Manual digi.com 283

http://www.digi.com

in the linked list, and the element “e” is added as the only element in the list. This proviso
only obtains when the element “e” is initially allocated from an empty pool with:
pool link(p, POOL LINKED BY APP)

The allocated element is not in the linked list of allocated elements.

RETURN VALUE

Returns the parameter value “e,” unless “e” was null; in which case the value of plast (), if called
at function entry, would be returned. If the initial conditions for “d” and “f” do not hold, then null
is returned with no further action.

EXAMPLES

void * d, * e, * f;

e = plast(p); // element to move
f = pnext(p, d = pfirst(p)); // d, fare first 2 elements
pmovebetween(p, e, 4, f);
LIBRARY
POOL.LIB
SEE ALSO

pool init, pool link, plast, pfirst, pnext, pprev, preorder

Dynamic C Function Reference Manual digi.com 284

http://www.digi.com

pmovebetween fast

DESCRIPTION

See description under pmovebetween () . This is an assembler- callable version (do not call from
C). It does not issue TPSET protection or check parameters.

REGISTERS:
Parameters in [X, DE, BC, HL respectively

Trashes AF, BC, DE, BC', DE', HL

Return value in HL, carry flag.

PARAMETERS
IX Pool handle structure, as previously passed to pool init ().PassinIX
register
DE Address of element to move. Pass in DE register.
BC The first reference element. Pass in BC register.
HL The second reference element. Pass in HL register.

RETURN VALUE

In HL. Either set to the address of the element moved, or 0. The carry flag is set if HL==0;
otherwise it is clear.

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween

Dynamic C Function Reference Manual digi.com 285

http://www.digi.com

pnel

word pnel(Pool t * p);

DESCRIPTION

Return the number of elements that are in the pool, both free and used. This includes elements

appended using pool append () etc.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or

pool xinit ().

RETURN VALUE

Number of elements total

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Dynamic C Function Reference Manual

digi.com

286

http://www.digi.com

pnext

void * pnext(Pool t * p, void * e);

DESCRIPTION

Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;

Pool t * p;

for (e = pfirst(p); e; e = pnext(p, e)) {

}

PARAMETERS
P Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., pfirst (). This must be an
allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pfree (): once the element is deleted, it is no longer valid to pass its
address to this function.
If this parameter is null, then the result is the same as pfirst (). This
ensures the invariant pnext (p, pprev(p, e)) == e.
RETURN VALUE

NULL: There are no more elements
! NULL: Pointer to next allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

Dynamic C Function Reference Manual digi.com 287

http://www.digi.com

pnext fast

DESCRIPTION

Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using

pool link(p, non-zero);otherwise, the results are undefined.
This is an assembler-only version of pnext ().
WARNING!! Do not call this function from C.

REGISTERS

Parameters in IX, DE respectively
Trashes F, DE
Return value in HL, carry flag

EXAMPLE
1d ix,my pool
1d de, (current element)
lcall pnext fast
jr ¢, .no more elems
; HL points to the next allocated element
PARAMETERS
IX Pool handle structure, as previously passed to pool_init(). Pass this in [X
register.
DE Current element, address in DE register. See pnext() for a full description.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to next element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst, pprev

Dynamic C Function Reference Manual digi.com

288

http://www.digi.com

poly

float poly(float x, int n, float c[]):

DESCRIPTION

Computes polynomial value by Horner's method. For example, for the fourth-order polynomial
10x? - 3x? + 4x + 6, n would be 4 and the coefficients would be

c[4] = 10.0
c[3] = 0.0
cl[2] = =-3.0
c[l] = 4.0
c[0] = 6.0
PARAMETERS

X Variable of the polynomial.

n The order of the polynomial

c Array containing the coefficients of each power of x.

RETURN VALUE

The polynomial value.

LIBRARY
MATH.LIB

Dynamic C Function Reference Manual digi.com 289

http://www.digi.com

pool append

int pool append(Pool t * p, void * base, word nel);

DESCRIPTION

Add another root memory area to an existing pool. It is assumed that the element size is the same as
the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize bytes long (where elsize is the element size of the existing pool, and nel is the
parameter to this function).

The total pool size must obey the constraints documented with pool init ().

PARAMETERS
P Pool handle structure, as previously passed to pool init ().
base Base address of the root data memory area to append to this pool. This must
be nel*elsize bytes long. Typically, this would be a static (global)
array.
nel Number of elements in the memory area.The sum of nel and the current

number of elements must not exceed 32767.

RETURN VALUE

Currently always zero. If you define the macro POOL _DEBUG, then parameters are checked. If the
parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init

Dynamic C Function Reference Manual digi.com 290

http://www.digi.com

pool init

int pool init(Pool_t * p, void * base, word nel, word elsize);

DESCRIPTION

Initialize a root memory pool. A pool is a linked list of fixed-size blocks taken from a contiguous
area. You can use pools instead of malloc () when fixed-size blocks are all that is needed. You
can have several pools, with different size blocks. Using memory pools is very efficient compared
with more general functions like malloc ().

This function should only be called once, at program startup time, for each pool to be used.

Note: the product of nel and elsize must be less than 65535 (however, this will usually be
limited further by the actual amount of root memory available).

After calling this function, your application must not change any of the fields in the Pool t

structure.
PARAMETERS
P Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by
declaring a global variable of type Pool t.
base Base address of the root data memory area to be managed in this pool. This
must be nel*elsize bytes long. Typically, this would be a static
(global) array.
nel Number of elements in the memory area. 1..32767
elsize Size of each element in the memory area. 2..32767
RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are checked. If the
parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, palloc, pcalloc, pfree, phwm, pavail

Dynamic C Function Reference Manual digi.com 291

http://www.digi.com

pool link

int pool_link(Pool_t * p, int 1link);

DESCRIPTION

Tell the specified pool to maintain a doubly-linked list of allocated elements.
This function should only be called when the pool is completely free; i.e.,
pavail () == pnel/()
PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

link Must be one of the following:

* POOL NOT_ LINKED (0): the pool is not to be linked.

* POOL_LINKED AUTO (1): the pool is linked, and newly allocated
elements are always added at the end of the list.

* POOL_ LINKED BY APP (2): the poolis linked, but newly allocated
elements are not added to the list. The application must call
preorder () or pmovebetween () to insert the element. This
option is only available for root pools.

WARNING!! Ifyou setthe POOL LINKED BY APP option, then the allocated ele-
ment must NOT be passed to any other pool API function except for pfree (),
preorder () (asthe “e” parameter) or pmovebetween () (as the “e” parameter).
After calling preorder () or pmovebetween (), then it is safe to pass this element to
all appropriate functions.

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are checked. If the
parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Dynamic C Function Reference Manual digi.com 292

http://www.digi.com

pool xappend

int pool xappend(Pool t * p, long base, word nel);

DESCRIPTION

Add another xmem memory area to an existing pool. It is assumed that the element size is the same
as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize bytes long (where elsize is the element size of the existing pool, and nel is the
parameter to this function).

The total pool size must obey the constraints documented with pool xinit ().

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
base Base address of the xmem data memory area to append to this pool. This
must be nel*elsize bytes long. Typically, this would be an area
allocated using xalloc ().
nel Number of elements in the memory area. 1..65534. The sum of this and the

current number of elements must not exceed 65535.

RETURN VALUE

Currently always zero. If you define the macro POOL _DEBUG, then parameters are checked. If the
parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit

Dynamic C Function Reference Manual digi.com 293

http://www.digi.com

pool xinit

int pool xinit(Pool_t * p, long base, word nel, word elsize);

DESCRIPTION

Initialize an xmem memory pool. A pool is a linked list of fixed-size blocks taken from a contiguous
area. You can use pools instead of malloc() when fixed-size blocks are all that is needed. You can
have several pools, with different size blocks. Using memory pools is very efficient compared with
more general functions like malloc(). (There is currently no malloc() implementation with Dynamic
C)

This function should only be called once, at program startup time, for each pool to be used.

After calling this function, your application must not change any of the fields in the Pool t

structure.
PARAMETERS

P Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by
declaring a global variable of type Pool t.

base Base address of the xmem data memory area to be managed in this pool.
This must be nel*elsize bytes long. Typically, this would be an area
allocated by xalloc () when your program starts.

nel Number of elements in the memory area. 1..65535

elsize Size of each element in the memory area. 4..65535

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are checked. If the
parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pxcalloc, pxfree, phwm, pavail

Dynamic C Function Reference Manual digi.com 294

http://www.digi.com

pow

double pow(double x, double y);
float powf(float x, float y);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Raises x to the yth power.

PARAMETERS
P Value to be raised
y Exponent

RETURN VALUE
x to the yth power

Note: That the float and double types have the same 32 bits of precision.)

HEADER
math.h

SEE ALSO
exp, powl(O, sgrt

pow2

float pow2(float x);

DESCRIPTION

2 to the power of "x"
Timing positive numbers 2400 clocks or 80 us at 30 MHz
Timing negative numbers 3600 clocks or 120 us at 30 MHz
PARAMETERS
Floating point power to which 2 is to be raised. Error if x>128.9. Zero returned if x<-127.

RETURN VALUE

See description

HEADER
math.h

Dynamic C Function Reference Manual digi.com 295

http://www.digi.com

powlO

float powlO(float x);

DESCRIPTION
10 to the power of x.

PARAMETERS
X Exponent

RETURN VALUE

10 raised to power x

LIBRARY
MATH.LIB

SEE ALSO

pow, exp, sgrt

Dynamic C Function Reference Manual digi.com

296

http://www.digi.com

powerspectrum

void powerspectrum(int * x, int N, * int blockexp);

DESCRIPTION
Computes the power spectrum from a complex spectrum according to
Power [k] = (Re X[k])? + (Im X[k])?

The N-point power spectrum replaces the N-point complex spectrum. The power of each complex
spectral component is computed as a 32-bit fraction. Its more significant 16-bits replace the
imaginary part of the component; its less significant 16-bits replace the real part.

If the complex input spectrum is a positive-frequency spectrum computed by fftreal (), the
imaginary part of the X[0] term (stored x [1]) will contain the real part of the finax term and will
affect the calculation of the dc power. If the dc power or the finax power is important, the finax term
should be retrieved from x [1] and x [1] set to zero before calling powerspectrum ().

The power of the kth term can be retrieved via
P[k]=*(long*) &x[2k] *2"blockexp.

The value of bl ockexp is first doubled to reflect the squaring operation applied to all elements in
array x. Then it is further increased by 1 to reflect an inherent division by two that occurs during the
squaring operation.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array x.
blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO
fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

Dynamic C Function Reference Manual digi.com 297

http://www.digi.com

pprev

void * pprev(Pool t * p, void * e);

DESCRIPTION

Get the previously allocated element in a root pool. The pool MUST be set to being a linked pool

using pool link(p, non-zero); otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;
Pool t * p;

for (e = plast(p); e; e = pprev(p, e)) {

}

PARAMETERS
P Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., plast (). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pfree (): once the element is deleted, it is no longer valid to pass its
address to this function. If this parameter is null, then the result is the same
as plast (). This ensures the invariant

pprev (p, pnext(p, e)) == e

RETURN VALUE

null: There are no more elements
'null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, palloc, pfree, plast, pnext

Dynamic C Function Reference Manual digi.com

http://www.digi.com

pprev_fast

DESCRIPTION

Get the previous allocated element in a root pool. The pool MUST be set to being a linked pool by
using pool link (p, non-zero);otherwise, the results are undefined.

This is an assembler-only version of pprev ().
WARNING!! Do not call this function from C.

REGISTERS

Parameters in IX, DE respectively
Trashes F, DE
Return value in HL, carry flag

EXAMPLE
1d ix,my pool
1d de, (current element)
lcall pprev_ fast
jr ¢, .no more elems
; HL points to previously allocated element
PARAMETERS
IX Pool handle structure, as previously passed to pool_init(). Pass this in [X
register.
DE Current element, address in DE register. See pprev() for fuller description.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to previous element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, palloc, pprev

Dynamic C Function Reference Manual digi.com 299

http://www.digi.com

pputlast

void * pputlast(Pool_t * p, void * e);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it at the end of the allocated list.
“Atomically” means that the POOL_IPSET level is used to lock out other CPU contexts from
altering the pool while this operation is in progress.

This is equivalent to:
pmovebetween (p, e, plast(p), NULL);
but is considerably faster.

A common use for this function is to insert an element allocated when the

POOL LINKED BY APP attribute is set for the pool, at the end of the allocated list. This is useful
when, say, an ISR allocates and uses a buffer without placing it on the allocated list. Only when the
buffer is complete does the ISR use this function to place it on the queue for reading by the main
application.

The pool MUST be set to being a linked pool by using:
pool link(p, non-zero);

otherwise the results are undefined.

PARAMETERS
P Pointer to pool handle structure, as previously passed to pool init ().
e Address of element to move. If NULL, then this function behaves as

plast ().

RETURN VALUE

Same as the “e” parameter, unless “e” is NULL in which case the existing last element is returned
asperplast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

Dynamic C Function Reference Manual digi.com 300

http://www.digi.com

pputlast fast

DESCRIPTION

See description under pputlast (). This is an assembler-callable version (do not call from C). It
does not issue IPSET protection or check parameters.

REGISTERS

Parameters in [X (“p”) and DE (“¢”)
Trashes F, DE, BC
Return value in HL

PARAMETERS

P Pointer to pool handle structure, as previously passed to pool_init(). Pass
in X register

e Address of element to move. Pass in DE register. [f NULL, then this
function behaves as plast_fast().

RETURN VALUE

In HL. Same as the “e” parameter, unless “e” is NULL in which case the existing last element is
returned as per plast fast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

premain

void premain(void) ;

DESCRIPTION

Dynamic C calls premain to start initialization functions such as VdInit. The final thing
premain does is call main. This function should never be called by an application program. It is
included here for informational purposes only.

LIBRARY
PROGRAM.LIB

Dynamic C Function Reference Manual digi.com 301

http://www.digi.com

preorder

void * preorder(Pool t *p, void *e, void *where, word options);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it before or after element “where.”
“Atomically” means that the POOL_IPSET level is used to lock out other CPU contexts from
altering the pool while this operation is in progress.

The pool MUST be set to being a linked pool by using:

pool link(p, non-zero)

Otherwise the results are undefined.

PARAMETERS

P

e

where

options

RETURN VALUE

Pool handle structure, as previously passed to pool init ().

Address of element to move, obtained by e.g., plast (). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast () would
return). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably
catastrophic).

The reference element. The element “¢” will be inserted before or after this
element, depending on the options parameter. If e==where, then there is
no action. If this parameter is null, then the reference element is assumed
to be the first element (i.e., whatever pfirst () would return). If there
are no elements at all, or this parameter does not point to a valid allocated
element, then the results are undefined (and probably catastrophic).

Option flags. Currently, the only options are:
POOL INSERT BEFORE
POOL INSERT AFTER

which specifies whether “e” is to be inserted before or after “where.”

Returns the parameter value “e” unless “e” was null, in which case the value of plast (), when
called at function entry, would be returned.

IMPORTANT: If null is returned, that means that some other task (context, or
ISR) modified the linked list while this operation was in progress. In this case, the
application should call this function again with the same parameters, since this
operation will NOT have completed. This would be a rare occurrence; however,
multitasking applications should handle this case correctly.

Dynamic C Function Reference Manual digi.com

302

http://www.digi.com

EXAMPLES

void * r;
void * s;

s = pnext (p, pfirst(p):; // s is second element
r plast (p) ; // ris last element
preorder (p, s, r, POOL INSERT AFTER);

// Ifs!=r, then s will become the new last element. You can use null
// parameters to perform the common case of moving the last element
// to the head of the list:

preorder (p, NULL, NULL, POOL INSERT BEFORE) ;

// which is identical to:.
preorder (p, plast(p), pfirst(p), POOL INSERT BEFORE) ;

LIBRARY
POOL.LIB
SEE ALSO

pool init, pool link, plast, pfirst, pnext, pprev, pmovebetween

Dynamic C Function Reference Manual digi.com 303

http://www.digi.com

printf

int
int
int
int
int
int
int
int

printf(const char far *format, ...)

vprintf(const char far *format, va_list arg)

fprintf(FILE far *stream, const char far *format, ...)
viprintf (FILE far *stream, const char far *format, va_list argq)
sprintf (char far *s, const char far *format, ...)

vsprintf(char far *s, const char far *format, va_list argqg)
snprintf(char far *s, size_t size, const char far *format, ...)
vsnprintf(char far *s, size t size, const char far *format,

va_list arg)

Note: use of functions with a va_11ist parameter require you to #include
stdarg.h inyour program before creating a va_ list variable.

DESCRIPTION

The printf family of functions are used for formatted output.

printf output to stdout (variable arguments)

vprintf output to stdout (va list for arguments)
fprintf output to a stream (variable arguments)
viprintf output to a stream (va_ list for arguments)
sprintf output to a char buffer (variable arguments)
vsprintf output to a char buffer (va list for arguments)
snprintf length-limited version of sprintf

vsnprintf length-limited version of vsprintf

As of Dynamic C 7.25, it is possible to redirect printf output to a serial port during run mode by
defining a macro to specify which serial port. See the sample program
SAMPLES/STDIO_ SERIAL.C for more information.

The macro STDIO DISABLE FLOATS can be defined if it is not necessary to format floating
point numbers. If this macro is defined, $e, % f and $g will not be recognized. This can save
thousands of bytes of code space.

PARAMETERS
stream When specified, formatted output is written to this stream.
s When specified, formatted output is written to this character buffer. With
[v]sprintf, the buffer must be large enough to hold the longest
possible formatted string. With [v] snprintf, no more than size bytes
(including null terminator) are written to s.
size The maximum number of characters to encode into the output buffer.

Because the output buffer is guaranteed to be null-terminated, no more
than (size-1) non-null characters can be encoded into the output buffer.

Dynamic C Function Reference Manual digi.com 304

http://www.digi.com

arg A va 1list objectinitialized by the va start () macro and pointing
to the arguments referenced in the format string. The vprintf ()
functions don't call the va end () macro.

Variable arguments referenced in the format string.

format A string that specifies how subsequent arguments (passed as variable
arguments or ina va_1ist) are converted for output.

FORMAT

The format is composed of zero or more directives: ordinary characters (not %) which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching
zero or more subsequent arguments. Each conversion specification is introduced by the character .
The % is followed with another % (to copy a % to the output stream) or the following sequence:

e Zero or more flags (in any order) that modify the meaning of the conversion specification

* An optional minimum field width. If the converted value has fewer characters than the field
width, it will be padded with spaces (by default) on the left (or right, if the left adjustment
flag has been given) to the field width. The field width takes the form of an asterisk (*,
described later) or a decimal integer.

* An optional precision, with behavior based on the conversion specifier (listed after each :

d, i, o, u, x, X

e, E, F

g, G

S

The minimum number of digits to appear.

The number of digits to appear after the decimal-point
character.

The maximum number of significant digits.

The maximum number of characters to be written from a
string.

If a precision appears with any other conversion specifier, the behavior is undefined.

The precision takes the form of a period (.) followed by either an asterisk (*, described later)
or by an optional decimal integer. If only the period is specified, the precision defaults to zero.

* An optional F to indicate that the following s, p or n specifier is a far pointer.
¢ An optional length modifier with the following meanings:

1 (lowercase L)

11

The following d, 1, o, u, x or X conversion specifier
applies to along int orunsigned long int. The following
n conversion specifier points to a long. For legacy support,
also specifies that the following s or p specifier is a far
pointer.

Since Dynamic C does not support the 1ong long type,
this modifier has the same meaning as a single 1.

Since a short int and an int are the same size, this
modifier is ignored.

Dynamic C Function Reference Manual

digi.com 305

http://www.digi.com

hh The following d, i, o, u, x or X conversion specifier
applies to a signed char or an unsigned char. The following
n conversion specifier points to a signed char.

j, t Same behavior as a single 1. j refers to the intmax_t or
uintmax_t type and t referstothe ptrdiff t type.

L, q Since Dynamic C does not support the 1ong double
type, these modifiers are ignored.

z Since the size t type is the same as the int type, this
modifier is ignored.

e Finally, the character that specifies the type of conversion to be applied.

WIDTH & PRECISION

As noted above, an asterisk can indicate a field width, or precision, or both. In this case, int
arguments supply the field width and/or precision. The argument to be converted follows the
precision which follows the width. A negative width is taken as a - flag followed by a positive field
width. A negative precision is taken as if the precision were omitted.

For integral values (d, 1, o, u, x, X), the result of converting a zero value with a precision of zero
is no characters.

FLAGS

The result of the conversion will be left-justified within the field (without this flag, conversion is
right-justified). This flag overrides the behavior of the 0 flag.

0 Ford, i, o, u, %, X, e, E, £, g and G conversions, leading zeros (following
any indication of sign or base) are used to pad to the field width; no space
padding is performed. This flag is ignored for non-floating point
conversions (d, i, o, u, x, X) with a specified precision.

space If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space will be prefixed to the result.

+ The result of a signed conversion will always begin with a plus or minus
sign (without this flag, only negative values begin with a sign). This flag
overrides the behavior of the space () flag.

The result is converted to an "alternate form". For octal (o), it increases
the precision to force the first digit of the result to be a zero. For
hexadecimal (%, X), it prefixes a non-zero result with 0x or 0X.

(Currently not supported) For floating point (e, E, f, g and G), the result
will always contain a decimal-point character, even if no digits follow it.
For g and G conversions, trailing zeros are not removed from the result.

Dynamic C Function Reference Manual digi.com 306

http://www.digi.com

CONVERSION

d, i,

o, u,

X,

The precision specifies the minimum number of digits to appear. If the value being converted
can be represented in fewer digits, it will be expanded with leading zeros. The default preci-
sion s 1.

d,

u

X

£, e,

i

E, g,

G

Signed integer in the style [-]dddd.
Unsigned integer in the style dddd.
Unsigned octal.

Unsigned hexadecimal using lowercase a-f.

Unsigned hexadecimal using uppercase A-F.

Takes a double (floating point) argument. The precision specifies the number of digits after
the decimal point. If the precision is missing, it defaults to 6 (for the f, e and E conversions)
or 1 (for g and G). If the precision is 0 and the # flag is not specified, no decimal point char-
acter appears. The value is rounded to the appropriate number of digits.

£

Uses the style [-]ddd.ddd. If a decimal point appears, at least one dig-
it appears before it.

Uses the style [-]d.ddde+dd (or [-]d.dddE+dd). There is one digit be-
fore the decimal point. The exponent always contains at least
two digits. If the value is zero, the exponent is zero.

The style used depends on the value converted. Style e (or E) will
only be used if the exponent is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the frac-
tional portion of the result. A decimal point appears only if it is
followed by a digit.

The int argument is converted to an unsigned char and the resulting
character is written.

The argument is a pointer to a character array. Characters from the
string are written up to (but not including) a null terminator. If
the precision is specified, no more than that many characters are
written. The array must contain a null terminator if the precision
is not specified or is greater than the size of the array.

The argument is a void pointer, displayed using the X format.

The argument is a pointer to a signed integer. The number of charac-
ters written by the printf call so far is written to that address. Use
%$Fn if the parameter is a far pointer. Use $1n ifit's a pointer to
a long.

Dynamic C Function Reference Manual digi.com

307

http://www.digi.com

RETURN VALUE

The number of characters transmitted, or a negative value if an output error occurred.

For sprintf/vsprintf, the count does not include the null terminator written to the character
buffer.

For snprintf/vsnprintf, the count reflects the number of non-null characters that would
have been written if the buffer was large enough. The actual number of characters written (including
the null terminator) won't exceed size.

DYNAMIC C DIFFERENCES FROM THE C99 STANDARD

HEADER

Floating point types (£, e, E, g, G) do not support the # flag.
We don't support the a and A specifiers for printing a floating point value in hexadecimal.

To avoid buffer overflows or unexpected truncation, values that don't fit in the specified
width are displayed as asterisks (*). To get true ANSI behavior, define the macro
_ ANSI STRICT .

Since our int is equivalent to a short int, the optional h prefix is ignored.

Since we don't support the 1ong long type, the optional 11 prefix is treated the same as
a single 1.

Since we don't support the 1ong double type, the optional L prefix is ignored.

We support the F modifier on the p, s and n conversion specifiers to designate a far
pointer/address.

We support the 1 prefix on the p and s conversion specifiers to designate a far
pointer/address (deprecated).

stdio.h

SEE ALSO

sprintf

putc

SEE:

fputc

Dynamic C Function Reference Manual digi.com 308

http://www.digi.com

putchar

int putchar(int c)

DESCRIPTION

See function help for fputc for a description of this function.

HEADER
stdio.h

SEE ALSO
fputc

puts

SEE
fputs

pwm_init

unsigned long pwm_init(unsigned long frequency);

DESCRIPTION

Sets the base frequency for the pulse width modulation (PWM) and enables the PWM driver on all
four channels. The base frequency is the frequency without pulse spreading. Pulse spreading (see
pwm_set ()) will increase the frequency by a factor of 4.

PARAMETER
frequency Requested frequency (in Hz)

RETURN VALUE

The actual frequency that was set. This will be the closest possible match to the requested frequency.

LIBRARY
PWM.LIB

Dynamic C Function Reference Manual digi.com 309

http://www.digi.com

pwm_set

int pwm_set(int channel, int duty cycle, int options);

DESCRIPTION

Sets a duty cycle for one of the pulse width modulation (PWM) channels. The duty cycle can be a
value from 0 to 1024, where 0 is logic low the whole time, and 1024 is logic high the whole time.
Option flags are used to enable features on an individual PWM channel. Bit masks for these are:

PWM_SPREAD - sets pulse spreading. The duty cycle is spread over four separate pulses to
increase the pulse frequency.

* PWM OPENDRAIN - sets the PWM output pin to be open-drain instead of a normal push-
pull logic output.

PARAMETERS
channel channel(0 to 3)
duty cycle value from 0 to 1024

options combination of optional flags (see above)

RETURN VALUE

0: Success.
—1: Error, an invalid channel number is used.
-2: Error, requested duty cycle is invalid.

LIBRARY
PWM.LIB

Dynamic C Function Reference Manual digi.com 310

http://www.digi.com

pxalloc_ fast

xmem long pxalloc_fast(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should return
this element to the pool using pxfree () to avoid memory leaks.

This is an assembler-only version of pxalloc ().
WARNING!! Do not call this function from C.

pxalloc_fast doesnot perform any IPSET protection, parameter validation, or update the high-
water mark. pxalloc_ fast is aroot function. The parameter must be passed in IX, and the
returned element address is in BCDE.

REGISTERS

Parameter in IX
Trashes AF, HL
Return value in BCDE, carry flag.

EXAMPLE
1d ix,my pool
lcall pxalloc_ fast
jr ¢, .no_free
; BCDE points to element
PARAMETERS
P Pool handle structure, as previously passed to pool init () Pass this

in the IX register.

RETURN VALUE

C flag set: No free elements are available. (BCDE is undefined in this case.)

NC flag: BCDE points to an element If the pool is not linked, your application must not write more
than p->elsize bytes to it (this was the e1size parameter passed to pool xinit ()).Ifthe
pool is linked, you can write (p—>e1size-8) bytes to it. (An element has 8 bytes of overhead
when the pool is linked.)

LIBRARY

POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast

Dynamic C Function Reference Manual digi.com 311

http://www.digi.com

pxcalloc

long pxcalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should return
this element to the pool using pxfree () to avoid memory leaks.

The element is set to all zero bytes before returning.
PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: No free elements are available.

! 0: Physical (xmem address) of an element. If the pool is not linked, your application must not write
more than p->elsize bytes to it (this was the elsize parameter passed to pool xinit ()).
The application can write up to (p—>elsize-8) bytes to the element if the pool is linked. (An
element has 8 bytes of overhead when the pool is linked.)

LIBRARY

POOL.LIB

SEE ALSO

pool xinit, pxfree, phwm, pavail

Dynamic C Function Reference Manual digi.com 312

http://www.digi.com

pxfirst

long pxfirst(Pool t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
! 0: Pointer to first, i.e., oldest, allocated element.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfree, pxlast, pxnext, pxprev

Dynamic C Function Reference Manual digi.com 313

http://www.digi.com

pxfree

void pxfree(Pool_t * p, long e);

DESCRIPTION
Free an element that was previously obtained via pxalloc ().
Note: if you free an element that was not allocated from this pool, or was already free, or was outside

the pool, then your application will crash! You can detect most of these programming errors by
defining the following symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previously passed to pxalloc ().
e Element to free, which was returned from pxalloc ().

RETURN VALUE

null: There are no more elements
Inull: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxcalloc, phwm, pavail

Dynamic C Function Reference Manual digi.com 314

http://www.digi.com

pxfree fast

DESCRIPTION

Free an element that was previously obtained via pxalloc (). This is an assembler-only version
of pxfree ().

WARNING!! Do not call this function from C.

pxfree fast does not perform any IPSET protection or parameter validation. pxfree fast
is an xmem function. The parameters must be passed in machine registers.

REGISTERS

Parameters in [X, BCDE respectively
Trashes AF, BC, DE, HL

EXAMPLE
1d ix,my pool
1d de, (element addr)
1d bc, (element addr+2)
lcall pxfree fast
PARAMETERS
P Pool handle structure, as previously passed to palloc () or
palloc fast. This must be in the IX register.
e Element to free, which was returned from palloc (). This must be in the

BCDE register (physical address)

RETURN VALUE

null: There are no more elements
'null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc fast, pavail fast, pfree fast

Dynamic C Function Reference Manual digi.com 315

http://www.digi.com

pxlast

long pxlast(Pool t * p);

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
1 0: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfree, pxfirst

Dynamic C Function Reference Manual digi.com 316

http://www.digi.com

pxlast fast

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.

This is an assembler-only version of pxlast ().
WARNING!! Do not call this function from C.
Registers

Parameter in IX
Trashes F, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

lcall pxlast fast

jr ¢, .no_elems

; BCDE points to last element

PARAMETERS

P Pool handle structure, as previously passed to pool xinit (). Pass this
in IX register.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to last element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxlast, pxprev fast

Dynamic C Function Reference Manual digi.com 317

http://www.digi.com

pxnext

long pxnext(Pool t * p, long e);

DESCRIPTION

Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool using

pool link(p, non-zero);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

long e;
Pool t * p;

for (e = pxfirst(p); e; e = pxnext(p, e)) {
}
PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g. pxfirst (). This must be an

allocated element in the given pool, otherwise the results are undefined. Be
careful when iterating through a list and deleting elements using
pxfree (): once the element is deleted, is is no longer valid to pass its
address to this function. If this parameter is zero, then the result is the same
as pxfirst (). This ensures the invariant

pxnext (p, pxprev(p, e)) == e.

RETURN VALUE

0: There are no more elements
! 0: Pointer to the next allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfree, pxfirst, pxprev

Dynamic C Function Reference Manual digi.com

http://www.digi.com

pxnext fast

DESCRIPTION
Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool using
pool link(p, non-zero);otherwise, the results are undefined.
This is an assembler-only version of pxnext ().
WARNING!! Do not call this function from C.

Registers

Parameters in IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

1d ix,my_pool

1d de,(current_element)

1d be,(current_element+2)

Icall pxnext_fast

jrc,.no_more_elems

; BCDE points to next allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool xinit (). Pass this
in the IX register.
e Current element, address in BCDE register. See pxnext () for fuller

description.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to next element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfree, pxfirst, pxprev

Dynamic C Function Reference Manual digi.com 319

http://www.digi.com

pxprev

long pxprev(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link(p, non-zero);otherwise the results are undefined.

You can easily iterate through all of the allocated elements of an xmem pool using the following
construct:

long e;
Pool t * p;
for (e = pxlast(p); e; e = pxprev(p, e)) |

}

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g., pxlast (). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pxfree (): once the element is deleted, it is no longer valid to pass its
address to this function. If this parameter is zero, then the result is the same
as pxlast (). This ensures the invariant

pxlast (p, pxnext(p, e)) == e

RETURN VALUE

0: There are no more elements
! 0: Points to previously allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfree, pxlast, pxnext

Dynamic C Function Reference Manual digi.com 320

http://www.digi.com

pxprev_fast

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link (p, non-zero);otherwise, the results are undefined.

This is an assembler-only version of pxprev ().
WARNING!! Do not call this function from C.
Registers

Parameters in IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxprev_ fast

jr ¢, .no more elems

; BCDE points to previously allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool xinit (). Pass this
in [X register.
e Current element, address in BCDE register. See pxprev () for fuller

description.

RETURN VALUE

C flag set: there are no more elements
C flag clear (NC): BCDE points to previous element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxprev

Dynamic C Function Reference Manual digi.com 321

http://www.digi.com

Q

qd_error

char gd_error(int channel);

DESCRIPTION

Gets the current error bits for that qd channel.
PARAMETERS
channel The channel to read errors from (currently 1 or 2).

RETURN VALUE

Set of error flags, that can be decoded with the following masks:

QD OVERFLOW 0x01
QD UNDERFLOW 0x02
LIBRARY
QOD.LIB

Dynamic C Function Reference Manual digi.com 322

http://www.digi.com

qd init

void gqd_init(int iplevel);

DESCRIPTION

If your board has a Rabbit 3000A microprocessor installed, the quadrature decoder can be set for 10
bit counter operation. For 10 bit operation, add the following macro at the top of your application
program.

#define QD 10BIT OPERATION

If the above macro is not defined then the quadrature decoder defaults to 8 bit counter operation.
With the Rabbit 3000 processor you must use the default 8-bit operation; defining the 10-bit macro
will cause a compile time error.

Sample program Samples/Rabbit3000/QD Phase 10bit.c demonstrates the use of the
macro.

If your board has a Rabbit 4000 microprocessor installed, the quadrature decoder inputs must be
chosen with one of the following defines. Define only one per quadrature decoder.

#define QD1 USEPORTD // use port D pins 1 and 0
#define QD1 USEPORTEL // use port E pins 1 and 0
#define QD1 USEPORTEH // use port E pins 5 and 4
#define QD2 USEPORTD // use port D pins 3 and 2
#define QD2 USEPORTEL // use port E pins 3 and 2
#define QD2 USEPORTEH // use port E pins 7 and 6

If no macro is defined for a decoder, that decoder will be disabled.

PARAMETERS

iplevel The interrupt priority for the ISR that handles the count overflow. This
should usually be 1.

LIBRARY

QOD.LIB

Dynamic C Function Reference Manual digi.com 323

http://www.digi.com

qd_read

long gd_read(int channel);

DESCRIPTION

Reads the current quadrature decoder count. Since this function waits for a clear reading, it can
potentially block if there is enough flutter in the decoder count.

PARAMETERS
channel The channel to read (currently 1 or 2).

RETURN VALUE

Returns a signed long for the current count.

LIBRARY
QOD.LIB

qd_zero
void qd_zero(int channel);

DESCRIPTION

Sets the count for a channel to 0.
PARAMETERS

channel The channel to reset (currently 1 or 2)
LIBRARY

QD.LIB

Dynamic C Function Reference Manual digi.com 324

http://www.digi.com

gsort

NEAR SYNTAX: void n _gsort(void *base, unsigned nbytes, unsigned
bsize, int (*cmp) (const void *p, const void *q));

FAR SYNTAX: void n gsort(void far *base, unsigned nbytes,
unsigned bsize, int (*cmp) (const void far *p, const void far *q));

Unless USE_FAR STRING LIB is defined, gsort is defined to _n_gsort.

DESCRIPTION

Quick sort with center pivot, stack control, and easy-to-change comparison method. This version
sorts fixed-length data items. It is ideal for integers, longs, floats and packed string data without
delimiters.

Note: Raw integers, longs, floats or strings may be sorted. However, the string sort is not

efficient.
PARAMETERS
Parameter 1 Base address blocks to sort.
Parameter 2 Number of blocks to sort.
Parameter 3 Number of bytes in each block.
Parameter 4 Compare routine for two block pointers, p and g, that returns an integer

with the same rules used by Unix strcmp(p,q):

= 0: Blocks p and q are equal
<0: pislessthan q
> (: p is greater than q

Beware of using ordinary st rcmp () —itrequires a null at the end of each
string.

The relative order of blocks that are considered equal by the comparison
function is unspecified.

RETURN VALUE

None

HEADER
stdlib.h

Dynamic C Function Reference Manual digi.com 325

http://www.digi.com

rad

float rad(float x);

DESCRIPTION

Convert degrees (360 for one rotation) to radians (2 for a rotation).

PARAMETERS
x Degree value to convert.

RETURN VALUE

The radians equivalent of degree.

LIBRARY
MATH.LIB

SEE ALSO
deg

Dynamic C Function Reference Manual digi.com

326

http://www.digi.com

raise

int raise(int sigq)

DESCRIPTION

Sends signal sig to the program. If a signal handler has been registered with signal(), raise() will
set the handler back to SIG_DFL before calling the registered handler.

PARAMETERS

Parameter 1:

SIGABRT:

SIGFPE:

SIGILL:

SIGINT:

SIGSEGV:

SIGTERM:

RETURN VALUE

Signal to send, must be one of the following:

Abnormal termination, such as initiated by abort().
Floating-point exception (e.g., div by zero, overflow).
Illegal instruction.

Interactive attention signal.

Invalid access to storage.

Termination request sent to program.

0 on success, -EINVAL if sig is invalid.

LIBRARY
signal.h

SEE ALSO

signal

Dynamic C Function Reference Manual digi.com 327

http://www.digi.com

rand

int rand(void);

Note: The rand() function in versions of Dynamic C prior to 10.64 generated a pseudo-
random sequence of floating point values from 0.0 to 1.0. That function was renamed to
randf() in the 10.64 release in favor of the ANSI C90 functionality.

DESCRIPTION

Computes a sequence of pseudo-random integers in the range 0 to RAND MAX (32767).

RETURN VALUE

Psuedo-random integer from 0 to 32767, inclusive.

LIBRARY
stdlib.h

SEE ALSO

srand, rand16, seed_init, randf, randg, randb, srandf

randb
float randb(void);
DESCRIPTION
Uses algorithm:
rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function. randb ()

1S not reentrant.

RETURN VALUE

Returns a uniformly distributed random number: -1.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randg, srand

Dynamic C Function Reference Manual digi.com

328

http://www.digi.com

randf

float rand(void);

DESCRIPTION

Returns a uniformly distributed random number in the range 0.0 < v < 1.0. Uses algorithm:

rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function. rand () is
not reentrant.

RETURN VALUE

A uniformly distributed random number: 0.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

randb, randg, srand

randg

float randg(void);

DESCRIPTION

Returns a gaussian-distributed random number in the range -16.0 < v < 16.0 with a standard
deviation of approximately 2.6. The distribution is made by adding 16 random numbers (see
rand ()). This function is not task reentrant.

RETURN VALUE

A gaussian distributed random number: -16.0 < v <16.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, srand

Dynamic C Function Reference Manual digi.com 329

http://www.digi.com

RdPortE

int RdPortE(unsigned int port)

DESCRIPTION

Reads an external 1/O register specified by the argument.
PARAMETERS
port Address of external parallel port data register.

RETURN VALUE
Returns an integer, the lower 8 bits of which contain the result of reading the port specified by the
argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortkEk,
BitWrPortE

RdPortI

int RdPortI(int port);

DESCRIPTION
Reads an internal I/O port specified by the argument (use RdPortE () for external port).

All of the Rabbit internal registers have predefined macros corresponding to the name of the
register. PADR is #defined to be 0x30, etc.

PARAMETERS
port Address of internal 1/O port

RETURN VALUE
Returns an integer, the lower 8 bits of which contain the result of reading the port specified by the
argument. Upper byte contains zero.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortE, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

Dynamic C Function Reference Manual digi.com 330

http://www.digi.com

read rtc

unsigned long read rtc(void);

DESCRIPTION

Reads seconds (32 bits) directly from the Real-time Clock (RTC). Use with caution! In most cases
use long variable SEC_TIMER, which contains the same result, unless the RTC has been changed
since the start of the program.

If you are running the processor off the 32 kHz crystal and using a Dynamic C version prior to 7.30,
use read rtc 32kHz () instead of read rtc (). Starting with DC 7.30,
read rtc 32kHz () is deprecated because it is no longer necessary. Programmers should only
use read rtc().

RETURN VALUE

Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

SEE ALSO

write rtc

ReadCompressedFile

int ReadCompressedFile(ZFILE * input, UBYTE * buf, int lenx);

DESCRIPTION

This function decompresses a compressed file (input ZFILE, opened with
OpenInputCompressedFile ())using the LZ compression algorithm on-the-fly, placing a
number of bytes (1enx) into a user-specified buffer (buf).

PARAMETERS
input Input bit file.
buf Output buffer.
lenx Number of bytes to read. This can be increased to get more throughput or

decreased to free up variable space.

RETURN VALUE
Number of bytes read

LIBRARY
LzZSS.LIB

Dynamic C Function Reference Manual digi.com 331

http://www.digi.com

readUserBlock

int readUserBlock(void far * dest, unsigned addr, unsigned
numbytes) ;

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a buffer in root memory. Please
note that portions of the User block may be used by the BIOS for your board to store values. For
example, any board with an A to D converter will require the BIOS to write calibration constants to
the User block. For some versions of the BL2000 and the BL2100 this memory area is 0x1C00 to
Ox1FFF. See the user’s manual for your particular board for more information before overwriting
any part of the User block. Also, see the Rabbit Microprocessor Designer’s Handbook for more
information on the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using nC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur. See
the description for rcm43 InitUCOSMutex () for more information on using
uC/OS-Iland SPI_USE UCOS MUTEX.

PARAMETERS
dest Pointer to destination to copy data to.
addr Address offset in User block to read from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid ID block found (block version 3 or later)

The return values below are applicable only if SPI USE UCOS MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)
LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlock, readUserBlockArray

Dynamic C Function Reference Manual digi.com 332

http://www.digi.com

readUserBlockArray

int readUserBlockArray(void * dests[], unsigned numbytes[], int
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffers in root memory.

This function is usually used as the inverse function of writeUserBlockArray ().
This function was introduced in Dynamic C version 7.30.

Note: Portions of the User block may be used by the BIOS to store values such as calibra-
tion constants. See the manual for your particular board for more information before over-
writing any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using uC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur. See
the description for rcm43 InitUCOSMutex () for more information on using
uC/OS-Iland SPI USE UCOS MUTEX.

PARAMETERS
dests Pointer to array of destinations to copy data to.
numbytes Array of numbers of bytes to be written to each destination.
numdests Number of destinations.
addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid System ID block found (block version 3 or later)
The return values below are applicable only if SPI USE UCOS MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray, readUserBlock

Dynamic C Function Reference Manual digi.com

333

http://www.digi.com

registry enumerate

int registry enumerate(RegistryContext * r, int (*f) (), int
keyvalues, void far * ptr);

DESCRIPTION

Enumerate registry r->old_spec, calling the specified function “f” for each section header and,
optionally, key=value pair.

The registry get () function also performs enumeration; in fact it is a wrapper for this
function.

PARAMETERS

r RegistryContext structure, with at least the o1d spec field initialized.
For example, use registry prep read() to set up the struct
correctly.

r->o0ld_spec: Open resource handle of a readable resource containing the
registry settings. This is read from the current seek position, thus in most
cases call this function with a freshly opened resource handle.

£ Callback function to be invoked. The function prototype must be as
follows:

int f(void far * ptr,
int new_ sect,
char * sect,
char far * key,
char far * value) { ... }

where the parameters are:

* ptr - this is passed through from the 4th parameter to the
registry enumerate () function (see below).

* new_sect - boolean indicating whether this call is to introduce a new
section. If true, then 'sect' is the new section name, and 'key' and 'value'
are not relevant.

* sect - name of section if new_sect flag is true

* key - key (field) ascii string if new_sect is false

* value - value as an ascii string if new_sect is false.

keyvalues Boolean indicating whether the callback function is to be invoked for
key=value pairs (if true). In either case, the callback is inkoked whenever
a new section is found, and the new_sect callback parameter will be set
true.

ptr An arbitrary pointer which will be passed through to the callback on each
invocation.

Dynamic C Function Reference Manual digi.com

334

http://www.digi.com

RETURN VALUE

<0: failure to write or read the resource
0: success

LIBRARY
registry.1lib

SEE ALSO

sspec_open, registry read, registry update, registry get,
reglistry prep read, registry finish read

registry finish read

int registry finish read(RegistryContext * r);

DESCRIPTION

Finish reading a registry, and clean up resources. Most applications will use the sequence of

functions:

registry prep read()
registry read() and/or registry enumerate() |
registry finish read()

PARAMETER
r RegistryContext struct, as set by registry prep read().

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO . LIB.
0: OK.

LIBRARY
registry.lib
SEE ALSO

registry read, registry prep read, registry prep write,
registry write, registry finish write, registry enumerate,
registry update, registry get

Dynamic C Function Reference Manual digi.com

335

http://www.digi.com

registry finish write

int registry finish write(RegistryContext * r);

DESCRIPTION

Finish updating a registry, and clean up resources. Most applications will use the sequence of
functions

registry prep write()
registry write()
registry finish write()

PARAMETER
r RegistryContext structure, as setby registry prep read().

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO.LIB.
0: OK

LIBRARY
registry.1lib
SEE ALSO

registry read, registry prep read, registry prep write,
registry write, registry finish read, registry enumerate,
registry update, registry get

Dynamic C Function Reference Manual digi.com

336

http://www.digi.com

registry get

int registry get(char * basename, char far * section, RegistryEntry
* re, ServerContext * sctx, int (*£f) (), int keyvalues, void far *
ptr);

DESCRIPTION

Convenience function for reading and/or enumerating registry contents. This basically combines
calls to the following functions:

registry prep read()
registry read() and/or registry enumerate()
registry finish read()

If the field array (re) is not NULL, then registry read () will be called. If the callback
function (f) is not NULL, then registry enumerate () will be called. If both re and f are not
NULL, then read will be invoked before enumerate.

PARAMETERS

basename Base name of registry file, as a Zserver resource name. This file must not
have an extension, since the extensions ".1", ".2" and so on are appended
to the name.

section Section name to read (may be NULL to read the anonymous section at the
start of the registry file).

re Array of fields to read. See registry read () function description for
details.

sctx Server context.

£() Callback function. See registry enumerate () for details.

keyvalues Boolean indicating whether callback receives key=value pairs as well as
section headers. If false, it only receives section headers.

ptr Arbitrary application data which will be dutifully passed through to the

callback without alteration.

RETURN VALUE
<0: general failure, code will be negative of one of the codes in ERRNO . LIB.
0: OK

LIBRARY
REGISTER.LIB

SEE ALSO

registry prep read, registry read, registry finish read,
registry enumerate, registry update

Dynamic C Function Reference Manual digi.com 337

http://www.digi.com

registry prep read

int registry prep read(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for reading a registry. This function helps organize registry resources in order to create a
robust registry.

Most applications will use the sequence of functions:

registry prep read()
registry read() and/or registry enumerate ()
registry finish read()

or simply
registry get()

Registry updates require reading from an old registry, editing it, then writing the modified result to
anew registry resource. This requires two resources to be open. Normally, the "old" registry will be
deleted once the update is successful. If there is a power outage or reset during this process, it is
possible for two registry files to exist when the system is restarted. This causes problems, since one
of the registries may be corrupt. This API imposes a naming convention on the old/new resources
so that a non-corrupt registry can always be found.

The algorithm used appends an extension to the basename resource name. The extensionis ".1",".2"
or ".3". The "current" registry resource will cycle through these extensions. It is assumed that
exactly 0, 1 or 2 of these resources will exist at any time. This means that at least one of the possible
resource names will not exist. (If all three exist, then the behavior is undefined, since the resources
must have been created outside the registry system. The application is responsible for ensuring this
does not happen, otherwise the ability to find a non-corrupt registry will be compromised).

Dynamic C Function Reference Manual digi.com 338

http://www.digi.com

If none of the resources exist, then this indicates a brand new registry. If exactly one exists, then this
is the old (and presumed non-corrupt) registry. If two exist, it is assumed that one of the resources
is OK and the other corrupt. Since there are only 3 possible extensions, and they increment in wrap-
around fashion, the "lowest" numbered extension is assumed to be the non-corrupt one, with
"lowest" being in the sense of modulo 3. This is summarized in the following table:

Existing Extensions Assumed Non-corrupt

- None, new registry

1 1
2 2
3 3
1,2 1 (2 will be deleted)
2,3 2 (3 will be deleted)
1,3 3 (1 will be deleted)
Should not happen - will
1,2,3 arbitrarily pick 1 and delete
2,3.

In the case that more than one registry extension was found, the presumed corrupt resource is
automatically deleted to clean up the registry.

PARAMETERS

r RegistryContext structure. This is used to pass information in a consistent
manner between the major registry API functions. It may be passed
uninitialized to this function. This function fills in the r->old_spec field to
indicate the open resource which will be used by registry read().
The value may also be set to -1 if there was an error or no existing resource
could be located.

basename Base name (including path) of the registry This should NOT include any
extension (e.g. ".foo") since the extension is manipulated by this function.
In practice, this will need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, this limits the
appropriate filesystem to FAT filesystem only. For example

registry prep read("/A/myreg", &spec);

will select from a set of registry files called /A/myreg.1, /A/myreg.2,
/A/myreg.3 of which, normally, only one will exist at any time.

context ServerContext struct. E.g. from http getContext().

Dynamic C Function Reference Manual digi.com 339

http://www.digi.com

RETURN VALUE

<0: General failure, code will be negative of one of the codes in ERRNO . LIB.
0: there is currently no resource of the given name. This is not necessarily an error, since it will be

returned if the registry has not yet been created.
1, 2, 3: An existing presumed non-corrupt resource has been opened. The numeric return code

indicates which of the extensions was located.

LIBRARY
REGISTER.LIB

SEE ALSO
registry read, registry finish read, registry prep write,
registry write, registry finish write, registry enumerate,
registry update, registry get

Dynamic C Function Reference Manual digi.com 340

http://www.digi.com

registry prep write

int registry prep write(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for updating a registry. This function helps organize registry resources in order to create a
robust registry.

Most applications will use the sequence of functions

registry prep write()
registry write()
registry finish write()

or, more simply, just
registry update ()

See the function description for registry prep read() for details concerning the
organization of registry files.

Like registry prep read (), this function opens an existing presumed non-corrupt registry
for reading, and also a new empty registry (the "next" registry) for writing the updated esults, as
required by registry write ().

PARAMETERS

r RegistryContext struct. This is used to pass information in a consistent
manner between the major registry API functions. It may be passed
uninitialized to this function.

basename Base name (including path) of the registry. This should NOT include any
extension (e.g. ".foo") since the extension is manipulated by this function.
In practice, this will need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, this limits the
appropriate filesystem to FAT filesystem only. For example

registry prep write("/A/myreg", &oldspec, &newspec);
will select from a set of registry files called

/A/myreg.1, /A/myreg.2, /A/myreg.3\ of which, normally, only two will
exist at any time; one will be opened for reading, and the other will be
empty and ready for writing.

context ServerContext structure. E.g. from http getContext ().

Dynamic C Function Reference Manual digi.com 341

http://www.digi.com

RETURN VALUE
<0: general failure, code will be negative of one of the codes in ERRNO. LIB.
0: there is currently no resource of the given name. *oldp will be set to -1 in this case. This is
not necessarily an error, since it will be returned if the registry has not yet been created. You can

pass *oldp to registry write () in this case, and it will correctly create the new registry
without attempting to read the (non-existent) "old" registry.

1,2,3: An existing presumed non-corrupt resource has been opened, and the open resource handle
returned in *oldp. The numeric return code indicates which of the extensions was located. Note that
the "new" registry file will be this number plus 1 (except that 4 becomes 1).

LIBRARY
REGISTER.LIB

SEE ALSO
registry read, registry finish read, registry prep read,
registry write, registry finish write, registry enumerate,
registry update, registry get

Dynamic C Function Reference Manual digi.com 342

http://www.digi.com

registry read

int registry read(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Read the registry r->old_spec using the specified registry entries. Only entries in the named
“section” are read, and the results are placed at the locations pointed to by the RegistryEntry array
elements.

Note: Since this function requires some temporary malloc memory, you should ensure that
there is at least REGBUF SIZE bytes of available system-space malloc memory. The
_REGBUF _SIZE macro defaults to 1025 bytes, but you may override this definition

before #use registry.lib.

r RegistryContext structure, with at least the old spec field initialized. For
example, use registry prep read() to setup this structure
correctly.
r->old_spec:

Open resource handle of a readable resource containing the registry
settings. This is read from the current seek position, thus in most cases you
will want to call this function with a freshly opened resource handle.

section Section name. [f NULL or empty string, then the first (anonymous) section
of the registry is implied.

entries List of registry entries to read. See the registry write () description
for details. The “value” field will be set to point to the location where the
read value is stored. If the key does not exist in the specified section, then
the contents at this location will be untouched. Thus, you can set “default”
values at each location before calling registry read().

Asfor registry write (), thelist MUST be terminated with an entry
with the REGOPTION EOL option.
RETURN VALUE
<0: failure to write or read the resource
0: success
LIBRARY
REGISTER.LIB

SEE ALSO

sspec_open, registry write, registry update, registry get,
reglstry prep read, registry finish read

Dynamic C Function Reference Manual digi.com 343

http://www.digi.com

registry update

int registry update(char * basename, char far * section,
RegistryEntry * re, ServerContext * sctx);

DESCRIPTION

Convenience function for updating a registry with a minimum of fuss. Basically combines the
function calls:

registry prep write()
registry write()
registry finish write()

PARAMETERS

basename Base name of registry file, as a Zserver resource name. This file must not
have an extension, since the extensions ".1", ".2" and so on are appended
to the name.

section Section name to update (may be NULL to update the anonymous section
at the start of the registry file).

re Array of update commands. See the registry write () function
description for details. If this pointer is NULL, the entire section is deleted.

sctx Server context.

RETURN VALUE
<0: general failure, code will be negative of one of the codes in ERRNO.LIB.
0: OK

LIBRARY
REGISTER.LIB

SEE ALSO

registry prep write, registry write, registry finish write,
registry get

Dynamic C Function Reference Manual digi.com 344

http://www.digi.com

registry write

int registry write(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Modify the old registry r->01d_spec using the specified registry entries, writing the result to r—
>new spec. Only entries in the named “section” may be altered. This function also allows entries
and sections to be deleted.

The new and old files must be different, since this function depends on reading from the old file,
performing the requested modifications, and writing the new file -- this is all done line-by-line.
Generally, you will need two resource files which will alternate. Only when the modifications are
successfully complete will the old file be deleted. This makes the update process more resistant to
corruption caused by e.g., the user turning off the power in the middle of the update. The helper
function registry prep write () automates this process.The function

registry update () encapsulates the basic registry update process.

NOTE: since this function requires some temporary malloc memory, you should ensure that there
isatleast REGBUF SIZE bytes ofavailable system-space malloc memory. The REGBUF SIZE
macro defaults to 1025 bytes, but you may override this definition before #use registry.lib.

Registry resources are similar to Windows “.ini” file format. They are ASCII formatted (and thus
human readable) and consist of one or more “sections,” each of which has zero or more key=value
lines. For example:

[net settings]
ip=10.10.6.100
ssid=Rabbit

[app settings]

some integer=23

a string=hello world

Each section is headed by a string enclosed in square brackets. Within each section is a list of key
strings followed by '=' followed by the value of that entry. The key string is arbitrary except that it
cannot start with '[' or contain any '=', null or newline characters. The value string is arbitrary except
that newline and null characters are not allowed. Section names are arbitrary except they cannot
contain '|', null or newline characters. Spaces are always significant. In particular, don't put spaces
on either side of the '=' separator.

If there are duplicate keys in the entries table, then it is undefined which of the entries actually gets
stored. Don't do it.

Normally, you do not need to be concerned with the above format rules, since the library functions
enforce them.

Dynamic C Function Reference Manual digi.com 345

http://www.digi.com

If you need to store null (binary zero) or newline (binary 0x0A or, in C syntax, "\n") then your
application will need to use some sort of convention for escaping such characters, or you can use
the REGOPTION BIN () option which will store the string expanded into ASCII hexadecimal,
which is completely safe.

Individual key/value entries may be deleted by specifying the REGOPTION DELETE flag with the
appropriate entries.

PARAMETERS

r RegistryContext structure, with at least the old_spec and new_spec fields
initialized. For example, use registry prep write () to setup this
structure correctly.

r->old spec:

Open resource handle of a readable resource containing the old registry
settings. This is read from the current seek position, thus in most cases you
will want to call this function with a freshly opened resource handle. This
may also be -1, which indicates there is *no* old registry to update, and a
new registry will be written to new_spec.

r->new_spec: Open resource handle of a writable resource, to which the
old registry (modified with the given settings) will be written. Normally,
this should initially be an empty resource file. The new settings will be
written starting at the current seek position in this resource.

Note that the resource handles remain open when this function returns.

section Section name. If NULL or empty string, then the first (anonymous) section
of the registry is implied.

entries List of replacement registry entries. The list MUST be terminated with an
entry with the REGOPTION EOL option.

Caution: If this pointer is NULL, then the entire section is deleted.

Each element in this array is as follows:

typedef struct {

char far * key; // Entry key. Must not contain '=' or newlines, and
// must not start with '['. Must be null-terminated.
void far * wvalue; // Entry value. Type determined by options. If the

// REGOPTION_STRING option is set, this must
// not contain newlines and must be null terminated.
int options; // Entry options and flags: If value is greater
// than zero, then value is an arbitrary binary
// value with the specified length. It will be
// stored in the registry with twice that many
// ascii hex digits. If value is <=-10, then it i
// ascii string with max length of (-options-8)
// Otherwise, this field is a simple enumeration
// indicating the data type as follows:
#define REGOPTION EOL 0 // Endoflist
#define REGOPTION SHORT (-1) // Signed short (2 byte) - stored as decimal
#define REGOPTION LONG (-2) // Signed long (4 byte) - tored as decimal

Dynamic C Function Reference Manual digi.com 346

http://www.digi.com

#define REGOPTION BOOL (-3) // int(2byte) - stored as 1 (if non-zero) or 0
#define REGOPTION FLOAT (-4) // IEEE float (4 byte)
// Only avail if STDIO _DISABLE FLOATS
// *not* defined, stored in %f format
#define REGOPTION RESV5 (
#define REGOPTION_RESV6 (-6)
#define REGOPTION DELETE (=7) // Delete this entry if found
#define REGOPTION NOP (-8) // No operation: convenience for
// constructingRegistryEntry lists.
#define REGOPTION RESV9 (-9) // For variable length data...

#define REGOPTION BIN (len) (len)

// Binary of given fixed length - stored expanded into ascii hexadecimal.

// len must be 1.. REGBUF_SIZE/2-M where M is the size of the key plus 2.
// As arule of thumb, be careful when len is more than about 256.

#define REGOPTION STRING(len) (-8-(len))

// Null-terminated string up to len chars counting the null terminator - stored as-is.

// len must be at least 2. len must not be more than REGBUF_SIZE-M where M is the
// size of the key plus 2. As a rule of thumb, be careful when len is more than about 512.

word work; // Work field for registry read/write lib functions
// May be left uninitialized by the caller unless otherwise noted in the function description.
} RegistryEntry;
RETURN VALUE
<0: failure to write or read the resource
0: success
LIBRARY
REGISTRY.LIB

SEE ALSO

sspec_open, registry read, registry update, registry get,
registry prep write, registry finish write

Dynamic C Function Reference Manual digi.com 347

http://www.digi.com

remove

int remove(const char *filename)

DESCRIPTION

Deletes a file from the FAT filesystem. You must #use "FAT.LIB" in your program in order to use
this function.

PARAMETERS
Parameter 1: Full pathname of file to delete (e.g., "A:/file.txt").

RETURN VALUE
0 for success, non-zero on failure
-EIO on device 10 error
-EINVAL or -EPATHSTR if filename is NULL or invalid
-EPERM if the file is open, write protected, hidden or system

-ENOENT if file does not exist
-NOSYS if FAT support has not been compiled into the program

HEADER
stdio.h

SEE ALSO

rename, fat Delete, fat GetPartition

Dynamic C Function Reference Manual digi.com 348

http://www.digi.com

rename

int rename(const char *old, const char *new)

DESCRIPTION
Renames a file in the FAT filesystem.

PARAMETERS
old Full pathname of file to rename.
new New name for file. Path must be on the same partition, and target directory

must already exist.

New name can either be a bare filename ("newfile.txt") if the file should
remain in the current directory, or a fully qualified path
("A:/dirname/newfile.txt") to move the file to another directory.

RETURN VALUE

Until Dynamic C's FAT library supports file renaming, this function will always return
-ENOSYS.

0 on success, non-zero on failure. (possible errors depend on how this function is implemented)

HEADER
stdio.h

SEE ALSO

remove

Dynamic C Function Reference Manual digi.com 349

http://www.digi.com

res

void res(void * address, unsigned int bit);
void RES(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory address to 0. Bit may be from
0 to 31. This is equivalent to the following expression, but more efficient:

*(long *)address &= ~ (1L << bit)

PARAMETERS

address Address of byte containing bits 7-0.

bit Bit location where 0 represents the least significant bit.
LIBRARY

UTIL.LIB
SEE ALSO

RES

RES

SEE

res

Dynamic C Function Reference Manual digi.com 350

http://www.digi.com

rewind

void rewind(FILE far *stream)

DESCRIPTION

Sets the file position indicator for st ream to the beginning of the file and clears the error indicator
for the stream.

PARAMETERS
Parameter 1 Stream to rewind.

RETURN VALUE

None

HEADER
stdio.h

SEE ALSO
fseek, ftell, fgetpos, fsetpos

Dynamic C Function Reference Manual digi.com 351

http://www.digi.com

root2vram

int root2vram(void * src, int start, int length);

DESCRIPTION

This function copies data to the VBAT RAM. Tamper detection on the Rabbit 4000 erases the VBAT
RAM with any attempt to enter bootstrap mode.

PARAMETERS
src The address to the data in root to be copied to vbat ram.
start The start location within the VBAT RAM (0-31).
length The length of data to write to VBAT RAM. The length should be greater

than 0.
The parameters length + start should not exceed 32.

RETURN VALUE

0 if data was copied
-1 if length + start > 32

LIBRARY
VBAT.LIB

SEE ALSO

vram2root

Dynamic C Function Reference Manual digi.com 352

http://www.digi.com

root2xmem

int root2xmem(unsigned long dest, void * src, unsigned len);

DESCRIPTION

Stores 1en characters from logical address src to physical address dest.

PARAMETERS
dest Physical address.
src Logical address.
len Numbers of bytes.

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
-2: Source not all in root.
LIBRARY
XMEM.LTIB

SEE ALSO

xalloc, xmemZxmem, memcpy

Dynamic C Function Reference Manual digi.com 353

http://www.digi.com

rtc_timezone

int rtc_timezone(long * seconds, char * tzname);

DESCRIPTION

This function returns the timezone offset as known by the library. The timezone is obtained from
the following sources, in order of preference:

1. The DHCP server. This can only be used if the TCP/IP stack is in use, and USE_DHCP is defined.

2. The TIMEZONE macro. This should be defined by the program to an _hour offset - may be

floating point.
PARAMETERS
seconds Pointer to result longword. This will be set to the number of seconds offset
from Coordinated Universal Time (UTC). The value will be negative for
west; positive for east of Greenwich.
tzname If null, no timezone name is returned. Otherwise, this must point to a buffer

of at least 7 bytes. The buffer is set to a null-terminated string of between
0 and 6 characters in length, according to the value of the TZNAME macro.
If TZNAME is not defined, then the returned string is zero length ("").

RETURN VALUE

0: timezone obtained from DHCP.
-1: timezone obtained from TIMEZONE macro. The value of this macro (which may be int,
float or a variable name) is multiplied by 3600 to form the return value.
—2: timezone is zero since the TIMEZONE macro was not defined.

LIBRARY
RTCLOCK.LIB

runwatch

void runwatch(void) ;

DESCRIPTION

Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should be called
periodically in user program.

LIBRARY
SYS.LIB

S

sdspi_debounce

int sdspi_debounce(sd_device * sd);

DESCRIPTION

This function waits for and debounces the card insertion switch. When it returns True (1), then a
card is fully inserted.

PARAMETER
sd The device structure for the SD card.

RETURN VALUE

1: Success, card fully inserted
0: No card present

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 355

http://www.digi.com

sdspi_get csd

int sdspi_get csd(sd_device * sd);

DESCRIPTION

This function is called to execute protocol command 9 to retrieve the SD card's Card Specific Data
(CSD) and store it in the respective SD driver configuration object. The CSD data is used to
determine the SD card's physical storage and timing attributes.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 356

http://www.digi.com

sdspi_get_scr

int sdspi_get_scr(sd _device * sd);

DESCRIPTION

This function executes application specific command 51 to retrieve the SD card's Configuration
Register (SCR) and store it in the respective SD driver configuration object. The SCR data is used
to identify the SD card's physical interface version and security version. It also contains erase state
(all 0's or 1's) and supported bus widths.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EI0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_getSectorCount

long sdspi_getSectorCount(sd_device * dev);

DESCRIPTION

Return number of usable 512 byte sectors on an SD card.
PARAMETER

dev Pointer to sd_device struct for initialized flash device.

RETURN VALUE

Number of sectors

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 357

http://www.digi.com

sdspi_get status_reg

int sdspi_get_ status_reg(sd_device *sd, int * status);

DESCRIPTION
This function is called to execute protocol command 13 to retrieve the status register value of the
SD card.
PARAMETERS
sd Pointer to the device structure for the SD card.
status Pointer to variable that returns the status.

RETURN VALUE

0: Success, Card status placed in status
-EIO0: I/O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_init card

int sdspi_init card(sd_device * sd);

DESCRIPTION

Initializes the SD card pointed to by sd. Function executes protocol command “1”” which clears HCS
bit and activates the card’s initialization sequence.

PARAMETERS
sd Pointer to sd_device structure for the SD card.

RETURN VALUE

0: Success

-EIO0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 358

http://www.digi.com

sdspi_initDevice

int sdspi_initDevice(int indx, sd_dev_interface * sd_dev);

DESCRIPTION

Initializes the SD card pointed to by sd_dev and adds information about the cards interface to the
SD device array in the position pointed to by i ndx. Sets up the default block size of 512 bytes used
by sector read/write functions. This function should be called before any calls to other sdspi

functions.

PARAMETERS
indx Index into the SD device array to add the card.
sd_dev Pointer to sd_dev_interface for the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_isWriting

int sdspi_isWriting(sd_device * dev);

DESCRIPTION

Returns 1 if the SD card is busy writing a sector.
PARAMETER

dev Pointer to initialized sd_device structure for the flash chip

RETURN VALUE
1: Busy
0: Ready, not currently writing

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 359

http://www.digi.com

sdspi_notbusy

int sdspi_notbusy(int port);

DESCRIPTION

This function tests for a busy status from the SD card on the port given. It is assumed that the card
is already enabled.

PARAMETER
port The base address for the SD card's SPI port

RETURN VALUE

1: The card is not busy, write/erase has ended
0: The card is busy, write/erase in progress

LIBRARY
SDFLASH.LIB

sdspi_print dev

void sdspi_ print dev(sd _device * dev);

DESCRIPTION

Prints parameters from the SD device structure.
PARAMETER
dev Pointer to sd_device structure of the SD card.

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 360

http://www.digi.com

sdspi_process_command

int sdspi_process command(sd_device *sd, SD _CMD REPLY * cmd reply,
int mode) ;

DESCRIPTION

This function sends the command placed in the cmd reply structure and retrieves a reply and data
(optional) as defined in the cmd reply structure. Pointers to TX and RX buffers are retrieved
from the cmd reply structure and used for command transmission and reply/data reception.
Reply is parsed and placed in cmd_reply.reply. Errors encountered will give a negative return
value.

The SPI semaphore is obtained before the command is sent. The mode parameter controls whether
the semaphore will be released after command execution and reply/data reception. If mode is zero,
both semaphore and chip select are active on a successful return. An end command sequence and
release of the semaphore must be handled by caller.

If mode is not 0, the semaphore will be released before returning. In addition, if mode is 2 then an
SD card reset is in progress. This enables the distinguishing of certain I/O error conditions that
would normally be grouped with the —ETO error code and instead return the -EAGAIN error code,
indicating reset retries should continue.

PARAMETER
sd Pointer to sd_device structure of the SD card.

cmd reply Pointer to cmd_reply structure, which contains:

cmd - command to be executed

argument - arguments for the command
reply - storage for command reply
reply_size - size in bytes of expected reply
data_size - size in bytes of expected data
tx_buffer - pointer to TX buffer to use
rx_buffer - pointer to RX buffer to use

mode One of the following:

0 = SPI port semaphore should be retained.

1 =If SPI port to be released before return.

2 = Attempting SD card reset, otherwise same as mode “1”".
(Enables ~-EAGATIN return value.)

Dynamic C Function Reference Manual digi.com 361

http://www.digi.com

RETURN VALUE

0: Success

-EIO0: I/O error

-EAGAIN: Allowable I/O error during card reset
-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_read_ sector

int sdspi_read_sector(sd_device * sd, unsigned long sector_number,
void * data_buffer);

DESCRIPTION
This function is called to execute protocol command 17 to read a 512 byte block of data from the
SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

sector_number The sector number to read.
data_buffer Pointer to a buffer for the 512 bytes read.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 362

http://www.digi.com

sdspi_reset card

int sdspi_reset card(sd_device * sd);

DESCRIPTION

Resets the SD card pointed to by sd. Function executes protocol command 0 to force the card to Idle
mode. This command is sent multiple times to reset the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EIO0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_sendingAP

int sdspi_sendingAP(sd_device * sd);

DESCRIPTION

Sends AP command 55 to set Alternate Command mode on the next command sent to the card. This
function does not release the port sharing semaphore unless an error is encountered.

PARAMETER

sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EI0:1/O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 363

http://www.digi.com

sdspi_set block length

int sdspi_set _block_length(sd _device * sd, int block_length);

DESCRIPTION

This function executes protocol command 16 to set the block length for the SD card. The default
block length for SD cards is 512 bytes. Please note that sdspi write sector () and
sdspi read sector () work on 512 byte blocks only. If you change the block size, these
functions will need to be modified, or you will need to execute commands directly through
sdspi_ process_ command () and internal write block and read block functions.

PARAMETER

sd Pointer to device structure of the SD card.
block_length The block size in bytes for the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_setLED

void sdspi_setLED(sd_device * sd, char state);

DESCRIPTION

This function sets the LED for the given SD card based on state. If state is 0, the LED is turned off.
If state is not zero, the LED is turned on.

PARAMETER
sd Pointer to sd_device structure of the SD card.
state The state to set the LED to: 0 = Off and Non-zero = On
LIBRARY

SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 364

http://www.digi.com

sdspi_WriteContinue

int sdspi_WriteContinue(sd_device * sd);

DESCRIPTION

This function completes the previously started write command to the SD card when non-blocking
mode is enabled. It looks for the end of the busy signal from the card, then strobes the chip select.
This function should be called repeatedly until the -EBUSY code is not returned, at which point the
SPI port is freed. There is a timeout mechanism for the busy signal. If exceeded, the port is freed
and the -EIO error code is returned.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

—-EIO0: I/O error or timeout

-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () again
LIBRARY

SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 365

http://www.digi.com

sdspi_write_ sector

int sdspi_write_sector(sd_device * sd, unsigned long sector number,
char * data_buffer);

DESCRIPTION
This function is called to execute protocol command 24 to write a 512 byte block of data to the SD
card.

PARAMETER
sd Pointer to device structure of the SD card.

sector number The sector number to write.
data buffer Pointer to a buffer of 512 bytes to write.

RETURN VALUE

0: Success

-EI0: I/O error

-EACCES: Write protected block, no write access

-EINVAL: Invalid parameter given

-ENOMEDIUM: No SD card in socket

-ESHAREDBUSY: Shared SPI port busy

-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () to complete
(only when SD NON BLOCK is defined)

LIBRARY

SDFLASH.LIB

Dynamic C Function Reference Manual digi.com 366

http://www.digi.com

serAtxBreak

int serAtxBreak(int type);

DESCRIPTION

Generate a serial “break” by disabling the transmit pin for serial port A and pulling it low.
PARAMETER

Parameter 1 If0, hold the break until another function sends data or calls serAopen. If
1, generate a character break (hold the break condition for the time it would
take to send a single character) and then return the transmit pin to its idle
state (high).

RETURN VALUE

0 if able to generate the break
-EIO if the serial port is not idle (i.e., sending bytes)
-EINVAL if <type> is a value other than 0 or 1

LIBRARY
RS232.LIB

serCheckParity

int serCheckParity(char rx byte, char parity);

DESCRIPTION

This function is different from the other serial routines in that it does not specify a particular serial
port. This function takes any 8-bit character and tests it for correct parity. It will return true if the
parity of rx byte matches the parity specified. This function is useful for checking individual
characters when using a 7-bit data protocol.

PARAMETERS
rx_byte The 8 bit character being tested for parity.
parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE
1: Parity of the byte being tested matches the parity supplied as an argument.
0: Parity of the byte does not match.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 367

http://www.digi.com

servo_alloc_table

void servo_alloc_table(int which, int entries);

DESCRIPTION

Allocate an xmem data area for servo statistics collection. This function should be called once only
(for each servo) at application startup time.

PARAMETERS
which Servo (0 or 1)
entries Number of entries to allocate. Each entry is 8 bytes, and stores 4 integer
values. The maximum value for this parameter is 8190.
LIBRARY
SERVO.LIB
SEE ALSO

servo graph, servo read table, servo stats reset

servo_closedloop

void servo_closedloop(int which, int reset);

DESCRIPTION

Run specified servo in closed-loop (PID) mode.

PARAMETERS
which Servo (0 or 1).
reset Whether to reset the current command list. The command list executes
even while in open loop mode (although it will have no visible effect in that
mode). If reset is non-zero, then the command list will be reset to empty
and the motor will halt at the current position.
LIBRARY
SERVO.LIB
SEE ALSO

servo openloop, servo torque

Dynamic C Function Reference Manual digi.com 368

http://www.digi.com

servo_disable 0

void servo_disable 0(wvoid);

DESCRIPTION

Disable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE PORT 0 PGDR
#define SERVO ENABLE PORTSHADOW 0 PGDRShadow
#define SERVO ENABLE PIN 0 6

and, optionally,

#define SERVO ENABLE DDR 0 PGDDR
#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

This function is limited to toggling the output pin. If enabling or disabling the servo motor requires
more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 0 yyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have no
return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_enable 0

Dynamic C Function Reference Manual digi.com 369

http://www.digi.com

servo_disable 1

void servo_disable 1(wvoid);

DESCRIPTION

Disable drive to the second servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE PORT 1 PGDR
#define SERVO ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO ENABLE PIN 1 7

and, optionally,

#define SERVO ENABLE DDR 1 PGDDR
#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

This function is limited to toggling the output pin. If enabling or disabling the servo motor requires
more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 1 yyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have no
return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_ enable 1

Dynamic C Function Reference Manual digi.com 370

http://www.digi.com

servo_enable 0

void servo_enable 0(void);

DESCRIPTION

Enable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE PORT 0 PGDR
#define SERVO ENABLE PORTSHADOW 0 PGDRShadow
#define SERVO ENABLE PIN 0 6

and, optionally,

#define SERVO ENABLE DDR 0 PGDDR
#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 0 xXxX

where xxxx is the name of your own function (which is assumed to take no parameters and have no
return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo_disable 0

Dynamic C Function Reference Manual digi.com 371

http://www.digi.com

servo_enable_l

void servo_enable 1(void);

DESCRIPTION

Enable drive to the second servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE PORT 1 PGDR
#define SERVO ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO ENABLE PIN 1 7

and, optionally,

#define SERVO ENABLE DDR 1 PGDDR
#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 1 xXXxX

where xxxx is the name of your own function (which is assumed to take no parameters and have no
return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo _disable 1

Dynamic C Function Reference Manual digi.com 372

http://www.digi.com

sServo_gear

void servo_gear(int count0, int countl, int slave0, int slavel);

DESCRIPTION

NOTE: this function is currently not efficient enough for production use (owing to use of long
multiplication and division). It is provided as an example of the use of callbacks from the ISR.

If two servos are in use, couple or cross-couple their positioning. This only works if NUM SERVOS
is 2, and both servos are in closed loop mode.

There are four possible sub-modes of operation, which depend on the slave0/1 parameters.

slave0 slave1 Operation
0 0 Non-gear mode: neither servo is slaved. This is the normal, default, mode.
0 1 Second servo is slaved from first servo. For every 'count(’ increments of the

first servo's encoder, the second servo will be moved 'countl' increments.

1 0 First servo is slaved from second servo. For every 'countl' increments of the
second servo's encoder, the first servo will be moved 'count0' increments.

1 1 Both servos cross-coupled. Movement will only result from an externally
applied torque. This is a true simulation of mechanical gearing.

Call this function with countO or countl zero, or both slave0 and slavel zero, to exit from gear
mode. When a servo that was slaved is set to normal mode, its velocity is set to zero.

PARAMETERS
countO Encoder increment for the first servo which results from count! increments
of the second servo.
countl Encoder increment for the second servo which results from count0

increments of the first servo.

Together, count0 and countl determine the gearing ratio. Neither value should be set to a magnitude
greater than about 500, to avoid internal arithmetic overflow. In any gear mode, the total movement
of either servo should be limited to less than about 2M counts in either direction from the point at
which gear mode was set. If a smaller range of movement is acceptable, then the maximum of either
count parameter may be increased proportionally. The value of count0/countl or countl/count0
should not have a magnitude greater than about 10 to avoid encoder quantization problems,
especially in cross-coupled mode.

slave0 1 if first servo slaved to second, else zero.

slavel 1 if second servo slaved to first, else zero.

Dynamic C Function Reference Manual digi.com 373

http://www.digi.com

LIBRARY
SERVO.LIB

SEE ALSO

servo closedloop, servo torque

servo_graph

int servo_graph(int which, word start, word nlines, word samples,
word what, int low, int high);

DESCRIPTION

Draw ASCII-art graph of servo response. This is primarily intended for debugging. It should be
called after resetting the sample collection table using servo stats reset (), then executing
a movement whose response is to be graphed.

PARAMETERS

which Servo (0 or 1)

start Starting sample number

nlines Number of lines (sample bins) in graph - vertical axis

samples Number of samples to cover (should be multiple of nlines)

what Which statistic to print: 0 is for error; 1 for error integral; 2 for error rate
(differential), 3 for PWM output setting. These may be customized to have
different meanings

low Low range of horizontal axis

high High range of horizontal axis

RETURN VALUE
0: OK
-1: error
LIBRARY
SERVO.LIB

SEE ALSO

servo alloc table, servo read table, servo stats reset

Dynamic C Function Reference Manual digi.com 374

http://www.digi.com

servo_init

void servo_init(void);

DESCRIPTION

This function must be called once at the beginning of application code to initialize the servo library.

LIBRARY
SERVO.LIB

SEE ALSO

servo stats reset, servo alloc table, servo set coeffs,
servo_enable 0

servo millirpm2vcmd

long servo _millirpm2vemd(int which, long millirpm);

DESCRIPTION

Convert 1/1000 RPM units to velocity command value. Basic formula is:
SERVO COUNT PER REV n - millirpm - 65536

60000 - SERVO_LOOP RATE HZ
Floating point is used to retain 24 bit precision.

vemd =

PARAMETERS
which Servo (0 or 1).
millirpm Input in units of 1/1000 RPM.

RETURN VALUE

Output in units suitable for command velocity setting i.e units of 1/65536 encoder counts per ISR
execution (sample).

LIBRARY
SERVO.LIB

SEE ALSO

servo _move to, servo set vel, servo set pos

Dynamic C Function Reference Manual digi.com 375

http://www.digi.com

servo_move_to

int servo move_to(int which, long pos, long ticks, long accel_ ticks,
long final v);

DESCRIPTION

Move to new position, pos. Assumes current position is “cmd” and current velocity is “vemd” (with
the values of these read from the control structure at beginning of routine).

Each “tick” represents the time interval between loop updates. This routine measures time intervals
in units of ticks.

accel_ticks (<= ticks) is the number of ticks allocated to acceleration/deceleration phase of
movement. The remaining part of the movement is performed at constant velocity. Acceleration and
deceleration are computed to be of the same magnitude at beginning and end of motion (but may be
opposite signs). final v is the velocity to be achieved at end of movement. This routine returns as
soon as the necessary command list is installed for execution by the ISR. The movement will not be
completed until “ticks” ISR executions.

NB: if the average velocity (vt) required to complete the movement is greater than +/-16k counts
per tick, then the movement is stretched to a longer time interval so as to make the peak velocity
equal to the +/- 8k counts/tick (which is higher than any physical motor can follow). accel ticks is
set to 16384 if it is over that (since rounding errors can accumulate over long periods of low
acceleration).

If this routine is called again before the previous motion is completed, then the previous motion will
be overridden by the new motion. This routine uses floating point, since the mathematics are quite
complex. It takes several milliseconds to execute, so should not be called to perform motions which
complete in less than, say, S0ms.

This routine does not attempt to control rate of change of acceleration (“jerk” or d>x/dt>). It
approximates the required movement profile as parabolic (constant acceleration) and linear
(constant velocity) segments.

PARAMETERS
which Servo (0 or 1).
pos Position to be achieved at end of movement.
ticks Number of ISR executions (loop update rate) over which to complete the

movement. If less than 1, it is set to 1.

accel_ticks Number of ticks over which acceleration is to be applied. The remainder of
the interval, ticks - accel_ticks, is performed at constant velocity. If greater
than “ticks”, it is set equal to “ticks”.

final v Final velocity to be achieved at end of movement.

Dynamic C Function Reference Manual digi.com 376

http://www.digi.com

RETURN VALUE
0: OK.
1: computed velocity is "extremely high": time interval stretched to make velocity fit within
allowable fixed-point limits (i.e. 8192 encoder counts per sample).
LIBRARY
SERVO.LIB

SEE ALSO

servo_set vel, servo set pos, servo millirpm2vcmd

servo_openloop

void servo_openloop(int which, word pwm);

DESCRIPTION

Run specified servo in open-loop mode (no PID control). Note that this bypasses dynamic current-
limiting (if any defined) so should be used with caution.

PARAMETERS
which Servo (0 or 1).
pwm Output PWM setting (0-1024). 0 indicates maximum reverse speed, 1024
is maximum forward speed. 512 is nominally zero speed (but this depends
on amplifier offset).
LIBRARY
SERVO.LIB
SEE ALSO

servo closedloop, servo torque

Dynamic C Function Reference Manual digi.com 377

http://www.digi.com

servo_qd zero 0

void servo_qd zero 0(wvoid);

DESCRIPTION

Reset the first servo encoder reading to zero. The servo motor is not moved; only the notion of the
current position is reset to zero. This should only be called when the servo is in open loop mode.

LIBRARY
SERVO.LIB
SEE ALSO

servo gd zero 1

servo_qd zero_1

void servo_qd zero_ 1 (void ;)

DESCRIPTION

Reset the second servo encoder reading to zero. The servo motor is not moved; only the notion of
the current position is reset to zero. This should only be called when the servo is in open loop mode.

LIBRARY
SERVO.LIB

SEE ALSO

servo_qgd zero 0

Dynamic C Function Reference Manual digi.com 378

http://www.digi.com

servo_read table

int servo_read table(int which, word entry, word nent, int data[12]);

DESCRIPTION

Read one or more table entries, returning average, max and min of all samples in the specified group

starting at entry, for nent samples.

PARAMETERS
which Servo (0 or 1)
entry First sample number
nent Number of entries starting at “entry”
data[1l2] Returned data: 3 sets of 4 contiguous entries. The first set (data[0]..data[3])

contains the average; the second set (data[4]..data[7]) contains the
maximum; and the last set (data[8]..data[11]) contains the minimum. The
elements of each set correspond with the table data: the first element is the
instantaneous error; the second is the error integral; the third is the error
rate; and the 4th is the PWM output. These may be customized to have
different meanings.

RETURN VALUE

0: OK

1: no such entry or entries.
LIBRARY

SERVO.LIB

SEE ALSO

servo alloc table, servo graph, servo stats reset

Dynamic C Function Reference Manual digi.com

379

http://www.digi.com

servo_set coeffs

void servo_set coeffs(int which, int prop, int integral, int diff);

DESCRIPTION

Set the PID closed loop control coefficients. The normal sign for all coefficients should be positive
in order to implement a stable control loop. See Technical Note 233 for details.

PARAMETERS
which Servo (0 or 1)
prop Proportional coefficient
integral Integral (“reset”) coefficient
diff Derivative (“rate”) coefficient
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_openloop

servo_set_pos

void servo_set pos(int which, long pos, long vel);

DESCRIPTION

Move the specified servo motor to a specified position and set the specified velocity at that position.
This cancels any move which is currently in effect.

PARAMETERS
which Servo (0 or 1)
pos Position, as an encoder count
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo millirpm2vcmd ().
LIBRARY
SERVO.LIB
SEE ALSO

servo _move to, servo set vel, servo millirpm2vcmd

Dynamic C Function Reference Manual digi.com 380

http://www.digi.com

servo_set vel

void servo_set vel(int which, long vel);

DESCRIPTION
Move the specified servo motor at a constant velocity. This cancels any move that is currently in
effect.
PARAMETERS
which Servo (0 or 1).
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo_millirpm2vemd().
LIBRARY
SERVO.LIB
SEE ALSO

servo _move to, servo set pos, servo millirpm2vcmd

servo_stats_reset

void servo_stats_reset(int which);

DESCRIPTION

Reset the statistics table. This is used immediately prior to a command movement, so that the table
1s filled with the results of the movement command. Once reset, one table row is filled in for each
execution of the update loop (ISR driven). This continues until the table is full, or it is reset again.

PARAMETER
which Servo (O or 1)

LIBRARY
SERVO.LIB

SEE ALSO

servo graph, servo read table

Dynamic C Function Reference Manual digi.com 381

http://www.digi.com

servo_torque

void servo_torque(int which, int torque);

DESCRIPTION

Run specified servo in open loop controlled torque mode. The torque is limited by the dynamic
current limit feature, if available.

PARAMETERS
which Servo (0 or 1)
torque Amount of torque expressed as a fraction of the maximum permissible
torque, times 10,000. For example, to set the torque to 1/10 the maximum
value in the reverse direction, call servo torque (0, -1000).
LIBRARY
SERVO.LIB
SEE ALSO

servo closedloop, servo_ openloop

serXclose

void serXclose(); whereXisA-F

DESCRIPTION

Disables serial port X. This function is non-reentrant.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 382

http://www.digi.com

serXdatabits

void serXdatabits (state); where Xis A-F

DESCRIPTION

Sets the number of data bits in the serial format for this channel. Currently seven or eight bit modes
are supported. A call to serXopen () must be made before calling this function. This function is
non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXdatabits(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT _F.

PARAMETERS
state An integer indicating what bit mode to use. It is best to use one of the
macros provided for this:
* PARAM 7BIT - Configures serial port to use 7 bit data.
* PARAM 8BIT - Configures serial port to use 8 bit data (default
condition).
LIBRARY
RS232.LIB

serXdmaOff

int serXdmaOff(void); where Xis A-F

DESCRIPTION

Stops DMA transfers and unallocates the channels. Restarts the serial interrupt capability.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOff(int port), where “port” is one of the macros SER_PORT A through
SER_PORT F.

RETURN VALUE
0: Success
DMA Error codes: Error

LIBRARY
RS232.LIB

SEE ALSO

serXdmaOn

Dynamic C Function Reference Manual digi.com 383

http://www.digi.com

serXdmaOn

int serXdmaOn(int tcmask, int rcmask); where Xis A-F

DESCRIPTION

Enables DMA for serial send and receive. This function should be called directly after
serXopen ().

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOn(int port, ...), where “port” is one of the macros SER_PORT_A through
SER_PORT F.

Important Flow Control Note:

Because the DMA flowcontrol uses the external request feature, only two serial ports can use DMA
flowcontrol at a time. For the CTS pin, one serial port can use PD2, PE2, or PE6, and the other can
use PD3, PE3 or PE7.

How DMA Serial Works:
DMA Transmit:

When a serial function is called to transmit data, a DMA transfer begins. The length of that transfer
is either the length requested, or the rest of the transmit buffer size from the current position. An
interrupt is fired at the end of the transmit at which time another transmit is set up if more data is
ready to go.

DMA Receive:

When serXdmaOn () is called, a continuous chain of DMA transfers begins sending any data
received on the serial line to the circular buffer. With flowcontrol on, there is an interrupt after each
segment of the data transfer. At that point, if receiving another segment would overwrite data, the
RTSoff function is called.

For more information see the description at the beginning of RS232 . LIB.

PARAMETERS
tcmask Channel mask for DMA transmit. Use DMA CHANNEL ANY to choose
any available channel.
rcmask Channel mask for DMA receive. Use DMA CHANNEL ANY to choose any

available channel.

RETURN VALUE

DMA error code or 0 for success

Dynamic C Function Reference Manual digi.com 384

http://www.digi.com

LIBRARY
RS232.LIB

SEE ALSO
serXdmaOff

serXflowcontrolOff

void serXflowcontrolOff(void); where Xis A-F

DESCRIPTION

Turns off hardware flow control for serial port X. A call to serXopen () must be made before
calling this function. This function is non-reentrant. See serXflowcontrolOn for details on
setting the flow control signals.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXflowcontrolOff(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 385

http://www.digi.com

serXflowcontrolOn

void serXflowcontrolOn(void); where Xis A-F

DESCRIPTION

Turns on hardware flow control for channel X. This enables two digital lines that handle flow
control, CTS (clear to send) and RTS (ready to send). CTS is an input that will be pulled active low
by the other system when it is ready to receive data. The RTS signal is an output that the system uses
to indicate that it is ready to receive data; it is driven low when data can be received. A call to
serXopen () must be made before calling this function.

This function is non-reentrant.

MACROS

If pins for the flow control lines are not explicitly defined, defaults will be used and compiler
warnings will be issued. The locations of the flow control lines are specified using a set of 7 macros.

SERx_RTS_PORT

SERx_RTS_SHADOW

SERx_RTS_BIT
SERx_CTS_PORT
SERx_CTS_BIT

SERx_RTS_EXTERNAL

SERx_CTS_EXTERNAL

LIBRARY
RS232.LIB

Data register for the parallel port that the RTS line is on. e.g.
PCDR

Shadow register for the RTS line's parallel port. e.g.
PCDRShadow

The bit number for the RTS line
Data register for the parallel port that the CTS line is on
The bit number for the CTS line

Define if the RTS signal for serial port X is hosted on
external I/O instead of a direct processor port.

Define if the CTS signal for serial port X is hosted on
external I/O instead of a direct processor port.

Dynamic C Function Reference Manual

digi.com 386

http://www.digi.com

serXgetc

int serXgetc(void) ; where Xis A-F

DESCRIPTION

Get next available character from serial port X read buffer. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetc(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

Success: the next character in the low byte, O in the high byte.
Failure: -1, which indicates either an empty or a locked receive buffer.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main () {
int c;
serAopen (19200) ;
while (1) {
if ((c = serAgetc()) != -1) {
serAputc (c) ;
}
}

serAclose ()

Dynamic C Function Reference Manual digi.com

387

http://www.digi.com

serXgetError

int serXgetError(void); where Xis A-F

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time this function
was called. Any bits set will be automatically cleared when this function is called, so a particular
error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:

* SER PARITY ERROR
e SER OVERRUN ERROR

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetError(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
The error flags byte.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 388

http://www.digi.com

serXopen

int serXopen(long baud); where Xis A-F

DESCRIPTION

Opens serial port X. This function is non-reentrant.

The user must define the buffer sizes for each port being used with the buffer size macros
XINBUFSIZE and XOUTBUFSIZE. The values must be a power of 2 minus 1, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizes to 2" - 1 makes the circular buffer operations very efficient. If a value not
equal to 2"- 1 is defined, a default of 31 is used and a compiler warning is given.

Note: The default pin setup of Serial Port E uses parallel port C pins which conflict with
the programming port. Opening serial port E with the default settings while in debug mode
will therefore kill PC host/target communication.

The user must #define the following if not using the default (PCDR) settings:

SERE_TXPORT define to PEDR or PDDR
SERE_RXPORT define to PEDR or PDDR

Note: The alternate pins on parallel port D can be used for serial port B by defining
SERB_USEPORTD at the beginning of a program. See the section on parallel port D in the
Rabbit documentation for more detail on the alternate serial port pins.

For Rabbit 4000 Users: To use DMA for transfers, call serXdmaOn () after this function.
PARAMETERS

baud Bits per second (bps) of data transfer. Note that the baud rate must be
greater than or equal to the peripheral clock frequency divided by 8192.
RETURN VALUE
1: The Rabbit's bps setting is within 5% of the input baud.
0: The Rabbit's bps setting differs by more than 5% of the input baud.
LIBRARY
RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof serXgetc,
cof serXgets, cof serXread, cof serXputc, cof serXputs,
cof serXwrite, serXclose

Dynamic C Function Reference Manual digi.com 389

http://www.digi.com

serXparity

void serXparity(int parity mode); where Xis A-F

DESCRIPTION

Sets parity mode for channel X. A call to serXopen () must be made before calling this function.
This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXparity(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT _F.

PARAMETERS

parity mode An integer indicating what parity mode to use. It is best to use one of the
macros provided:

PARAM NOPARITY Disables parity handling (default).

PARAM OPARITY Odd parity; parity bit set to “0” if odd number of 1’s in data
bits.

PARAM EPARITY Even parity; parity bit set to “0” if even number of 1’s in
data bits.

PARAM MPARITY Mark parity; parity bit always set to logical 1.

PARAM SPARITY Space parity; parity bit always set to logical 0.

PARAM 2STOP 2 stop bits.

PARAM 1STOP 1 stop bit (default setting)

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 390

http://www.digi.com

serXpeek

int serXpeek(void); where Xis A-F

DESCRIPTION
Returns first character in input buffer X, without removing it from the buffer. This function is non-
reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXpeek(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE
An integer with first character in buffer in the low byte.
-1 ifthe buffer is empty.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 391

http://www.digi.com

serXputc

int serXputc(char c); where Xis A-F

DESCRIPTION

Writes a character to serial port X write buffer. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXputc(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
c Character to write to serial port X write buffer.

RETURN VALUE
0 if buffer locked or full, 1 if character sent.

LIBRARY
RS232.LIB

EXAMPLE

main () { // echoes characters
int c;
serAopen (19200) ;
while (1) {
if ((c = serAgetc()) != -1) {
serAputc (c) ;
}
}

serAclose () ;

Dynamic C Function Reference Manual digi.com 392

http://www.digi.com

serXputs

int serXputs(const char far * s); where Xis A-F

DESCRIPTION

Calls serXwrite (s, strlen (s));does not write null terminator. This function is non-
reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXputs(int port, ...), where “port” is one of the macros

SER PORT_A through SER PORT F.

PARAMETERS
s Null terminated character string to write

RETURN VALUE

The number of characters actually sent from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null-terminated string of characters, repeatedly
main () {
const static char s[] = "Hello Rabbit";
serAopen (19200) ;
while (1) {
serAputs (s) ;
}

serAclose () ;

Dynamic C Function Reference Manual digi.com 393

http://www.digi.com

serXrdFlush

void serXrdFlush(void); where Xis A-F

DESCRIPTION
Flushes serial port X input buffer. This function is non-reentrant.
Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFlush(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

LIBRARY
RS232.LIB

serXrdFree

int serXrdFree(void); where Xis A-F

DESCRIPTION

Calculates the number of characters of unused data space. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFree(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

The number of chars it would take to fill input buffer X.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 394

http://www.digi.com

serXrdUsed

int serXrdUsed(void) ; where Xis A-F

DESCRIPTION
Calculates the number of characters ready to read from the serial port receive buffer. This function
is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdUsed(int port), where “port” is one of the macros
SER PORT_A through SER PORT F.

RETURN VALUE

The number of characters currently in serial port X receive buffer.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 395

http://www.digi.com

serXread

int serXread(void * data, int length, unsigned long tmout) ;
where X is A-F

DESCRIPTION

Reads 1ength bytes from serial port X or until tmout milliseconds transpires between bytes. The
countdown of tmout does not begin until a byte has been received. A timeout occurs immediately
if there are no characters to read. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXread(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
data Data structure to read from serial port X
length Number of bytes to read
tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE
The number of bytes read from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a blocks of characters
main () {
int n;
char s[16];
serAopen (19200) ;
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite (s, n);

}

serAclose () ;

Dynamic C Function Reference Manual digi.com 396

http://www.digi.com

serXstream

FILE far *serXstream(int port, char far *mode)

DESCRIPTION

Open a stream and attach it to a serial port already opened with serAopen, serBopen, etc.
PARAMETERS

Parameter 1 The port number. Valid inputs are SER_PORT A through SER PORT F.
This function is defined (through a macro) to use this value to select the
appropriate serial port data structure.

Parameter 2 Either “r”, “w” or “rw”. Due to how stream buffering works, “rw” mode is
not recommended. It is possible to open two streams for a serial port -- one
for read and the other for write.

If opening the port in “rw” mode, it will be necessary to seek between
reading and writing

RETURN VALUE

Pointer to the FILE object for accessing the serial port as a stream. Returns NULL if all streams are
in use or mode is invalid.

LIBRARY
STDIO_SERIAL.C

serXwrFlush

void serXwrFlush(void); where Xis A-F

DESCRIPTION
Flushes serial port X transmit buffer, meaning that the buffer contents will not be sent. This function

1S non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFlush(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT _F.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com 397

http://www.digi.com

serXwrFree

int serXwrFree(void) ; where Xis A-F

DESCRIPTION
Calculates the free space in the serial port transmit buffer. This function is non-reentrant.
Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFree(port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

The number of characters the serial port transmit buffer can accept before becoming full.

LIBRARY
RS232.LIB

Dynamic C Function Reference Manual digi.com

398

http://www.digi.com

serXwrite

int serXwrite(const void far * data, int length); where Xis A-F

DESCRIPTION

Transmits 1ength bytes to serial port X. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrite(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

PARAMETERS
data Data structure to write to serial port X
length Number of bytes to write

RETURN VALUE

The number of bytes successfully written to the serial port.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main () {

const char s[] = "Hello Rabbit";

serAopen (19200) ;

while (1) {

serAwrite (s, strlen(s));

}

serAclose () ;

}

Dynamic C Function Reference Manual digi.com

399

http://www.digi.com

serXwrUsed

int serXwrUsed(void) ; where Xis A-F

DESCRIPTION

Returns the number of characters in the output buffer. This function is non-reentrant.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrUsed(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT F.

RETURN VALUE

The number of characters currently in the output buffer.

LIBRARY
RS232.LIB

set

void set(void * address, unsigned int bit);
void SET(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory address to 1. bit may be from

0 to 31. This is equivalent to the following expression, but more efficient:
*(long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit

LIBRARY
UTIL.LIB

SEE ALSO
SET

Dynamic C Function Reference Manual digi.com

400

http://www.digi.com

SET

SEE

set

set32kHzDivider

void set32kHzDivider(int setting);

DESCRIPTION

Changes the setting of the Rabbit CPU clock modulation. Calling this function will force a 500 clock
delay before the setting is changed to ensure that the previous modulation setting

has cleared before the next one is set. See the “Rabbit 4000 Microprocessor User's Manual” for
more details about clock modulation for EMI reduction.

PARAMETER
setting 32kHz divider setting. The following are valid:
* OSC32DIV_1 - don't divide 32kHz oscillator
* OSC32DIV_2 - divide 32kHz oscillator by two
* OSC32DIV_4 -divide 32kHz oscillator by four
* OSC32DIV_8 -divide 32kHz oscillator by eight
* OSC32DIV_16 -divide 32kHz oscillator by sixteen
LIBRARY
SYS.LIB
SEE ALSO

useClockDivider, useClockDivider3000, useMainOsc, use32kHzOsc

Dynamic C Function Reference Manual digi.com 401

http://www.digi.com

setClockModulation

void setClockModulation(int setting)

DESCRIPTION

Changes the setting of the Rabbit 3000 CPU clock modulation. Calling this function will force a 500
clock delay before the setting is changed to ensure that the previous modulation setting has cleared
before the next one is set. See the Rabbit 3000 Microprocessor User's Manual for more details about
clock modulation for EMI reduction.

PARAMETER
setting Clock modulation setting. Allowed values are:
* 0 =no modulation
* 1 =weak modulation
* 2 = strong modulation
LIBRARY
SYS.LIB

set _cpu power mode

int set_cpu power mode(int mode, char clkDoubler, char
shortChipSelect) ;

DESCRIPTION

Sets operating power of the controller. Suspend serial communication and other data transmission
activity prior to calling this function, which sets higher priority interrupt while switching clock
frequencies.

This function is non-reentrant.
Rabbit 6000 Note

Note: This CPU is limited in power saving modes, because it is not possible for most
applications to run the CPU from the 32kHz clock (doing so trashes the internal dynamic
RAM).

It is recommended to use the PLL._SwitchCPU() function in PLL.LIB instead of using this function.
Do not mix use of the functions in PLL.LIB with those in this library.

PARAMETERS

mode Mode operation. Use the following table values below. (The higher the
value the lower the power consumption of controller.)

Dynamic C Function Reference Manual digi.com 402

http://www.digi.com

Note: On the Rabbit 6000, it is not advisable to use the 32kHz clock
to run the CPU. If attempted, the contents of the main internal RAM
will be erased, since this RAM is dynamic and requires the CPU to
run at least a few MHz in order to get refreshed. The 32Khz modes
are retained for the Rabbit 6000 in case it is permissible to erase the
internal memory contents during low power mode. Since the Rabbit
6000 normally runs from the PLL, new modes have been added to
allow the PLL to be disabled, and run the CPU directly from the PLL

input clock. Basically,

adding 10 to mode numbers 1..5 will run the

CPU from the input clock, which is considerably slower than the PLL
output, hence saving power.

Mode Description Comments
On Rabbit 6000, does not modify PLL setting. If
0 | Reset to initial state PLL was changed, this may result in loss of
debug.
1 | Cclk=Pclk=MainOsc Debug capable
2 | Cclk=Pclk=MainOsc/2 Debug capable (1/2 max baud rate)
3 | Cclk=Pclk=MainOsc/4 Debug capable (1/4 max baud rate)
4 | Cclk=Pclk=MainOsc/6 Debug capable (1/8 max baud rate)
5 | Cclk=Pclk=MainOsc/8 Debug capable (1/16 max baud rate)
Modes 6..10 not recommended for Rabbit 6000, will trash dynamic RAM
6 | Cclk=Pclk=32.768KHz Periodic Interrupt disabled, so call hitwd()
7 | Cclk=Pclk=32KHz/2=16.384KHz Periodic Interrupt disabled, so call hitwd()
8 | Cclk=Pclk=32KHz/4 =8.192KHz Periodic Interrupt disabled, so call hitwd()
9 | Cclk=Pclk=32KHz/8=4.096KHz Periodic Interrupt disabled, so call hitwd()
10 | Cclk=Pclk=32kHz/16 =2.048KHz | Periodic Interrupt disabled, so call hitwd()
Modes 11..15 for Rabbit 6000 only
11 | Cclk=Pclk=InputOsc (i.e. input to PLL)
12 | Cclk=Pclk=InputOsc/2
13 | Cclk=Pclk=InputOsc/4
14 | Cclk=Pclk=InputOsc/6 Caution: may be insufficient for RAM refresh
15 | Celk=Pclk=InputOsc/8 Caution: may be insufficient for RAM refresh

Dynamic C Function Reference Manual

digi.com

403

http://www.digi.com

clkDoubler

Clock doubler setting: CLKDOUBLER _ON or CLKDOUBLER _OFF.

CPU will operate at half selected speed when turned off. This parameter
only affects main oscillator modes, not 32 kHZ oscillator modes. Turning
Clock doubler off reduces power consumption.

Note: The clock doubler can only be switched on if it was on at boot
time. In particular, the Rabbit 6000 usually does not use the clock
doubler (since the PLL provides a fast clock) hence this parameter is
ignored for most Rabbit 6000 boards.

shortChipSelect Short Chip Select setting. Use SHORTCS OFF, or SHORTCS ON.

RETURN VALUE

0: valid parameter

Note: When short chip select is on, make sure that interrupts are dis-
abled during I/O operations. Turning Short Chip Select on may
reduce power consumption. See the Rabbit processor manual for
more information regarding chip selects and low power operation.

-1: invalid parameter

LIBRARY

low power.lib

Dynamic C Function Reference Manual digi.com

404

http://www.digi.com

setbuf

void setbuf(FILE far *stream, char far *buf)

DESCRIPTION

Sets buffering for stream to fully-buffered, optionally using an external buffer.
Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked as:
setvbuf (stream, buf, buf ? IOFBF : IONBF, BUFSIZ)
The macro BUFSIZ is set in stdio.h and should not be modified.
Since setvbuf() returns errors, it should be used instead of setbuf ().
PARAMETERS
Parameter 1 Stream to change buffering for.

Parameter 2 Ifnotsetto NULL, stream will use this buffer instead of an internally-
allocated one. <buf> must be large enough to hold at least BUFSIZ bytes.

RETURN VALUE

None

HEADER
stdio.h

SEE ALSO
setvbuf

Dynamic C Function Reference Manual digi.com 405

http://www.digi.com

setjmp

int setjmp(Jjmp buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the current state into

env. The saved information can be restored by executing 1ongjmp ().

Note: you cannot use setjmp () to move out of slice statements, costatements, or

cofunctions.
Typical usage:
switch (setjmp(e)) {
case O: // first time
£0); // try to execute f(), may call longjmp()
break; // if we get here, f() was successful
case 1: // to get here, f() called longjmp()
//* do exception handling *//
break;
case 2: // similar to above, but different exception code
}
£0 A
g ()
}
g() |
longjmp (e, 2) ; // exception code 2, jump to setjmp() statement,
// setjmp() returns 2, so execute
// case 2 in the switch statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returns zero if it is executed. After longjmp () is executed, the program counter, stack pointer
and etc. are restored to the state when setjmp () was executed the first time. However, this time

setjmp () returns whatever value is specified by the 1ongjmp () statement.

HEADER
setjmp.h

SEE ALSO
longjmp

Dynamic C Function Reference Manual digi.com

406

http://www.digi.com

SetSerialTATxRValues

long SetSerialTATxRValues(long bps, char *divisor, int tatXr);

DESCRIPTION

Sets up the possibly shared serial timer (TATxR) resources required to achieve, as closely as
possible, the requested serial bps rate. The algorithm attempts to find, when necessary and if
possible, the lowest value for the TAT1R that will precisely produce the requested serial bps rate.
For this reason, an application that requires the TAT1R to be shared should generally first set up its
usage with (1) the most critical timer A1 cascade rate, or (2) the lowest timer A1 cascade rate. That
is, consider setting up the most critical stage (PWM, servo, triac, ultra-precise serial rate, etc.) first,
else set up the slowest usage (often, the lowest serial rate) first.

Note that this function provides no TATxR resource sharing protection for an application that uses
any of the individual TATXR resources either directly or indirectly. For example, this function
affords no protection to an application that sets a direct usage TAT7R timer interrupt and also opens
serial port D such that TAT7R is used to set the serial data rate.

A run time error occurs if parameter(s) are invalid. Also, this function is not reentrant.

PARAMETERS
bps The requested serial bits per second (BPS, baud) rate.
divisor An optional pointer to the caller's serial timer divisor variable. If the caller
is not interested in the actual serial timer (TATXR) divisor value that is set
by this function, then NULL may be passed.
tatXr The TATxXR for the serial timer whose value(s) are to be set. Use exactly

one of the following macros:

* TAT4R for serial port A
» TATS5R for serial port B
TAT6R for serial port C
TAT7R for serial port D
TAT2R for serial port E
TAT3R for serial port F

RETURN VALUE
The actual serial rate BPS (baud) setting that was achieved.

LIBRARY
sys.lib

SEE ALSO
TATIR SetValue

Dynamic C Function Reference Manual digi.com 407

http://www.digi.com

set timeout

SYNTAX

unsigned long set_timeout (unsigned seconds);
DESCRIPTION

Set a (+0/-1 millisecond precision) time-out period, specified in units of one second. The following
example code snippet sets a ten second time-out and then busy-waits until the time-out has expired:

unsigned long my timeout;

my timeout = set timeout (100U);
while (!chk timeout (my timeout))

{; // may do something here while busy-waiting for time-out expiry}
PARAMETER
seconds: The desired time-out period, specified in units of one second.

RETURN VALUE

The milliseconds time-out expiry value, relative to the current system
milliseconds timer count.

LIBRARY
STDVDRIVER.LIB

SEE ALSO

chk timeout

Dynamic C Function Reference Manual digi.com 408

http://www.digi.com

setvbuf

int setvbuf(FILE far *stream, char far *buf, int mode, size t

bufsize)

DESCRIPTION

This function can be used after st ream has been opened, but before any other operation has been
performed on the stream. It changes the buffering mode and, optionally, the buffer location for a

given stream.
PARAMETERS
Parameter

Parameter

Parameter

Parameter

RETURN VALUE

Stream to change buffering for.

If not set to NULL, stream will use this buffer instead of an internally-
allocated one.

Determines how the stream will be buffered. Set to one of the following
modes:

_IOFBF - fully buffered

_IOLBF - line buffered

_IONBEF - unbuffered
Line buffering only affects when output is flushed, it does not affect
buffered reading.

The size of the buffer specified in parameter 2. Ignored if <buf> is set to
NULL. Must be at least BUFSIZ bytes.

0 on success, non-zero on failure.

-EBADF if stream is NULL or invalid

-EINVAL if <mode> isn't valid or <buf> is not NULL and <bufsize> less than BUFSIZ
-EPERM if unable to change buffering for this stream

HEADER
stdio.h

SEE ALSO
setbuf

Dynamic C Function Reference Manual digi.com

409

http://www.digi.com

SetVectExtern

unsigned SetVectExtern(int interruptNum, void *isr);

DESCRIPTION
Function to set one of the external interrupt jump table entries for the Rabbit CPU. All Rabbit
interrupts use jump vectors. See SetVectIntern () for more information.

The following table shows the vectNum argument that should be used for each peripheral or RST.
The offset into the vector table is also shown.

Peripheral or RST vectNum Vector Table Offset Rabbit 6000 Only
External Interrupt 0 0x00 0x0000
External Interrupt 1 0x01 0x0010
External Interrupt 2 0x02 0x0020 X
External Interrupt 3 0x03 0x0030
External Interrupt 4** 0x04 0x0040 X
Hardware Breakpoint Interrupt** 0x04 0x0040
External Interrupt 5 0x05 0x0050 X
External Interrupt 6 0x06 0x0060 X
External Interrupt 7 0x07 0x0070 X
DMA 0 0x08 0x0080 X
DMA 1 0x09 0x0090
DMA 2 0x0A 0x00A0
DMA 3 0x0B 0x00BO
DMA 4 0x0C 0x00CO
DMA 5 0x0D 0x00D0
DMA 6 0x0E 0x00EO
DMA 7 O0xO0F 0x00F0
[Reserved for Future Use] 0x10 0x0100 X
[Reserved for Future Use] 0x11 0x0110 X
[Reserved for Future Use] 0x12 0x0120 X
[Reserved for Future Use] 0x13 0x0130 X

Dynamic C Function Reference Manual digi.com 410

http://www.digi.com

Peripheral or RST vectNum Vector Table Offset Rabbit 6000 Only
Hardware Breakpoint Interrupt** 0x14 0x0140 X
[Reserved for Future Use] 0x15 0x0150 X
[Reserved for Future Use] 0x16 0x0160 X
[Reserved for Future Use] 0x17 0x0170 X
DMA 8 0x18 0x0180 X
DMA 9 0x19 0x0190 X
DMA 10 Ox1A 0x01A0 X
DMA 11 0x1B 0x01B0 X
DMA 12 0x1C 0x01CO X
DMA 13 0x1D 0x01DO X
DMA 14 Ox1E 0x01EOQ X
DMA 15 Ox1F 0x01F0 X

** On the Rabbit 4000, the EIR table address of HW breakpoints was 0x0040. The required
size of the EIR (XINTVEC TABLE SIZE) is 256 bytes. On the Rabbit 6000, the EIR table ad-
dress of HW breakpoints was moved to 0x0140. The required size of the EIR is 512 bytes.

PARAMETERS

PARAMETERI1 External interrupt number. 0-0x1F accepted for Rabbit 6000, otherwise 0-

0xOF

PARAMETER2 ISR handler address. Must be a root address.

RETURN VALUE

0 failed
=0 jump address in vector table

LIBRARY
SYS.LIB

SEE ALSO

GetVectExtern, SetVectlIntern,

GetVectIntern

Dynamic C Function Reference Manual

digi.com

41

http://www.digi.com

SetVectIntern

unsigned SetVectIntern(int vectNum, void * isr);

DESCRIPTION

Sets an internal interrupt table entry. All Rabbit interrupts use jump vectors. This function writes a
jp instruction (0xC3) followed by the 16 bit ISR address to the appropriate location in the vector
table. The location in RAM of the vector table is determined and set by the BIOS automatically at

startup. The start of the table is always on a 0x100 boundary.

It is perfectly permissible to have ISRs in xmem and do long jumps to them from the vector table.
It is even possible to place the entire body of the ISR in the vector table if it is 16 bytes long or less,

but this function only sets up jumps to 16 bit addresses.

The following table shows the vectNum value for each peripheral or RST. The offset into the

vector table is also shown. The following vectors are valid for all Rabbit processors.

Peripheral or RST vectNum Vector Table Offset
Periodic interrupt 0x00 0x00
RST 10 instruction 0x02 0x20
RST 38 instruction 0x07 0x70
Slave Port 0x08 0x80
Timer A 0x0A 0xA0
Timer B 0x0B 0xBO
Serial Port A 0x0C 0xCO
Serial Port B 0x0D 0xDO
Serial Port C O0x0E O0xEO
Serial Port D OxOF 0xFO

The following vectors are valid starting with the Rabbit 3000.

Peripheral or RST vectNum Vector Table Offset
Input Capture Ox1A 0x01A0
Quadrature Encoder 0x19 0x0190
Serial port E 0x1C 0x01CO
Serial port F 0x1D 0x01DO0

Dynamic C Function Reference Manual

digi.com

412

http://www.digi.com

The following vectors are valid starting with the Rabbit 3000 Revision 1.

Peripheral or RST vectNum Vector Table Offset
Pulse Width Modulator 0x17 0x0170
Secondary Watchdog 0x01 0x10

The following vectors are valid starting with the Rabbit 4000.

Peripheral or RST vectNum Vector Table Offset
Timer C Ox1F 0x01F0
Network Port A Ox1E 0x01EO

The following three RSTs are included for completeness, but should not be set by the user as

they are used by Dynamic C.

Peripheral or RST vectNum Vector Table Offset
RST 18 instruction 0x03 0x30
RST 20 instruction 0x04 0x40
RST 28 instruction 0x05 0x50
PARAMETERS
vectNum Interrupt number. See the above table for valid values.
isr ISR handler address. Must be a root address.

RETURN VALUE

Address of vector table entry, or zero if vectNum is not valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectIntern

Dynamic C Function Reference Manual

digi.com

413

http://www.digi.com

sf getPageCount

long sf getPageCount(const sf device * dev);

DESCRIPTION

Return number of pages in a flash device.

PARAMETER

dev Pointer to sf device struct for initialized flash device.

RETURN VALUE
Number of pages.

LIBRARY
SFLASH.LIB

sf getPageSize

unsigned int sf getPageSize(const sf device * dev);

DESCRIPTION

Return size (in bytes) of a page on the current flash device.

PARAMETER

dev Pointer to s£ device struct for initialized flash device.

RETURN VALUE
Bytes in a page.

LIBRARY
SFLASH.LIB

Dynamic C Function Reference Manual digi.com

414

http://www.digi.com

sf_init

int sf init(void);

DESCRIPTION

Initializes serial flash chip. This function must be called before the serial flash can be used.
Currently supported devices are:

e AT45DB041
e AT45DBO081
e AT45DB642
e AR45DB1282

Note: This function blocks and only works on boards with one serial flash device.
RETURN VALUE

0 for success

-1 if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY

SFLASH.LIB

Dynamic C Function Reference Manual digi.com 415

http://www.digi.com

sf initDevice

int sf initDevice(sf_device * dev, int cs_port, char * cs_shadow,

int cs_pin) ;

DESCRIPTION

Replaces sf init ().

The function sfspi init () must be called before any calls to this function. Initializes serial
flash chip. This function must be called before the serial flash can be used. Currently supported

devices are:

e AT45DB041
e AT45DBO081
o AT45DB642
e AR45DB1282

PARAMETERS

dev

cs_port

cs_shadow

cs_pin
RETURN VALUE

0 for success

Pointer to an empty s£ device struct that will be filled in on return. The

struct will then act as a handle for the device.

I/0O port for the active low chip select pin for the device.

Pointer to the shadow variable for cs_port.

I/O port pin number for the chip select signal.

-lif no flash chip detected
-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY

SFLASH.LIB

Dynamic C Function Reference Manual digi.com

416

http://www.digi.com

sf isWriting

int sf isWriting(const sf device * dev);

DESCRIPTION

Returns 1 if the flash device is busy writing to a page.
PARAMETER
dev Pointer to sf _device struct for initialized flash device

RETURN VALUE

1 busy
0 ready, not currently writing

LIBRARY
SFLASH.LIB

sf pageToRAM

int sf pageToRAM(long page);

DESCRIPTION
Command the serial flash to copy the contents of one of its flash pages into its RAM buffer.

Note: This function blocks and only works on boards with one serial flash device.
PARAMETER
page The page to copy.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Function Reference Manual digi.com

417

http://www.digi.com

sf RAMToPage

int sf RAMToPage(long page);

DESCRIPTION

Command the serial flash to write its RAM buffer contents to one of the flash memory pages.

Note: This function blocks and only works on boards with one serial flash device.
PARAMETER

page The page to which the RAM buffer contents will be written t

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Function Reference Manual digi.com 418

http://www.digi.com

sf readDeviceRAM

int sf readDeviceRAM(const sf device * dev, long buffer, int
offset, int len, int flags);

DESCRIPTION

Read data from the RAM buffer on the serial flash chip into an xmem buffer.

PARAMETERS
dev
buffer
offset
len

flags

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf device struct for initialized flash device.
Address of an xmem buffer.

The address in the serial flash RAM to start reading from.
The number of bytes to read.

Can be one of the following:

SF_BITSREVERSED - Reads the data in bit reversed order from the flash
chip. This improves speed, but the data must have been also written in
reversed order (see sf XWriteRAM)

SF_RAMBANKI(default) - Reads from the first RAM bank on the flash
device

SF_RAMBANK2 - Reads from the alternate RAM bank on the flash device

Dynamic C Function Reference Manual digi.com

419

http://www.digi.com

sf readPage

int sf readPage(const sf device * dev, int bank, long page);

DESCRIPTION
Replaces sf pageToRAM ().

Command the serial flash to copy from one of its flash pages to one of its RAM buffers.

PARAMETERS
dev Pointer to sf device struct for initialized flash device.
bank Which RAM bank to write the data to. For Atmel 45DBxxx devices, this
can be 1 or 2.
page The page to read from.

RETURN VALUE
0: Success
-1: Error
LIBRARY
SFLASH.LIB

sf_readRAM

int sf readRAM(char * buffer, int offset, int len);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to character buffer to copy data into.
offset Address in the serial flash RAM to start reading from
len Number of bytes to read

RETURN VALUE
0: Success
-1: Error
LIBRARY
SFLASH.LIB

Dynamic C Function Reference Manual digi.com 420

http://www.digi.com

sf_writeDeviceRAM

int sf writeDeviceRAM(const sf device * dev, long buffer, int
offset, int len, int flags);

DESCRIPTION

Write data to the RAM buffer on the serial flash chip from a buffer in xmem.

PARAMETER
dev
buffer
offset
len

flags

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf device struct for initialized flash device.
Pointer to xmem data to write into the flash chip RAM.
The address in the serial flash RAM to start writing at.
The number of bytes to write.

Can be one of the following:

* SF_BITSREVERSED - Allows the data to be written to the flash in
reverse bit order. This improves speed, and works fine as long as the data
is read back out with this same flag.

Ignored on R4000 based cores, but reserved for legacy code support.

* SF_RAMBANKI (default) - Writes to the first RAM bank on the flash
device

* SF_RAMBANK?2 - Writes to the alternate RAM bank on the flash device

Dynamic C Function Reference Manual digi.com

421

http://www.digi.com

sf writePage

int sf writePage(const sf device * dev, int bank, long page);

DESCRIPTION
Replaces sf RAMToPage ().

Command the serial flash to write its RAM buffer contents to one of its flash memory pages. Check
for completion of the write operation using sf isWriting().

PARAMETERS
dev Pointer to s£ device struct for initialized flash device.
bank Which RAM bank to write the data from. For Atmel 45DBxxx devices, this
can be 1 or 2
page The page to write the RAM buffer to
RETURN VALUE
0: Success
-1: Error
LIBRARY

SFLASH.LIB

Dynamic C Function Reference Manual digi.com 422

http://www.digi.com

sf_writeRAM

int sf writeRAM(const char * buffer, int offset, int len);

DESCRIPTION
Write data to the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to data that will be written the flash chip RAM.
offset Address in the serial flash RAM to start writing at.
len Number of bytes to write.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

sfspi_ init

int sfspi_init(void);

DESCRIPTION
Initialize SPI driver for use with serial flash. This must be called before any calls to
sf initDevice().

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Function Reference Manual digi.com 423

http://www.digi.com

signal

void (*signal(int sig, void (*func) (int))) (int)

DESCRIPTION
Chooses one of three ways to handle receipt of a given signal.
e [f<func> is SIG_DFL, default handling will occur.
e [f<func>is SIG_IGN, the signal is ignored.

¢ Otherwise, <func> should point to a function to be called when that signal occurs. Such a
function is called a signal handler.

When a signal occurs, if <func> points to a function, the following occurs:
e The equivalent of signal(sig, SIG_DFL) is executed.
e <func> is called with <sig> as the parameter.

e <func> can return and execution will continue at the point it was interrupted, or it can
terminate by calling abort(), exit() or longjmp(). Of course, the SIGABRT handler should not
call abort().

PARAMETERS

Parameter 1 Signal to handle. Must be one of the following:

SIGABRT: Abnormal termination, such as initiated by abort().
SIGFPE: Floating-point exception (e.g., div by zero, overflow).
SIGILL: Illegal instruction.

SIGINT: Interactive attention signal.

SIGSEGV: Invalid access to storage.

SIGTERM: Termination request sent to program

The current version of Dynamic C does not generate any signals. Future
versions may send SIGABRT when abort() is called and floating-point
errors may call SIGFPE instead of generating exceptions.

Parameter 2 Either SIG DFL (for default handling), SIG _IGN (to ignore) or the
address of a function to handle the signal. Such a function should accept a
single integer parameter (the signal generated) and return nothing.

If the signal was not generated by calling abort() or raise(), this function
shouldn't call any standard library functions except the signal function
itself (with the same signal number as passed to the signal handler). It
should not refer to any global variables other than those declared as type
“volatile sig_atomic t”.

Dynamic C Function Reference Manual digi.com 424

http://www.digi.com

RETURN VALUE

On success, returns the previous handler for the signal (which could be SIG_DFL or SIG_IGN). On

failure, sets <errno> to EINVAL and returns SIG_ERR.

HEADER
signal.h

SEE ALSO

raise

sin

double sin(double £X)
float sinf(float £X)

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the sine of x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Angle in radians.

RETURN VALUE

Sine of x.

HEADER
math.h

SEE ALSO

sinh, asin, cos, tan

Dynamic C Function Reference Manual digi.com

425

http://www.digi.com

sinh

double sinh (double x);
float sinhf(float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the hyperbolic sine of x. This functions takes a unitless number as a parameter and
returns a unitless number.

PARAMETERS
x Value to compute.

RETURN VALUE
The hyperbolic sine of x.

If x > 89.8 (approx.), the function returns INF and signals a range error. If x <—89.8 (approx.), the
function returns —INF and signals a range error.

HEADER
math.h

SEE ALSO

sin, asin, cosh, tanh

snprintf

SEE
printf

SPIinit

void SPIinit(void) ;
DESCRIPTION

Initialize the SPI port parameters for a serial interface only. This function does nothing for a parallel
interface. A description of the values that the user may define before the #use SPI.LIB
statement is found at the top of the library Lib\Spi\Spi.lib.

LIBRARY
SPI.LIB
SEE ALSO
SPIRead, SPIWrite, SPIWrRd

Dynamic C Function Reference Manual digi.com 426

http://www.digi.com

SPIRead

void SPIRead(void * DestAddr, int ByteCount)

DESCRIPTION

Reads a block of bytes from the SPI port. The variable SPIxor needs to be set to either 0x00 or
O0xFF depending on whether or not the received signal needs to be inverted. Most applications will

not need inversion. SPIinit () sets the value of SPIxor to 0x00.

IfSPI SLAVE RDY PORT isdefined for a slave device the driver will turn on the bit immediately
upon activating the receiver. It will then wait for a byte to become available then turn off the bit.

The byte will not be available until the master supplies the 8 clock pulses.

If SPT_SLAVE RDY PORT is defined for a master device the driver will wait for the bit to become

true before activating the receiver and then wait for it to become false after receiving the byte.

Note for Master: the receiving device Chip Select must already be active

PARAMETERS
DestAddr Address to store the data
ByteCount Number of bytes to read

RETURN VALUE
Master: none.
Slave: 0 = no CS signal, no received bytes.
1 = CS, bytes received.
LIBRARY
SPT.LIB

SEE ALSO
SPIinit, SPIWrite, SPIWrRd

Dynamic C Function Reference Manual digi.com

427

http://www.digi.com

SPIWrite

int SPIWrite(void * SrcAddr, int ByteCount)

DESCRIPTION
Write a block of bytes to the SPI port.

If SPT_SLAVE RDY PORT is defined for a slave device the driver will turn on the bit immediately
after loading the transmit register. It will then wait for the buffer to become available then turn off
the bit. The buffer will not become available until the master supplies the first clock.

If SPTI_SLAVE RDY PORT is defined for a master device the driver will wait for the bit to become
true before transmitting the byte and then wait for it to become false after transmitting the byte.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
ByteCount Number of bytes to write.

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no transmitted bytes.
1 = CS, bytes transmitted.
LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrRd

Dynamic C Function Reference Manual digi.com 428

http://www.digi.com

SPIWrRd

void SPIWrRd(void * SrcAddr, void * DstAddr, int ByteCount);

DESCRIPTION
Read and Write a block of bytes from/to the SPI port.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
DstAddr Address to put received data.
ByteCount Number of bytes to read/write. The maximum value is 255 bytes. This limit
is not checked! The receive buffer MUST be at least as large as the number
of bytes!

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no received/transmitted bytes.
1 = CS, bytes received/transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrite

sprintf

SEE
printf

Dynamic C Function Reference Manual digi.com 429

http://www.digi.com

sqrt

double sqrt(double x);
float sqrtf(float x)

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Calculate the square root of x.
PARAMETERS
x Value to compute.

RETURN VALUE

The square root of x.

HEADER
math.h

SEE ALSO
exp, pow, powlQ

srand

void srand(unsigned int seed);

Note: The srand() function in versions of Dynamic C prior to 10.64 was used to seed a
floating point pseudo-random generator. That function was renamed to srandf() in the

10.64 release in favor of the ANSI C90 functionality.

DESCRIPTION

Sets the seed for the pseudo-random number generator used by rand(). The generated sequence is
always the same for a given seed value. If rand() is called before srand(), the sequence is identical

to one seeded by calling srand(1).
PARAMETER
seed New seed value.

HEADER
math.h

SEE ALSO

rand, rand, randg

Dynamic C Function Reference Manual digi.com

430

http://www.digi.com

strcat

NEAR SYNTAX: char * n strcat(char * dst, const char * src);
FAR SYNTAX: char far * _f strcat(char far * dst, const char far *
src);

Note: By default, strcat () isdefinedto n strcat ().

DESCRIPTION

Concatenate string src to the end of dst.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE

Pointer to destination string.

HEADER
string.h

SEE ALSO

strncat, strcpy

Dynamic C Function Reference Manual digi.com 431

http://www.digi.com

strchr

NEAR SYNTAX: char * n strchr(const char * src, char ch);
FAR SYNTAX: char far * _f strchr(const char far * src, char ch);

Note: By default, strchr () isdefinedto n strchr ().

DESCRIPTION

Scans a string for the first occurrence of a given character.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with f strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n _ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to the first occurrence of ch in src.
Null if ch is not found.

HEADER
string.h

SEE ALSO

memchr, strtok, strrchr, strstr, strspn

Dynamic C Function Reference Manual digi.com 432

http://www.digi.com

strcmp

int strcmp(const char far * strl, const char far * str2)

DESCRIPTION

Performs unsigned character by character comparison of two null terminated strings.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strlislessthan str2 because character in str1l is less than corresponding character in
str2, or strl is shorter than but otherwise identical to str2.

=0: strl isidentical to str2

>0: strl is greater than st r2 because character in st r1 is greater than corresponding char-
acter in str2, or str2 is shorter than but otherwise identical to str1.

HEADER
string.h

SEE ALSO

strncmp, strcmpi, strncmpi

Dynamic C Function Reference Manual digi.com

433

http://www.digi.com

strcmpi

int strcmpi (const char far * strl, const char far * str2)

Note: By default, st rcmpi () is definedto n strcmpi ().

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two null terminated
strings.
PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strlislessthan str2 because character in str1l is less than corresponding character in
str2,or strl is shorter than but otherwise identical to str2.

=0: strl isidentical to str2.

>0: strl is greater than st r2 because character in st r1 is greater than corresponding char-
acter in str2, or str2 is shorter than but otherwise identical to str1.

LIBRARY
STRING.LIB

SEE ALSO

strncmpi, strncmp, strcmp

Dynamic C Function Reference Manual digi.com

434

http://www.digi.com

strcoll

int strcoll(const char far *strl, const char far *str2)

DESCRIPTION

Compare two strings using the current locale. Since Dynamic C only supports the “C” locale, this
function is the same as calling strcmp ().

PARAMETER
PARAMETER 1 Pointer to string 1.
PARAMETER 2 Pointer to string 2.

RETURN VALUE

=0: If strlislessthan str2 charin strl is less than corresponding charin str2 strlis
shorter than but otherwise identical to str2.

=0: If strlisequalto str2 strl isidentical to str2

>0: If strl is greater than str2 char in str2 is greater than corresponding char in str2
str2 is shorter than but otherwise identical to strl

HEADER
string.h

SEE ALSO

strxfrm, setlocale

Dynamic C Function Reference Manual digi.com 435

http://www.digi.com

strcpy

NEAR SYNTAX: char * n strcpy(char * dst, const char * src);
FAR SYNTAX: char far * _f strcpy(char far * dst, const char far *
src);

Note: By default, strcpy () isdefinedto n strcpy ().

DESCRIPTION

Copies one string into another string, including the null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE

Pointer to destination string.

HEADER
string.h

SEE ALSO
strncpy

Dynamic C Function Reference Manual digi.com 436

http://www.digi.com

strcspn

size_t strcspn(const char far * sl, const char far * s2);

DESCRIPTION

Scans a string for the initial segment in src containing only characters NOT specified in brk.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING.LIB

SEE ALSO

memchr, strchr, strpbrk, strrchr, strstr, strtok, strspn

strerror

char far *strerror(int errnum)

DESCRIPTION

Returns an error message string for the errnum.
PARAMETERS
Parameter 1 Error number to look up.

RETURN VALUE

String with error message. This string should not be modified by the caller, and may be overwritten
by a subsequent call to strerror ().

HEADER
string.h

SEE ALSO

perror

Dynamic C Function Reference Manual digi.com 437

http://www.digi.com

strftime

size_t strftime(char far *s, size_ t maxsize, const char far *format,
const struct tm far *timeptr)

DESCRIPTION
Formats a time as a printable string, using a format string (similar, but different than the formats
used by printf).
PARAMETER
s Buffer to hold formatted string.
maxsize Size of buffer.
format Format to use. Consists of zero or more conversion specifiers and ordinary

characters. A conversion specifier consists of a % character followed by a
single character that determines what is written to the buffer. All other
characters, including the null terminator, are copied to the buffer
unchanged.

Each conversion specifier is replaced by appropriate characters described
in the following list. The appropriate characters are determined by the
LC TIME category of the current locale and the values in the struct tm
pointed to by timeptr.

Note: Dynamic C only includes support for the “C” locale.

%a the locale's abbreviated weekday name.

$A the locale's full weekday name.

%$b the locale's abbreviated month name.

%$B the locale's full month name.

%c the locale's appropriate date and time representation.

%$C the century (year divided by 100 and truncated into an
integer).

$d the day of the month as a decimal number (01-31).

%D equivalent to $m/%$d/%y .

%e the day of the month as a decimal number, leading space
(1-31).

$F equivalent to $Y-%m-%d, the ISO 8601 date format.

$h equivalent to $b.

%$H the hour (24-hour clock) as a decimal number (00-23).

Dynamic C Function Reference Manual digi.com 438

http://www.digi.com

$I the hour (12-hour clock) as a decimal number (01-12).

%3 the day of the year as a decimal number (001-366).

$m the month as a decimal number (01-12).

$M the minute as a decimal number (00-59).

%$n replaced by a newline character ("\n').

$p the locale's equivalent of either AM or PM.

%R equivalent to $H: $M.

%S the second as a decimal number (00-60).

st replaced by a horizontal-tab ("\t').

$T equivalent to $H: $M: %S, the ISO 8601 time format.

$u replaced by the ISO 8601 weekday as a decimal number (1-
7), where Monday is 1.

$U the week number of the year (the first Sunday as the first
day of week 1) as a decimal number (00-53).

W the weekday as a decimal number (0-6), where Sunday is 0.

SW the week number of the year (the first Monday as the
first day of week 1) as a decimal number (00-53).

$X the locale's appropriate date representation.

$X the locale's appropriate time representation.

Sy the year without century as a decimal number (00-99).

$Y the year with century as a decimal number.

%2 the time zone name, or by no characters if no time zone is
determinable.

%% replaced by %.

If a conversion specification is not one of the above, it will be replaced by
a single question mark character (?).

Formats %3, U, $W and %Z are only available if the macro ANST TIME
is defined. The legacy Dynamic C struct tm doesn't include the
necessary tm yday and tm_isdst members required for these formats.

This implementation supports all specifiers listed are part of the ANSI
C89/ISO C90 spec. Additionally, it supports the following specifiers from
the C99 spec: $C, %D, %e, %F, %h, %n, %R, %t, $T.Itdoes
not support the following C99 specifiers: g, %G, %r, %V, %z.

timeptr Time to print.

Dynamic C Function Reference Manual digi.com 439

http://www.digi.com

HEADER
timer.h

RETURN VALUE

The number of characters written to s, not including the null terminator. If the destination buffer
was not large enough, to hold the formatted string, strftime () returns 0 and the contents of s
are indeterminate.

SEE ALSO

clock, difftime, mktime, time, asctime, ctime, gmtime, localtime

Dynamic C Function Reference Manual digi.com 440

http://www.digi.com

strlen

size_t strlen(const char far * s);

DESCRIPTION
Calculate the length of a string.

PARAMETERS
s Character string.

RETURN VALUE

Number of bytes in a string.

HEADER
string.h

Dynamic C Function Reference Manual digi.com 441

http://www.digi.com

strncat

NEAR SYNTAX: char * n strncat(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncat(char far * dst, char far * src,
size_t n);

Note: By default, strncat () isdefinedto n strncat ().

DESCRIPTION

Appends one string to another up to and including the null terminator or until n characters are
transferred, followed by a null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE

Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strcat

Dynamic C Function Reference Manual digi.com 442

http://www.digi.com

strncmp

int strncmp(const char far * strl, const char far * str2, unsigned n)

DESCRIPTION
Performs unsigned character by character comparison of two strings of length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare. If zero, both strings are considered

equal.

RETURN VALUE

<0: strl is less than str2 because
char in strl is less than corresponding char in str2.

=0: strl isidentical to str2

>0: strl is greater than str2 because
char in strl is greater than corresponding char in str2.

HEADER
string.h

SEE ALSO

strcmp, strcmpi, strncmpi

Dynamic C Function Reference Manual digi.com

443

http://www.digi.com

strncmpi

int strncmpi (const char far * strl, const char far * str2, unsigned n)

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two strings of length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare, if zero then strings are considered

equal
RETURN VALUE
<0: strl isless than str2 because charin str1l is less than corresponding char in str2.
=0: strl isidentical to str2

>0: strl is greater than str2 because char in str1 is greater than corresponding char in
str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmpi, strcmp, strncmp

Dynamic C Function Reference Manual digi.com 444

http://www.digi.com

strncpy

NEAR SYNTAX: char * n strncpy(char *dst, const char *src, size_t n);
FAR SYNTAX: char far *_f strncpy(char far *dst, const char far *src,
size t n);

Note: By default, strncpy () isdefinedto n strncpy ().

DESCRIPTION

Copies a given number of characters from one string to another and padding with null characters or
truncating as necessary.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE

Pointer to destination string.

HEADER
string.h
SEE ALSO
strcpy, copy

Dynamic C Function Reference Manual digi.com 445

http://www.digi.com

strpbrk

NEAR SYNTAX: char * n strpbrk(const char * sl, const char * s2);
FAR SYNTAX: char far * _f strpbrk(const char far * si,
const char far * s2);

Note: By default, st rpbrk () isdefinedto n strpbrk().

DESCRIPTION

Scans a string for the first occurrence of any character from another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of a character contained in s2 in s1. Returns null if not
found.

HEADER
string.h

SEE ALSO

memchr, strchr, strrchr, strstr, strtok, strcspn, strspn

Dynamic C Function Reference Manual digi.com 446

http://www.digi.com

strrchr

NEAR SYNTAX: char * n strrchr(const char * s, int c);
FAR SYNTAX: char far * _f strrchr(const char far * s, int c);

Note: By default, strrchr () isdefinedto n strrchr().

DESCRIPTION

Similar to strchr, except this function searches backward from the end of s to the beginning.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with f strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n _ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
s String to be searched
c Search character

RETURN VALUE

Pointer to last occurrence of ¢ in s. If ¢ is not found in s, return null.

HEADER
string.h

SEE ALSO

memchr, strchr, strpbrk, strstr, strtok, strcspn, strspn

Dynamic C Function Reference Manual digi.com 447

http://www.digi.com

strspn

size_t strspn(const char far * src, const char far * brk);

Note: By default, strspn () isdefinedto n strspn().

DESCRIPTION

Scans a string for the first segment in src containing only characters specified in brk.

PARAMETERS
src String to be scanned
brk Set of characters

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING.LIB

SEE ALSO

memchr, strchr, strpbrk, strrchr, strstr, strtok, strcspn

Dynamic C Function Reference Manual digi.com

448

http://www.digi.com

strstr

NEAR SYNTAX: char * n strstr(const char *sl, char *s2);
FAR SYNTAX: char far * _f strstr(const char far * sl, char far * s2);

Note: By default, strstr () isdefinedto n strstr().

DESCRIPTION
Finds a substring specified by s2 in string s1.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING_ LIB will change all calls to functions in this
library to their far versions. The user may also explicitly call the far version with f strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n _ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Substring to search for.

RETURN VALUE

Pointer to the first occurrence of substring s2 in s1. Returns null if s2 is not found in s1.

HEADER
string.h

SEE ALSO

memchr, strchr, strpbrk, strrchr, strtok, strcspn, strspn

Dynamic C Function Reference Manual digi.com 449

http://www.digi.com

strtod

NEAR SYNTAX: double n strtod(const char *s, char **tailptr);
FAR SYNTAX: double _f strtod(const char far * s, char far * far *
tailptr);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION
Unless USE_FAR STRING LIBis defined, strtod is definedto n strtod.

Converts the initial portion of s to a floating point value. Skips leading spaces and converts a
sequence of digits with optional leading + or —, optional decimal point, and optional exponent.

PARAMETERS
s String to convert.
tailptr Address of a character pointer to store the address of the first character

after the converted value. Ignored if NULL.

RETURN VALUE

The floating point number represented by s.
If no conversion could be performed, zero is returned.

If the correct value is outside the range of representable values, plus or minus HUGE VAL is
returned (according to the sign of the value), and the global errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

LIBRARY
STDLIB.LIB

SEE ALSO
strtol (signed long), st rtoul (unsigned long)

NOTE

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_ FAR STRING LIB
will change all calls to functions in this library to their far versions by default. The user may also
explicitly call the far version with £ strfunc, where strfunc is the name of the string
function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is
defined and all pointers are near pointers, append n_to the function name, e.g. n strtod. For
more information about FAR pointers, see th Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

WARNING!! The far version of strtod is not backwards compatible with near point-
ers due to the use of a double pointer. The problem is that char ** tailptrisa 16-
bit pointer pointing to another 16-bit pointer. The far version,

Dynamic C Function Reference Manual digi.com 450

http://www.digi.com

char far * far * tailptr, isa 32-bit pointer pointing to a 32-bit pointer. If you
pass a double near pointer as the argument to the double far pointer function, the double
dereference (**tailptr) of the double pointer will attempt to access a 32-bit address
pointed to by the passed near pointer. The compiler does not know the contents of a
pointer and will assume the inner pointer is a 32-bit pointer. For more information about
FAR pointers, please see the Dynamic C Users Manual.

In the following examples:

[1 = 1byte
[1[1[x]I[x] indicates a NEAR address (16 bit) upcast to FAR

Passing a char far * far * ptrastailptr:

ADDRESS: DATA:

[10 10x]I[x] [vllyllylly] (tailptr)
[vllyllyllyl [z][z][z][z] (*tailptr)
[z]1[zllz]llz] [Correct contents] (**tailptr)

Passing a char ** ptr as tailptr: Note the first pointer can be upcast to FAR but the
compiler doesn't know to upcast the internal pointer.

ADDRESS: DATA:

[10 1[x]I[x] [1[0 1[ylly]l (tailptr)

[10 1[ylly] [?1[?2][z][z] (*tailptr)
[(?2]1[?2]1[z]1[z] [Incorrect contents] (**tailptr)

Dynamic C Function Reference Manual digi.com 451

http://www.digi.com

strtok

NEAR SYNTAX: char * n strtok(char * src, const char * brk);
FAR SYNTAX: char far * _f strtok(char far * src, const char far *
brk) ;

Note: By default, strtok () isdefinedto n strtok().

DESCRIPTION
Scans src for tokens separated by delimiter characters specified in brk.
First call with non-null for src. Subsequent calls with null for src continue to search tokens in the

string. If a token is found (i.e., delineators found), replace the first delimiter in src with a null
terminator so that src points to a proper null terminated token.

PARAMETERS
src String to be scanned, must be in SRAM, cannot be a constant. In contrast,
strings initialized when they are declared are stored in flash memory, and
are treated as constants.
brk Character delimiter.

RETURN VALUE

Pointer to a token. If no delimiter (therefore no token) is found, returns null.

HEADER
string.h

SEE ALSO

memchr, strchr, strpbrk, strrchr, strstr, strcspn, strspn

Dynamic C Function Reference Manual digi.com 452

http://www.digi.com

strtol

NEAR SYNTAX: long _n_strtol(char * sptr, char ** tailptr, int base);
FAR SYNTAX: long _f strtol(char far *sptr, char far * far * tailptr,
int base);

Note: By default, strtol () isdefinedto n strtol().

DESCRIPTION

ANSI string to long conversion.

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_FAR STRING LIB
will change all calls to functions in this library to their far versions by default. The user may also
explicitly call the far version with £ strfunc, where strfunc is the name of the string
function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the
near version. To explicitly call the near version when the USE_FAR STRING LIB macro is
defined and all pointers are near pointers, append n__to the function name, e.g. n strtod. For
more information about FAR pointers, see th Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

WARNING!! The far version of strtod is not backwards compatible with near pointers
due to the use of a double pointer. The problem is that char ** tailptr isa 16-bit
pointer pointing to another 16-bit pointer. The far version,

char far * far * tailptr, isa 32-bit pointer pointing to a 32-bit pointer. If you
pass a double near pointer as the argument to the double far pointer function, the double
dereference (**tailptr) of the double pointer will attempt to access a 32-bit address
pointed to by the passed near pointer. The compiler does not know the contents of a
pointer and will assume the inner pointer is a 32-bit pointer. For more information about
FAR pointers, please see the Dynamic C Users Manual.

In the following examples:

[1 = 1byte
[1[1([x]I[x] indicatesa NEAR address (16 bit) upcast to FAR

Passing a char far * far * ptrastailptr:

ADDRESS: DATA:

(10 1[x][x] [vllyllyllyl (tailptr)

(vl lyllylly] [z][z]lz][z] (*tailptr)
[z]1[zllz]llz] [Correct contents] (**tailptr)

Passingachar ** ptrastailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:

[10 10x]I[x] [10 1lyllyl (tailptr)

[10 1lylly] [?][?][z][z] (*tailptr)
[21[210[z]1lz] [Incorrect contents] (**tailptr)

Dynamic C Function Reference Manual digi.com 453

http://www.digi.com

PARAMETERS
Parameter 1 Character string representation of a signed long value.

Parameter 2 Address of a character pointer to store the address of the first character
after the converted value. Ignored if NULL.

Parameter 3 Radix to use for the conversion, can be zero (see below) or between 2 and
36. The number to convert must contain letters and digits appropriate for
expressing an integer of the given radix.

The letters from a (or A) to z (or Z) correspond to the values 10 to 35. Only
letters whose values are less than that of base are permitted.

If base is zero:

A leading Ox or 0X is skipped and base is set to 16.
A leading 0 is skipped and base is set to 8.
Without a leading 0, base is set to 10.

RETURN VALUE

The signed long number represented by sptr.
If no conversion could be performed, zero is returned.

If the correct value is outside the range of representable values, LONG MAX or LONG MIN is
returned (according to the sign of the value), and the global errno is set to ERANGE.

HEADER
stdlib.h

SEE ALSO

atoi, atoi

Dynamic C Function Reference Manual digi.com

454

http://www.digi.com

strtoul

NEAR SYNTAX: unsigned long _n strtoul (const char *sptr, char
**tailptr, int base)

FAR SYNTAX: unsigned long _f strtoul(const char far *sptr, char far
* far *tailptr, int base)

Unless USE_ FAR STRING LIBisdefined, strtoul isdefinedto n strtoul.

DESCRIPTION

Converts the initial portion of sptr to an unsigned long value. Skips leading spaces and optional
sign (+ or) character before converting a sequence of characters resembling an integer represented
in some radix determined by the value of base.

If the sign is -, result is negated before being returned.

PARAMETERS
sptr Character string representation of an unsigned long value.
tailptr Address of a character pointer to store the address of the first character
after the converted value. Ignored if NULL.
base Radix to use for the conversion, can be zero (see below) or between 2 and

36. The number to convert must contain letters and digits appropriate for
expressing an integer of the given radix.

The letters from a (or A) to z (or Z) correspond to the values 10 to 35. Only
letters whose values are less than that of base are permitted.

If base is zero:

A leading Ox or 0X is skipped and base is set to 16.
A leading 0 is skipped and base is set to 8.
Without a leading 0, base is set to 10.

RETURN VALUE

The unsigned long number represented by sptr.
If no conversion could be performed, zero is returned.

If the correct value is outside the range of representable values, ULONG MAX is returned, and the
global errno is set to ERANGE.

HEADER
stdlib.h

SEE ALSO
strtod (floating point), strtoul (unsigned long)

Dynamic C Function Reference Manual digi.com 455

http://www.digi.com

NOTE:

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_FAR STRING LIB
will change all calls to functions in this library to their far versions by default. The user may also

explicitly call the far version with £ strfunc, where strfunc is the name of the string

function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than the

near version. To explicitly call the near version when the USE_ FAR STRING LIB macro is

defined and all pointers are near pointers, append n_to the function name, e.g. n strtod. For

more information about FAR pointers, see th Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

WARNING!! The far version of strtod is not backwards compatible with near pointers
due to the use of a double pointer. The problem is that char ** tailptrisa 16-bit
pointer pointing to another 16-bit pointer. The far version,

char far * far * tailptr,isa 32-bit pointer pointing to a 32-bit pointer. If you
pass a double near pointer as the argument to the double far pointer function, the double
dereference (* *tailptr) of the double pointer will attempt to access a 32-bit address
pointed to by the passed near pointer. The compiler does not know the contents of a
pointer and will assume the inner pointer is a 32-bit pointer. For more information about
FAR pointers, please see the Dynamic C User s Manual.

In the following examples:

[] = 1byte
[[1[x]I[x] indicatesa NEAR address (16 bit) upcast to FAR

Passing a char far * far * ptrastailptr:

ADDRESS: DATA:

[10 1[x][x] [yllyllyllyl (tailptr)

(vl lyllyllyl [z]1[z][z][z] (*tailptr)
(z]1[zllz]llz] [Correct contents] (**tailptr)

Passing a char ** ptr as tailptr: Note the first pointer can
be upcast to FAR but the compiler doesn't know to upcast the

internal pointer.

ADDRESS: DATA:

[10 10x]I[x] [10 1[lyllyl (tailptr)

[10 1lylly] [2][?][z][z] (*tailptr)
[21[211[z]11lz] [Incorrect contents] (**tailptr)

Dynamic C Function Reference Manual digi.com

456

http://www.digi.com

strxfrm

size_ t strxfrm(char far *sl, const char far *s2, size t n)

Note: Since Dynamic C only supports the “C” locale, this function is equivalent to
snprintf(sl, n, "%$1s", s2).No transformation of characters is performed.

DESCRIPTION

Transforms s2 and places the resulting string in s1. The transformation is such that if st rcmp ()
is applied to two transformed strings, it returns the same result as calling strcoll () on the two
original strings.

No more than n characters are placed into s1, including the terminating null character.
PARAMETERS

Parameter 1 Buffer to hold the transformed string.

Parameter 2 String to transform.

Parameter 3 Maximum number of bytes (including null terminator) to write to buffer s1.

RETURN VALUE

Length of the transformed string (not including the null terminator). If the value returned is n or
more, the contents of s1 are indeterminate.

HEADER
string.h

Dynamic C Function Reference Manual digi.com 457

http://www.digi.com

_sysIsSoftReset

void _sysIsSoftReset(void);

DESCRIPTION

This function should be called at the start of a program if you are using protected variables. It
determines whether this restart of the board is due to a software reset from Dynamic C or a call to
forceSoftReset (). If it was a soft reset, this function then does the following:

e Calls prot init () toinitialize the protected variable mechanisms. It is up to the user
to initialize protected variables.

e Calls sysResetChain (). The user my attach functions to this chain to perform
additional startup actions (for example, initializing protected variables). If a soft reset did not
take place, this function calls prot recover () torecover any protected variables.

LIBRARY
SYS.LIB
SEE ALSO

chkHardReset, chkSoftReset, chkWDTO

sysResetChain

void sysResetChain (wvoid);

DESCRIPTION

This is a function chain that should be used to initialize protected variables. By default, it's empty.
LIBRARY

SYS.LIB

Dynamic C Function Reference Manual digi.com 458

http://www.digi.com

tan

double tan(double x);
float tanf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Compute the tangent of the argument.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

x Angle in radians.

RETURN VALUE

Returns the tangent of x, where —8 x PI < x <+8 X PI. If x is out of bounds, the function returns 0
and signals a domain error. If the value of x is too close to a multiple of 90° (P1/2) the function
returns INF and signals a range error.

HEADER
math.h

SEE ALSO

atan, cos, sin, tanh

Dynamic C Function Reference Manual digi.com 459

http://www.digi.com

tanh

double tanh (double x);
float tanhf (float x);

Note: The float and double types have the same 32 bits of precision.

DESCRIPTION

Computes the hyperbolic tangent of argument. This functions takes a unitless number as a parameter
and returns a unitless number.

PARAMETERS
x Float to use in computation.

RETURN VALUE

Returns the hyperbolic tangent of x. If x >49.9 (approx.), the function returns INF and signals a
range error. If x < —49.9 (approx.), the function returns —INF and signals a range error.

HEADER
math.h

SEE ALSO

atan, cosh, sinh, tan

Dynamic C Function Reference Manual digi.com 460

http://www.digi.com

TAT 1R_SetValue

char TAT1R SetValue(int requestor, int value);

DESCRIPTION

If not already in use, or if in a compatible use, allocates the TAT1R resource (sets a new or keeps
the current TAT1R value) as requested. Also enables or disables the requestor's timer Al cascade
bit(s) in TACR or TBCR, as appropriate. When the timer B cascade from timer A1 is disabled in
TBCR the timer B “clocked by PCLK/2" is then enabled.

A run time error occurs if parameter(s) are invalid and also, this function is not reentrant.

Note: This function does not attempt to manage interrupts that are associated with timers
A or B; that work is left entirely up to the application.

PARAMETERS

requestor The requestor of the TAT1R resource. Use exactly one of the following
macros to specify the appropriate requestor:

* TATIR A1TIMER REQ (e.g., direct use of Timer A1)

* TAT1R A2TIMER REQ (e.g., use by serial port E)

* TATIR A3TIMER REQ (e.g., use by serial port F)

* TAT1R A4TIMER REQ (e.g., use by serial port A)

* TATIR AS5TIMER REQ (e.g., use by serial port B)

* TAT1R A6TIMER REQ (e.g., use by serial port C)

* TATIR A7TIMER REQ (e.g., use by serial port D)

* TAT1IR BTIMER REQ (e.g., use with PWM, servo or triac)

value Either the new TATI1R setting value (0 to 255, inclusive), or the macro
TAT1R RELEASE REQ to release the TATIR resource in use by the
specified requestor.

RETURN VALUE

The new or current TAT1R setting. The caller should check their requested new TAT1R value
against this return value. If the two values are not the same, the caller may decide the return value
is acceptable after all and make another request using the previous return value. A valid release
request always succeeds; in this case there is no need for the caller to check the return value.

LIBRARY
sys.lib

Dynamic C Function Reference Manual digi.com 461

http://www.digi.com

time

time t time(time_t far *timer)

DESCRIPTION

Determines the current calendar date/time.

PARAMETERS

timer Pointer to a time_t object to hold a copy of the return value.

RETURN VALUE

Returns the best approximation to the current calendar time.

The value (time t)-1 is returned if the calendar time is not available. If t imer is not NULL, the

return value is also assigned to the object it points to.

HEADER

time.h

SEE ALSO

clock, difftime, mktime, asctime,

strftime

localtime,

tm_rd

int tm_rd(struct tm * t);

DESCRIPTION

Reads the current system time from SEC_TIMER into the structure t.

WARNING!! The variable SEC TIMER is initialized when a program is started. If you
change the Real Time Clock (RTC), this variable will not be updated until you restart a
program, and the tm rd () function will not return the time that the RTC has been reset
to. The read rtc () function will read the actual RTC and can be used if necessary.

PARAMETERS

t Pointer to structure to store time and date.

RETURN VALUE

0: Successful.
—1: Clock read failed.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm wr

Dynamic C Function Reference Manual digi.com

462

http://www.digi.com

tmpfile

FILE far *tmpfile(void)

DESCRIPTION

Creates a temporary binary file (in wb+ mode) that is automatically deleted when it is closed.

RETURN VALUE

Returns a pointer to the opened file or NULL if the file cannot be created.

HEADER
stdio.h

SEE ALSO

tmpnam

tmpnam

char *tmpnam(char *s)

DESCRIPTION
Generates a string that is a valid file name and that is not the same as the name of an existing file.
The tmpnam function generates a different string each time it is called, up to TMP_MAX times.
In the current implementation, uses the pattern A : TEMP## # # . TMP to generate filenames.

PARAMETERS

Parameter 1: Bufferto hold the filename. Must be at least . tmpnam characters.

If NULL, tmpnam () will store the name in a static buffer. Subsequent
calls to tmpnam () may modify that buffer, making it a less-robust
method than passing in a buffer to use.
RETURN VALUE
Buffer containing filename (either the first parameter or a static buffer if the first parameter is
NULL).
HEADER
stdio.h

Dynamic C Function Reference Manual digi.com 463

http://www.digi.com

tm_wr

int tm wr(struct tm * t);

DESCRIPTION

Sets the system time from a tm struct. It is important to note that although tm rd () reads the
SEC_TIMER variable, not the RTC, tm wr () writes to the RTC directly, and SEC_TIMER is not
changed until the program is restarted. The reason for this is so that the DelaySec () function
continues to work correctly after setting the system time. To make tm rd () match the new time
written to the RTC without restarting the program, the following should be done:

tm wr (tm) ;
SEC _TIMER = mktime (tm);

But this could cause problems if a waitfor (DelaySec (n)) is pending completion in a
cooperative multitasking program or if the SEC_TIMER variable is being used in another way the
user, so user beware.

PARAMETERS

t Pointer to structure to read date and time from.

RETURN VALUE
0: Success .
-1: Failure.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm rd

Dynamic C Function Reference Manual digi.com 464

http://www.digi.com

tolower

int tolower(int c);

DESCRIPTION

[Pl

Convert alphabetic character “c” to its lower case equivalent.

PARAMETERS
c Character to convert

RETURN VALUE

Lower case alphabetic character.

HEADER
ctype.h

SEE ALSO

toupper, isupper, islower

toupper

int toupper(int c);

DESCRIPTION

Convert alphabetic character ¢ to its uppercase equivalent.

PARAMETERS
c Character to convert.

RETURN VALUE

Upper case alphabetic character.

HEADER
ctype.h

SEE ALSO

tolower, isupper, islower

Dynamic C Function Reference Manual digi.com

465

http://www.digi.com

U

ungetc

int ungetc(int ¢, FILE far *stream)

DESCRIPTION

Pushes c (converted to an unsigned char) back onto the input stream stream. The pushed-back
characters are returned by subsequent reads on that stream, in the reverse order of their pushing.

Calling fseek (), fsetpos () or rewind () on stream discards any characters pushed with
ungetc ().

One character of pushback is guaranteed. If ungetc () is called too many times on a stream
without an intervening read or file positioning operation (which clears the pushback buffer), the
operation may fail.

A successful call to ungetc () clears the end-of-file indicator for the stream. The value of the file
position indicator is decremented for each successful call to ungetc (). After reading or
discarding pushed characters, the position indicator will be the same as it was before the characters
were pushed.

PARAMETERS

Parameter 1 Character to push back onto the input stream. If ¢ is equal to the macro
EOF, the operation fails and the input stream is unchanged.

Parameter 2 Stream to push the character into.

RETURN VALUE
The character pushed back on success, EOF on failure.

HEADER
stdio.h

SEE ALSO

fgetc, getchar, ungetc, fgets, gets, fread, fputc, putc,
putchar, fputs, puts, fwrite

Dynamic C Function Reference Manual digi.com 466

http://www.digi.com

updateTimers

void updateTimers(void) ;

DESCRIPTION

Updates the values of TICK TIMER,MS TIMER, and SEC TIMER while running off the 32kHz
oscillator. Since the periodic interrupt is disabled when running at 32kHz, these values will not
update unless this function is called. This function is not task reentrant.

Only call this when running from the 32kHz clock, or immediately after switching from the 32kHz
clock back to the main clock.

Note: Your application must service the watchdogs manually if you are running off the
32kHz oscillator.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

use32kHzOsc

void use32kHzOsc(void) ;

DESCRIPTION

Sets the Rabbit processor to use the 32kHz real-time clock oscillator for both the CPU and
peripheral clock, and shuts off the main oscillator. If this is already set, there is no effect. This mode
should provide greatly reduced power consumption. Serial communications will be lost since
typical baud rates cannot be made from a 32kHz clock. Also note that this function disables the
periodic interrupt, so waitfor and related statements will not work properly (although
costatements in general will still work). In addition, the values in TICK_TIMER,MS TIMER, and
SEC_TIMER will not be updated unless you call the function updateTimers () frequently in
your code. In addition, you will need to call hitwd () periodically to hit the hardware watchdog
timer since the periodic interrupt normally handles that, or disable the watchdog timer before calling
this function. The watchdog can be disabled with Disable HW WDT ().

use32kHzOsc () is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, useClockDivider, updateTimers

Dynamic C Function Reference Manual digi.com 467

http://www.digi.com

useClockDivider

void useClockDivider(void) ;

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the peripheral
clock). If this is already set, there is no effect. Because the peripheral clock is not affected, serial
communications should still work. This function also enables the periodic interrupt in case it was
disabled by a call to use32kHz0Osc ().

This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

Dynamic C Function Reference Manual digi.com 468

http://www.digi.com

useClockDivider3000

void useClockDivider3000(int setting);

DESCRIPTION

Sets the expanded clock divider options for the Rabbit 3000 processor. Target communications will
be lost after changing this setting because of the baud rate change. This function also enables the
periodic interrupt in case it was disabled by a call to user32kHzOsc ().

The peripheral clock is also affected by this function. If you want to divide the main processor clock
and not the peripheral clock, you may use the function useClockDivider () to divide the main
processor clock by 8. To divide the main processor clock by any of the other allowable values (2, 4,
or 6) means using useClockDivider3000 () and thus dividing the peripheral clock as well.

This function is not task reentrant.
PARAMETER

setting Divider setting. The following are valid:

* CLKDIV 1 full speed main processor clock

* CLKDIV_2 - divide main processor clock by two
* CLKDIV_ 4 - divide main processor clock by four
* CLKDIV_6 - divide main processor clock by six
CLKDIV_8 - divide main processor clock by eight

RETURN VALUE

None.

LIBRARY
SYS.LIB

SEE ALSO

useClockDivider, useMainOsc, use32kHzOsc, set32kHzDivider

Dynamic C Function Reference Manual digi.com 469

http://www.digi.com

useMainOsc

void useMainOsc(void) ;

DESCRIPTION
Sets the Rabbit processor to use the main oscillator for both the CPU and peripheral clock. If this is
already set, there is no effect. This function also enables the periodic interrupt in case it was disabled
by a call to use32kHzOsc (), and updates the TICK_TIMER,MS TIMER, and SEC TIMER
variables from the real-time clock. This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO
use32kHzOsc, useClockDivider

Dynamic C Function Reference Manual digi.com 470

http://www.digi.com

\'

VdGetFreeWd

int VdGetFreeWd(char count);

DESCRIPTION

Returns a free virtual watchdog and initializes that watchdog so that the virtual driver begins
counting it down from count. The number of available virtual watchdogs is determined by the
macro N WATCHDOG, which is 10 by default. The default can be overridden by the user, e.g.,
#define N WATCHDOG 11.

The virtual driver is called every 0.00048828125 second. On every 128th call to it (i.e., every
62.5 ms), the virtual watchdogs are counted down and then tested. If any virtual watchdog reaches
zero, this is a fatal error. Once a virtual watchdog is active, it should reset periodically with a call to
VdHitWd () to prevent the count from reaching zero.

PARAMETERS
count 1 < count <=255

RETURN VALUE

Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRIVER.LIB

Dynamic C Function Reference Manual digi.com 471

http://www.digi.com

VdHitwd

int VAHitWd(int ndog);

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to
VdGetFreeWd () that obtained the virtual watchdog ndog.

The virtual driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is a
fatal error. Once a virtual watchdog is active it should reset periodically with a call to VAHi tWd ()
to prevent this.

IfN=2,VvdHitWd () will need to be called again for virtual watchdog ndog within 62.5 ms.

If N =255, vdHitWd () will need to be called again for virtual watchdog ndog within 15.9375
seconds.

PARAMETERS
ndog Id of virtual watchdog returned by VdGetFreeWd ()

LIBRARY
VDRIVER.LIB

vdInit

void vdInit(void);

DESCRIPTION

Initializes the Virtual Driver for all Rabbit boards. Supports DelayMs (), DelaySec (),
DelayTick().VdInit () is called by the BIOS unless it has been disabled.

LIBRARY
VDRIVER.LIB

Dynamic C Function Reference Manual digi.com 472

http://www.digi.com

VdReleaseWd

int VdReleaseWd(int ndog);

DESCRIPTION

Deactivates a virtual watchdog and makes it available for VdGetFreeWd () .
PARAMETERS
ndog Handle returned by VvdGetFreeWd ()

RETURN VALUE

0: ndog out of range.
1: Success.

LIBRARY
VDRIVER.LIB

EXAMPLE

// VdReleaseWd virtual watchdog example
main () {
int wd; // handle for a virtual watchdog
unsigned long tm;
tm = SEC TIMER;
wd = VdGetFreeWd (255) ; // wd activated, 9 virtual watchdogs
// now available. wd must be hit
// atleast every 15.875 seconds

while (SEC_TIMER - tm < 60) { // letitrun for a minute
VdHitwWd (wd) ; // reset counter back to 255
}
VdReleaseWd (wd) // now 10 virtual watchdogs available
}
vfprintf
SEE
printf

Dynamic C Function Reference Manual digi.com

473

http://www.digi.com

vprintf

SEE
printf

Dynamic C Function Reference Manual digi.com 474

http://www.digi.com

W

vram2root

int vram2root(void * dest, int start, int length);

DESCRIPTION

This function copies data from the VBAT RAM. Tamper detection erases the VBAT RAM with any
attempt to enter bootstrap mode.

PARAMETERS
dest
start

length

LIBRARY
VBAT.LIB

SEE ALSO

root2vram

The address to which the data in the VBAT RAM will be copied.
The start location within the VBAT RAM (0-31).

The length of data to read from VBAT RAM. The length should be greater
than 0.

The parameters length + start should not exceed 32.

Dynamic C Function Reference Manual digi.com 475

http://www.digi.com

vsnprintf

SEE
printf

vsprintf

SEE
printf

write_rtc

void write_rtc(unsigned long int time);

DESCRIPTION

Updates the Real-Time Clock (RTC). This function does not stop or delay periodic interrupt. It does
not affect the SEC TIMER or MS TIMER variables.

PARAMETERS
time 32-bit value representing the number of seconds since January 1, 1980.

LIBRARY
RTCLOCK.LIB

SEE ALSO

read rtc

Dynamic C Function Reference Manual digi.com 476

http://www.digi.com

writeUserBlock

int writeUserBlock (unsigned addr, void *source, unsigned numbytes) ;

DESCRIPTION

Rabbit-based boards have a System ID block located on the primary flash. (See the Rabbit
Microprocessor Designer's Handbook for more information on the System ID block.) Version 2 and
later of this ID block has a pointer to a User ID block: a place intended for storing calibration
constants, passwords, and other non-volatile data.

The User block is recommended for storing all non-file data. The User block is where calibration
constants are stored for boards with analog I/0. Space in the User block is limited to as small as
(8K - sizeof (SysIDBlock)) bytes, or less, if there are calibration constants.

writeUserBlock () writes a number of bytes from root memory to the User block. This block
is protected from normal writes to the flash device and can only be accessed through this function
or the function writeUserBlockArray ().

Using this function can cause all interrupts to be disabled for as long as 20 ms while a flash sector
erases, depending on the flash type. A single call can produce as many as four of these erase delays.
This will cause periodic interrupts to be missed, and can cause other interrupts to be missed as well.
Therefore, it is best to buffer up data to be written rather than to do many writes.

While debugging, several consecutive calls to this function can cause a loss of target serial
communications. This effect can be reduced by introducing delays between the calls, lowering the
baud rate, or increasing the serial time-out value in the project file.

Note: See the manual for your particular board for more information before overwriting
any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlock () should be called until it returns zero or a negative error code. A
positive return value indicates that the SPI port needed by the serial flash is in use by
another device. However, if using pC/OS-Il and SPI USE UCOS MUTEX is #defined,
then this function only needs to be called once. If the mutex times out waiting for the SPI
port to free up, the run time error ERR_SPI MUTEX ERROR will occur. See the descrip-
tion for rcm43 InitUCOSMutex () for more information on using pC/OS-II and
_SPI_USE UCOS_MUTEX.

Backwards Compatibility:

If the version of the System ID block doesn't support the User ID block, or no System ID block is
present, then 8K bytes starting 16K bytes from the top of the primary flash are designated the User
ID block area. However, to prevent errors arising from incompatible large sector configurations, this
will only work if the flash type is small sector. Rabbit Semiconductor manufactured boards with
large sector flash will have valid System and User ID blocks, so this should not be problem on
Rabbit boards.

If users create boards with large sector flash, they must install System ID blocks version 2 or greater
to use or modify this function.

Dynamic C Function Reference Manual digi.com 477

http://www.digi.com

PARAMETERS

addr Address offset in User block to write to.
source Pointer to source to copy data from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range

The return values below are new with Dynamic C 10.21:

-2: No valid user block found (block version 3 or later)
-3: flash writing error

The return values below are applicable only if SPI USE UCOS MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB
SEE ALSO

readUserBlock, writeUserBlockArray

Dynamic C Function Reference Manual digi.com 478

http://www.digi.com

writeUserBlockArray

int writeUserBlockArray(unsigned addr, void * sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Rabbit Semiconductor boards are released with System ID blocks located on the primary flash.
Version 2 and later of this ID block has a pointer to a User block that can be used for storing
calibration constants, passwords, and other non-volatile data. The User block is protected from
normal write to the flash device and can only be accessed through this function or
writeUserBlock ().

This function writes a set of scattered data from root memory to the User block. If the data to be
written are in contiguous bytes, using the function writeUserBlock () is sufficient. Use of
writeUserBlockArray () is recommended when the data to be written is in noncontiguous
bytes, as may be the case for something like network configuration data.

See the designer’s handbook for your Rabbit processor (e.g., the Rabbit 4000 Designer's Handbook)
for more information about the System ID and User blocks.

Note: Portions of the User block may be used by the BIOS for your board to store values,
e.g., calibration constants. See the manual for your particular board for more information
before overwriting any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using uC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur. See
the description for rcm43 InitUCOSMutex () for more information on using
uC/OS-Iland SPI USE UCOS MUTEX.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is present,
then the 8K bytes starting 16K bytes from the top of the primary flash are designated User block
area. This only works if the flash type is small sector. Rabbit manufactured boards with large sector
flash will have valid System ID and User blocks, so is not a problem on Rabbit boards. If users
create boards with large sector flash, they must install System ID blocks version 3 or greater to use
this function, or modify this function.

Dynamic C Function Reference Manual digi.com 479

http://www.digi.com

writeUserBlockArray

PARAMETERS
addr Address offset in User block to write to.
sources Array of pointer to sources to copy data from.
numbytes Array of number of bytes to copy for each source. The sum of the lengths
in this array must not exceed 32767 bytes, or an error will be returned.
numsources Number of data sources.

RETURN VALUE

0: Successful.
—1: Invalid address or range.
-2: No valid User block found (block version 3 or later).
-3: Flash writing error.

The return values below are applicable only if SPI USE UCOS MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

WrPortE

void WrPortE(unsigned int port, char * portshadow, int data_value);

DESCRIPTION

Writes an external I/O register with 8 bits and updates shadow for that register. The variable names
must be of the form port and portshadow for the most efficient operation. A null pointer may
be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external data register.
portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.
data_value Value to be written to the data register
LIBRARY
SYSTO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, BitRdPortkE,
BitWrPortE

Dynamic C Function Reference Manual digi.com 4380

http://www.digi.com

WrPortl

void WrPortI(int port, char * portshadow, int data_value);

DESCRIPTION

Writes an internal I/O register with 8 bits and updates shadow for that register.

PARAMETERS
port Address of data register.
portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.
data_value Value to be written to the data register
LIBRARY
SYSIO.LIB
SEE ALSO
RdPortI, BitRdPortI, BitRdPortE, BitWrPortI, RdPortE, WrPortE,
BitWrPortE

Dynamic C Function Reference Manual digi.com 481

http://www.digi.com

X

xalloc

long xalloc(long sz);

DESCRIPTION

Allocates the specified number of bytes in extended memory. Starting with Dynamic C version
7.04P3, the returned address is always even (word) aligned.

If xalloc () fails, a run-time error will occur. This is a wrapper function for xalloc (), for
backwards compatibility. It is the same as xalloc (&sz, 1, XALLOC MAYBBB) except that
the actual allocated amount is not returned since the parameter is not a pointer.

Starting with Dynamic C 9.30, xalloc () andrelated functions were modified so that they are now
driven by the compiler origin directives.

PARAMETERS

sz Number of bytes to allocate. This is rounded up to the next higher even
number.

RETURN VALUE

The 20-bit physical address of the allocated data: Success.
0: Failure.

Note: A run-time exception will occur if the function fails.

LIBRARY
MEM.LIB

SEE ALSO

root2xmem, xmem2root, xavail

Dynamic C Function Reference Manual digi.com 482

http://www.digi.com

_xalloc

long _xalloc(long * sz, word align, word type);

DESCRIPTION

Allocates memory in extended memory. If xalloc () fails, a runtime error will occur.
PARAMETERS

sz On entry, pointer to the number of bytes to allocate. On return, the pointed-
to value will be updated with the actual number of bytes allocated. This
may be larger than requested if an odd number of bytes was requested, or
if some space was wasted at the end because of alignment restrictions.

align Storage alignment as the log (base 2) of the desired returned memory
starting address. For example, if this parameter is “8,” then the returned
address will align on a 256-byte boundary. Values between 0 and 16
inclusive are allowed. Any other value is treated as zero, i.e., no required
alignment.

type This parameter is only meaningful on boards with more than one
type of RAM. For example, boards with a fast RAM and a slower

battery-backed RAM like the RCM3200 or RCM3300 Use one of the
following values, any other value will have undefined results.

* XALLOC_ANY (0) - any type of SRAM storage allowed

* XALLOC_ BB (1) - must be battery-backed program execution SRAM
(ak.a., fast RAM).

* XALLOC_NOTBB (2) - return non-BB SRAM only.
* XALLOC_ MAYBBB (3) - return non-BB SRAM in preference to BB.

RETURN VALUE

The 20-bit physical address of the allocated data on success. On error, a runtime error occurs.
Note: This return value cannot be used with pointer arithmetic.

LIBRARY
MEM.LIB

EXCEPTIONS
ERR_BADXALLOC - if could not allocate requested storage, or negative size passed.

Dynamic C Function Reference Manual digi.com 483

http://www.digi.com

xalloc_stats

void xalloc_stats(long xpointer);

DESCRIPTION

Prints a table of available xalloc () regions to the Stdio window.

This function is for debugging and educational purposes. It should not be called in a production
program.

PARAMETERS
xpointer XMEM address of an xbreak t structure (usually the global xubreak).

LIBRARY
MEM.LIB

SEE ALSO

xalloc, xalloc, xavail, xavail, xrelease

xavail

long xavail(long * addr ptr);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate call to
xalloc (), and optionally allocates that amount.

PARAMETERS

addr_ptr Pointer to a long word in root data memory to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by a call to xalloc ().

RETURN VALUE
The size of the largest free block available. If this is zero, then *addr ptr will not be changed.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xalloc, xavail, xrelease, xalloc stats

Dynamic C Function Reference Manual digi.com 484

http://www.digi.com

_xavail

long _xavail(long * addr ptr, word align, word type);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate call to
_xalloc (), and optionally allocates that amount. The align and t ype parameters are the same
as would be presented to _xalloc ().

PARAMETERS
addr_ptr Address of a longword, in root data memory, to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by a callto xalloc ().
align Alignment of returned block, as per xalloc ().
type Type of memory, as per xalloc ().

RETURN VALUE
The size of the largest free block available. If this is zero, then *addr ptr will not be changed.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xalloc, xavaill, xrelease, xalloc stats

xCalculateECC256

long xCalculateECC256(unsigned long data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capability)
value for a 256 byte (2048 bit) data buffer located in extended memory.

PARAMETERS
data Physical address of the 256 byte data buffer.

RETURN VALUE
The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result. Note that the MSB (i.e., B) of the
long result is always zero.

LIBRARY
ECC.LIB

Dynamic C Function Reference Manual digi.com 485

http://www.digi.com

xChkCorrectECC256

int xChkCorrectECC256(unsigned long data, void * old_ecc,
void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary and
possible (1 bit correction, 2 bit detection), corrects the data in the specified extended memory buffer.

PARAMETERS
data Physical address of the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB

Dynamic C Function Reference Manual digi.com 486

http://www.digi.com

xmem2root

int xmem2root(void * dest, unsigned long int src,
unsigned int len);

DESCRIPTION

Stores 1en characters from physical address src to logical address dest.

PARAMETERS
dest Logical address
src Physical address
len Numbers of bytes

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
-2: Destination not all in root.

LIBRARY
XMEM.LIB

SEE ALSO

root2xmem, xalloc

Dynamic C Function Reference Manual digi.com

487

http://www.digi.com

xXxmem2xmem

int xmem2xmem(unsigned long dest, unsigned long src,
unsigned len);

DESCRIPTION

Stores 1en characters from physical address src to physical address dest.

PARAMETERS
dest Physical address of destination
src Physical address of source data
len Length of source data in bytes

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.

LIBRARY
XMEM.LIB

Dynamic C Function Reference Manual digi.com

488

http://www.digi.com

xXrelease

void xrelease(long addr, long sz);

DESCRIPTION

Release a block of memory previously obtained by xalloc () or by xavail () with a non-null
parameter. xrelease () may only be called to free the most recent block obtained. It is NOT a
general-purpose malloc/free type of dynamic memory allocation. Calls to

xalloc ()/xrelease () must be nested in first-allocated/last-released order, similar to the
execution stack. The addr parameter must be the return value from xalloc (). If not, then a run-
time exception will occur. The sz parameter must also be equal to the actual allocated size, however
this is not checked. The actual allocated size may be larger than the requested size (because of
alignment overhead). The actual size may be obtained by calling xalloc () rather than
xalloc (). For this reason, it is recommended that your application consistently uses

~xalloc () rather than xalloc () if you intend to use this function.

PARAMETERS
addr Address of storage previously obtained by xalloc ().
sz Size of storage previously returned by xalloc ().

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xalloc, xavail, xavaill, xalloc stats

Software License Agreement
DIGI SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TO ALL THE TERMS OF THIS END USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:

1.1 "Qualified Applications" means an application program developed using the Software and that
links with the development libraries of the Software.

1.1.1 "Qualified Applications" is amended to include application programs developed using the Soft-
ools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (uC/OS-II) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

Dynamic C Function Reference Manual digi.com 490

http://www.digi.com

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the Soft-
ware, solely for internal purposes and only for the number of users for which You have purchased
licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Software solely
to develop the Qualified Applications; and (iii) use, reproduce and distribute, the Qualified Applica-
tions, in object code only, to end users solely for use on Qualified Systems; provided, however, any
agreement entered into between You and such end users with respect to a Qualified Application is no
less protective of Rabbit’s intellectual property rights than the terms and conditions of this License. (iv)
use and distribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C named RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile, reverse
engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the Software,
alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon the Software,
rent, lease network, loan, distribute or otherwise transfer the Software or any copy thereof. You shall
not make copies of the copyrighted Software and/or documentation without the prior written permis-
sion of Rabbit; provided that, You may make one (1) hard copy of such documentation for each User
and a reasonable number of back-up copies for Your own archival purposes. You may not use copies of
the Software as part of a benchmark or comparison test against other similar products in order to pro-
duce results strictly for purposes of comparison. The Software contains copyrighted material, trade
secrets and other proprietary material of Rabbit and/or its licensors and You must reproduce, on each
copy of the Software, all copyright notices and any other proprietary legends that appear on or in the
original copy of the Software. Except for the limited license granted above, Rabbit retains all right, title
and interest in and to all intellectual property rights embodied in the Software, including but not limited
to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical data
received from Rabbit, nor the direct product thereof, will be exported outside the United States or re-
exported except as authorized and as permitted by the laws and regulations of the United States and/or
the laws and regulations of the jurisdiction, (if other than the United States) in which You rightfully
obtained the Software. The Software may not be exported to any of the following countries: Cuba, Iran,
Iraq, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software
is supplied to the Department of Defense ("DOD"), the Software is classified as "Commercial Com-
puter Software" and the Government is acquiring only "restricted rights" in the Software and its docu-
mentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the Software
is supplied to any unit or agency of the United States Government other than DOD, the Government's
rights in the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR or,
in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR.

Dynamic C Function Reference Manual digi.com 491

http://www.digi.com

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party services included in this package is provided as a conve-
nience only, without any warranty by Rabbit, and will be governed solely by the terms agreed upon
between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT OR ITS AUTHORIZED
REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING NEG-
LIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT OR ITS AUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT’S TOTAL LIABILITY
TO YOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CON-
TRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless termi-
nated. You may terminate this License at any time by destroying all copies of the Software and its docu-
mentation. This License will terminate immediately without notice from Rabbit if You fail to comply
with any provision of this License. Upon termination, You must destroy all copies of the Software and
its documentation. Except for Section 2 ("License"), all Sections of this Agreement shall survive any
expiration or termination of this License.

Dynamic C Function Reference Manual digi.com 492

http://www.digi.com

9. General Provisions. No delay or failure to take action under this License will constitute a waiver unless
expressly waived in writing, signed by a duly authorized representative of Rabbit, and no single waiver
will constitute a continuing or subsequent waiver. This License may not be assigned, sublicensed or
otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior written consent.
This License shall be governed by and construed in accordance with the laws of the United States and
the State of California, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a court of
competent jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the intent
of the parties, and the remainder of this License shall continue in full force and effect. This License
constitutes the entire agreement between the parties with respect to the use of the Software and its doc-
umentation, and supersedes all prior or contemporaneous understandings or agreements, written or oral,
regarding such subject matter. There shall be no contract for purchase or sale of the Software except
upon the terms and conditions specified herein. Any additional or different terms or conditions pro-
posed by You or contained in any purchase order are hereby rejected and shall be of no force and effect
unless expressly agreed to in writing by Rabbit. No amendment to or modification of this License will
be binding unless in writing and signed by a duly authorized representative of Rabbit.

Digi International Inc. © 2013« All rights reserved.

Dynamic C Function Reference Manual digi.com 493

http://www.digi.com

Index

This index includes group names as well as functions, arranged in alphabetical order. Functions that are
within a group will be displayed in an indented list immediately following the group name.

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Symbols B
_fat_device tableccocvevieriieciinieeeeeee 76 DIt oo 25
_GetSysMacrolndeXc.ocveeveeveeveneenienieeieniennens 154 Bit Manipulation (group)
_GetSysMacroValuecceeeevvveeiereecieniieienieeenns 155 DIt oo 25
_ SYSISSOtRESEL ...vvevviiieiiiiieieeececee e 458 RES ot 350
CXALLOC it 483 TS tuveveeneesreeresteeteeseeseeseeseeseesessaessesssenseessensaans 350
XAVALL Lo 485 SET ottt 401
SBL et 400
A BitRAPOILEc.ooveiiiiiiiiiiiieicccecece e 26
ADS et et 11 B%thPortI """""""""""""""""""""""""""""""""""" 26
ACOS cuveeuteenteeeiteeieenite et entte e bt e s ate s bt e st e e bt e sbeeebeenree s 11 B%tWrPortE """"""""""""""""""""""""""""""""""" 27
ACOT cueteeitieiee ettt ettt ettt st s et be e s 12 BitWrPortl T 28
ACSC evtrvvieettrtentetent et ettt ettt ettt b et b et bt benaene 12 Bus’ Operation (group)
AESAECTYPIXA oo 13 disableIObUuscccvveiveerieiriiricrcceee 51
AESdecryptStreamaxd CBC ..o 14 enablelObusccveeivecireiniiiiie 70
AESencryptdx4oooeeeiiiniiiieieieeeeeeee 15 C
AESencryptStream4x4 CBCccccooveeieiiiinncenne. 16
AESexpandKey4ccoooovieiiiiiiieeeee 17 cached WITecccovieieiieirt e 109
AESInitStream4x4ccooceeiiiieeeeeee e 18 CalculateECC256oouveeiiieeiieeeeeeee e 29
Arithmetic (group) CRIL ceeeiiee e 29
ADS Lo 11 Character (group)
o051 1) (SRS 152 1SAINUM Lo 176
1aDS oo 185 1salpha ..o 177
ISQIT et 189 ISCOLI] Lo 177
ASCHIITIC .eeieeieieieieie sttt enee st et seeenaenneas 19 ISAIGIL wvveiieiieeeee e 179
ASCC 1ueteeerueeteeteatee e ate et et e et e et et e eaeeneesreetesreentennean 20 ISEIAPN oo 179
] 1 OSSR 20 ISIOWET ..ot 180
ALATN .ot 21 1] 0 5 1L SRS 180
AANZ oot 22 ISPUNCE ettt 181
AOT s 23 ISSPACE .eneeeeieeenieeieeee st et st eee et 182
110 USRS 23 TS0 0] 1<) (SRR 182
ALOL et 24 L € 14 R 183
ChkCorrectECC256ocvvvieiiieeieeeeeeeeee 31
ChKHAardREsetceevuirieieieiieeeee e 31

Dynamic C Function Reference Manual digi.com 494

http://www.digi.com
http://www.rabbit.com/products/dc/

ChKSOTTRESE .ot 32 D
ChKWDTO ..ot 33
CLEATETT ..viiieiiiieee e 33 Data Encryption (group)
CLOCK et 34 AESAeCryptdxd ..o 13
clockDoublerOffcooeiinirreeireeeeeeeeee 34 AESdecryptStream4x4 CBCooovvvrrviiiinnninnns 14
clockDoublerOncccoeeeeeeenireeieieinreeee e 35 AESeNCryptax4 ooovvvviiiiiiiiiiiiis 15
CloseInputCompressedFilecooevevierereererierenenn. 35 AESencryptStream4x4 CBCcooovvviriiniinnnn. 16
clusters AESexpandKey4ccccovevniinicniinences 17
available amountcocoeerinreeienneee 88 AESInItStreamax4 ..o, 18
COBEZIN oottt 36 defineErrorHandler ... 47
COT SEIAZEIC v eeeeeeee e eees oo 37 EZ i 48
COE SETAZELS orrveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeseeee 38 DelayMSsovveiiieiieiiieiiecne e 48
COE SETAPULC .o 39 DelaySec ...cocoveieieiiiiinnee e 49
COE SETAPULS oo 40 DelayTicks ..covevveeeeriniriieieiececeereese e 50
COf SErAreadccovveviieiiieieeeeeee e 41 deViCe SEUCTUIE ..o 76
COE SETAWILE .o 42 AIffME oo 50
COT SErBEELC voviiinieiiieiiieeeeeeeeee e 37 Direct Memory Access (group)
COT _SErBEELS wovivvvieiiieieieieeeceete et 38 DMAGIIOC ..o 52
COT _SErBPULC .ot 39 DMAcOmplEted ... 53
COT _SErBPULS vt 40 DMAhandle2chan ... 53
cof _serBreadcccooeeveivieinieeeeceeee e 41 DMAIOE2MEM .o 54
COT_SErBWIIE ..ovvevieieiieieieieeee e 42 DMAIOIZIMEM ..o 56
COT SEICEELC wvinviinieriieieieeeeeeiee et 37 DMAI0adBUfDESC ..ovvooi 57
COT SEICEELS wovivvrenierieiereeeteeeteeetee ettt 38 DMAMACASEOUP oo 57
COT_SEICPULC .vovveveeieviieteieeeeteetee et 39 DMAMEMZIOE ..ovooorviiiriiiiis 58
COT _SEICPULS .vovveveeieveeieteeeeeeeete et 40 DMAMEMZIO w..vvoioviiiis 59
COf SErCreadcooovveveeieriieeieeieeeeeee e 41 DMAMEM2MENM. ..o 60
COT_SEICWIILE vovvvieivieiereieeeeeeteee et 42 DMAPOIL oo 61
COT _SErDEELC .vivievinieriiereieeeeeeiee e 37 DMAPrintBufDescovvvvvvcis 62
COT _SErDEELS .vovvvieieiieieteieeeeeeeeere e 38 DMAPIINEREES oo 62
COT_SErDPULC vt 39 DMASEDITECE ..o 64
COT _SEIDPULS .vovieeeeietiietieeeeeeeee e 40 DMASEtPArametersoooouvvvvsriisniissiiisniisnnns 65
cof_SerDreadccooveveeveviieiieieieeeeee e 41 DMASHAIrtAULO ..ooooiiiiii 66
COT _SErDWIILE ..vvvieivieieteeeieeeeetee et 42 DMASHArtDIFECt ooovovveieieicicis 67
COT _SEIEGELC .ovivvvieiiiieieeeeeeie e 37 DMASEOD oo 68
COT SEIEGELS .oviviiieiieiieieieeeeeee e 38 DMASHOPDIIECE .ovooo 68
COT _SErEPULC vovivieiiiieieieeeeeee e 39 DMAHMEISEHUP wovoooo 69
COT _SETEPULS ..voviiieiicieieeeee e 40 DMAUNALIOC oo 69
cof _serEreadcocoveeieevieenieieieeeeee e 41 SETAAMAOLT oo 383
COT _SErEWTILE ..ovevieieviieieieeeeeeeeee e 42 SETAAMAON ..o 384
COT SEIFEELC wooviiiiiieiiieieeeeeeee e 37 SerBAmMaOSToooo 383
COT _SEIFEELS wooviieiiieiiieieieeeeeee e 38 SerBAmMaON ..o 384
COT _SEIFPULC ..ttt 39 SerCAmMaOLT ..o 383
COT _SEIFPULS ..voviveeiicieieeeeeee e 40 SErCAMAON. .o 384
COf SErFreadcovevvviieiiieieeeeeeee e 41 SerDAMAOLT ..o 383
COT_SEIFWIIE ..ovevieieviieiiieeee e 42 SErDAMAON ..oooo 384
compatibility with pC/OS-II ..ooveerereeeeerererreee. 93 serEdmaOff ... 383
COPAUSE ...ttt 43 SEIBAMAON ..o 384
CORESEL ..ottt 43 SEIFAMAOLT oo 383
CORESUIME ..ot 44 SEIFAMAON ..o 384
COS tatuteeteteertetete et ettt ettt ettt s et et aete st eeaenenen 44 SEIXAMAOTE oo 383
COSM s 45 SEIXAMAON. oo 384
CHITIC eovveeeiietet ettt ettt eeenan 46 Disable HW_WDT oo 31
disablelODbUScccoevirierinieiriiiecneeceeeee 51
DMAALIOC ..o, 52
Dynamic C Function Reference Manual digi.com 495

http://www.digi.com

DMAcompletedcooceeiereiieieieeeeee e 53 PXIASE e 316

DMAhandle2chancoccoocveeiiiieniieeeeeeee 53 pxlast fast ...oocoviiiii e 317
DMAIOC2MEM ..ot 54 0011 AR 318
DMAIOI2ZMEM ...ttt 56 PXNEXt fASt ..ooiiiiiiie e 319
DMAI10adBufDeSsCccceevverieniieieiieieieeie e 57 J00:40) (<) AT 320
DMAMmMAatchSetupccoceveieiiiieeceeeeeee e 57 PXPIEV_TASt .o 321
DMAMEM2I0€ ...ooveeneieiieieenieieeiee e 58
DMAMEM2101 wuveeviiiieiieireieieeee e 59 E
gﬁig;elrln2mem ... 2(1) ECC (group)
S CalculateECC256cocovveieieiincinicincerccnenne 29
DMAprmtBufDesc .. 62 ChkCorrectECC256 oo 31
DMADIINREZS ..covviinieiiiiiiiiiieiccieeteeieeeeeeee 62 xCaleulateECC256 oo 485
DMAsethﬂ)esc ... 63 XChkCorrectECC256 oo 486
DMASEDITECE ...coveiiieeieiniieeieeieeeieeneeeee et 64 Enable HW WDT oo 70
DMASCIPATAMELETS cvvesvorrrvessesssorrresssssssmsrrsssssssone 63 enablelObusccccoveviiciiniiiiee, 70
DMAstartAgto .. 66 Error Handling (group)
gﬁﬁszartDlrect """""""""""""""""""""""""""" 2; EITOr_IMESSAZE ...vovvinrenienieiieiieiieiieieene s 71
SEOP ettt ettt ettt :
DMASIOPDITEC v 68 e IOn e
DMAGMESEIUP ovvveronmrvvnnre e 69 TAISE w.eeveeterieriertinteste sttt ettt et 327
DMAUBANOE cvvorvrrevverssrrerscssmnssssssrrsssssssnssssssarses 69 SIZNAL .o 424
Dyn&ﬁmc Memory Allocation (group) 270 EITOr_IMESSAZE ..oovvivvninieiienieiieiieneene e 71
PALLOC i :
O JU—————— T
PAVL o 272 CXP -eenrerueeteete ettt ettt ettt ettt et sae e saeene st ene 74
pavail fast ... 273 Extended Memory (group)
p;alltoc """"""""""""""""""""""""""""""""""" ;;2 CXALOC i 483
PHISL o XAVALL 1ot 485
ggres;_fast """"""""""""""""""""""""""""""" g ;; PAdAr .o 270
"""""""""""""""""""""""""""""""""""" FOOT2XIMEI ..ot 393
PEEE faSt oo 279 XALLOC .ottt 482
pilwtm """"""""""""""""""""""""""""""""""" 32(1) XalloC_StALS ...oveviiciiiciirccrceeeeae 484
PraSL o XAVALL Lottt 484
plast fast ..o 282 XMEM2LOOt oo 487
PIMOVEDEEWEEI ... 283 B 488
pm(l)vebetween_fast """""""""""""""""""""" ;22 XTCICASE .veveviiiieieieieiieitecetcet et 489
PIEL ot
PIEXLE vttt 287 F
PRext fast ...ooccooveeiiiiee e 288
POOL APPENA oo 290 TADS e 75
POOL INE vt 291 Fast Fourier Transforms (group)
POOL TINK oo 202 FEECPIX e 120
P00l XAPPENd ... 203 FRCPIXINY o 121
POOL XINIt .o 204 fitreal ...ooooeiie 122
PPTEV eeeeeeeeeeeeeeeeeeeees e eees e seeseees e 298 fitrealinyoocooiiiiiiie 123
PPTEV. FASE w.oeveeeeeeeeeeeeeeeeeeee s 299 hanneplx ..ooceeeeiiienii e 159
PPULLASE v eeee e eee s 300 hannrealcoocooviniiini 160
PPUtlast fastcccoeveveveveeieeeeeeeeeeeeee e 301 POWETSPECIIUMY ..o 297
PLEOTAET .oovvveeieeeeeeeeeee e 302 fat_AUOMOUNE ..o 76
PXALIOC FASE veeeoeeeeeeeeee e 311 fat ClOSE ..ooeiieieieiieieeeeeee e 78
PXCALLOC v eeee e 312 fat CreateDiroocovieviiiiiinieee e 79
DPXFILSE v s 313 fat_ CreateFile ..., 80
PXITEE v 314 fat_CreateTime ... 81
PXFTEE. FASE v 315 fat DEleteoooververieriieieeeieeceee e 82
fat EnumDEeVICeooeeiiriiiiiiieiiieccecee e 83

Dynamic C Function Reference Manual digi.com 496

http://www.digi.com

fat EnumPartitionccoooevieienieiinieeeeee 84

File System, FAT (group)

fat FileSiZe ...coooovviieiiieeeeeee e 85 fat AUtoMOUNtovvieiiiieieee e 76
fat FormatDeviceoccoooevievinieiinieeceee 86 fat ClOSE .oveveeeiieiieieee et 78
fat FormatPartitioncccoceiiiieiiniiiieee 87 fat_ CreateDirccoooevieieieeeeeeee e 79
fat FICE oo 88 fat_ CreateFileccoooeiiiiiiieiiieeeeee 80
fat GELAE .ooeeeiee e 89 fat CreateTimeccocceeeeveeiienieeneeecieeeee 81
fat GEtNAMEoovvvreieiiiieeeee e 90 fat DElete ...oocevveeieeieiieiee et 82
fat GetPartitioncoceveveeieniieieeeeeeee e 91 fat EnumDEeVICecoooivieiieiirieieeeeeee 83
fat INIt oo 92 fat EnumPartitioncccooceevinieieniieceeee 84
fat InitUCOSMULEXovveeieiieiieiieierieeeceie e 93 fat FileSize ...cocovoieieiieieieee e 85
fat ISCloSedcceoveeeeeeiiiieeeeeee e 94 fat FormatDevicecccoceviniieieiiiienieieenne 86
fat ISOPEN ..oovieieieeeieeeee e 94 fat_ FormatPartitionccoccovveieniniieninieene 87
fat LaStACCESS ..eeveerveeieriieierieeeeieeete e 95 fat FIee oo 88
fat LastWIIte ..oooveveeeieiiee et 95 fat GELAMIE .oooeeeieeeieee e 89
fat MountPartitionccccooeevenieienieieeeee 96 fat GEtNAMEooeveiieieiieee e 90
fat OPCN oo 97 fat GetPartitionccceceveeiinieneneeeseeeee 91
fat_ OpenDIrcccovieiiiieeeeee e 98 fat TNt .o 92
fat PArt oo 76 fat_ InitUCOSMULEXooveeeieieiieieieeiesieeieiene 93
fat_part mountedccoocoiiiiinii 76 fat_ISCLoSed ...cceeveeiieiiiieeeeee e 94
fat PartitionDevicecccoceveeienieiirieieeeeee 98 fat ISOPEN ..ooeeeiieieiieeee e 94
fat Read ...ocooiiieiieee e 100 fat LastACCESS ..eevverreeriieeieieeeenie e 95
fat ReadDIrooceeveveieiiieeeecee e 101 fat LastWIiteocceeoievieieieee e 95
fat Seek ..oooieiiieee 103 fat MountPartitioncocceeeevieieninenieieee 96
fat SELAME oo 105 fat OPeN .o 97
fat SPIE ceeeeee e 106 fat_ OpenDIrcccooieiiiiieeee e 98
fat Status ...ooeeeeeeeee e 107 fat_ PartitionDeviceccccovvrieneeieieeieeenene 98
fat SyncFilecooooooiiiiiieee e 108 fat Readcooooiiiieiee e 100
fat_SyncPartitionccceceveeiinieieniee e 109 fat ReadDircocveieeieiieieeeecee e 101
fat Tell oo 110 fat Seek .oooiiieiee e 103
fat tICK .ooieeeeieee e 111 fat SEtALT oo 105
fat Truncatecoccevieieiieieieee e 112 fat SPIE c.ooeieieeee e 106
fat UnmountDevicecccceeeeviinienenieerceeeene 113 fat_ Status ...ooccooeeieiieee e 107
fat UnmountPartitioncceceeveneeiinennenennn. 114 fat_ SyncFilecooooiiiiiiiee e 108
fat. Wt oo 115 fat_SyncPartitioncccccccevvieiiniiniinierenenen, 109
fat XReadcccooveiieeee e 116 fat Tell .o 110
fat XWIILe ..oooviieieieieeeeeeee e 117 fat tick .ooooeiieeee 111
TClOSE et 118 fat Truncateccooeevevieienieeeeee e 112
FEOT e 118 fat UnmountDevicecccceevecinvrienneenenen. 113
FOITOT e 119 fat_ UnmountPartitionccceeveveniencnnennen. 114
FITUSh oo 119 fat WIite oo 115
FEECPIX oot 120 fat XReadcooeiieiiei 116
i 17070) D411 USRS 121 fat XWIIE ..ooieiiiiieieciee e 117
fItreal ..o 122 File System, Registry (group)
fitrealinyooocooieiiie 123 TeZISIY NUMETALEeeuveeeeneeeieiieieeeeeeeeneeeeenee 334
FGOLC et 124 registry_finish readccccoiiiiiiiiniiiinnne 335
FEELPOS e 125 registry_finish Writecoocoooiiiiniiiiiiiie 336
TGOS oot 126 (72T 1 0 (<] USRS 337
file registry prep_readcoccovceeieiiinieienieeee 338
AEIDULES .o 89, 105 72T 70 0) <) L 4 L1 U 341
SIZC ettt ettt ettt et 85 re@IStry 1eadccoocvveeiiiieieiieeeee e 343
File Compression (group) registry updatecooceeveriereiieeeee e 344
CloselnputCompressedFilecccocevvreennne. 35 TEZISITY WIILE .eovienieeieierieeiesieeeie e 345
OpenlnputCompressedFilecccccevvrennnen. 215 flash_erasechipcccocceveiieiiiieiinieeceeee 127
ReadCompressedFileccooveeiinienincnenene 331 flash_erasesectorccocevveerenieienieeeeeeee 127
Dynamic C Function Reference Manual digi.com 497

http://www.digi.com

flash_ gettyPe ..ooveeeeieieieieeeeee e 128 ST RAMTOPAEE ...cceoovieiiiieiiieeeeeeee 418
flash_ init ...oooieiei e 129 sf readDeviceRAMcccoviviiiiiiieeee 419
flash readoooooviiie 130 st readPagecceveeieiiiee 420
flash_readSectorccoccevvieieiinieneciee e 131 ST readRAM ..o 420
flash_sector2Xwindowccccceeveveecennnceneenee. 132 sf writeDeviceRAMccoociiiiiiiiieeee 421
flash. WriteSectoroccovovevieieiieiee e 133 ST WITteRAM ..o 423
Flash, NAND (group) SESPL_INE v 423,424
nf eraseBlockccoooiiiiiiiii 205 Floating-Point Math (group)
nf getPageCountccoovvieiiniiniieiceeee 206 ACOS tuveeureeteeniteeieenite et e st e eabeesbeeeteebeesre e b e naaes 11
nf getPageSizeccooeviiiiiii 206 ACOL ettt ettt ettt ettt sttt 12
nf initDevICecooveiiiiiiieee e 207 ACSC veneetienteeteente et e e e at et s ettt et et be et enee e 12
nf INitDIIVETr oo 209 ASCC veneetienteeteente et e e et et ne et et e et st ettt neenes 20
nf isSBusyRBHWccoooiiiiiiiiiieeceee 210 ASII ettt 20
nf isBusyStatuscoccovvriiiiiee, 211 ALAN oottt 21
nf readPagecocoeeiiieiiie 212 ALAND Lo 22
nf writePage ..o 213 CEIL 1t 29
nf XD _Detect ..oocveeeieieieiieieiieeeee e 214 COS tartemtettente et ente et et e et et e ae e e et et e b e et nee s 44
Flash, Parallel (group) COSN o 45
flash_erasechipccocoevivieiiniiiieee 127 EE e 48
flash_erasesectorc.ccooveverieieneeneneeieeenne 127 1) o SR 74
flash_ gettyPe ...oeovevveeiieieeeeee e 128 TADS e 75
flash_ Init ..oooeeeii e 129 FlOOT e 134
flash_readcooovieiiii e 130 MO e 135
flash_readsectorcccceveevieiiiiiiirieeeee 131 0.4 o USSR 142
flash_sector2Xwindowccccevvveenenceniennnnns 132 LAEXD e 185
flash. WriteSectorccccvvveveirieiiieeeseeieieae 133 LOg e 186
Flash, SD (group) LOZLO e 187
sdspi_debouncecccceeeevieiiiiiieiiene s 355 MO Lo 204
SAspi_get €S ..ooiieiiieee e 356 POLY e 289
SASPL_ GOt SCT .veeiieiieiieiiee e 357 POW ettt et 295
sdspi_get StatlS IeEcccceevereereereereenieeieneenns 358 POWLO oo 296
sdspi_getSectorCountcceeeevereenereeiennenne 357 TAA e 326
sdspi_init_cardccceeeeeiieiieniee e 358 FANA oo 327,329
sdspi_initDevicecceevevieiirieieeee e 359 TANAD oo 328
SASPi_ISWIItING ..oovvieeieiieieieiee e 359 TANAL .o 329
SASPL_NODUSY ..eovveeiiiieiiieeeeee e 360 TANAZ oot e 329
sdspi_print devcooceiieieiie e 360 SIIL 1ottt eete ittt ettt 425
sdspi_process_commandcccoeeererieniennenns 361 SINN Lo 426
sdspi_read SECtOrcccevcveveereerieieeienieeieieane 362 SOTE ettt et et ettt ettt ettt sttt ene 430
sdspi_reset cardcocceeeieiirieneneee e 363 STANA ..ot 430
sdspi_sendingAPcocooiiiiiiiii, 363 11 RSO SRURR 459
sdspi_set block lengthccccoocvviiiiniiniinnnn. 364 tANN L 460
sdspi_SEtLEDcoooiiiiiiii e 364 FlOOT e 134
SASPi_ Wit SECTOT ..oovevieieieeierieeie e 366 flush cached file informationccceevrenene. 108
sdspi_ WriteContinuecccoeceevveeenereeniennnnns 365 flush cached Writesccooevoeiiniieninieeecee 109
Flash, Seria (group)l MO e 135
ST WIItePage ...ooovveiiieiieeeeeeee 422 TOPEN oo 136
Flash, Serial (group) fOrceSOftRESEt ..oeeeveeeieeieieeeee e 137
sf getPageCountcoccevvevenienenieeseeeie 414 TPrintf .o 137
st getPageSizeoooovieviiieiee 414 TPULC e 138
ST NIt oo 415 TPULS oo 139
ST INIDEVICE ..ovoeieiiiiieiiieeeee e 416 fread ..oooooee e 140
ST ASWIIHING ..ovveiieiiiieeee e 417 5 <10) 01531 RSP 141
St pageTORAMccooiiiiiiiieiee e 417 15054 o SRS 142
Dynamic C Function Reference Manual digi.com 498

http://www.digi.com

fscant ..o 143 HDLCAIOPE ..ot 162
FSECK o 147 HDLCAIrOPF ..ot 162
TSCLPOS ettt 148 HDLCErITorE ..ot 162
FEIL oo 149 HDLCEIrorFcvvieiieiecieeeece e 162
TWITEE evieiieeie et 150 HDLCeXtCIOCKEcccviiiieiiiiieieceie e 163

HDLCeXtCIOCKFooooviiiiieiiiieesieeeee e 163
G HDLCOPENEcoiiiiiiiiiiiiiiceeceeeeeeeeeee 164
et CPU_FIEQUENCY wovvvvrvrereeeeeseee e 151 HDLCopenFc.cooviiiiiiiiiiiiicecieeieeeceeee 164
ELCHAT ..oviiiiiie e 151 HDLCPEEKE ... 165
GEICTC cuveeiieeieeeite ettt ettt et et ettt e sbae st 152 HDLCpeekF """"""""""""""""""""""""""""""" 165
GEtdiVIAEr19200 ..vvvvvvoooeeeeeeeeseeeeeeeeeeeeee e 152 HDLCIECEIVEEvvvmnrrrvvvvrvrrssssssrrrrsssssssssssssnnen 166
OES ettt et 153 HDLCIEOEIVEF ...covvvmnrrrrnnvrvrrsssssssrrrssssssssssssssnnen 166
GetVectExtern ..o 156 HDLCSendEccooiviiiieieieeeeeeeee e 167
GetVectExtern3000 ... 156 HDLCsendF .. 167
GetVectInterncooveeeeeeiieiieceeeiieee e 156 HDLC send}ngE """""""""""""""""""""""""""" 167
Global Positioning System (group) HDLCsendingFcccooieiiiiiiieeeeeeeeee 167

PS_ ZEL POSILION vvvveeeervorerseeeeeseeeeeeeeeeeseeee 157 h§xstn0byte ... 168

EPS_ZEE UL oo 158 RIEWA oo 168

gps_ground diStancecccceceeveeieneeieniennnns 158 |
F41010100 L O 157
EPS_get POSILION oevveeeeiieeieeireieie e 157 1/O (group)

EPS_ZEL ULC .eoiieeieiieiieie ettt 158 BitRAPOIEocviiieiiiieeeee e 26
gps_ground diStanceccoccevveeierieienieieene 158 BitRAPOIL ... 26

BitWIPOIE ...ooviiiiiiiiceceee 27
H BIWIPOIL .ot 28
hanneplX ...ooeeoevieniie e 159 RAPOIE v 330
hannrealcocooviiiiiiie e 160 RAPOL oo 330
hash WIPOIE ..o 480

MDS oo 195 WIPOTL oo 481
HDLC Protocol (group) 2 C Protocol (group)

HDLCADOME oo 161 12¢_Check_acK wooooovoooiiiiis 169

HDLCabortF oo 161 %2c_mlt .. 169

HDLCCIOSCE oo 161 i2¢_read_Char ... 170

HDLCCIOSEF oo 161 126_8nd_8CK woovvvviii s 170

HDLCAIOPE oo 162 L 171

HDLCAIOPE oo 162 12C SEATT X voveveveeeieieeieieeieie e eee e e 171

HDLCerrorEccvooiieiieieeeeeeeeeeeeee 162 12C_SEATTW_EX ovvvvririiiinnnsssssss 172

HDLCerrorFcccvveiiieiieieeiteeeceeeeeeee 162 %2 C—StOP—tX """"""""""""""""""""""""""""""" 172

HDLCextClockE . 163 ’ 12¢_Write _charcccocevvievienieieecee e 173

HDLCextClockF . 163 %20_’ch.eck_ack ... 169

HDLCOPENE ... 164 %20_1n1t .. 169

HDLCOPENF oo 164 12¢_read Charcccoovvvieviiiieecee 170

HDLCPEEKE oo 165 12¢_send_ackoocvvieviiiieieceee e 170

HDLCPEEKFE oo 165 %2c_send_nak .. 171

HDLCreceiveE . 166 %ZC_start_tx ... 171

HDLCreceiveF 166 Qc_startw_tx ... 172

HDLCsendE. ..o 167 12C_ STOP X tevereeiieiieeieesiie e eriee et 172

HDLCsendF ... 167 12¢_Write Charccocveveviiiieiicieeeeee e 173

HDLCSENAINGE ..o 167 Interrupts (group)

HDLCSENAINGF ..o 167 GetVectEXternoocvvvvevieniiinieeieciieseeieee 156
HDLCADOMEoso oo 161 GEVECUNION v 156
HDLCabortF oo 161 IPIES oo 175
HDLCcloseE. .o 161 IPSCL ettt e 176
HIDLCCIOSEFroo oo 161 SCIVECHEXICIN ovvsvvrsvvrs s 410
Dynamic C Function Reference Manual digi.com 499

http://www.digi.com

SetVectInternoocvevveerierieiniiiicieciceeeee 412 INEIMNCPY -venveenvreenreenmrenreesireeseenseessseesseesneeseesnueenne 198
IntervalMscooeeiiiiee e 174 00111010010) ST SPRUSR 199
INtervalSeccooeiirieiieeeee e 174 §001S] 1411 APPSR 200
IntervalTickcoocoviriiiie e 175 Micro C/OS-IT ..o 93
110 (< SRR 175 MicroC/OS-II (group)

IPSEL ettt 176 OOSQDEL ..ottt 241
1SAIMUM .t 176 OS_ENTER CRITICALcccccevirinininenennns 216
18AIPhA ..o 177 OS_EXIT CRITICAL ...cccoeoveivinininincniennns 216
ISCIOLLT e 177 OSFIagACCEPL ..oovieeieeieieeiieieseeee e 217
ISCODONE ..ottt 178 OSFlagCreatecccoeeeevieieneeieneeeee e 218
ISCORUNNING ..o 178 OSFlagDelcccooieiiiieieeeeeeeee e 219
ISAIGIE 1o 179 OSFlagPendcccoooevieiiiieieieeeee e 220
ISELAPN oo 179 OSFlagPostccveveieeeieeeeeeeeeee e 221
ISIOWET oot 180 OSFlagQUEryoccoeveveeeiieieieeeese e 222
1]) 410 USRS 180 OSINIE it 222
ISPUINCE ettt 181 OSMDBOXACCEPE .veeeveneeenieiieienie e 223
ISSPACE ..eveeeeiieieeieerie ettt ettt eneas 182 OSMDOXCICALEeeeveeeeniiiieieeieeee e 224
1R8] 0] 01 SRS 182 OSMDOXDEI ..ot 225
ISKAIGIE ©eeneeeieieeeee e 183 OSMDOXPendccceveeeiiieieieeeee e 226

OSMDOXPOSE ..o 227
K OSMDBOXPOSTOPL ..o 228
KBRIE e 184 OSMBOXQUELY v 229

OSMeEMCTEAteovvveiriieiiiiieiieie e 230
L OSMEMGEL ... 231

OSMEMPULoeviiiiiiiiiiiiiteeeeee 232
1aDS e 185 OSMemQuery ... 233
ldexp .. 185 OSMutexAccept .. 234
1OCAIEIME ..eovvveeeiieireeieeee et 186 OSMutexCreate ..o 235
log ... 186 OSMULEXDIC] oo 236
loglO ... 187 OSMUEXPENG. oo 237
longjmp ... 187 OSMULEXPOSE oo 238
loophead .. 188 OSMuteruery ... 239
10OPINIE .ot 188 OSQACCEPL .o 239
ISQIT ettt e 189 OSQCIEALE ..o 240
JEOAN 1.t 190 OSQFIUSH ... 242
M OSQPendooeveniiiiieicicieiecceen e 243

OSQPOSE ..ttt 244
mbr_CreatePartitionccceeevvevevcerereeercennnns 190 OSQPOStFTontcooviiiiiiiii 245
MBI AEV oo 76 OSQPOStOPL ... 246
mbr ENUMDEVICEvvevveeeeeeececeeecececececeeeeaean 191 OSQQUETY .o 247
mbr_FormatDeviceccocovveiiriieninieieeene 192 OSSchedLocKoooeeveiieiieeeeeeeeeeeeeeeee. 247
mbr MountPartitionccovevevervemrerercereennnns 193 OSSchedUnlock ..o, 248
mbr_UnmountPartition ___ 193 OS SemAccept ... 248
mbr_ValidatePartitionsccoceevevieienieceneene. 194 OSSemCreatecceeeveevvieeeeeeiiiieee e e 249
MAS s 195 OSSemPendc.oooiviiiiiiiii 249
MD35 (group) OSSEMPOSE oo 250

MA5_ apPENdo.ovveeeieeieeeeeeee e 194 OSSemQUETY ..o 251

MAS5_fINISH oo 195 OSSetTickPerSec ..., 252

MAS T oo seseee e eeseeeees 195 OSSHAIL <..ccvvveevvereeeeseseesssesseesesssessesesenenseees 252
MAS_ APPENA oo eseesseeeeseseenees 194 OSSHALINL ..o eses e 253
MAS IS oo 195 OSTaskChangePrio ..o 253
MAS_NE cevvrnerrrnnernsnernssens s 195 OSTASKCICRLE vvvvvvsvvvrrsvirnsirnssinnscnsne 254
MEMCAT <.vvreveerncerrseerrsseersenssesnessssesss e 196 OSTaskCIEACEXT wovvovvvrsvivnsivrienscnnn 255
IMEMCIIP ..oveveeerereeeeereeeeereeecesereseesessssseassesesessaeaesenns 197 OSTaskCreateHookcccoooveiiiiiiine, 256
Dynamic C Function Reference Manual digi.com 500

http://www.digi.com

OSTaskDeloccoeveeviieiiieeeeee e 257 nf 1eadPageoccoeieiiiieie e 212
OSTaskDelHOOKccccevveeieeieiieieccesceeee 258 nf WritePageoccoeoveiieei e 213
OSTaskDelReq ..ccveeveeveriieiieiieiieeeeee e 259 Nf XD DEeCt ..oouveeieiiiieiecieeeeseee e 214
OSTaskIdleHOOKccooeviieiiiieiieieeeeen 260 Number-to-String Conversion
OSTaskQUETY ...cocveueeieieieiieeieeee e 260 1t0AN .o 190
OSTaskReSUMEccooeeveereieiieieieieeee e 261
OSTaskStatHOOKccoovuiiieiiiiieieeee 261 O
OSTaskStKChKccoevvviriiiiieieieeieeeeee 262 OpenInputCOmpressedFile ..., 215
OSTaSkSuSpend .. 263 OS_ENTER_CRITICAL 2 1 6
OSTaSkSW.HOOk .. 263 OS EXIT CRITICAL 2 1 6
OSTCBINitHOOKeeveiieiieiieiieec e 264 OSFlag Acc ept 217
e 264 OSFIAZCICALE <vrrreveerrreeeeseeeeeseesseeeseeeesseeereee 218
OSTimeDIYHMSMccooooviiiiieieieieceeeeeenes 265 OSFlagDel 219
OSTHMEDIYRESUNE e 266 OSFlaspeng o
OSTImMEDIYSEC ..o 267 OSFIAGPOSt oo 1
OSTIMEGEL oo 267 OSFIagQUETY wooooooeeeeeeeeeeeeee e 222
OSTIMESEL ..ceeiiiiiiieiieeeeceee e 268 OSInit 270
OSTIMETICK oo 268 OSMDBOXACCEPt oo 223
OSTimeTickHOoOoKccooeviieiiiieiieiceee 269 OSMboxCreate 224
OSVETSION ..coouirveeeiireirereeeeirseesesssesseesese 269 osMboxDel .. 225
Miscellaneous (group) OSMBOXPENA e 226
BERSLIODYIE oovvrrrrnen 168 OSMBOXPOSE .. cereee e eeeeeesesseees e 227
LONGIMP oot 187 OSMBOXPOSIOPE ..o 228
SOTT ettt ettt ettt 325 OSMDBOXQUELY .vvvveoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesee e 229
run.watch .. 354 OSMemCreate ..o 230
R 406 OSMEMGEL e eeeeereeeeeeeeeses e 231
1001 48100 SO 201 OSMemPUt ..o 232
mktm ... 203 OSMemQuery .. 233
modf.‘ rTnnrTIIIIIeTenissseseessisesesssses s 2 04 OSMuteXACCept .. 234
MUItltaSk_mg (group) OSMutexCreatecocceceveecvenieienieeeenneeeennenes 235
COBEZIN ..ot 36 OSMutexDel oo 236
COPAUSE .. 43 OSMutexPend ..o 237
CORESEL .ottt 43 OSMUtexPOSt oo 238
CORESUMEoeeviiiiiiiiieiieicieceeeeeee 44 OSMULEXQUETY ..vvoooeoeeeeeeeeeerereeeeeeeeeeeeeeeee e 239
DelayMS ..o 48 OSQACCEDL wrrrrreeeeeeeeeeeee oo 239
DEIZYSEE vvovvvevvesrrerscsirsssss s rssssssrisses 49 OSQUICALE .vvvrrreeeeereeee oo eeesseees e 240
DEIAYTICKS wovvereovrrvemrrnnnnes >0 OTI0) 01 B 241
TEEIVAIMS oo 74 OSQFIISh oo 242
ILEIVAISEC oo 74 OSQPENd oo 243
IEIVAITICK oo 175 OSQPOSt oo 244
?SCODone, """"""""""""""""""""""""""""""""" 178 OSQPOStFTontccoeeveveriininicienccieneeieeae 245
ASCORUIMUNG ..voovrvevsrerrrnessssssmrrsssssssssnssnssssss 178 OSQPOSIOP rrrrreeeeeeereeeeeseesseseeereeeeeee s 246
100phe.ad .. 188 OSQQUELY werorereeeeeeeeeeeeeeeeeeeeeeeeeee e 247
100Nt ..ovvove. e s 188 OSSCHEALOCK rrreeerereeeeeeeeee oo 247
multitasking COMPADILILY w.ovoroooonrrvernrrnne 93 OSSchedUnlockcceveevveieieieiiiiiicncncrcee, 248
N OSSEMACCEPL .vevevieiieeiieriieeeeeee e 248
OSSemMCTEALEeovveeniiiieiiiirieieeree et 249
nf eraseBlockcoocveviieiiiiiiei e 205 OSSemPendccccceeieiiieiiieeeeee e 249
nf getPageCountccoceevviveeriiicienecieeeiee 206 OSSEMPOSt ..ovveeieieeieciecieeeee e 250
nf getPageSizeoooeevevieeiiiieee e, 206 OSSEMQUETY ..oovvivieieiieeieeeeeecieeree e 251
Nf INIEDEVICE ..ovvvveiieieieceecceee e 207 OSSetTiCkPerSeccvvvevieeeerierieieeieieeveereeeeenes 252
nf INItDIIVET oovveiiiicieccccccece e 209 OSSHAIT .oevieeieciieieceeee et 252
nf iSBusyRBHWccooviiiiiiiiiciereeee 210 OSStatInitoccveeveeeeieveeieceeeseeeee e 253
nf ISBUSYStatuscoecvevvieiieiicieeeec e 211 OSTaskChangePrioccocceveeierieevenieeieieeeenn, 253
Dynamic C Function Reference Manual digi.com 501

http://www.digi.com

OSTaskCreateccceveveererieeeieseeee e 254 POOL NI Lot 291
OSTaskCreateEXtcocovveererieeeieeeeee e 255 POOl Iink ..ooiiii e 292
OSTaskCreateHookKccoocevieiiniiiieieeeeee 256 Pool_xappendccoccieieiiiie e 293
OSTaskDel ...ccooveiiiieeeeecee e 257 POO] XINIt .eoiiiiiiiieiieiee e 294
OSTaskDelHOOKccoceevieieiieiecieeeeeee e 258 POW ettt ettt sttt et ee e 295
OSTaskDelReq ..cccveveeeeriieieiieieeieeeee e 259 POWLO e 296
OSTaskIdleHOOKccccveeeviriiiiieeeeee 260 POWEISPECTIUIN ...eeeneieiiitieiieseeeiieeieeee st eeeeee e neene 297
OSTaskQUETY ..ccvveeiieieeeieeree e 260 10 8) () RSP STPRRSR 298
OSTaskRESUMEoeeveeieieriiiieceeeee e 261 PPIEV_faSt oo 299
OSTaskStatHOOKccooveiiiiiiiiieee 261 PPULIAST ..o 300
OSTaskStKChKcoovieiiieiieeeeee e 262 pputlast fast ..o 301
OSTaskSuspendccccoevererienieeieeee e 263 PIEMAIN ..ovviiiiiieiieeeeeiieeteeee ettt ne 301
OSTaskSWHOOKcoeviiiiiiiiieicieeceeeee e 263 PIEOTACT ...ttt 302
OSTCBINitHOOKocvviiieiieiiiieiecieeee e 264 Pulse Width Modulation (group)
OSTIMEDILY .ooiiiieiiiiee e 264 PWINL NIt .ot 309
OSTimeDIyHMSMcoooiiiiiiiiieieeeeee e 265 PWITL_SET ..ottt 310
OSTimeDIyResumecccoeoeieiieiinieneecee 266 PULC ittt ettt 308
OSTIMEDIYSEC ..occvveiieieieieiieeeeee e 267 PULCHAT .ot 309
OSTIMEGEL ..eeieeeiiieiee e 267 PULS ettt ettt ettt 309
OSTIMESEL ..ot 268 PWINL_INIE c.eeiiiiiieieiceieee e 309
OSTIMETICK oo 268 PWITL SCT .ottt ettt ne 310
OSTimeTickHOOKccoveiiiiiiiiieiee 269 PXalloc fast ...oooeeieieieieee e 311
OSVEISION ..eonieiieeieiieieie et 269 PXCALLOC .o 312
P PXIILS oo 313
PXITEE i 314

PAAAL oo 270 PEEFEE_FASE vrorvorrvrscsrnirscssrressss s 315
PALIOC . 270 PRIBSE coovrrvvrresrrevsessrrssss s 316
palloc fastccoevivininiicc 271 T 317
PATHItION SEEUCKUTE <.vvvvvvvereeeeeeeeeeeeeeese e 76 PXNEXE oeveiniiieiieieeeieetee ettt ettt 318
Partitions (group) PXNEXt FASt .oeiiiiiee e 319

MBI CreatePArttionovvvvvvevrrerersrersresss, 190 PXPIEV ettt eteeiee ettt ettt et esaeeeree e 320

MbE_ENUMDEVICE .vvvvovoeeeereeeeeeeeeeeeeee e 191 PXPIEV_TASt .eieiieiieiieiie e 321

mbr_FormatDeviceccecvvievenienienieiennns 192 Q

mbr_MountPartitionccccceevevinienieieenenn 193

mbr_UnmountPartitionccceeevvvevvrceennnen. 193 o T3 6 () ST 322

mbr_ValidatePartitionsccceevevvervrciennenen. 194 A ANTE i 323
PAVALL oo 272 qd read ..o 324
pavail fastoccoceeieiiieiee e 273 A ZEIO oeieeiceeeeee s 324
PCAIOC i 274 GSOTE vieiieetieieereete e et e steeere e eeeesseesaesseereesesneenseeaas 325
PEITOT .vvieeieeieenieetieeteeteereereeseeseesseseeessessnensesssensenns 275 Quadrature Decoder (group)
PITST oo 276 A CITOT oottt 322
PACSt St .eieieiicieeceeee e 277 A NIt Lo 323
PITCE e 278 qd read ...oooiiieiee e 324
Piree fast ..oocvvieieieeee s 279 A ZEIO e 324
PRWIN Lot 280
PLASE i 281 R
PIASE_fAS oooooiiii s 282 o SO 326
PMOVEDEIWEEL ..o 283 TAISE uveerereeireeereeiteesreeeteesteeesseensaesnseenseessseesseesnsennns 327
PMOVEDEIWEEN faSt woovocrvr 285 TANA e 327
PICL e 286 wandb 308
PIEKE oo 287 FANAE —oooooee 329
PREXE_FAST oo 288 TANAG ©eoviieiieie et 329
POLY e 289 RAPortE 330
POOL APPENA .ooooiirii s 290 RAPOI oo 330
Dynamic C Function Reference Manual digi.com 502

http://www.digi.com

1A TEC 1ottt 331 sdspi_reset cardcooceeeeiieiiiieee e 363
ReadCompressedFileccoocoviiiiiiniieiieee. 331 sdspi_sendingAPoccooviiiiiiii 363
readUserBlockcoooeiireiniiiieeee e 332 sdspi_set_block lengthcoccoooiiiiiiiiiiiiie 364
readUserBloCKATITaYcccovveieviiiieiieeeeeee 333 SAspi_SEtLEDooiiiiiiiieiee e 364
Real-Time Clock (group) SASPI_WIite SECOT ..oeeevvreieeieieieieieeieeie e 366
o110 LSS 19 sdspi_ WriteContinuecceceeveeeveeneeeceenieeieneenne 365
ClOCK ettt 34 SETACIOSE ..ottt 382
CHIME vttt 46 SETAdAtabItscccoceeeveriniieccc e 383
AIfFHME .o 50 SETAAMAOTT ..o 383
41013100 TSRS 157 SErAAMAON ...eoiiiiiiieeee e 384
10caltimecccoceevivirininicicicececcccecee 186 serAflowecontrolOffcccccovvvirininniininence 385
MKEIME oot 201 serAfloweontrolOncccccceveveveecieiniininicncnnens 386
MK oo 203 SEIAZELC .eeetieiiieiieeeie ettt 387
1A TEC cevieieiieiee e 331 SETAZEEITOr .ovviiiiiiiiiiiiiieecee 388
TtC_tIMEZONE ..oveeeieneeeieie e 354 SETAOPEI ..ottt 389
$et32KHZDIVIdEroceeeeiiieiiieeeeeeeeee 401 SCIAPATILY .eeeeieeieieeieeee ettt 390
SEITHME .o 438 SEIAPECK ..o 391
1310 TSRS 462 SCIAPULC ..ottt 392
tM T e 462 SCIAPULS ..eoieieiieieeeieeie ettt 393
1300 4 ST 464 SErArdFIushooovviii 394
UPdateTIMETrS ..oveeeeeeieiieieeiieceee e 467 SETATAFTEE ..ooviiiiiiiec e 394
USE32KHZOSC ... 467 SETATAUSEd ..ot 395
A48 L 4 (oSSR 476 SEIATCAd ...oviiiiiiieeee e 396
rEIStIY CNUMETALEeoveeneeeeeenieieeee e 334 SErAXBIreakoccoovvviiiieiei e 367
registry_finish readccccoocoiiiiiiiinii 335 SETAWIFIUSh ..ooiiiii 397
registry _finish WIitecoccoociviiiiiiiiiiiieee 336 SETAWIFTCE .oovieiiiieiiee e 398
TEGISIIY GO oottt 337 SEIAWIILE ..ottt 399
registry prep readoccooceeveiierieiieieee e 338 SETAWIUSEd .eooiiiiiiee e 400
TEISIIY PreP WIILe ..eoveereeeieiiieieeiieie e 341 SEIBClOSE ..o 382
(1o 111 0 (1« RS 343 serBdatabitscccoeeieiiiie 383
registry Updateoccoeveviereiieeee e 344 serBAmaOff ... 383
(7o 111 7 LSS 345 serBAmaOlnc.ccoocieiiiiii e 384
TENAITIC ...ovevevirenrenrenrenrenreneeneetenressessensensensennennenene 349 serBflowcontrolOffcccoeveniiiinininincnce 385
RES o 350 serBflowcontrolOncccccevevvevvecieienininicnennens 386
TS tuteeruteeuteenite et e et e e et e s bt e s ate e bt e st et sbe e e be e bt e sare s 350 SEIBEEIC ..viiiiiiiiiiieeteeee e 387
TEWINA oottt 351 SErBEEtEITOr ..o 388
TOOL2VIAIN .eevuveeniieiiieieeniieeieenite ettt et e sieeeaeee i 352 SETBOPEN ..ooviiiiiiiiiicee 389
TOOL2XIMEIM ..veeneeerurieiieeeeeniieeiteeieeseteeee e eeeeiee 353 SEIBPArity .oveeiieeieieie 390
TEC tIMEZONE ..veeeieneieeieie ettt 354 SEIBPEEK ..o 391
TUNWALCH .ot 354 SEIBPULC ..o 392
SEIBPULS .eeiiiiiiiiiietceee e 393
S SErBrdFIushcccooeviiiiniiiccccce 394
SASPE_AEDOUNCE ~evvrrreoeeeeoeeee e 355 SETBIAFTEEeoviiiiiiiiciecicccccccee 394
SASPL_EL CSA wovvrrorroroeeeeeeeoeeeee e 356 SErBrdUsedcccooevvevieiienieiiiiiiicnenceenee 395
LT 357 SETBreadocoviiininee e 396
SASPL_EEL_SLALUS TEE oo 358 SETBWIFIUSh ..ccoooiiiiiiciccce 397
SASPI_EEtSECLOrCOUNE oo 357 serBwrFree .. 398
SASPE ML CATA —ovvvreeeeees oo 358 SETBWIILEoiiiiiiiiiii e 399
SASPL_INIDEVICE wvvvvrrreeeeoeeeeeee oo 359 SETBWIUSEd ..o 400
SASPE_ISWIIENG evvvororoeeeeoeeeeeeeeeeeeeeeeee 359 serCclose. ... 382
SASPE_NOTOUSY ~evvvvvrerer oo 360 SETCAatabitsccccvvievirerenieieieececeeeee e 383
SASPL_PHNE OV wovvroreooeeeeeeeoeeoeeeoeeee 360 SErCAmaOfT ..o 383
SASPi_ProCess COMMANGvvvvvvrrrrrererooeeorro 361 SETCAMAON ...cc.evviriiiiicieicicictee e 384
SASPL_read_SECLOTovevvvveerrueeriiierirereeereeecnes 362 SErCAOWOONIOIOR wocvocs v 385
Dynamic C Function Reference Manual digi.com 503

http://www.digi.com

SerCflowcontrolOncccvvveviveieeieeieiieeeeeeeeee, 386

SEICEELC .veeniiiiiieieetee ettt 387
SEICEELEITOT .oovvviieiiiiiiiiiicieecceeeeee 388
SETCOPEI .enviiiiiiiieeiee ettt 389
SCICPATILY .eeieieiieieeiieieee e 390
SCICPEEK ..o 391
SEICPULC ..eeniiiiiiiiieeiie ettt 392
SEICPULS ..eeniiieiieieeiee ettt 393
serCrdFlushcccooooiiiii e, 394
SETCIAFTEE ..o 394
SETCrdUsedooeoeueeieeieeeeeeeee e 395
SETCIEAd ...oooevveeieeeeee e 396
SETCWIFIUSh ..o, 397
SETCWIETCE ..ooeiiiiiiieeceeeeeeeee e 398
SETCWIILE ..oeeveieeeieeeeetee e 399
SETCWIUSEd ..o 400
SETDCIOSE ..o 382
serDdatabitscoooiiiiiiiii e 383
serDAmaOff ..., 383
SerDAmMaONccooeeiiieiieeeee e, 384
serDflowcontrolOff ..o 385
serDflowcontrolOncccooeveeieeeiiieeieee. 386
SEIDZEIC .eeeiiiiiiiiieiieee e 387
SEIDEEEITOL .oovvveiieeiiiiiieicieeeeecce e 388
SEIDOPEN .ocvvviiiiiiiiiiieiiee e 389
SCIDPATILY ..eeeiiieiieiieieee e 390
SErDPeek ..o 391
SEIDPULC ..eeiiiiiiiiieeie e 392
SEIDPULS oottt 303
serDrdFIushcccooooiiiii e, 394
SETDIAFTEe ..o 394
serDrdUsedccoooeuiiiiiiiiece e 395
serDreadooooiiiiiiii e 396
SerDWIFIushcccoooiiiiiii e, 397
SEIDWIFTICC ..oooiiiieieee e 398
SETDWIILE ..oeoeviiieeeceee e 399
SETDWIUSEd ..o, 400
SETECIOSE ..o, 382
serEdatabitsccccooeiiiiiiiiie e 383
serEdmaOff ..., 383
serEAdmaOnooooiiiiiii e, 384
serEflowcontrolOffccoooiiiiiiiiie, 385
serEflowcontrolOncocoeeieiieieiiiieieeeea, 386
SETEGELC .eeiiiiiiiiice e 387
SETEGEtEITOr .ooviiiiiiiiiiiieicecccecee 388
SETEOPEN ..eoiiiiiiiiiiiiiee 389
SCIEPATItY ...eoeiiiieiieiieie e 390
SEIEPEEK ..o 391
SETEPULC .o 392
SETEPULS .eeiiiiiiiiiee 393
serErdFlushcc.ccoooiiiiiiii e 394
SETErdFree ..oooviieieeeeee e, 394
serErdUsedcocoeeeiiiieiiieieeeeeeee, 395
SeTEreadcccoooiiiiii e, 396

SETEWIFIUSh ..oooviiiiiiiicce 397
SETEWIFTEE ..o, 398
SETEWTILEovviiiiiieiciciccctcccce e 399
SETEWIUSEd ...oveviiiiiiciecciceccccceeee 400
SETFCIOSE ...veviiiierieiciccccccce e 382
SerFdatabitscocovevveneniniiccccee 383
serFAmaOft ..o 383
SETFAmMAaONcoevveieiiiiiciicn e 384
serFflowcontrolOffccooeveveiiiiinininnenne 385
serFflowcontrolOnc..cccccevevevrcininiininicnennne 386
SEIFGEIC ittt 387
SEIFGELEITOr ..ouviiiiiiiiiiiiceeeeeeec e 388
SEIFOPEN ..o 389
SEIFPALILY .ooveeiiiieiece e 390
SEIFPEEK ..o 391
SEIFPULC .o 392
SEIFPULS .o 393
SETFTdFIushcoocooiiiiiiccce 394
SETFTAFICE ..covevveieiiiciciecce e 394
SETFTAUSEdooveviiiiieiciciciciecc e 395
SETFTEad ..oovevviiiiiriciecccc e 396
SETFWIFIUSh ...o.ooiiiiiie 397
SETFWIFTEe ..o, 398
SETFWIIE ..eeoviiiiiiiieicicccctccc e 399
SETFWIUSEd ...ooveieieiciccccccccce 400
Serial Communication (group)
COf SETAZELC ..ovveeiiiieiieiiee et 37
COf SETAZELS ..oivieiiiieiieiiee et 38
COf SETAPULC ..ovvieieiieieiiee e 39
COf SETAPULS ..oviiieiieieeee e 40
COf SErATCad ..oceeviieieiieiee e 41
COf SETAWIIE ...veeeeeiieiieiieie e 42
COf SErBEetC ..ocoviiiiiiiieee e 37
cOf SErBEets ...ocuoviiiieiiie 38
cof SerBputcoocveiiiie e 39
cof SerBputsooccoeieiiiie e 40
cof serBreadoccooiiiiiiiiin e 41
cof SErBWIIteoooviiiiiiiieie e 42
COf SEICEELC ..ovviriiiieiieiieie et 37
COf SEICEELS ..ot 38
COf SETCPULC ..ovvieeiiiieiieiiee et 39
COf SETCPULS ..ovvieiiiieiieiee e 40
cof serCreadcocevirieniiiienieee e 41
COf SETCWIILE ..o 42
cOf SerDZetC ..oc.ovoiiieieiiieie e 37
cOf SerDEets ...c.ooviveieiiieieee e 38
cOf SerDPUtC ..oeoveeeiieiiie 39
cof SerDputscoceeiieiiie e 40
cof serDreadccooeiiiieiiiiii e 41
COf SEIrDWIIEeoeeiiieiiiiee e 42
cof SErEgete ..ooovviiiiiiie 37
cof SErEgetscoooiiiieiiiie 38
cof SErEpUutC ...coooiiiiiieie e 39
cof SErEputsccocoiieiii 40

Dynamic C Function Reference Manual

digi.com

504

http://www.digi.com

cof serEreadccoooeiiiiiiii 41

COf SETEWIIE ...oovvieiiiieieeee e 42
COf SETFEetC ..ooiieieiiie e 37
COf SEIFEets ..ooievieieieeee e 38
cof SErFPULC ..oovveeiiiie 39
cOf SETFPULS ..ooeeiiieie e 40
cof serFreadccoooeeviiiiiiie 41
COf SETFWIIE .ooveeeiiiiee e 42
SETACIOSE e 382
serAdatabitsccooeeiiiiie e 383
serAdmaOff ..o 383
SErAdmMAaONc.oooviiiee e, 384
serAflowecontrolOncccoeoeviieeiiiecieeeee, 386
SETAZELC wevveiiiieieeite ettt 387
SETAZELEITOT ...ovuviiiiiiiiiiieiececc e 388
SETAOPEI ..eeiniiiiiiiiiieiieeteee et e 389
SCIAPATILY .oeveeieiieiieeieeieee et 390
SEIAPEEK ..o 391
SETAPULC .eviiiieeiieiie ettt 392
SETADPULS Leeeeiieeiieite ettt e 393
serArdFlushccoooeiiiiie, 394
SETATAFTEE ..o 394
SETATAUSEd ..o 395
SETATEAd ..ocvveiieiieieeeee e 396
SerAWIFIush ..o 397
SETAWIFTCC ...ovvviiiicc e, 398
SETAWTILE .evveeiieie e 399
SETAWIUSE ..o 400
SETBClOSE ...oveiieeeeeeeeeeeeeee e 382
serBdatabitsc.coooiiiiiiie e 383
serBdmaOff ..o, 383
SerBdmaOlnccoooeeeiiie e 384
serBflowcontrolOnccccooevvveeiiiiecieeen. 386
SEIBEELC .oovviiiieii e 387
SErBEEtEITOT ...oocviiiiiiiiiiiiic e 388
SETBOPENeoiiiiiiiii, 389
SCIBPALItY ..ooveieieiieieiee e 390
SEIBPEEK ...ooiiiiei 391
SEIBPULC .o, 392
SEIBPULS .oeviiiiiiii 393
serBrdFlushccccoooiiiiiii 394
SEIBIdFTeeccvvviiieeeeeee e 394
serBrdUsedc..ooooveeeiiiiceeeeeeeee e, 395
serBreadooooiiiiiee e, 396
serBWrFIushccocoooiiiiiiieee 397
SETBWIFTEE ...ovvvviiiiiiiiicc e 398
SETBWIIte ...ooooiieiiiieeeecee e 399
serBwrlUsedoooveeeiiiieeceeeeeeee 400
SETCCLOSE e 382
serCdatabitscceeeeiiieiiiiieeeeeee e 383
serCdmaOff ..., 383
SErCdmaONocoovviieiiiieee e 384
serCflowcontrolOncccooeeveeeiiieecieeeenee. 386
SEICELLC enviiiieeiieite ettt 387

SEICEEtEITOT ...ooiiiiiiiiiiiiiceeeee, 388
serCheckParityccccoeveeiiiiiiiiieeceeeas 367
SEICOPEN .eeeeiiieiiieieeitceeeece et 389
SEICPALILY .eeveeiieiieiieiierie et 390
SEICPEEK ..ot 391
SEICPULC ettt 392
SEICPULS wveveiiieiieeieeec et 393
serCrdFIushcooooviiiiiieee 394
SEICIAFTEE ..o 394
SErCrdUSedccvveeiieeeeieeeeee e 395
SErCreadoooovveeieieeeeee e 396
SerCWIFIushcoooiiiiiii e 397
SETCWIFICE ..o 398
SEICWIILE .evveeeeeee e 399
SErCWIUSEd ...oovvieieiieeeeeee e 400
SEIDCIOSE .. 382
serDdatabitsccccooeiiiiiiiie e 383
serDAdmaOff ..o 383
serDAdmaOnccocooeiiiiiii e 384
serDflowcontrolOffc..coooiiiiiiie. 385
serDflowcontrolOnccccoooevieeiiieeeiieenee. 386
SEIDZELC oveiiiiiiiieeeee e 387
SErDEELEITOL ...ooiiiiiiiiiiecieee e 388
SEIDOPEN ..eeiiiiiiiiiiieiiceee e 389
SEIDPALILY ..oeieiieeieiieiec e 390
SEIDPeek ..o 391
SEIDPULC et 392
SEIDPULS et 393
serDrdFIushoooooiiiiiiieeeeeeee 394
SErDIrdFreeooooveieiiieee e 394
serDrdUsedoooovieeiiiiiecceeeeeeeeee 395
serDreadoooviiiiiiii e 396
serDWrFlush ... 397
SErDWIFTEe ..o 398
SEDWIILE .evviiieiieeeeeeeee e 399
serDwrlUsedc..ooovouiiieiiiiceeeee e 400
SETECIOSE ...evveieeeeceeeeee e 382
serEdatabitsccccoooiiiiiiiiiiie e 383
serEdmaOff ... 383
serEdmaOnccoooeeiiiiii e 384
serEflowcontrolOffccccooiiiiiiie. 385
serEflowcontrolOncccocoeevieieiiieeeieeenn. 386
SEIEZELC .ooveiiiiiiiieiee e 387
SErEGEtEITOr ...oovviiiiiiiii, 388
SETEOPEN ..eeeiiiiiiiiiieiec e 389
SEIEPATItY ..ooeeeieiiiieiec e 390
SEIEPEEK ..o, 391
SETEPULC oeveiiiiiiieeeice e 392
SETEPULS .eoeiiiiiiiiieiee e 393
serErdFlushocooooiiiiiiiiee 394
SErErdFreeoooovviiiiiieee e 394
serErdUsedcccooooviieiiiiieceeeeeeee 395
serEreadcooooiiiiiii e 396
serEwWrFlushocoooiiii 397

Dynamic C Function Reference Manual

digi.com

505

http://www.digi.com

SETEWIFTEEooviiiiiiiiiii, 398 SEIVO MOVE 10 ueeeieeriiiieeniiinieenitenee et 376
SCIEWTILE .ooiiiiiiiieeeee e 399 SEIVO_OPENIOOP ...eeueiiieiieiieiieiiee e 377
SErEWIUsed ...ooovvieiiiieiiee e 400 $ervo_qd Zero 0coccoooiiiiiiieeeeeeeee 378
SEIFCIOSE ...eoiiiieiieee e 382 $ervo_qd Zero 1cccooiiiiiiiiieeeeeee 378
serFdatabitsccocoovieiiiieee e 383 servo_read tableccccviiiiiiiiiiiiiiee 379
serFdmaOff ..., 383 Servo_set COoeffsooeviriiiiieieeeee 380
serFdmaOlncooeiiiiiiii e 384 SEIVO _SEL POS .eerveeieeriiiieeniierieeniee sttt 380
serFflowcontrolOff ..o 385 SEIVO_Set Vel oo 381
serFflowcontrolOncccoccovieiiiiiniiieenene 386 SEIVO_StatS TESEL ...c.eeeereieieeieieniesiieienieeie s 381
SEIFEELC woviiiiiiiiiiie e 387 SEIVO TOTQUE ..veerereeniieiieeieeieeniteeeee e eeree e 382
SErFEetEIror .oo.ooiii e 388 servo_alloc tableccoccoiiiiiiiiiieee 368
SCIFOPEN ..o 389 servo_closedloopcoccoeceiiiiiiinieeee 368
SCIFPALILY .eoeieiiiieece e 390 servo_disable 0occoocveviiiiiieee 369
SCIFPEEK oo, 391 servo_disable 1 ..ot 370
SCIFPULC .o 392 servo_enable 0occoocovviiiiiiiiine e 371
SCIFPULS e 393 servo_enable 1 ..ot 372
SerFrdFlushocoviiii e 394 1S WY <7 RSP 373
SEIFTAFTIEe ..o 394 SEIVO_ GTAPh .o 374
serFrdUsedcoooviiiiiii e 395 SEIVO TMIE .eeieiiiieiieiiesee e 375
serFread ..o 396 servo_millirpm2vemdcooooiiiiiiiii 375
SerFWIFIush ..o, 397 SEIVO IMOVE L0 tveeuiieieireeieiericenieeteeie e e eneeeeenes 376
SETFWIFTEE oo, 398 SEIVO_OPENLOOP ..oovviiieiieiieieeieieeee e 377
SCIFWIILE ..eiiiiieiieiee e 399 $ervo_qd Zero 0occooceiiiiiieeeeee e 378
SErFWIUSedooovieiiiieiicee e 400 $ervo_qd Zero 1 ...oocoocoiiiiiiiieeee e 378
$erXdatabitSocceeeveiieiieee e 383 servo_read tablecccooiiiiiiiiiiie 379
serXdmaOftccoooiiiii 383 servo_set coeffScooorviiiiiiii 380
SErXdmaOnooccevieiieiee e 384 SEIVO SEL POS cuveeiieriieeiieniteeie ettt 380
serXfloweontrolOffcccooiiiiiiiiiiieeee 385 SEIVO_Set Vel ..oviiiiiiiiiieiee e 381
serXfloweontrolOncccecvveeviiieneiieieneenne 386 SEIVO_StatS TESEL ..veeveereieeieieeiieieeieeie e 381
SEIXZELC wevveeiieeiieeniie ettt ettt 387 SEIVO TOTQUE euvieutieriieeieeniieeieenieesireeeee e eneeeeeens 382
SErXEEtEITOr .oeviiiiiiiieee e 388 $erXdatabitscccoeieriiiee e 383
SCIXPATILY -eeveeeieieeiieieenieeie et 390 serXdmaOff ... 383
SEIXPeek ..oooiiie 391 SErXdmaONcocevieiieiiiieeeee e 384
SCIXPULC .ottt ettt 392 serXfloweontrolOff ... 385
SCIXPULS ..oeeeieiieieeiieie ettt 393 serXfloweontrolOncccceevevieieiieiieneeieene 386
serXrdFlush ..o 394 SEIXEEEC ovetieiieeieieete ettt ettt 387
SEIXTAFTEE ..o, 394 SErXEEtEITOr oeviiiiiiiiiiiiececcee 388
SErXrdUSEd ...oveeeiiiieiieiee e 395 SEIXPATILY .veeeeeeieieetienee ettt 390
SEIXTCAd ...oiiiiieiieiiee e 396 SEIXPEEK oo 391
SerXWrFIush ..o 397 SEIXPULC .eeneieieeieiieie ettt 392
SEIXWIFTEE o.eveiiiiiiiiiiieceecc e 398 SEIXPULS ..ttt ettt 393
SEIXWIIER ..eeveuienreueeierieniententeneeeeeeeeereeresresre e 399 SETXTAFIUSH ..ot 394
SEIXWIUSEd ...oovvviiiniriiniiicicccceececeese e 400 SETXTAFTEE ..vevviiiiiiiieieriercccccceee e 394
Servo Control (group) SEIXTAUSEdoovviiieiieiieiieeeee e 395
servo_alloc tableccovveiiniiiiiiieeee 368 SEIXTEAA ..ottt 396
servo_closedloopccevvvieiiniiiiieeeeee 368 SErXWIFIUSh ..ooiiiii 397
servo_disable 0ccooiiiiiiniieeee 369 SEIXWIFICE .ooiiieiiiieiieic e 398
servo_disable 1coocooiiiiiiiiieee 370 SEIXWIILE -eeuvieeieeienieeieeee ettt 399
servo_enable 0ccooiiieiiniiiieeeee 371 SEIXWIUSEd ..oooiiiieiieeee e 400
servo_enable 1ococooiiieiiniiieneeeeeee 372 SET e s 401
SEIVO ZEAT .eeuveeuveeeteentieniienteenireereebeesreenneesanes 373 SEL ettt 400
SEIVO_ GIAPN ..ooiiiiiiiiieiec e 374 set_cpu_power MOdecocceeeeevuieienienienieeieeene 402
SCIVO INIE eeeviiieiieiieieeieee et 375 $et32KHZDIVIderccooveeeiiiiiiiieceeee e 401
servo_millirpm2vemdccoociiiiiiiniiis 375 SEEDUTL L. 405
Dynamic C Function Reference Manual digi.com 506

http://www.digi.com

setClockModulationcccceveeeenieieninienenee.
1111001 o SRS
SetSerial TATXRValuesccoocveoiieiieiiiieeee
SCEVDUL Lo
SetVEeCtEXterncocceevviinieniiiiiiniceiceeeieeeee
SetVectInternccccevveeveenieniinniirieeeeieeeee
sf_getPageCountccoooeeveeieiiinieeeiee e
st getPageSizecooeiieiiieee
ST ANTE oo
ST INIDEVICE ..ooveeeieiieiieieieeecee e
ST ASWIIHING e
ST PageTORAMoooeiiiieieeeee e
ST RAMTOPAZEooveeiiiiieiieeee e
sf readDeviceRAMcccooiiiiiiiiieeeee e
st readPageccooveieiii

SNPIINtE Lo
SPI (group)
SPHNIE oot
SPIREAd ...covevivenieieieiieinccceee e
SPIWTILE ..oveviieieieieieiececeee e
SPIWIRA ...ooviiiiiicceeeeeeee
SPHNIE v

Stdio (group)
CLEATEIT ...

fTEOPEN .o
fscant ..o
£SECK e
TSELPOS et
FEEll oo
TWIIEE oo
EEChAL ..o
OIS

KDhit oo 184
PIANtE oo 304
PULCHAT e 309
PULS ettt 309
TEITIOVE woneiiiiieiieniieenteeeeeeitesteenttesaeeenbeessresneens 348
TENAIMIE ...evveeurieiieeieenteeeneeenteeeteesneeebeesbeeereenieens 349
TEWINA .eoiieiiiiee e 351
SEEDUL ..o 405
SEEVDUL ..o 409
SOPIINEE .o 426
SPIINEE Lot 429
tMPFILE oo 463
TMPNAIM .ttt 463
UINEZELC .eeeieieiieiiieeieesite ettt et et sieeeeeenaee s 466
VPIINEE .o 474
VSOPIINEE ..o 476
VSPIINEE Lo 476
SEICAL ettt 431
13 (] 11 TSP 432
SEICITIP weeneveeeieiieeiee ettt et 433
130611110 (USSP 434
SEECOLL e 435
SEICPY cuveeetieteenite ettt et ettt ettt et e 436
SETCSPIN wenetieiieiieeite ettt ettt 437
SETEITOT ..enveeiieeieeiie ettt ettt s 437
SEEEHME oo 438
String Manipulation (group)
MEMCRL ..iiiiiie e 196
INEIMCIIIP ..eevvienvieenreereeeieenteesteenseesaeeenbeesseessseens 197
INEIMNCPY evvenreevrennreenreeeteenieesteesseeseeenseesseessseens 198
MEMIMOVE ..eveivieenieeniieeteenitesteesetesreesieeereenseens 199
IMEIMSEL wneeiiiieiiieeieeriieete ettt 200
SEICAL ..ottt 431
SEICRT oo 432
SETCITIP .eveeneeeeiieeiee ettt 433
180011110 LTSRS 434
SEECOLL it 435
SETCPY weenrteeueeeieerite ettt 436
SETCSPI ettt ettt 437
SETEITOT «.veeeeenieeiiieeiee sttt st e 437
SEELET o 441
SEITICAL vttt e 442
199116 111 T U OUROP RSP PRSP 443
SEINCINPT wevieieieeiieieeiie et 444
199116 0) NSO T PSPPI UPROTSROP 445
SEPDIK o 446
SEITCAT Lottt 447
SEESPIL enviiiieeieeite ettt 448
SEESET ettt 449
SEIEOK ettt 452
SEEXITIN v 457
1701 (o)) SRR 465
LOUPPET ittt 465

String-to-Number Conversion (group)

Dynamic C Function Reference Manual

digi.com

507

http://www.digi.com

ALOT . 23 tANN Lo 460
110 RSP 23 TATIR SetValueccccooviieiiiieiieeeeeee 461
ALOL e 24 137101 TSP 462
SEEOA oot 450 1300 (o RSP SPSSRT 462
SEILOL 1. 453 1300 B4 SRR SPRRSR 464
SEEOUL . 455 tMPFILE oo 463
SEELEI Lot 441 1500100 E21 1 o LU SPRRSR 463
SEITICAL ..ottt e 442 1701 (0} () USROS 465
STINCINP .ottt ettt 443 BOUPPET ettt ettt st 465
300103001 o) AU 444
SIINICPY +enveeireeiieeteeite ettt ettt 445 U
SIPDIK oo 446 UCOSZ ittt ettt sttt nae 93
SETCAT .o 447 UDEELC oeoeeeeeeeee e 466
SITSPIL ettt ettt ettt 448 UPAALETIINETS e 467
SETSEL ceneteeeete ettt 449 Use32kHZOSC oo 467
SEIEOA et 450 useClockDivider oo 468
SEIEOK 1ot 452 useClockDivider3000 ..o 469
SEIEOL et 453 USeMainOSe oo 470
SEEOUL .o 455 User Block (group)
strxfrm B 457 readUserBlock oo 332
sSysIt{ese‘ECham) ... 458 1eadUSErBIOCKAITAY ..o 333
ystem (group writeUserBlockc.cocovecieiiiininininincncee 477
—gzgi:ﬁzgggji’;gg WiteUSerBIOCKATITAYooovveevererecerierianss 479
_ SYSISSOftRESEL ...vovevvvieiiieercce e 458 \"
chkHardResetcccoceviieiiiiieiieeeeeee e 31
ChKSOFtRESEL ... 32 VBAT RAM (group)
chkWDTO oo 33 TOOT2VIAIN ..ooiuiiiiiiieceiieeeiee et eeee e e eevee e 352
clockDoublerOff oo 34 VIAM2TOOT 1eevvveeeveeieeeiieenieenreesieesreeseessneeseenseens 475
clockDoublerOn .o 35 VAGetFreeWdooovveiiiiiieieiecece e 471
defineErrorHandler ..o 47 VAINIE o 472
EXIE 1ureierereeeceee ettt ee ettt eeeens 73 VdReleaseWd ..o, 473
forceSoftReset oo 137 VIPTINE oo 473
et _CPU_FIEQUENCY .ooveveeeeeeeeeeeeeeeeeeeeeees 151 VPIINEE o 474
etdivider19200vveeeeeeeeeeeseeeeeeseseeseennes 152 VIAM2TO0T 1.evtiiieiieniieiiietieee et sieeae e eeee b eeeeneeene 475
GetVectEXtern oo 156 VSNPIINEE Lo 476
GetVectIntern ..o 156 VSPIINLE oot 476
IPTCS ettt ettt ettt 175
IPSELE ettt 176 w
pr EITIAIIY et ee e e e e e e e e e e e e ee e e e e eeeeeeeee 301 Watchdogs (group)
set_Cpu_pOWer_modecocverniiniininicnncnns 402 Disable HW_WDT ...c.cccoviinieirienieereeeeene 51
SEt32KHZDIVIET .oovvenrveveerrerreeeerseereeeeeenenae 401 Enable HW WDT ..cooooooeeeereeeeeeeeceseeeseeeeees 70
setClockModulationcccocccecescresscreereeeee 402 BEWA oo 168
SetSerial TATXRValues ... 407 VAGEFTeeWd ... 471
sysResetChain ... 458 VAHIEWA oo 472
TATIR_SetValuecocooviviiniiiiiniininccn, 461 VAINIE oo 472
UPdateTIMETrS ..o.veeeveeieiieieeiieicee e 467 VAREIEASEWA ..o, 473
USe32KHZOSC ..o 467 A € L1 o (o 476
USECIOCKDIVIAET ..o 468 WEHEUSEIBIOCK .orvvvveeeeeeee e eeeseeeeeeseen 477
useClockDivider3000coovviiiiiiiiininieinnns 469 WriteUSerBIOCKAITAYccvevvereerererereceeiereneeaenae. 479
USEMAINOSC .o 470 WIPOTE ..o 480
T WIPOTL ..o 481
AT Lo e 459
Dynamic C Function Reference Manual digi.com 508

http://www.digi.com

XALLOC 1.vviiiieiii e 482
XA10C StALS .vevieeieiieiee e 484
XAVALL cviiiiiiiiicecece e 484
xCalculateECC256ccvivvieviiciieiieieecie e 485
XChKCorrectECC256ooovvevieieicieeieeceieeveeiee 486
XIMEMZ2TOOT eeeuvviieeeiieeeiieeeiieeesreeesreeeeereeeeeaeeeenens 487
XIMEM2XIMEIN «.evvienevieeerieeeireeeereeesereeessreeesssseesnnens 488
XTCIEASE .oviiieiiiiieeiiieee e 489
Z

RC/OS-II compatibilitycccccoceererveiinieiinieene. 93

Dynamic C Function Reference Manual digi.com

509

http://www.digi.com

	Dynamic C Function Reference Manual
	Table of Contents
	Function Descriptions
	A
	abs
	acos
	acot
	acsc
	AESdecrypt4x4
	AESdecryptStream4x4_CBC
	AESencrypt4x4
	AESencryptStream4x4_CBC
	AESexpandKey4
	AESinitStream4x4
	asctime
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol

	B
	bit
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI

	C
	CalculateECC256
	ceil
	chk_timeout
	ChkCorrectECC256
	chkHardReset
	chkSoftReset
	chkWDTO
	clearerr
	clock
	clockDoublerOff
	clockDoublerOn
	CloseInputCompressedFile
	CoBegin
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CoPause
	CoReset
	CoResume
	cos
	cosh
	ctime

	D
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	difftime
	Disable_HW_WDT
	disableIObus
	DMAalloc
	DMAcompleted
	DMAhandle2chan
	DMAioe2mem
	DMAioi2mem
	DMAloadBufDesc
	DMAmatchSetup
	DMAmem2ioe
	DMAmem2ioi
	DMAmem2mem
	DMApoll
	DMAprintBufDesc
	DMAprintRegs
	DMAsetBufDesc
	DMAsetDirect
	DMAsetParameters
	DMAstartAuto
	DMAstartDirect
	DMAstop
	DMAstopDirect
	DMAtimerSetup
	DMAunalloc

	E
	Enable_HW_WDT
	enableIObus
	error_message
	exception
	exit
	exp

	F
	fabs
	fat_AutoMount
	fat_Close
	fat_CreateDir
	fat_CreateFile
	fat_CreateTime
	fat_Delete
	fat_EnumDevice
	fat_EnumPartition
	fat_FileSize
	fat_FormatDevice
	fat_FormatPartition
	fat_Free
	fat_GetAttr
	fat_GetName
	fat_GetPartition
	fat_Init
	fat_InitUCOSMutex
	fat_IsClosed
	fat_IsOpen
	fat_LastAccess
	fat_LastWrite
	fat_MountPartition
	fat_Open
	fat_OpenDir
	fat_PartitionDevice
	fat_Read
	fat_ReadDir
	fat_Seek
	fat_SetAttr
	fat_Split
	fat_Status
	fat_SyncFile
	fat_SyncPartition
	fat_Tell
	fat_tick
	fat_Truncate
	fat_UnmountDevice
	fat_UnmountPartition
	fat_Write
	fat_xRead
	fat_xWrite
	fclose
	feof
	ferror
	fflush
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	fgetc
	fgetpos
	fgets
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen
	forceSoftReset
	fprintf
	fputc
	fputs
	fread
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwrite

	G
	get_cpu_frequency
	getchar
	getcrc
	getdivider19200
	gets
	_GetSysMacroIndex
	_GetSysMacroValue
	GetVectExtern
	GetVectIntern
	gmtime
	gps_get_position
	gps_get_utc
	gps_ground_distance

	H
	hanncplx
	hannreal
	HDLCabortX
	HDLCcloseX
	HDLCdropX
	HDLCerrorX
	HDLCextClockX
	HDLCopenX
	HDLCpeekX
	HDLCreceiveX
	HDLCsendX
	HDLCsendingX
	hexstrtobyte
	hitwd

	I
	i2c_check_ack
	i2c_init
	i2c_read_char
	i2c_send_ack
	i2c_send_nak
	i2c_start_tx
	i2c_startw_tx
	i2c_stop_tx
	i2c_write_char
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit

	K
	kbhit

	L
	labs
	ldexp
	localtime
	log
	log10
	longjmp
	loophead
	loopinit
	lsqrt

	M
	mbr_CreatePartition
	mbr_EnumDevice
	mbr_FormatDevice
	mbr_MountPartition
	mbr_UnmountPartition
	mbr_ValidatePartitions
	md5_append
	md5_finish
	md5_init
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf

	N
	nf_eraseBlock
	nf_getPageCount
	nf_getPageSize
	nf_initDevice
	nf_InitDriver
	nf_isBusyRBHW
	nf_isBusyStatus
	nf_readPage
	nf_writePage
	nf_XD_Detect

	O
	OpenInputCompressedFile
	OS_ENTER_CRITICAL
	OS_EXIT_CRITICAL
	OSFlagAccept
	OSFlagCreate
	OSFlagDel
	OSFlagPend
	OSFlagPost
	OSFlagQuery
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxDel
	OSMboxPend
	OSMboxPost
	OSMboxPostOpt
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSMutexAccept
	OSMutexCreate
	OSMutexDel
	OSMutexPend
	OSMutexPost
	OSMutexQuery
	OSQAccept
	OSQCreate
	OSQDel
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQPostOpt
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskIdleHook
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTCBInitHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTick
	OSTimeTickHook
	OSVersion

	P
	paddr
	palloc
	palloc_fast
	pavail
	pavail_fast
	pcalloc
	perror
	pfirst
	pfirst_fast
	pfree
	pfree_fast
	phwm
	plast
	plast_fast
	pmovebetween
	pmovebetween_fast
	pnel
	pnext
	pnext_fast
	poly
	pool__append
	pool_init
	pool_link
	pool_xappend
	pool_xinit
	pow
	pow2
	pow10
	powerspectrum
	pprev
	pprev_fast
	pputlast
	pputlast_fast
	premain
	preorder
	printf
	putc
	putchar
	puts
	pwm_init
	pwm_set
	pxalloc_fast
	pxcalloc
	pxfirst
	pxfree
	pxfree_fast
	pxlast
	pxlast_fast
	pxnext
	pxnext_fast
	pxprev
	pxprev_fast

	Q
	qd_error
	qd_init
	qd_read
	qd_zero
	qsort

	R
	rad
	raise
	rand
	randb
	randf
	randg
	RdPortE
	RdPortI
	read_rtc
	ReadCompressedFile
	readUserBlock
	readUserBlockArray
	registry_enumerate
	registry_finish_read
	registry_finish_write
	registry_get
	registry_prep_read
	registry_prep_write
	registry_read
	registry_update
	registry_write
	remove
	rename
	res
	RES
	rewind
	root2vram
	root2xmem
	rtc_timezone
	runwatch

	S
	sdspi_debounce
	sdspi_get_csd
	sdspi_get_scr
	sdspi_getSectorCount
	sdspi_get_status_reg
	sdspi_init_card
	sdspi_initDevice
	sdspi_isWriting
	sdspi_notbusy
	sdspi_print_dev
	sdspi_process_command
	sdspi_read_sector
	sdspi_reset_card
	sdspi_sendingAP
	sdspi_set_block_length
	sdspi_setLED
	sdspi_WriteContinue
	sdspi_write_sector
	serAtxBreak
	serCheckParity
	servo_alloc_table
	servo_closedloop
	servo_disable_0
	servo_disable_1
	servo_enable_0
	servo_enable_1
	servo_gear
	servo_graph
	servo_init
	servo_millirpm2vcmd
	servo_move_to
	servo_openloop
	servo_qd_zero_0
	servo_qd_zero_1
	servo_read_table
	servo_set_coeffs
	servo_set_pos
	servo_set_vel
	servo_stats_reset
	servo_torque
	serXclose
	serXdatabits
	serXdmaOff
	serXdmaOn
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXstream
	serXwrFlush
	serXwrFree
	serXwrite
	serXwrUsed
	set
	SET
	set32kHzDivider
	setClockModulation
	set_cpu_power_mode
	setbuf
	setjmp
	SetSerialTATxRValues
	set_timeout
	setvbuf
	SetVectExtern
	SetVectIntern
	sf_getPageCount
	sf_getPageSize
	sf_init
	sf_initDevice
	sf_isWriting
	sf_pageToRAM
	sf_RAMToPage
	sf_readDeviceRAM
	sf_readPage
	sf_readRAM
	sf_writeDeviceRAM
	sf_writePage
	sf_writeRAM
	sfspi_init
	signal
	sin
	sinh
	snprintf
	SPIinit
	SPIRead
	SPIWrite
	SPIWrRd
	sprintf
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcmpi
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	_sysIsSoftReset
	sysResetChain

	T
	tan
	tanh
	TAT1R_SetValue
	time
	tm_rd
	tmpfile
	tmpnam
	tm_wr
	tolower
	toupper

	U
	ungetc
	updateTimers
	use32kHzOsc
	useClockDivider
	useClockDivider3000
	useMainOsc

	V
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	vfprintf
	vprintf

	W
	vram2root
	vsnprintf
	vsprintf
	write_rtc
	writeUserBlock
	writeUserBlockArray
	WrPortE
	WrPortI

	X
	xalloc
	_xalloc
	xalloc_stats
	xavail
	_xavail
	xCalculateECC256
	xChkCorrectECC256
	xmem2root
	xmem2xmem
	xrelease

	Software License Agreement
	Index

