
Version 6.x
Integrated C Development System

Function Reference

for Zilog Z180 microprocessors

019-0082 � 020329-D

Dynamic C 32 v. 6.x Function Reference

Part Number 019-0082 � 020329 - D � Printed in U.S.A.

Copyright

© 2002 Z-World, Inc. All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C® is a registered trademark of Z-World, Inc.
� PLCBus� is a trademark of Z-World, Inc.
� Windows® is a registered trademark of Microsoft Corporation.
� Modbus® is a registered trademark of Modicon, Inc.
� Hayes Smart Modem® is a registered trademark of Hayes Microcom-

puter Products, Inc.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

Function Reference Table of Contents s iii

TABLE OF CONTENTS

About This Manual ix

Chapter 1: General Support Libraries 13
Global Initialization ... 14
BIOS Functions .. 14
COSTATE.LIB ... 18
CTYPE.LIB ... 19
MATH.LIB... 20
STDIO.LIB .. 23
STRING.LIB .. 28
SYS.LIB ... 32
UTIL.LIB ... 35
XMEM.LIB ... 36

Chapter 2: Multitasking Libraries 39
RTK.LIB .. 40
SRTK.LIB .. 42
VDRIVER.LIB .. 43
VWDOG.LIB ... 44

Chapter 3: AASC Libraries 45
AASC.LIB ... 46
XModem Functions in AASC.LIB ... 52

Chapter 4: Other Communication Drivers 59
MODEM232.LIB .. 60
NETWORK.LIB .. 60
PRPORT.LIB ... 62
SCC232.LIB .. 66
SERIAL.LIB .. 72
S0232.LIB .. 74
S1232.LIB .. 78
Z0232.LIB ... 78
Z1232.LIB ... 82

Chapter 5: Modbus Slave Libraries 83
Getting Started ... 84

Standard Modbus Slave Procedure ... 84
Advanced Modbus Slave Procedure ... 87

iv s Table of Contents Dynamic C 32 v. 6.x

Modbus Registers .. 88
Modbus Slave Command Handlers ... 89
Modbus Slave Serial Interface ... 91
High-Resolution Timer .. 93
Modbus Slave Supported Commands .. 93
Modbus Slave Unsupported Commands .. 94

Chapter 6: Modbus Master Libraries 95
Getting Started ... 96

Standard Modbus Master Procedure ... 96
Advanced Modbus Master Procedure ... 98
Modbus Master Timeouts ... 99

Modbus Registers .. 99
Modbus Master Command Functions .. 100
Modbus Master Serial Interface ... 108
Modbus Master Supported Commands .. 109
Modbus Master Unsupported Commands ... 109
Modbus Master Command Function Return Values 110

Chapter 7: Graphics Engine Support Library 115
GESUPRT.LIB ... 116

Chapter 8: Other Libraries 145
5KEY.LIB .. 146
5KEYEXTD.LIB ... 151
CPLC.LIB .. 153
DRIVERS.LIB ... 154
DMA.LIB... 161
FK.LIB ... 165
IOEXPAND.LIB .. 167
KDM.LIB... 170
LCD2L.LIB.. 178
MISC.LIB .. 180
PBUS_LG.LIB ... 180
PBUS_TG.LIB ... 184

Appendix A: Dynamic C Libraries 189
LIB ... 190

5KEY.LIB ... 190
5KEYEXTD.LIB .. 190
96IO.LIB .. 190
AASC.LIB .. 190
AASCDIO.LIB ... 190

Function Reference Table of Contents s v

AASCDUM.LIB ... 190
AASCSCC.LIB ... 190
AASCSIOA.LIB ... 190
AASCUART.LIB .. 191
AASCURT2.LIB .. 191
AASCZ0.LIB .. 191
AASCZ1.LIB .. 191
AASCZN.LIB ... 191
BIOS.LIB .. 191
BL11XX.LIB .. 191
BL13XX.LIB .. 191
BL14_15.LIB ... 191
BL16XX.LIB .. 192
CIRCBUF.LIB .. 192
CM71_72.LIB .. 192
COM232.LIB.. 192
COSTATE.LIB ... 192
CPLC.LIB ... 192
CTYPE.LIB .. 192
DC.HH .. 192
DEFAULT.H ... 192
DMA.LIB ... 192
DRIVERS.LIB .. 192
EPSONRTC.LIB .. 193
FK.LIB .. 193
GATE_P.LIB ... 193
GESUPRT.LIB ... 193
GLCD.LIB .. 193
IOEXPAND.LIB ... 193
KDI.LIB .. 193
KDM.LIB ... 193
KP.LIB .. 194
KP_KDI.LIB .. 194
KP_LP31.LIB ... 194
KP_OP71.LIB .. 194
LCD2L.LIB .. 194
LP.LIB .. 194
LP_16.LIB .. 194
LP_8.LIB .. 194
LP_BL145.LIB ... 195
MATH.LIB ... 195
MISC.LIB ... 195
MM.LIB.. 195
MMZ.LIB ... 195
MODEM232.LIB ... 195

vi s Table of Contents Dynamic C 32 v. 6.x

MS.LIB ... 195
MSZ.LIB... 195
NETWORK.LIB ... 195
OP71HW.LIB ... 195
OP71L.LIB ... 196
OP71P.LIB .. 196
PBUS_LG.LIB .. 196
PBUS_TG.LIB .. 196
PK21XX.LIB .. 196
PK22XX.LIB .. 196
PLC_EXP.LIB .. 196
PRPORT.LIB .. 196
PWM.LIB ... 196
RTK.LIB ... 196
S0232.LIB .. 196
S1232.LIB .. 196
SCC232.LIB ... 197
SERIAL.LIB ... 197
SF1000_Z.LIB .. 197
SRTK.LIB ... 197
STDIO.LIB ... 197
STEP.LIB .. 197
STEP2.LIB ... 197
STRING.LIB ... 197
SYS.LIB ... 197
TGIANT.LIB .. 197
THERMADC.LIB .. 197
TIO.LIB .. 198
TL.LIB .. 198
TL_LP31.LIB ... 198
TOSHRTC.LIB ... 198
UART2.LIB .. 198
UART232.LIB .. 198
UART3.LIB .. 198
UIBOARD.LIB... 198
UTIL.LIB.. 198
V256X64.LIB ... 199
VDRIVER.LIB ... 199
VWDOG.LIB .. 199
WINTEK.LIB ... 199
XMEM.LIB .. 199
Z0232.LIB .. 199
Z104.LIB .. 199
Z1232.LIB .. 199
ZNPAKFMT.LIB .. 199

Function Reference Table of Contents s vii

LIB\DEMO .. 200
QVGADEMO.LIB ... 200
ZWLOGOS.LIB ... 200

LIB\EASYSTRT .. 200
EZIO.LIB .. 200
EZIOBL17.LIB .. 200
EZIOCMMN.LIB ... 200
EZIODPWM.LIB ... 200
EZIOLGPL.LIB .. 200
EZIOLP31.LIB ... 200
EZIOMGPL.LIB... 201
EZIOOP71.LIB .. 201
EZIOPBDV.LIB ... 201
EZIOPK23.LIB .. 201
EZIOPK24.LIB .. 201
EZIOPK25.LIB .. 201
EZIOPLC.LIB .. 201
EZIOPLC2.LIB .. 201
EZIOPPLC.LIB .. 201
EZIOTGPL.LIB .. 201
ZIO.LIB .. 201
ZIO1.LIB .. 201
ZIO1DB.LIB .. 202
ZIO1L.LIB .. 202
ZIO1S.LIB .. 202
ZIO2.LIB .. 202
ZIO2DB.LIB .. 202
ZIO3L.LIB .. 202
ZIO3S.LIB .. 202
ZIONET.LIB... 202

LIB\FONT ... 202
12X16L.LIB ... 202
16X20L.LIB ... 202
8X10L.LIB ... 203
ENGFNT2L.LIB .. 203
ENGFONT.LIB .. 203
ENGFONT2.LIB .. 203
ENGFONTL.LIB .. 203

LIB\OBSOLETE ... 203
IOE.LIB .. 203
LGIANT.LIB .. 203
LITTLEG.LIB ... 204
LQVGA.LIB ... 204
LSTAR.LIB .. 204
MICROG.LIB ... 204

viii s Table of Contents Dynamic C 32 v. 6.x

PQVGA.LIB ... 204
PS.LIB .. 204
RG.LIB .. 204
SCOREZ1.LIB ... 204

Appendix B: Library Lists for Z-World Products 205
ALL .. 206
BL1000 .. 206
BL1100 .. 206
BL1200 .. 206
BL1300 .. 206
BL1400 .. 206
BL1500 .. 206
BL1600 .. 207
BL1700 .. 207
CM7100 ... 207
CM7200 ... 207
LP3100 ... 207
OP7100 .. 207
PK2100 .. 207
PK2200 .. 208
PK2300 .. 208
PK2400 .. 208
PK2500 .. 208
PK2600 .. 208
Z104/ZISA ... 208

Appendix C: Using AASC Libraries 209
AASC Library Description .. 210

AASC Library Operation .. 211
Read .. 211
Write ... 212
Peek .. 212

Status and Errors ... 212
Library Use ... 212
Sample Program .. 213

XModem Transfer .. 215
Library Use ... 215
Sample Program .. 216

Index 219

Function Reference About This Manual s ix

ABOUT THIS MANUAL

Z-World customers develop software for their programmable controllers
using Z-World�s Dynamic C 32 development system running on an IBM-
compatible PC. The controller is connected to a COM port on the PC,
usually COM2, which by default operates at 19,200 bps.

Features which were formerly available only in the Deluxe version are now
standard. Dynamic C 32 supports programs with up to 512K in ROM
(code and constants) and 512K in RAM (variable data), with full access to
extended memory.

The Three Manuals
Dynamic C 32 is documented with three reference manuals:

� Dynamic C 32 Function Reference.

� Dynamic C 32 Technical Reference

� Dynamic C 32 Application Frameworks

This manual contains descriptions of all the function libraries on the
Dynamic C disk and all the functions in those libraries.

The Technical Reference manual describes how to use the Dynamic C
development system to write software for a Z-World programmable
controller.

The Application Frameworks manual discusses various topics in depth.
These topics include the use of the Z-World real-time kernel, costatements,
function chaining, and serial communication.

Please read release notes and updates for late-breaking
information about Z-World products and Dynamic C.$

Dynamic C 32 v. 6.xx s About This Manual

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas.

· Understanding of the basics of operating a software program and
editing files under Windows on a PC.

· Knowledge of the basics of C programming. Dynamic C is not the
same as standard C.

For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and Ritchie
C: A Reference Manual by Harbison and Steel

· Knowledge of basic Z180 assembly language and architecture.

For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Acronyms
Table 1 lists the acronyms that may be used in this manual.

$

$

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read-Only Memory

EEPROM Electronically Erasable Programmable Read-Only Memory

LCD Liquid Crystal Display

LED Light-Emitting Diode

NMI Nonmaskable Interrupt

PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real-Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Function Reference About This Manual s xi

Icons
Table 2 displays and defines icons that may be used in this manual.

Conventions
Table 3 lists and defines typographic conventions that may be used in this
manual.

Table 3. Typographical Conventions

Example Description

while Courier font (bold) indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

// IN-01… Program comments are written in Courier font, plain face.

Italics Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type a file’s
name).

Edit Sans serif font (bold) signifies a menu or menu selection.

. . . An ellipsis indicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

[] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

< > Angle brackets occasionally enclose classes of terms.

A | b | c A vertical bar indicates that a choice should be made from
among the items listed.

Table 2. Icons

 Icon Meaning Icon Meaning

 $ Refer to or see ! Note

 (Please contact 7LS Tip

 Caution High Voltage

)' Factory Default

Dynamic C 32 v. 6.xxii s About This Manual

Function Reference General Support Libraries s 13

CHAPTER 1:

GENERAL SUPPORT LIBRARIES

The libraries described in Chapter 1 include standard C string and math
functions in addition to general support functions specific to Z-World�s
controllers.

Dynamic C 32 v. 6.x14 s General Support Libraries

Global Initialization
Global initialization is an important but unclassifiable topic, and is
described here. Your program can initialize variables and take initializa-
tion action (of any complexity) if you do the following:

1. Incorporate _GLOBAL_INIT segments in your functions:

void init_ios();

int my_func(void* thing){
int table[10],j;
float x,y;

...
segchain _GLOBAL_INIT{

for(j=0; j<10; j++){ table[j] = 10-j; }
x = y = 0.781;
init_ios();

}
...

}

2. Make a call to the function chain _GLOBAL_INIT at the start of main.

When your program starts (from scratch or because of a hardware reset)
the call to _GLOBAL_INIT performs the initialization for all
_GLOBAL_INIT segments throughout your program (including libraries).
The name _GLOBAL_INIT is not the name of a library function. However,
there is a function GLOBAL_INIT in VDRIVER.LIB. If you call VdInit,
i.e., you invoke the virtual driver, VdInit does global initialization for
you. You need not do it yourself. The function uplc_init also calls
_GLOBAL_INIT.

BIOS Functions
These functions reside in BIOS. The source code is provided for your
convenience. To override BIOS function, use

#kill functionname

at the beginning of your user program and redefine the function.

� unsigned inport(unsigned port)

Reads a value from the specified I/O port. This may be an internal
Z180 register, or it may access external hardware. Refer to the
controller reference manual for a list of I/O ports.

The function returns the value from the I/O port in lower byte, and zero
in upper byte.

Function Reference General Support Libraries s 15

� void outport(unsigned port, unsigned value)

Writes value to I/O port. This may be an internal Z180 register, or it
may access external hardware. Refer to your controller reference
manual for a list of I/O ports.

� int ee_rd(int address)

Reads value from EEPROM at specified address. The function returns
EEPROM data (0�255) if successful. It returns a negative value if
unable to read the EEPROM.

� int ee_wr(int address, char value)

Writes value to EEPROM at specified address. The function returns 0
if successful, otherwise a negative value if unable to write the
EEPROM.

� void di(void)

Disables interrupts. Use DI for better efficiency.

� void DI(void)

Disables interrupts. Dynamic C expands this call in-line.

� void ei(void)

Enables interrupts. Use EI for better efficiency.

� void EI(void)

Enables interrupts. Dynamic C expands this call in-line.

� int iff(void)

Returns the state of the Z180 interrupt mask. If zero, interrupts are off.
Otherwise, interrupts are on.

� unsigned bit(void* address, unsigned bit)

Reads the value of the specified bit at memory address. The bit may
be from 0 to 31. Use BIT (upper case) for in-line expansion of this
call. This is equivalent to the following expression:

(*(long *) address >> bit) & 1

The function returns 1 if specified bit is set; 0 if bit is clear.

� unsigned BIT(void *address, unsigned bit)

Reads the value of the specified bit at memory address. The bit may
be from 0 to 31. Dynamic C will attempt to expand this call in-line.
This is equivalent to the following expression:

(*(long *) address >> bit) & 1

The function returns 1 if specified bit is set, and 0 if bit is clear.

Dynamic C 32 v. 6.x16 s General Support Libraries

� void set(void *address, unsigned bit)

Sets the specified bit at memory address to 1. The bit may be from 0
to 31. Use SET (upper case) for in-line expansion of this call. This is
equivalent to the following expression:

*(long *) address |= 1L << bit

� void SET(void *address, unsigned bit)

Sets the specified bit at memory address to 1. The bit may be from 0
to 31. Dynamic C will attempt to expand this call in-line. This is
equivalent to the following expression:

*(long *) address |= 1L << bit

� void res(void *address, unsigned bit)

Clears specified bit at memory address to 0. bit may be from 0 to
31. Use RES (upper case) for in-line expansion of this call. This is
equivalent to the following expression:

(long)address &= ~(1L << bit)

� void RES(void *address, unsigned bit)

Clears specified bit at memory address to 0. bit may be from 0 to
31. Dynamic C will attempt to expand this call in-line. This is
equivalent to the following expression:

*(long *) address &= ~(1L << bit)

� unsigned IBIT(unsigned port, unsigned bit)

Reads the I/O port and returns the value of the specified bit. The bit
may be from 0 to 7. The port may be an internal Z180 register, or it
may access external hardware. Refer to your controller reference
manual for a list of I/O ports. The function returns 1 if the specified
bit is set, and 0 if the bit is clear.

� void ISET(unsigned port, unsigned bit)

Sets the specified bit of the I/O port to 1. The bit may be from 0 to
7. The port may be an internal Z180 register, or it may access external
hardware. The function generates code like the following:

in a,(c)
set bit,a
out (c),a

Refer to the controller reference manual for a list of I/O ports.

Function Reference General Support Libraries s 17

� void IRES(unsigned port, unsigned bit)

Resets the specified bit of the I/O port to 0. The bit may be from 0
to 7. The port may be an internal Z180 register, or it may access
external hardware. The function generates code like the following:

in a,(c)
set bit,a
out (c),a

Refer to the controller reference manual for a list of I/O ports.

� void hitwd(void)

�Hits� the watchdog timer, postponing a hardware reset for approxi-
mately 1.2�1.6 seconds (the value depends on hardware). Unless the
watchdog timer is disabled, the program must call this function
periodically. Otherwise, the controller resets automatically. This
allows the controller to recover from errors that cause the program to
enter an infinite loop. If the virtual driver is enabled, it will call hitwd
in the background but provide virtual watchdogs in its place. See
VdWdogHit for more information. For information about setting
jumpers to enable/disable the watchdog (not available on all boards),
refer to the controller reference manual.

� int wderror(void)

Determines if the previous reset was caused by the watchdog timer.
This feature is not available on all boards. Refer to the controller
reference manual for more information.

The function returns a positive nonzero value if the watchdog caused
the last reset and zero if not. It returns a negative value if the feature is
not supported.

� void intrmode_0(void)

Sets Z180 interrupt mode to 0. The default mode for Dynamic C is
Mode 2. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

� void intrmode_1(void)

Sets Z180 interrupt mode to 1. The default mode for Dynamic C is
Mode 2. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

The function returns None.

� void intrmode_2(void)

Sets Z180 interrupt mode to 2. This is the default mode for
Dynamic C. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

Dynamic C 32 v. 6.x18 s General Support Libraries

� void runwatch(void)

Allows Dynamic C to update watch expressions. Calling runwatch
periodically enables evaluation of watch expressions while the program
is running. Watch expressions are always evaluated when the program
is stopped.

� int kbhit(void)

Detects keystrokes in the Dynamic C STDIO window. The function
returns nonzero if a key has been pressed, and zero otherwise.

� void exit(int exitcode)

Stops the program and returns exitcode to Dynamic C. Dynamic C
uses code values above 128 for run-time errors. When not debugging,
this function causes a watchdog time-out if the watchdog is enabled.

The function does not return.

� unsigned sysclock(void)

Returns the system clock speed in units of 1200 Hz. Some common
clock speeds and the corresponding sysclock values are listed below.

� int powerlo(void)

It is possible for the supply voltage to drop low enough to generate a
power-fail interrupt, but then return to normal without ever dropping
low enough to reset the board. Call this routine from an NMI (power-
fail) interrupt handler to determine if power has returned. Refer to the
controller reference manual to find out whether this feature is sup-
ported. The function returns 1 if voltage is below the NMI level, and 0
otherwise.

COSTATE.LIB
These functions support cooperative multitasking.

� void CoBegin(CoData *cd)

CoBegin initializes a CoData structure. The INIT flag is set, but the
STOPPED flag is cleared.

� void CoReset(CoData *cd)

CoReset resets a CoData structure. The STOPPED and INIT flags
are both set.

6.144 MHz 0x1400 (5120) 9.126 MHz 0x1E00 (7680)
12.288 MHz 0x2800 (10,240) 18.432 MHz 0x3C00 (15,360)

Function Reference General Support Libraries s 19

� void CoPause(CoData *cd)

CoPause pauses a CoData structure. The STOPPED flag is set, but
the INIT flag is cleared.

� void CoResume(CoData *cd)

CoResume resumes a CoData structure. The STOPPED and INIT
flags are both cleared.

� int isCoDone(CoData *cd)

The function isCoDone returns true (1) if both the STOPPED and
INIT flags are set. It returns 0 otherwise.

� int isCoRunning(CoData *cd)

The function isCoRunning returns true (1) if the STOPPED flag is
not set. It returns 0 otherwise.

CTYPE.LIB
� int toupper(int c)

Converts character c to its uppercase equivalent.

� int tolower(int c)

Converts character c to its lowercase equivalent.

� int islower(int c)

Returns nonzero if c is a lowercase character; zero otherwise.

� int isupper(int c)

Returns nonzero if c is an uppercase character; zero otherwise.

� int isdigit(int c)

Returns nonzero if c is an ASCII digit (0�9); zero otherwise.

� int isxdigit(int c)

Returns nonzero if c is a hexadecimal digit (0�9, a�f,. A�F); zero
otherwise.

� int ispunct(int c)

Returns nonzero if c is a punctuation mark; zero otherwise.

� int isspace(int c)

Returns nonzero if c is a blank, tab, new line, or form feed; zero
otherwise.

� int isprint(int c)

Returns nonzero if c is a printable character; zero otherwise.

Dynamic C 32 v. 6.x20 s General Support Libraries

� int isalpha(int c)

Returns nonzero if c is an alpha character (A-Z, a-z); zero otherwise.

� int isalnum(int c)

Returns nonzero if c is alphanumeric (A-Z, a-z or 0-9); zero otherwise.

� int isgraph(int c)

Returns nonzero if c is a visible printing character; zero otherwise.

� int iscntrl(int c)

Returns nonzero if c is a control character (less than 20
H
); zero

otherwise.

MATH.LIB
The Z-World standard library contains floating-point functions in addition
to I/O functions. Normal mathematical limitations apply to these func-
tions, and any function generating a value outside the accepted floating-
point range (about 1038 to �1038) will result in an overflow error. Infinity is
defined as INF in DC.HH.

Trigonometric functions such as tan(x) generally accept arguments in
radians. Certain trig functions may fail if their argument is too large. Any
angle may be normalized to fall within the range [�p, p] without loss of
accuracy.

� int abs(int x)

Computes the absolute value of an integer argument.

� float acos(float x)

Computes the arccosine of x. The value of x must be between �1 and
+1. If x is out of bounds, the function returns 0 and signals a domain
error.

� float acot(float x)

Computes the arccotangent of x. The value of x must be between �INF
and +INF.

� float acsc(float x)

Computes the arccosecant of x. The value of x must be between �INF
and +INF.

� float asec(float x)

Computes the arccosecant of x. The value of x must be between �INF
and +INF.

Function Reference General Support Libraries s 21

� float asin(float x)

Computes the arcsine of x. The value of x must be between �1 and +1.
If x is out of bounds, the function returns 0 and signals a domain error.

� float atan(float x)

Computes the arctangent of x. The value of x must be between �INF
and +INF.

� float atan2(float y, float x)

Computes the arctangent of y/x. If both y and x are zero, the function
returns 0 and signals a domain error. Otherwise the result is returned as
follows:

angle x ¹ 0, y ¹ 0
PI/2 x = 0, y > 0
�PI/2 x = 0, y < 0
0 x > 0, y = 0
PI x < 0, y = 0

� float ceil(float x)

Returns the smallest integer greater than or equal to x.

� float cos(float x)

Computes the cosine of x.

� float cosh(float x)

Computes the hyperbolic cosine of x. If |x| > 89.8 (approx.), the
function returns INF and signals a range error.

� float deg(float x)

Returns angle in degrees for angle x given in radians.

� float rad(float x)

Returns angle in radians for angle x given in degrees.

� float exp(float x)

Returns the value of ex. If x > 89.8 (approx.), the function returns INF
and signals a range error. If x < �89.8 (approx.), the function returns 0
and signals a range error.

� float fabs(float x)

Computes the absolute value of x. The function returns x if x ³ 0;
otherwise it returns �x.

� float floor(float x)

Computes the largest integer less than or equal to the given number.

Dynamic C 32 v. 6.x22 s General Support Libraries

� float fmod(float x, float y)

Returns the remainder of x with respect to y, that is, the remaining part
of x after all multiples of y have been removed. For example, if x is
22.7 and y is 10.3, the integral division result is 2. Then the remainder
= 22.7 � 2 × 10.3 = 2.1.

� float frexp(float x, int *n)

This function splits x into a fraction and exponent (f × 2n). The
function returns the exponent in the integer *n and the fraction (be-
tween 0.5 and 0.999...) as the function result.

� long labs(long x)

Computes the absolute value of long integer x. The function returns x
if x ³ 0; otherwise it returns �x.

� float ldexp(float x, int n)

Computes x*(radix**n), where n is an integer and 0.5 £ x < 1.0.

� float log(float x)

Computes the natural logarithm (base e) of x. The function returns �
INF and signals a domain error when x £ 0.

� float log10(float x)

Computes the base 10 logarithm of x. The function returns �INF and
signals a domain error when x £ 0.

� float modf(float x, int *n)

Splits x into an integer part and fractional part, f + n, where n is the
integer and f satisfies | f | < 1.0. The function returns the integer part in
*n and returns the fractional part as the function result.

� float poly(float x, int n, float c[])

Computes a polynomial value by Horner�s method. The term x is the
variable of the polynomial, n is the order of the polynomial, and c is an
array containing the coefficients of each power of x . For example, for
the fourth-order polynomial

10x4 � 3x2 + 4x + 6

n would be 4 and the coefficients would be

c[4] = 10.0
c[3] = 0.0
c[2] = �3.0
c[1] = 4.0
c[0] = 6.0

� float pow(float x, float y)

Returns xy.

Function Reference General Support Libraries s 23

� float pow10(float x)

Returns 10x.

� float sin(float x)

Computes the sine of x.

� float sinh(float x)

If x > 89.8 (approx.), the function returns INF and signals a range error.
If x < �89.8 (approx.), the function returns �INF and signals a range
error.

� float sqrt(float x)

Computes the square root of x.

� float tan(float x)

Return the tangent of x, where �8 × PI £ x £ +8 × PI. If x is out of
bounds, the function returns 0 and signals a domain error. If the value
of x is too close to a multiple of 90° (PI/2) the function returns INF and
signals a range error.

� float tanh(float x)

Returns the hyperbolic tangent of x. If x > 49.9 (approx.), the function
returns INF and signals a range error. If x < �49.9 (approx.), the
function returns �INF and signals a range error.

� float _pow10(int exp)

Computes integral powers of 10 (10exp).

� int getcrc(char *buffer, char count, int accum)

Computes the CRC (cyclic redundancy check, or check sum) for count
bytes (maximum 255) of data in buffer. Calls to getcrc can be
�concatenated� using accum to compute the CRC for a large buffer.
The function returns the integer CRC value.

STDIO.LIB
The following functions address the standard I/O window in Dynamic C,
which is used for debugging.

� char *gets(char *s)

This function waits for a string terminated by a �CR� (carriage return)
to be typed. It does not return until a �CR� is typed in the STDIO
window. However, the string returned is null terminated. The function
returns the typed string at the location identified by the pointer s.
Make sure the storage is big enough for the string and that only one
process calls this function at a time.

Dynamic C 32 v. 6.x24 s General Support Libraries

� char getchar(void)

This function waits (in an idle loop) for a character to be typed from
the STDIO window in Dynamic C. Make sure only one process calls
this function at a time.

� int puts(char *s)

This function writes the string, identified by pointer s, in the STDIO
window in Dynamic C. The STDIO window will interpret any escape
code sequences contained in the string. Make sure only one process
calls this function at a time. The function returns 1 if successful.

� void putchar(int ch)

Writes a single character (the lower 8 bits of ch) to STDIO. Make sure
only one process calls this function at a time.

� int sprintf(char *buffer, char *format, ...)

An analog of standard function printf, this function takes a �format�
string (*format), and a variable number of value arguments to be
formatted. It formats the arguments, places the formatted string in
*buffer and returns the formatted string length. Make sure that:

1. There are enough arguments after format to fill in the format
parameters in the format string.

2. The types of arguments after format match the format fields in
format.

3. buffer is large enough to hold the longest possible formatted
string.

For example,

sprintf(buffer, �%s=%x�, �Variable x�, 256)

should put the string �Variable x=100� into buffer. This function is
reentrant and can be called by processes of different priorities.

The printf function is not reentrant. The doprnt function imple-
ments printf and sprintf using the character output functions
__qen and __qe, respectively. These functions accept format strings
and a variable number of parameters whose values are to be printed
according to the format, for example,

printf(�Summary for %s:\n�, person);
printf(� Age: %d, Income: $%8.2f�, age, income);

The first statement prints a character string. The %s in the format tells
the function where and how to print the character string.

The second statement prints two numbers, an integer age and a float
income. The %d in the format tells the function where and how to print
the integer: as a decimal string, free-formatted.

Function Reference General Support Libraries s 25

The %8.2f in the format tells the function to print income as a floating
value, with a field width of eight characters and two decimal places.

Summary for Sally Forth:
Age: 39, Income: $39587.02

The complete syntax of a field code is:

%[+|-][width[.precision]][lmodifier]letter

where, if a field width is specified, �+� makes the value right justified in
its field and �-� makes the value left justified in its field.

width is the field width. If not specified, the field width varies accord-
ing to the value.

precision for floating-point values, that is, the number of digits to the
right of the decimal.

lmodifier modifies letter d, o, x, or u to expect the applicable one of
either type long int or type unsigned long int.

letter selects the data�s interpretation according to the following list.

d decimal conversion (expects type int)
o octal conversion (expects type int)
x hex conversion (expects type int)
u unsigned decimal conversion (expects type)
c single char representation (expects type char)
s string (expects zero terminated vector of type char *)
e mantissa/exponent form of floating point (expects type float)
f normal floating point (expects type float)
g use the shorter of e or f conversion (expects type float)

� int snprintf(char *buffer, unsigned bufSize,
char *fmt, ...)

A length-limited version of sprintf, this reentrant function takes a
maximum string length in addition to the �format� string (*fmt) and a
variable number of value arguments to be formatted. It formats the
arguments, places the length-limited formatted string in *buffer and
returns the length of the formatted string as if bufSize were always
large enough to never truncate the string. Refer to the description of
sprintf for details on fmt and the variable argument list.

� int printf(char *fmt, ...)

This standard function accepts a variable number of value arguments,
composes a formatted string from the values, writes the formatted
string to the STDIO window and returns the formatted string length.
Refer to the description of sprintf for details. Only one process
should use this function at any time.

Dynamic C 32 v. 6.x26 s General Support Libraries

� void doprnt(int(*put)(), char *fmt, void *arg1)

This is the support routine behind all ..printf routines. The function
put must output one byte, it will be called whenever doprnt outputs a
character. The term fmt is the format string that specifies the output.
The term arg1 points to the first parameter to be used by the formatted
string. The interpretation of the parameters depends on the format
fields in the format string. This routine causes many math functions to
be compiled and downloaded. This routine can be called from pro-
cesses of different priorities.

� char *gtoa(unsigned long num, char *ibuf)

This function uses _gltoa to output an unsigned long integer, num, to
the character array *ibuf. The function returns a pointer to ibuf.

� char *ltoa(long num, char *ibuf)

This function uses _gltoa to output a signed long integer, num, to the
character array *ibuf. The function returns a pointer to ibuf.

� int gtoan(unsigned long num)

This function returns the number of characters required to display a
unsigned long integer, num.

� int ltoan(long num)

This function returns the number of characters required to display a
signed long integer, num.

� void pint(char flag, char code, int width,
int(*put)(), int value)

Writes a short integer value as a decimal string according to the user-
specified single-character output procedure put. The term width
specifies field width. If zero is specified, the field will be as wide as
needed to represent value. The flag, if �-�, indicates that the field
is left-justified. Otherwise, it is right-justified. If code is �d�, the
function treats value as a signed integer, otherwise as an eger. The
function prints all asterisks if the value does not fit in the field speci-
fied.

� void plint(char left, char code, int n1,
int(*put)(), long num)

This function has the same effect as pint, but accepts and prints a long
integer.

� int ftoa(float f, char *buf)

Converts the floating pointer number f to a character string *buf. The
string will be no longer than 12 characters long. The character string
only displays the mantissa up to 12 digits, with no decimal points.

Function Reference General Support Libraries s 27

The function returns the exponent (base 10) that should be used to
compensate for the missing decimal point. For example,

ftoa(1.0, buf)

generates the string �100000000� and returns �8. If f is 123.456,
ftoa will generate the character string �123456000� and return the
integer exponent �6, indicating 123456000 × 10�6.

� void plhex(char left, int n1, int(*put)(),
long num)

Writes a long (signed or unsigned) integer in hex format. The term
left specifies the padding character that goes to the left side of the
actual number. If left is �-�, white space is used as a padding
character. The term n1 is the expected length of the output. Asterisks
will be written if num requires more width than n1. Otherwise, the
padding character left will be used to make up the remaining spaces.
Pass a function (put) that will output one character. The function put
should take a character argument. The term num is the number to be
converted and output. This function can be called from processes of
different priorities.

� void phex(char left, int n1, int(*put)(),
int num)

Similar to plhex. This function prints the hexadecimal representation
of a short integer (signed or unsigned). Refer to the description of
plhex for details.

� void pflt(char flag, char code, int width,
int digits, int(*put)(), float value,
int prec)

Prints a formatted floating-point value using the specified single-
character output procedure put.

If flag is �-� then the output field is left-justified; if it is �0� then the
field is right-justified and zero-filled; otherwise the field is right-
justified and space-filled.

The code can be �e�, �f�, or �g�. The �e� format displays a
mantissa with �e� and an exponent. The �f� format displays standard
decimal. The �g� format displays the shorter of the �e� or �f�
formats.

The term width is the field width. If zero is specified, the field will be
as wide as needed to represent value. The terms prec and digits
govern the number of significant digits to print. If prec is nonzero
(true), the function prints digits significant digits. Otherwise, the
function prints six significant digits. All asterisks are printed if the
value does not fit in the field specified.

Dynamic C 32 v. 6.x28 s General Support Libraries

� char *itoa(int value, char *buf)

Converts signed integer value to a character string in *buf, with a
minus sign in first place, when appropriate. The function suppresses
leading zeros, but leaves one zero digit for value = 0. The maximum
value is 32767. The function returns a pointer to the end (the null
terminator) of the string in *buf.

� char *utoa(unsigned value, char *buf)

Converts eger value to a character string in *buf. The function
suppresses leading zeros, but leaves one zero digit for value = 0. The
maximum value is 65535. The function returns a pointer to the end
(the null terminator) of the string in *buf.

� char *htoa(int value, char *buf)

Converts integer value to hex character string in *buf. Leading zeros
are not suppressed. The function returns a pointer to the end (null
terminator) of the string in *buf.

� char *hltoa(long value, char *buf)

Converts long integer value to hex character string in *buf. Leading
zeros are not suppressed. The function returns a pointer to the end
(null terminator) of the string in *buf.

� char outchrs(char c, int n, int(*put)())

Uses single-character output function put to output n times the
character c . The function put should take a character parameter. The
function returns the value of character c.

� char *outstr(char *buf, int(*put)())

Outputs the string *buf using calls to single-character output function
put. The function put should take a character parameter. The
function returns a pointer to the end (null terminator) of the string in
*buf.

STRING.LIB
The following are standard C string functions.

� float atof(char *sptr)

Returns the value resulting from conversion of a character string to a
floating-point value. The initial �white space� is ignored.

� int atoi(char *sptr)

Returns the value resulting from conversion of a character string to an
integer value. The initial �white space� is ignored.

Function Reference General Support Libraries s 29

� int atol(char *sptr)

Returns the value resulting from conversion of a character string to a
long integer value. The initial �white space� is ignored.

� void *memset(void* dst, byte ch, unsigned n)

Sets the memory starting at dst to n occurrences of the byte ch. The
function returns a pointer to the address following the last byte written.

� char *strcpy(char *dst, char *src)

Copies string *src to string *dst. The function copies at least one
byte (the null). The function returns a pointer to *dst.

� char *strncpy(char *dst, char *src, unsigned n)

Copies at most n characters from *src to *dst. May terminate earlier
if null terminator is encountered in *src before n characters. The null
terminator is not copied if n is encountered before null terminator (i.e.,
the programmer should take care of length-delimited cases). The
function returns a pointer to *dst.

� char *strcat(char *dst, char *src)

Concatenates string *src to the end of *dst. The destination string
must be large enough to hold the additional characters. The function
returns a pointer to *dst.

� char *strncat(char *dst, char *src, unsigned n)

Concatenates up to n characters from *src to the end of *dst. A null
terminator is appended to the end of *dst if n characters are copied
before encountering the null terminator in *src. The function returns a
pointer to *dst.

� int strcmp(char *a, char *b)

Compares two strings. This function is useful for sorting. The function
returns the relative difference between the first pair of differing
characters, that is, the function result is

0 if all bytes are equal
< 0 if a

i
 < b

i

> 0 if a
i
 > b

i

� int strncmp(char *a, char *b, unsigned n)

Compares two strings up to n characters. The function return is similar
to that of strcmp.

� char* strchr(char *src, char ch)

Scans *src for the first occurrence of ch. The function returns a
pointer to the first occurrence of ch in *src. It returns a null pointer if
ch is not found.

Dynamic C 32 v. 6.x30 s General Support Libraries

� char* strrchr(char *src, int ch)

Similar to strchr, except this function searches in reverse from the
end of *src to the beginning. The function returns a pointer to the last
occurrence of ch in *src. It returns a null pointer if ch is not found.

� unsigned strspn(char *src, char *set)

Returns the length of the maximum initial segment of *src, which
consists entirely of characters in *set.

� unsigned strcspn(char *src, char *set)

Returns the length of the maximum initial segment of *src, which
consists of characters not in *set.

� char* strpbrk(char *s1, char *s2)

Locates the first occurrence within *src of any character in *set. The
function returns a pointer to the occurrence. The function returns a null
pointer if none is found.

� void* memcpy(void *dst, void *src, unsigned n)

Copies n characters from memory *src to memory *dst. Overlap is
handled correctly. The function returns the *dst pointer.

� void* memchr(void* src, int ch, unsigned n)

Searches up to n characters in buffer *src for character ch. The
function returns a pointer to first occurrence of ch if found within n
characters. Otherwise returns a null pointer.

� int strlen(char *s)

Calculates the length of string *s, not including the terminating null.
The function returns the number of bytes in the string.

� float strtod(char *s, char **tailptr)

Converts a string to a floating-point value. The term *s is the string to
convert, and **tailptr is a pointer to a pointer to a character.
**tailptr is assigned the stopping point of conversion in *s (so
continuation is possible at **tailptr). If no conversion takes place,
**tailptr returns 0L. The initial �white space� is ignored. This
function is ANSI compatible. The function returns the converted value.

Function Reference General Support Libraries s 31

� long strtol(char *s, char **tail, int base)

Converts a string to a long integer value. The term *s is the string to
convert, **tail is assigned the last position of the conversion, and
base indicates the radix of conversion, which may be from 2 to 36.

When base is 0, the function converts according to C syntax. For
example, if the string starts with �0x,� the function will interpret the
string in hexadecimal format. This function skips initial �white space.�

When the conversion is successful, the function sets the tail pointer
**tail to the character position at which the conversion finished and
returns the converted value. The next conversion may resume at the
location specified by **tail. Be careful with the double pointer! If
the conversion fails (no conversion takes place) **tail is set to NULL
and 0L is returned.

� char *strtok(char *src, char *brk)

Scans *src for tokens separated by delimiter characters specified in
*brk. The first call takes a non-null *src. Subsequent calls with a
null pointer for *src continue to search for tokens in the string. The
function returns a pointer to the first character of the token. If a
terminating delimiter is found, it is changed to a null character so that
the token is terminated. A null pointer is returned if no token is found.

� char *strstr(char *string, char *target)

Returns a pointer to the first occurrence of substring *target in
*string. The function returns a null pointer if *target is not found
in *string. The function returns the pointer string if the target is null.

� int memcmp(void *a, void *b, unsigned n)

Compares two memory spaces a and b and returns the relative differ-
ence between the first pair of differing bytes, if any. The function stops
comparing after n bytes. Thus, the function result is

= 0 if all bytes are equal
< 0 if a

i
 < b

i

> 0 if a
i
 > b

i

Dynamic C 32 v. 6.x32 s General Support Libraries

SYS.LIB
These are miscellaneous support functions.

� int setjmp(jmp_buf env)

Stores the PC (program counter), SP (stack pointer) and other informa-
tion about the current state into env. The saved information can be
restored by executing longjmp. A typical program appears below.

switch(setjmp(e)){
case 0: // first time

fx(); // fx() may take a longjmp
break; // if we get here, fx() was successful

// if we get here, fx() must have called longjmp
case 1:

do exception handling
break;

// similar to case 1, but different exception code.
case 2:
...

}
f(){

g()
...

} // Here, exception code 2 causes
g(){ // jump back to setjmp occurrence,

... // but causes setjmp to return 2.
longjmp(e,2); // Therefore, case 2 in the switch

} // statement execute

The function returns zero when it is executed. After longjmp is
executed, the program counter, stack pointer, etc., are restored to the
state when setjmp was executed the first time. However, this time,
setjmp returns whatever value is specified by the longjmp statement.

� void longjmp(jmp_buf env, int value)
Restores the stack environment saved in env. The integer value passed
to longjmp is returned as the function result of setjmp when the long
jump is taken. See the description of setjmp for usage.

� void *malloc(unsigned size)

Allocates a dynamic block of size bytes. Call bfree before using
*malloc (the compiler automatically calls bfree before main if some
heap space is reserved in the logical memory options). Because
*malloc uses a global free list pointer, *malloc must not be pre-
empted by another *malloc. Heap space must be allocated using the
logical memory option from the Options menu in order to use
*malloc. (The default is a heap size of 0.) The function returns a
pointer to the beginning of the allocated block, or a null pointer if
space is unavailable.

Function Reference General Support Libraries s 33

� unsigned bfree(void *lo, void *hi)

Defines a block of RAM, from *lo to *hi inclusive, as available for
dynamic allocation. The function returns nonzero if successful, and
zero if not.

� int free(void *f)

Returns block (*f) of dynamically allocated RAM to the free list. The
function returns nonzero if successful, and zero if not.

� int pack(void)

Reduces fragmentation of dynamic memory by linking adjacent free
blocks. The function returns the total number of free bytes.

� void *calloc(unsigned count, unsigned size)

Allocates memory from the �heap� for a space of count elements of
size bytes. The function finds a block of memory on the free list,
trims it to the right size, and returns a pointer to the block. The func-
tion initializes the space to all zeros. The function returns a pointer to
the allocated block, and returns a null pointer if it cannot find a block.

� void swap(byte a[], byte b[], int s)

Swaps array a with array b, byte-for-byte, for the first size bytes.

� int qsort(void *base, unsigned n, unsigned s,
int(*cmp)())

Performs a �quick sort� with center pivot, stack control, and easy-to-
change comparison method. The term *base points to the base of an
array (of fixed-size structures) to be sorted. The value n is the number
of elements to be sorted, and s is the size of each element in the array.
The programmer must supply a comparison function cmp that indicates
the order of two structures.

The comparison function takes pointers to two structures

int cmp(void *p, void *q)

and returns �1 if the first is less than the second, 0 if the structures are
equal, and 1 if the first is greater than the second one.

The qsort function returns zero if the operation is successful, and
nonzero otherwise.

� char *realloc(void *ptr, unsigned size)

Allocates a new block of size size, copies the data from the old block
(*ptr) to the new block, frees the old block, and returns a pointer to
the new block. If the function fails to allocate a new block, the
function result is a null pointer.

Dynamic C 32 v. 6.x34 s General Support Libraries

� isr_ptr getvect(unsigned intrno)

Gets the address of the handler of interrupt number intrno. For this
function, number must be even and less than 255. The function returns
the address of the handler. The type isr_ptr is a pointer to a function
that returns void and takes no arguments.

� void setvect(unsigned intrno, isr_ptr isr)

Sets a new handler isr for interrupt number intrno. The term
intrno must be even and less than 255. The type isr_ptr is a
pointer to a function that returns void and takes no arguments.

� int iff(void)

Checks whether the interrupt flag is on. The function returns 1 if the
interrupt flag is on, and 0 otherwise.

� void setireg(char value)

Sets the Z180 interrupt register with the upper 8 bits of the specified
16-bit value.

� char readireg(void)

Returns the value of the Z180 interrupt register as the upper 8 bits of
the returned value. The lower 8 bits are set to zero.

� void _prot_init(void)

Performs super initialization. The function initializes internal data
needed for recovery of protected variables after a crash. To ensure
that the protection mechanism works, call this function once in a
program before any protected variables are set.

� void _prot_recover(void)

Performs recovery of a partially completed assignment to a pro-
tected variable. Call this function after a power failure or a similar
situation that does not lose memory.

� void reload_vec(unsigned vector, int(*isr)())

Loads an interrupt service routine to specified vector location at run
time. vector is the interrupt vector to be served, *isr is the address
of the interrupt service routine.

reload_vec writes to the Flash EPROM memory when
executed on a controller which is Flash EPROM equipped.
Since Dynamic C 32 v. 6.30, reload_vec prevents rewriting
existing Flash data because the Flash has a maximum life of
about 10,000 writes. Exercise care to ensure that the applica-
tion does not call reload_vec to write different data repeat-
edly to the same Flash address.

!

Function Reference General Support Libraries s 35

� int sysIsFlash(void)

Returns nonzero if the controller is Flash EPROM equipped, zero
otherwise.

� char sysDI(void)

Disables interrupts then returns the previous interrupts enable state
(IEF2) flag in bit 2. An interrupts disable instruction is always ex-
ecuted, regardless of the current interrupts enable state.

� void sysRestoreI(char PreviousState)

Restores the interrupts enable state according to the supplied
PreviousState, the result of a prior call to the sysDI function.

� int sysChk2ndFlash(struct _flashInfo *Info)

Returns 0 and fills in the structure pointed to by Info if a 2nd Flash
EPROM is found, otherwise returns a negative number. The
_flashInfo structure is defined in SYS.LIB as follows:

struct _flashInfo {
unsigned sectorSize; // size of one sector
unsigned numSector; // number of sectors
char WEDelay; // write enable delay
unsigned ProgTO; // programming timeout
char wrMode; // write mode

};

� void sysRoot2FXmem(struct _flashInfo *Info,
void *Src, unsigned long Dest,
unsigned Len)

Writes root memory data to the second Flash EPROM on a two-Flash
EPROM equipped controller. The structure pointed to by Info should
have been filled in by a previous call to sysChk2ndFlash. See the
_flashInfo structure definition immediately above.

UTIL.LIB
These are general support functions for higher-level user functions.

� int IsZ80180(void)

Checks Z180 CPU core type and returns non-0 if Z80180 or 0 if
Z8S180. The method is undocumented, but deemed reliable by a Zilog
designer. Required by functions in AASCZ0.LIB and AASCZ1.LIB. At
the beginning of main() the application must call the appropriate one of
_GLOBAL_INIT, uplc_init or VdInit.

Dynamic C 32 v. 6.x36 s General Support Libraries

XMEM.LIB
These are extended memory functions.

� unsigned long xmadr(void* address)

Returns the physical address resulting from the conversion of logical
address address according to the memory mapping registers. Uses
the BBR, CBR and CBAR registers to determine the physical address.

� char xgetchar(long address)

Gets a character whose address is specified by the physical address
(20 bits). The function returns the character value.

� int xgetint(unsigned long address)

Gets an integer whose address is specified by the physical address
(20 bits). The function returns the integer value.

� unsigned long xgetlong(unsigned long address)

Gets a long integer whose address is specified by the physical address
(20 bits). The function returns an unsigned long integer value.

� float xgetfloat(unsigned long address)

Gets a floating-point value whose address is specified by the physical
address (20 bits). The function returns the floating-point value.

� void xputchar(long address, char value)

Stores a character value at a physical address (20 bits).

� void xputint(long address, int value)

Stores an integer value at a physical address (20 bits).

� void xputlong(long address, long value)

Stores a long-value integer at a physical address (20 bits).

� void xputfloat(unsigned long address,
float value)

Stores a float value at a physical address (20 bits).

� void xmem2root(unsigned long src, void *dst,
unsigned n)

Copies a block of n bytes from extended memory src to root *dst.
The address src is a physical address (20 bits).

� void root2xmem(void *src, unsigned long dst,
unsigned n)

Copies a block of n bytes from root memory *src to extended memory
dst. The address dst is a physical address (20 bits).

Function Reference General Support Libraries s 37

� unsigned xstrlen(unsigned long address)

Returns the length of the string at the extended memory address. The
address is a physical address (20 bits).

� unsigned x_makadr(unsigned long address)

Computes the logical address from a physical address. The function
also sets CBR to new page number and returns the logical address in
HL. The old CBR is saved in af� (alternative register pair A and F).
Never call this function from xmem functions. Z-World also recom-
mends that this function not be called from C functions since it is easy
to forget that a C function may be placed in xmem automatically.

� unsigned long a32_24(unsigned long address)

Converts the 20-bit physical address (in a 32-bit integer) to a
segmented (24-bit) address. Segmented addresses have the following
structure.

8-bit CBR 16-bit Z180 address

� unsigned long a24_32(unsigned long address)

Converts the 24-bit segmented address into a 20-bit physical address
(in a 32-bit integer). The segment (second byte of the segmented
address) is only effective if address is in xmem, that is, address ³
0xE000. Otherwise, the segment is ignored. Both the CBAR and BBR
registers in the MMU are used to calculate the outcome. The function
returns an unsigned long integer that holds the 20-bit physical address
equivalent to the extended logical address supplied.

Dynamic C 32 v. 6.x38 s General Support Libraries

Function Reference Multitasking Libraries s 39

CHAPTER 2: MULTITASKING LIBRARIES

The multitasking libraries described in Chapter 2 include the real-time
kernel, the simplified real-time kernel, the virtual driver, and the virtual
watchdog libraries.

Dynamic C 32 v. 6.x40 s Multitasking Libraries

RTK.LIB
This library is the full real-time kernel. The simplified real-time kernel
(SRTK) is described later.

� void request(unsigned tasknum)

Requests the kernel to run the task specified by tasknum immediately.
If a request for the task is pending, this call has no further effect. The
specified task will be run on a future tick when priorities allow.

� void run_every(int tasknum, int period)

Requests the kernel to run the task specified by tasknum every
period ticks. The first request comes after period ticks. This is
exact and no ticks will be gained or lost in the period.

� void run_after(int tasknum, long delay)

Requests the kernel to run the task specified by tasknum after delay
ticks have occurred.

� void run_at(int tasknum, void *time)

Requests the kernel to run the task specified by tasknum when the
time is greater than or equal to the time specified by the pointer time.
The time pointer points to a 48-bit number (stored least significant byte
first) that is the number of ticks since init_kernel was called.

� void run_cancel(int tasknum)

Cancels any pending requests for the task specified by tasknum.

� void gettimer(void *time)

Returns the current 48-bit time to the 6-byte area to which time points.

� void k_lock(void)

Blocks task switches until the complementary k_unlock function is
called. Should be called with interrupts disabled, and each k_lock
function call must be paired with precisely one subsequent k_unlock
function call.

� void k_unlock(void)

Unblocks task switches that were blocked by a previous call to the
complementary k_lock function. Should be called with interrupts
disabled, and each k_unlock function call must be paired with
precisely one prior k_lock function call.

Function Reference Multitasking Libraries s 41

� void run_timer(void)

This function must be called by an interrupt routine between 10 and
500 times per second for the real-time kernel to operate. Each call to
this function constitutes one kernel �tick,� so all time values used by
other kernel functions depend on the rate at which this function is
called.

� int comp48(void *time1, void *time2)

Compares two 48-bit time values. The function returns

�1 for time1 < time2,

0 for time1 == time2, and

+1 for time1 > time2.

� void rkernel(void)

This is the real-time kernel core, and is called by run_timer. This
function will return immediately if there is no change to the task
currently executing. If it decides to change tasks based on service
requests such as run_every or run_after, then it will not return
until the new task either returns or calls suspend.

� void suspend(unsigned ticks)

This routine must be called only from within a given task. It allows the
task to suspend itself for the specified number of ticks, after which it
will continue to be requested automatically. Execution resumes at the
statement following the call to suspend.

If ticks is 0, then the suspension is for an indefinite period of time,
until the task is again requested by some outside agent, such as a call to
run_every(). Using a while statement is the usual method of using
suspend to wait for an external event:

while(!event()) suspend(20);

This example checks for the event every 20 ticks until the event takes
place, at which point execution continues. The suspension can be up to
65,535 ticks.

Dynamic C 32 v. 6.x42 s Multitasking Libraries

� void init_kernel(void)

Initializes the real-time kernel. This function takes no parameters.
However, the calling program must contain certain definitions.

Functions to be run as tasks must be declared with no parameters and
return an integer. A global array of task pointers, Ftask, must be
declared with the first task (Ftask[0]) given the highest priority and
the last task the lowest priority. The application must

#define NTASKS number_of_tasks

to set the correct number of tasks. Then set up a periodic interrupt with
a service routine that calls run_timer. An option is to

#define TASKSIZE_STORE task_storage_size

to be the size of the task storage area (this defaults to 50 if
TASKSIZE_STORE is not defined in the application).

All of the above definitions must occur in the source code before any
reference to real-time kernel functions.

SRTK.LIB
These are the simplified real-time kernel functions.

� void srtk_hightask(void)

This is the routine called every 25 ms by the SRTK to run high-priority
tasks. The one in the library is a dummy routine.

To have a user-defined SRTK high priority task, simply write one with
the same name. Specify #nointerleave to guarantee that the user-
defined high priority task is compiled.

� void srtk_lowtask(void)

This routine is called every 100 ms by the SRTK to run low-priority
tasks. The one in the library is a dummy routine.

To have a user-defined SRTK low priority task, simply write one with
the same name. Specify #nointerleave to guarantee that the user-
defined low priority task is compiled.

� void init_srtkernel(void)

Initializes the simplified real-time kernel. Once this is called, periodic
interrupts will automatically invoke the SRTK high priority and low
priority tasks. Initialize the virtual driver and

#define RUNKERNEL 1

before calling this function.

Function Reference Multitasking Libraries s 43

VDRIVER.LIB
These are the virtual driver functions. The virtual driver provides a
number of different services, such as the virtual watchdog timers and a
very high priority �fastcall� task. The virtual driver also provides delay
routines for use by waitfor statements DelayMs, DelaySec, and
DelayTick.

� void VdInit(void)

Initializes the virtual driver. The Z180 PRT1 clocks the virtual driver
every 1/1280 second. The virtual driver clocks the RTK or SRTK
every 32 ticks (or 25 ms) if

#define RUNKERNEL

is defined in the application.

For fastcall service, the virtual driver calls vd_fastcall every n ticks
(1/1280 seconds) where 1 £ n £ 255. vd_fastcall must be defined
and the definition will override the dummy version in the library. The
application must

#define VD_FASTCALL 1

as well.

VdInit must be called before the program can use the SRTK, virtual
watchdogs, the waitfor delay routines or fastcall.

VdInit makes a call to _GLOBAL_INIT. Therefore, a user-prepared
program does not have to.

� int vd_initquickloop(int n)

Initializes the �fastcall� feature of the virtual driver to run every n ticks.
The value of n must be from 0 to 255, inclusive. If n = 0, it turns off
vd_fastcall. In the application, use

#define VD_FASTCALL 1

next call VdInit (VdInit initializes vd_fastcall as off) and then
call this function. The function returns 1 for success, 0 for a bad n
value.

� void VdAdjClk(void)

Synchronizes the software second timer used by DelaySec with the
real-time clock. Call this function once a day or so to keep the clocks
in sync.

Dynamic C 32 v. 6.x44 s Multitasking Libraries

� void vd_fastcall(void)

Called by the virtual driver to run an ultra-fast thread every n ticks,
where n is the argument to vd_initquickloop(n) and should be
between 0 and 255, inclusive. In the application, use

#define VD_FASTCALL 1

to activate this thread. Calling vd_initquickloop(n) with n = 0
shuts off vd_fastcall.

VWDOG.LIB
These are the virtual watchdog timer functions. This library is automati-
cally #used by the VDRIVER.LIB virtual driver library.

� int VdGetFreeWd(char count)

Returns a free virtual watchdog timer and starts it counting down from
count. Virtual watchdog timers decrement every 25 milliseconds (32
virtual driver ticks). When a virtual watchdog reaches 0, it resets the
processor. Once a virtual watchdog timer is active, the software should
reset the timer periodically with a call to VdWdogHit. The function
returns the integer ID of an unused virtual watchdog timer.

If count £ 2, VdWdogHit must be called every 25 milliseconds. If
count = 255, hit the watchdog at least every 6.375 seconds.

� int VdReleaseWd(int wd)

Deactivates a virtual watchdog wd and returns it to the pool of watch-
dogs. The function returns 0 if wd is out of range, and 1 if successful.

� void VdWdogHit(int wd)

Resets virtual watchdog timer to n counts where n was the argument to
the call to VdGetFreeWd that obtained the virtual watchdog wd. The
function returns 0 if wd is out of range, and 1 if successful.

Function Reference AASC Libraries s 45

CHAPTER 3: AASC LIBRARIES

The AASC.LIB Abstract Application-Level Serial Communication library
and its low level support functions facilitate serial communication between
controllers, and between a controller and another device such as a PC.

Dynamic C 32 v. 6.x46 s AASC Libraries

AASC.LIB
The Abstract Application-level Serial Communication (AASC) libraries
allow the programmer to create buffered character streams (CHANNELs)
that perform input/output on serial ports in the communication devices.
One principal library, AASC.LIB, contains all of the application level
functions required for these tasks. The AASC libraries� function descrip-
tions make use of the following

typedef struct _Channel * CHANNEL;

which, along with the _Channel structure itself, is defined in AASC.LIB.

The high-level routines handle the bookkeeping for the connections
between the low-level circular buffer and hardware driver libraries. This
allows the same programming framework to use any applicable hardware.

� CHANNEL aascOpen(int Type, char CRTS,
long Param, void(*BRqFnc)())

If successful, initializes a serial device and returns the communication
channel pointer required for all subsequent access to the serial device.
If unsuccessful, returns NULL.

Type is the type of communication device to open: DEV_Z0 (ASCI0,
�Z0�), DEV_Z1 (ASCI1, �Z1�), DEV_UART (XP8700), DEV_ZNET (RS-
485 �zNet� network), DEV_STDIO (Dynamic C STDIO window),
DEV_SCC (Z85C30 SCC port A), DEV_SIO or DEV_SIOA (Z84C90
KIO�s SIO port A).

CRTS specifies whether CTS/RTS handshaking should be used:
nonzero means yes, zero means no.

Param specifies all of the other communication options. Z-World has
defined the following macros.

These macros apply to port Z0 of the Z180 or to the Serial
Communication Controller. Refer to the Dynamic C driver
descriptions or on-line help for additional macros.

Number of Data Bits Number of Stop Bits Number of Parity Bits

ASCI_PARAM_7D ASCI_PARAM_1STOP ASCI_PARAM_NOPARITY

ASCI_PARAM_8D ASCI_PARAM_2STOP ASCI_PARAM_OPARITY

 ASCI_PARAM_EPARITY

SCC_7DATA SCC_1STOP SCC_NOPARITY

SCC_8DATA SCC_2STOP SCC_OPARITY

 SCC_EPARITY

!

Function Reference AASC Libraries s 47

Choose one macro from each column to bit-or or add together to
describe the channel configuration, as shown below.

ASCI_PARAM_7D | ASCI_PARAM_1STOP | ASCI_NOPARITY

Two commonly used combination macros have also been defined.

ASCI_PARAM_1200�Basic quantum for bps rate. Multiply by the
factor bps rate ÷ 1200 (for example, 8 for 9600 bps).

ASCI_PARAM_8N1�Specifies 8 data bits, 1 stop bit and no parity.

For example, the Z0 channel in 8N1 format at 19,200 bps would have

Param = 16 * ASCI_PARAM_1200 | ASCI_PARAM_8N1

BRqFnc is a pointer to a function to be called by the Z0 interrupt when
a break request is detected. The return for BRqFnc is void.

� CHANNEL aascDLPReOpen(int Type, char CRTS,
long Param)

Like aascOpen, but used by a downloaded program (DLP) to reopen a
channel that was previously opened by the download manager (DLM).
It is necessary to use this instead of aascOpen if the two programs are
to share a channel, as the DLM�s BRqFnc handler must be preserved.

Note that the DLP�s aascDLPReOpen call�s Type, CRTS and Param
parameters must exactly match those in the DLM�s respective
aascOpen call. See aascOpen for details.

� void aascClose(CHANNEL Chan)

Terminates a communication channel. The device dependent close
routine is called first, then the storage associated with the channel is
reattached to the free list. A downloaded program should not close a
channel that it has reopened with an aascDLPReOpen call because it
will disable the download manager�s BRqFnc handler.

Chan is a channel pointer, and must be the result of an aascOpen call.

� void aascSetReadBuf(CHANNEL Chan, char *Buf,
unsigned Size)

Designates a block of memory as the receive buffer for a communica-
tion channel.

Chan is a channel pointer, the result of an aascOpen or an
aascDLPReOpen call.

Buf is the logical (root) address of the receive buffer.

Size is the size of the receive buffer.

Dynamic C 32 v. 6.x48 s AASC Libraries

� void aascSetWriteBuf(CHANNEL Chan, char *Buf,
unsigned Size)

Designates the transmit buffer for a communication channel.

Chan is a channel pointer, the result of an aascOpen call.

Buf is the logical (root) address of the transmit buffer.

Size is the size of the transmit buffer.

� void aascRxSwitch(CHANNEL Chan, char OnOff)

Activates or deactivates a communication channel�s receiver.

Chan is a channel pointer, the result of an aascOpen call.

OnOff sets the channel�s receiver on (nonzero) or off (zero).

� void aascTxSwitch(CHANNEL Chan, char OnOff)

Activates or deactivates a communication channel�s transmitter.

Chan is a channel pointer, the result of an aascOpen call.

OnOff sets the channel�s transmitter on (nonzero) or off (zero).

� unsigned aascReadChar(CHANNEL Chan, char *Dest)

Reads a character from a communication channel, if available. Returns
the actual number of characters read. The receiver will be enabled
automatically if CTS/RTS flow control is enabled and the receive
buffer has more than 16 bytes remaining after the read.

Chan is a channel pointer, the result of an aascOpen call.

Dest is a pointer to the buffer (one char) to read the character into.

� unsigned aascReadBlk(CHANNEL Chan, void *Dest,
unsigned Len, char Flags)

Reads a block of characters from a communication channel, if avail-
able. Returns the actual number of characters read. The receiver will
be enabled automatically if CTS/RTS flow control is enabled and the
receive buffer has more than 16 bytes remaining after the read.

Chan is a channel pointer, the result of an aascOpen call.

Dest is a pointer to the buffer to read the block of characters into.

Len is the (optionally, maximum) number of bytes to read.

Flag sets the block read mode. If zero then a maximum of Len
characters will be read; if nonzero then either all Len characters will be
read or none will be read.

Function Reference AASC Libraries s 49

� unsigned aascWriteChar(CHANNEL Chan, char Src)

Writes a character to a communication channel, if possible. Returns
the actual number of characters written. The transmitter is enabled
automatically after the character is transferred.

Chan is a channel pointer, the result of an aascOpen call.

Src is the character to be written.

� unsigned aascWriteBlk(CHANNEL Chan, void *Src,
unsigned Len, char Flags)

Writes a block of characters to a communication channel, if possible.
Returns the actual number of characters written. The transmitter is
enabled automatically after the characters are transferred.

Chan is a channel pointer, the result of an aascOpen call.

Src is a pointer to the block of character to be written.

Flag sets the block write mode. If zero then a maximum of Len
characters will be written; if nonzero then either all Len characters will
be written or none will be written.

� unsigned aascPeek(CHANNEL Chan, void *Matchee,
unsigned Len)

Returns the number of characters at the start of a communication
channel�s receive buffer that match the specified characters, up to a
specified maximum length. Neither the buffer characters nor the match
characters are presumed or required to be a zero-terminated �string.�
Note that this function does not read any characters from the channel.

Chan is a channel pointer, the result of an aascOpen call.

Matchee is a pointer to the match characters.

Len is the maximum number of characters to attempt to match.

� unsigned aascScanTerm(CHANNEL Chan, char Term)

Scans the receive buffer of a communication channel for the specified
terminating character, and if found, returns the terminated packet�s size.
Note that this function does not read any characters from the channel.
The receiver will be enabled automatically if CTS/RTS flow control is
enabled and the receive buffer has more than 16 bytes remaining.

Chan is a channel pointer, the result of an aascOpen call.

Term is the terminator character to search for.

Dynamic C 32 v. 6.x50 s AASC Libraries

� void aascPipe(CHANNEL Chan1, CHANNEL Chan2)

Makes a relatively low overhead data pipe by connecting the input of
one communication channel to the output of the other, and the output of
one channel to the input of the other. Exactly one of the channels (it
doesn't matter which one) should have receive and transmit buffers
previously assigned. The application should periodically check each
channels' receive and transmit status, and call aascRxSwitch or
aascTxSwitch to enable the receiver or transmitter as appropriate for
each channel to ensure that the pipe remains active.

Chan1 is a channel pointer, the result of an aascOpen call.

Chan2 is a channel pointer, the result of an aascOpen call.

� long aascGetError(CHANNEL Chan)

Returns a communication channel�s current bit-mapped error condition.
See the AASC libraries and on-line help for specific error conditions.

Chan is a channel pointer, the result of an aascOpen call.

� void aascClearError(CHANNEL Chan)

Clears a communication channel�s current error condition.

Chan is a channel pointer, the result of an aascOpen call.

� long aascGetStatus(CHANNEL Chan)

Returns a communication channel�s current bit-mapped status condi-
tion. See the AASC libraries and on-line help for specific status
conditions.

Chan is a channel pointer, the result of an aascOpen call.

� long aascSetStatus(CHANNEL Chan,
long ToggleMask)

Selectively toggles the writable bits in the communication channel's
current status and then returns the channel's updated status condition.
See the AASC libraries and on-line help for specific status conditions.

Chan is a channel pointer, the result of an aascOpen call.

ToggleMask is a device dependent bit-mapped mask which is XORed
with the writable bits in the channel�s current status.

� unsigned aascReadBufLeft(CHANNEL Chan)

Returns the number of characters available to be read from a communi-
cation channel�s receive buffer.

Chan is a channel pointer, the result of an aascOpen call.

Function Reference AASC Libraries s 51

� unsigned aascWriteBufLeft(CHANNEL Chan)

Returns the number of characters remaining to be transmitted from a
communication channel�s transmit buffer.

Chan is a channel pointer, the result of an aascOpen call.

� unsigned aascReadBufFree(CHANNEL Chan)

Returns the available free space remaining (maximum number of
characters that would still fit) in a communication channel�s receive
buffer.

Chan is a channel pointer, the result of an aascOpen call.

� unsigned aascWriteBufFree(CHANNEL Chan)

Returns the available free space remaining (maximum number of
characters that would still fit) in a communication channel�s transmit
buffer.

Chan is a channel pointer, the result of an aascOpen call.

� void aascFlush(CHANNEL Chan)

Flushes a communication channel�s receive and transmit buffers by
discarding any character(s) that may be present in the buffers. If the
channel is capable of CTS/RTS flow control and Rx data is thereby
inhibited, the programmer should determine whether to explicitly
reenable Rx data by calling aascRxSwitch.

Chan is a channel pointer, the result of an aascOpen call.

� void aascFlushRdBuf(CHANNEL Chan)

Flushes a communication channel�s receive buffer by discarding any
character(s) that may be present in the buffer. If the channel is capable
of CTS/RTS flow control and Rx data is thereby inhibited, the pro-
grammer should determine whether to explicitly reenable Rx data by
calling aascRxSwitch.

Chan is a channel pointer, the result of an aascOpen call.

� void aascFlushWrBuf(CHANNEL Chan)

Flushes a communication channel�s transmit buffer by discarding any
character(s) that may be present in the buffer.

Chan is a channel pointer, the result of an aascOpen call.

Dynamic C 32 v. 6.x52 s AASC Libraries

� void aascPrintf(CHANNEL Chan, char *Fmt, �)

Writes a printf-style formatted string to a communication channel.

Chan is a channel pointer, the result of an aascOpen call.

Fmt is a pointer to the printf-style format string for the information
that is to be printed. See the description of STDIO.LIB�s sprintf
function in this manual for details.

� (ellipsis) represents a variable number (zero or more) of arguments
that should match the conversion specifiers found in the format string.

� void aascVPrintf(CHANNEL Chan, char *Fmt,
void *FirstArg)

Writes a printf-style formatted string to a communication channel.

Chan is a channel pointer, the result of an aascOpen call.

Fmt is a pointer to the printf-style format string for the information
that is to be printed. See the description of STDIO.LIB�s sprintf
function in this manual for details.

FirstArg is a pointer to the first in a vector of arguments (often, as a
stack frame) that should match the conversion specifiers found in the
format string. It can be NULL if no arguments are required.

XModem Functions in AASC.LIB
The XModem protocol performs packet-based data transfers with CRC
error detection. The packet structure for XModem transfer appears below.

Bytes Description

1 Start Of Header
1 Packet Sequence Number
1 1�s Complement of Packet Sequence Number

128 or 1024 DATA (binary or text)
2 CRC-CCITT (0x1021 divisor)

� void aascXMRdInitPhy(unsigned Where,
unsigned Len, unsigned long XmemDstAddr)

Specifies the root memory (one packet size) transfer buffer, the physical
memory destination and the maximum number of bytes to be transferred
in an aascReadXModem PC-to-target physical memory data transfer.

Where is the root memory transfer buffer, where the data being
transferred are temporarily placed.

Len is the maximum number of bytes to transfer.

XmemDstAddr is the transferred data�s final destination in physical
memory.

Function Reference AASC Libraries s 53

� void aascXMRdInitLog(unsigned Where,
unsigned Len)

Specifies the logical (root) memory destination and the maximum number
of bytes to be transferred in an aascReadXModem PC-to-target root
memory data transfer.

Where is the transferred data�s final destination in root memory.

Len is the maximum number of bytes to transfer.

� unsigned aascReadXModem(CHANNEL Chan,
char *(*read_callback_loc)(),
void (*read_callback_mod)(),
char Init)

Performs PC-to-target XModem data transfer. Call this function once
with Init set to 1, then call this function repeatedly with Init set to 0
until its return value is nonzero. If successful, the nonzero result will
be XX_SUCCESS; in case of failure, see on-line help for information on
other nonzero result codes.

Before calling this function, call either aascXMRdInitPhy to
set up a physical memory transfer or aascXMRdInitLog to
set up a logical (root) memory transfer.

Chan is a channel pointer, the result of an aascOpen call.

read_callback_loc is a pointer to the callback function that is
called by this function before each XModem packet is received.

The aascRdCBackLocLg and aascRdCBackLocPh callback
functions are provided to determine the root memory location
of the packet�s destination or transfer buffer, respectively.

read_callback_mod is a pointer to the callback function that is
called by this function after each XModem packet is received.

The empty aascRdCBackCfmLg callback function, which
performs no post-processing of the packet, is provided for
logical (root) memory transfers. The aascRdCBackCfmPh
callback function, which performs root-to-xmem transfer of the
packet, is provided for physical memory transfers.

Init is a flag which: if nonzero initializes the XModem state machine
(only the first call); if zero receives XModem packet data (all subse-
quent calls).

!

!

!

Dynamic C 32 v. 6.x54 s AASC Libraries

� unsigned aascRdCBackLocPh(unsigned PackSize,
char PackNum)

Returns the logical (root) memory one packet size transfer buffer
address, or zero if the packet�s position is outside of the buffer. This
function depends on information set up by calling aascXmRdInitPhy
prior to the first call to aascReadXModem.

This is the standard XModem packet preprocessing callback
function provided for aascReadXModem PC-to-target physical
memory transfers. It can be replaced by a user-defined
function in applications which require a different type of
packet preprocessing.

PackSize is the packet size being used, either 128 or 1024 bytes.

PackNum is the sequence number of the current packet.

� unsigned aascRdCBackLocLg(unsigned PackSize,
char PackNum)

Returns the logical (root) memory destination buffer address, or zero if
the packet�s position is outside of the buffer. This function depends on
information set up by calling aascXmRdInitLog prior to the first call
to aascReadXModem.

This is the standard XModem packet preprocessing callback
function provided for aascReadXModem PC-to-target logical
(root) memory transfers. It can be replaced by a user-defined
function in applications which require a different type of
packet preprocessing.

PackSize is the packet size being used, either 128 or 1024 bytes.

PackNum is the sequence number of the current packet.

� void aascRdCBackCfmPh(unsigned PackSize,
char PackNum, unsigned Status);

Copies a successfully received packet from the logical (root) memory
transfer buffer to its final destination in physical memory. This
function depends on information set up by calling aascXmRdInitPhy
prior to the first call to aascReadXModem.

This is the standard XModem packet post-processing callback
function provided for aascReadXModem PC-to-target physical
memory transfers. It can be replaced by a user-defined
function in applications which require a different type of
packet post-processing.

PackSize is the packet size being used, either 128 or 1024 bytes.

!

!

!

Function Reference AASC Libraries s 55

PackNum is the sequence number of the current packet.

Status is a flag which: if zero indicates a bad packet and no post-
processing is done; if nonzero indicates a good packet which is post-
processed.

� void aascRdCBackCfmLg(unsigned PackSize,
char PackNum, unsigned Status);

Empty function which performs no post-processing of a received
packet.

This is the standard XModem packet post-processing callback
function provided for aascReadXModem PC-to-target logical
(root) memory transfers. It can be replaced by a user-defined
function in applications which require a different type of
packet post-processing.

PackSize is the packet size being used, either 128 or 1024 bytes.

PackNum is the sequence number of the current packet.

Status is a flag which: if zero indicates a bad packet; if nonzero
indicates a good packet.

� void aascXMWrInitPhy(unsigned Where,
unsigned Len, unsigned XmemSrcAddr)

Specifies the root memory (one packet size) transfer buffer, the physical
memory source and the maximum number of bytes to be transferred in an
aascWriteXModem physical memory target-to-PC data transfer.

Where is the root memory transfer buffer, where the data being
transferred are temporarily placed.

Len is the maximum number of bytes to transfer.

XmemSrcAddr is the transferred data�s source in physical memory.

� void aascXMWrInitLog(unsigned Where,
unsigned Length)

Specifies the logical (root) memory source and the maximum number of
bytes to be transferred in an aascWriteXModem root memory target-to-
PC data transfer.

Where is the transferred data�s source in root memory.

Len is the maximum number of bytes to transfer.

!

Dynamic C 32 v. 6.x56 s AASC Libraries

� int aascWriteXModem(CHANNEL Chan,
char Pak1K, char Init,
unsigned(*write_callback)())

Performs target-to-PC XModem data transfer. Call this function once
with Init set to 1, then call this function repeatedly with Init set to 0
until its return value is nonzero. If successful, the nonzero result will
be XX_SUCCESS; in case of failure, see on-line help for information on
other nonzero result codes.

Before calling this function, call either aascXMWrInitPhy to
set up a physical memory transfer or aascXMWrInitLog to
set up a logical (root) memory transfer.

Chan is a channel pointer, the result of an aascOpen call.

Pak1K is the XModem packet size flag: if zero use 128 byte packets; if
nonzero use 1024 byte packets.

Init is a flag which: if nonzero initializes the XModem state machine
(only the first call); if zero sends XModem packet data (all subsequent
calls).

write_callback is a pointer to the callback function that is called by
this function before each XModem packet is sent.

The aascWrCallBackLg and aascWrCallBackPh callback
functions are provided to determine the root memory location
of the packet�s source or transfer buffer, respectively.

� unsigned aascWrCallBackPh(unsigned PackSize,
char PackNum)

Returns the logical (root) memory one packet size transfer buffer
address, or zero if the packet�s position is outside of the buffer. This
function depends on information set up by calling aascXmWrInitPhy
prior to the first call to aascWriteXModem.

This is the standard XModem packet preprocessing callback
function provided for aascWriteXModem physical memory
target-to-PC transfers. It can be replaced by a user-defined
function in applications which require a different type of
packet preprocessing.

PackSize is the packet size being used, either 128 or 1024 bytes.

PackNum is the sequence number of the current packet.

!

!

!

Function Reference AASC Libraries s 57

� unsigned aascWrCallBackLg(unsigned PackSize,
char PackNum)

Returns the logical (root) memory source buffer address, or zero if the
packet�s position is outside of the buffer. This function depends on
information set up by calling aascXmWrInitLog prior to the first call
to aascWriteXModem.

This is the standard XModem packet preprocessing callback
function provided for aascWriteXModem logical (root)
memory target-to-PC transfers. It can be replaced by a user-
defined function in applications which require a different type
of packet preprocessing.

PackSize is the packet size being used, either 128 or 1024 bytes.

PackNum is the sequence number of the current packet.

!

Dynamic C 32 v. 6.x58 s AASC Libraries

Function Reference Other Communication Drivers s 59

CHAPTER 4:

OTHER COMMUNICATION DRIVERS

These libraries contain both general and controller-specific functions for
controller-to-controller and PC-to-controller communication. These
libraries have been superseded by the AASC libraries in Chapter 3, which
provide a consistent API for all Z-World controllers. The other Dynamic C
communication libraries are still available, and are documented here in
Chapter 4.

Dynamic C 32 v. 6.x60 s Other Communication Drivers

MODEM232.LIB
This is a modem functions support library for Z0232.LIB, S0232.LIB,
UART.LIB, NETWORK.LIB, and SCC232.LIB.

� int Dget_modem_command(char *buffer)

Scans buffer for a (Hayes-compatible) modem command terminated
by <CR>.

RETURN VALUE:
 �1�no command present 5��CONNECT 1200�
 0��OK� 6��NO DIALTONE�
 1��CONNECT� 7��BUSY�
 2��RING� 8��NO ANSWER�
 3��NO CARRIER� 9��CONNECT 2400�
 4��ERROR� 10��\n� just a new line

A Hayes SmartModem or compatible modem is recommended.
A null modem cable is needed between the controller or
expansion board and the modem. Some modems require that
the RTS, CTS, and DTR lines be tied together.

� void resetZ180int(void)

This is a generic reset function that resets, or disables, interrupts for the
DMA channels, Z180 serial channels 0 and 1, the PRT timers, the
CSI/O, INT1, and INT2.

NETWORK.LIB
These are RS-485 network functions. They provide utilities for master-
slave half-duplex RS-485 communication using the Opto22 binary 9th bit
protocol. There must be exactly one master. There can be as many as 255
slaves.

� int check_opto_command(void)

Checks for a valid and completed command or reply in the receive
buffer.

RETURN VALUE:
 0 if there is no completed command or message available.
 1 if there is a completed command or reply available.
�2 if the completed command or reply has a bad CRC check.

� int sendOp22(unsigned char dest,
char *message, unsigned char len,
int delay)

The master sends a message to the slave and waits for a reply. The
function puts the message in the following format:

!

Function Reference Other Communication Drivers s 61

[slave id] [len] [] []...[] [CRC hi][CRC lo]

PARAMETERS:
dest is the slave destination (1�255).
message points to a byte array.
len is the length of the message. The maximum message length is 251
bytes.
delay is the number of delays to wait for the slave reply. Each delay
is ~50 ms. However, if the RTK is in use, the delay is made using
suspend(2).

RETURN VALUE:
�1 if there is no reply from the slave.
�2 if a completed reply has a bad CRC.
 1 if there is a completed reply with a proper CRC.

The slave�s reply is stored in the receive buffer initialized with
op_init_z1.

� void replyOpto22(char *reply,
unsigned char count, int delays)

The slave replies to the master�s inquiry. The function puts the reply in
the following format.

[len] [] []...[] [CRC hi] [CRC lo]

PARAMETERS:
reply is the slave�s reply string.
count is the length of the reply. Because two CRC bytes are appended
at the end, the longest reply is 252 bytes.
delays is the number of delays before the message is transmitted
back. Each delay is ~50 ms. However, if the RTK is in use, the delay
is made using suspend(2).

� void adelay_50ms(void)

Creates a 2 tick delay if the RTK is in use. Otherwise, it executes a
50 ms (approx.) software delay loop.

� void op_init_z1(char baud, char *rbuf,
unsigned char address)

Initializes Z180 port 1 for RS-485 9th-bit binary communication. The
data format defaults to 8 bits, no parity, 1 stop bit.

PARAMETERS:
baud selects the baud rate in multiples of 1200 bps (for example,
specify 16 for 19,200 bps).
rbuf is the receive buffer.
address is the network address of the board: 0 for the master board,
1�255 for slaves.

Dynamic C 32 v. 6.x62 s Other Communication Drivers

� void op_kill_z1(void)

Disables Z180 port 1 and disables the RS-485 driver.

PRPORT.LIB
These are printer port functions. This library provides routines for com-
municating between the PIO parallel ports and IBM PC-style printers or
the printer port on computer. The prsend... functions communicate
with a PC-style printer. The plink... functions communicate with the
printer port on a computer by making the PIO port 0 appear to be a printer.
clink_init initializes PIO port 0 for high-speed communications with a PC.

� int prsend0(char dat)

Sends the character dat to the printer on PIO port 0.

RETURN VALUE:
0 if the character was sent successfully.
1 if the printer is off-line.
2 if the printer is out of paper.

� void prsend0_init(void)

Initializes PIO port 0 for sending data to an IBM PC-style printer. The
printer bits are as follows.

bit 7 error A low signals printer error condition
bit 6 slct A pulse signals that the printer is selected
bit 5 +PE A pulse indicates out of paper
bit 4 +busy A pulse indicates the printer is busy
bit 3 �slctin Printer indicates it is selected
bit 2 �int Drive a negative pulse to reset printer
bit 1 �ack A negative pulse is acknowledgment
bit 0 �strobe A negative pulse indicates char ready

� int prsend1(char dat)

Sends the character dat to the printer on PIO port 1.

RETURN VALUE:
0 if the character was sent successfully.
1 if the printer is off-line.
2 if the printer is out of paper.

� int prsend1_init(void)

Initializes PIO port 1 for sending data to an IBM PC style printer.

Function Reference Other Communication Drivers s 63

� void doreti(void)

Call this routine to perform a Z80-style reti instruction. Use it to
prevent resetting the IUS latch on two peripheral devices with one
reti if LIR is enabled on the BL1000 or the BL1100. Call doreti
with the interrupts off to avoid the risk of executing other interrupt
routines with the wait states set to a high value.

� void piolatch(void)

Guarantees an LIR cycle to latch the PIO interrupt state.

� void setwaits(int mem, int io)

Sets up the programmable wait state register in the Z180 without
disturbing DMA control in the lower part of the register.

PARAMETERS:
mem specifies the number of memory wait states (0�3).
io specifies the number of io wait states (0�3).

� void plink_init0(struct circ_buf *ptr,
char *buf, int amask)

Initializes functions to make the PIO device appear to be an IBM PC-
style printer. Characters will be captured under interrupt into the
circular buffer provided to this function. The plink_rdy0 and
plinkgetc0 functions may be used to retrieve characters from the
buffer. It may be desirable to load a TSR on the PC to insure that no
characters will be lost.

PARAMETERS:
ptr points to a circ_buf structure used by the plink... routines.
buf points to the circular buffer.
amask is the buffer wrap mask. This value must be set to 2n�1, where n
is an integer between 2 and 16, and 2n is the size of the buffer in bytes.

� int plink_rdy0(void)

Checks for characters received in the circular buffer.

RETURN VALUE:
0 if buffer is empty.
1 if buffer contains at least one character.

� int plink_getc0(int no_purge)

Retrieves the next character from the circular buffer. This function
must not be called if the buffer is empty. If no_purge is nonzero, the
character will remain in the buffer after this call. Interrupts must be
enabled when this function is called.

RETURN VALUE: the first character in the buffer.

Dynamic C 32 v. 6.x64 s Other Communication Drivers

� void plinki0(void)

Initializes the printer port for high-speed input/output.

� void plink_intr0(void)

Interrupt to handle receipt of characters into the circular buffer passed
to plink_init0.

� void clink_init(void)

Initializes functions for high-speed communications with the parallel
port of an IBM PC. This function takes no parameters; however, the
calling program must contain certain definitions: several data buffers
must be defined, bufptrs must be declared as an array of pointers to
the buffers, and NBUFS must be defined to be the number of buffers.
These definitions must all occur in the source code before any refer-
ence to clink_init. All communications after this call are entirely
driven by the PC, so the actual size and number of buffers depends on
the PC application.

After the link is established, the PC may initiate communication by
sending a command packet to the target. This packet will be either 4 or
6 bytes long, depending on the command. The first three bytes of the
packet are the command, the device address (unused), and the buffer
number. Four-byte packets contain a check sum in the fourth byte;
six-byte packets contain a 2 byte count in the fourth and fifth bytes, and
a check sum in the sixth byte. The buffer number identifies the buffer
(in the bufptrs array) to perform the operation on. Possible com-
mand values are 0x11, 0x22, 0x33, 0x44, and 0x55. Commands 0x11
(receive block) and 0x22 (send block) require 6 bytes; the other
commands require 4 bytes.

Command 0x11 (receive block) forces the target to receive count bytes
of data and a check sum byte into the specified buffer. The target will
respond with 0xAA if successful, 0xCC if one of the check sums failed.

Command 0x22 (send block) forces the target to first acknowledge the
command packet (0xAA for success; 0xCC for fail), and then send
count bytes of data from the specified buffer, followed by a check sum
byte. If the initial acknowledgment is negative (0xCC), no data will be
sent.

Command 0x33 (set) sets the first byte of the specified buffer to 1. The
target will respond with 0xAA if successful, or 0xCC if the command
packet check sum fails.

Function Reference Other Communication Drivers s 65

Command 0x44 (clear) clears the first byte of the specified buffer to 0.
The target will respond with 0xAA if successful, or 0xCC if the
command packet check sum fails.

Command 0x55 (test) test the value of the first byte in the specified
buffer. If the value is nonzero, a response of 0xBB will be sent. If the
value is zero, the response will be 0xAA. If the command packet check
sum fails, 0xCC will be sent.

� int checksum(char *buf, int len)

Performs a check sum on the data contained in buf. len is the number
of bytes that will be included in the check sum.

RETURN VALUE:
the check sum value (also stored in the variable summer).

� void pioint(void)

Interrupt routine to handle high-speed communications with the PC
parallel port. This routine will process an entire packet (send or
receive) from the PC before it returns.

� int fastblock(char *buf, unsigned int cnt2)

Receives a block of data from the PC parallel port. This function will
not return until the entire block is received, or a time-out occurs.

PARAMETERS:
buf specifies the location to store the data.
cnt2 specifies the size of the block to receive in words (1/2 the
number of bytes to receive).

RETURN VALUE:
0 if successful.
1 if a time-out occurred.

� int sendfast(char *buf, int cnt4)

Sends a block of data to the PC parallel port. This function will not
return until the entire block is sent, or a time-out occurs. This function
uses port B. On entry PB1, PB2�PB7 are outputs, other bits are inputs.

PARAMETERS:
buf points to the data to send.
cnt4 is the size of the block in bytes.

RETURN VALUE:
0 if data sent successfully.
1 if a time-out occurred.

Dynamic C 32 v. 6.x66 s Other Communication Drivers

SCC232.LIB
This library contains the serial drivers for SCC serial ports A and B.
Interrupts are generated via the Z180's INT1. The library also contains
definitions for the PIO ports on the BL1300.

� int Dinit_sca(void *rbuf, void *tbuf,
int rsize, int tsize, char mode,
char baud, char ismodem, char isecho)

Initializes SCC port A for communication. This function uses circular
receive and transmit buffers, which are allocated by the programmer.
This function tells the software what the setup is.

PARAMETERS:
rbuf is a pointer to the receive buffer.
tbuf is a pointer to the transmit buffer
rsize is the size, in bytes, of the receive buffer.
tsize is the size, in bytes, of the transmit buffer.
mode selects communication criteria as follows.

bit 0 0 = 1 stop bit
1 = 2 stop bits

bit 1 0 = no parity
1 = with parity

bit 2 0 = 7 data bits
1 = 8 data bits

bit 3 0 = even parity
1 = odd parity

bit 4 0 = no CTS/RTS control
1 = CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.
ismodem if 1, modem communication is supported. Otherwise is 0.
isecho if 1, every character is echoed. Otherwise is 0.

If CTS/RTS handshaking is selected, transmission from the sender is
disabled (by raising RTS) when the receive buffer is 80% full. The
software lowers RTS (enabling the sender to transmit) when the receive
buffer falls below 20% of capacity. In a similar manner, a remote
system can prevent transmission of data by SCC port A by asserting its
RTS (connected to the SCC port A CTS).

RETURN VALUE: always 1.

� void Dreset_scarbuf(void)

Resets the receive buffer.

Function Reference Other Communication Drivers s 67

� void Dreset_scatbuf(void)

Resets the transmit buffer and stops transmission.

� int Dinit_scb(void *rbuf, void *tbuf,
int rsize, int tsize, char mode,
char baud, char ismodem, char isecho)

Initializes SCC port B for communication. This function uses circular
receive and transmit buffers, which are allocated by the programmer.
This function tells the software what the setup is.

PARAMETERS:
rbuf is a pointer to the receive buffer.
tbuf is a pointer to the transmit buffer
rsize is the size, in bytes, of the receive buffer.
tsize is the size, in bytes, of the transmit buffer.
mode selects communication criteria as follows.

bit 0 0 = 1 stop bit
1 = 2 stop bits

bit 1 0 = no parity
1 = with parity

bit 2 0 = 7 data bits
1 = 8 data bits

bit 3 0 = even parity
1 = odd parity

bit 4 0 = no CTS/RTS control
1 = CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.
ismodem if 1, modem communication is supported. Otherwise is 0.
isecho if 1, every character is echoed. Otherwise is 0.

If CTS/RTS handshaking is selected, transmission from the sender is
disabled (by raising RTS) when the receive buffer is 80% full. The
software lowers RTS (enabling the sender to transmit) when the receive
buffer falls below 20% of capacity. In a similar manner, a remote
system can prevent transmission of data by SCC port A by asserting its
RTS (connected to the SCC port B CTS).

RETURN VALUE: always 1.

� void Dreset_scbrbuf(void)

Resets the receive buffer.

� void Dreset_scbtbuf(void)

Resets the transmit buffer and stops transmission.

Dynamic C 32 v. 6.x68 s Other Communication Drivers

� void Drestart_scamodem(void)

Restarts a modem during start-up or because of abnormal operation in
SCC port A.

� void Drestart_scbmodem()

Restarts a modem during start-up or because of abnormal operation in
SCC port B.

A Hayes SmartModem or compatible modem is recommended.
A null modem cable is needed between the Z-World controller
or expansion board and the modem. Some modems require
that the RTS, CTS, and DTR lines be tied together.

� void interrupt reti sccint(void)

This is an interrupt service routine for the SCC serial channels via the
INT1 of the Z180. The interrupt routine is automatically triggered
when Dinit_sca or Dinit_scb is called.

� void scabinaryset(void)

Puts the serial receiver in BINARY mode. This means that all received
characters are placed in the receive buffer.

� void scabinaryreset(void)

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

� int scamodemstat(void)

Returns the status of the modem.

RETURN VALUE:
1 if the modem is in command mode.
0 if the modem is in data mode (i.e., open to communication).

� int scamodemset(void)

Returns information about modem selection.

RETURN VALUE:
1 if the modem option is selected.
0 otherwise.

� void Dscasend_prompt()

Places CR, LF and > in the transmit buffer.

� int Dwrite_sca(char *buffer, int count)

Copies count bytes from buffer to the transmit buffer. If SCC port A
is not already transmitting, the function initiates transmission.

!

Function Reference Other Communication Drivers s 69

RETURN VALUE:
0 if the transmit buffer did not have space for count bytes.
1 if the write is successful.

� int Dread_sca(char *buffer, char terminate)

Checks the receive buffer for a message terminated with the character
terminate. The message is copied to buffer. The terminating
character is discarded and the message in the buffer is terminated with
a null character according to the C convention.

RETURN VALUE:
0 if no message was found with the specified terminating character.
1 if a message has been extracted successfully from the buffer.

� int Dread_sca1ch(char *data)

Reads a character from the serial receive buffer.

PARAMETER:
data is pointer to a character.

RETURN VALUE:
0 if the buffer is empty.
1 if a byte has been extracted successfully from the buffer.

� int Dwrite_sca1ch(char ch)

Places character ch in the transmit buffer. If SCC port A is not already
transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for ch.
1 if the write was successful.

� void Dscamodem_chk(char *buffer)

Checks the buffer for valid modem commands. The function takes
the appropriate response to the modem command if it finds a valid
modem command.

RETURN VALUE:
0 if a valid modem command is found.
�1 if an invalid modem command is found.

� int Dxmodem_scadown(char *buffer, int count)

Sends (downloads) count 128-byte blocks in buffer using the
XMODEM protocol.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by receiver.

Dynamic C 32 v. 6.x70 s Other Communication Drivers

� int Dxmodem_scaup(unsigned long address,
int *pages, int dest, int(*parser)())

Receives (uploads) a file using the XMODEM protocol.

PARAMETERS:
address is the physical address in RAM where the received data are
to be stored. If the receive buffer is allocated by xdata, then the name
of the array may be used for the address argument. If, however, the
data area is allocated using �normal� C, you must first convert the
logical address of the buffer to a physical address using the library
function phy_adr.
pages is the number of 4K blocks of data that have been transferred.
dest If 0, the upload is intended for the master in an RS-485 master-
slave network. If dest is nonzero, the upload is intended for the
designated slave (1�255).
parser is the function that handles parsing of the uploaded data.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by sender side.

� void scbbinaryset(void)

Puts the serial receiver in BINARY mode. This means that all received
characters are placed in the receive buffer.

� void scbbinaryreset(void)

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

� int scbmodemstat(void)

Returns the status of the modem.

RETURN VALUE:
1 if the modem is in command mode.
0 if the modem is in data mode (i.e., open to communication).

� int scbmodemset(void)

Returns information about modem selection.

RETURN VALUE:
1 if the modem option is selected.
0 otherwise.

Function Reference Other Communication Drivers s 71

� void Dscbsend_prompt(void)

Places CR, LF and > in the transmit buffer.

� int Dwrite_scb(char *buffer, int count)

Copies count bytes from buffer to the transmit buffer. If SCC port
B is not already transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for count bytes.
1 if the write was successful.

� int Dread_scb(char *buffer, char terminate)

Checks the receive buffer for a message terminated with the character
terminate. The message is copied to buffer. The terminating
character is discarded and the message in the buffer is terminated with
a null character according to the C convention.

RETURN VALUE:
0 if no message was found with the specified terminating character.
1 if a message has been successfully extracted from buffer.

� int Dread_scb1ch(char *data)

Reads a character from the serial receive buffer.

PARAMETER:
data is pointer to a character.

RETURN VALUE:
0 if the buffer is empty.
1 if a byte has been extracted successfully from the buffer.

� int Dwrite_scb1ch(char ch)

Places character ch in the transmit buffer. If SCC port B is not
already transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for ch.
1 if the write was successful.

� void Dscbmodem_chk(char *buffer)

Checks the buffer for valid modem commands. The function takes
the appropriate response to the modem command if it finds a valid
modem command.

RETURN VALUE:
0 if a valid modem command is found.
�1 if an invalid modem command is found.

Dynamic C 32 v. 6.x72 s Other Communication Drivers

� int Dxmodem_scbdown(char *buffer, int count)

Sends (downloads) count 128-byte blocks in buffer using the
XMODEM protocol.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by receiver.

� int Dxmodem_scbup(unsigned long address,
int *pages, int dest, int(*parser)())

Receives (uploads) a file using the XMODEM protocol.

PARAMETERS:
address is the physical address in RAM where the received data are
to be stored. If the receive buffer is allocated by xdata, then the name
of the array may be used for the address argument. If, however, the
data area is allocated using �normal� C, you must first convert the
logical address of the buffer to a physical address using the library
function phy_adr.
pages is the number of 4K blocks of data that have been transferred.
dest If 0, the upload is intended for the master in an RS-485 master-
slave network. If dest is nonzero, the upload is intended for the
designated slave (1�255).
parser is the function that handles parsing of the uploaded data.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by sender side.

SERIAL.LIB
These are serial driver functions.

� void ser_init_z1(char mode, char baud)

Initializes the driver for Z180 serial port 1. To use this driver, you must
use z1_ser_int as the interrupt handler for Z180 port 1. This
function uses circular receive and transmit buffers, which are allocated by
the programmer. This function tells the software what the setup is.

PARAMETERS:
mode selects the operation mode as follows.

bit 0 0 = 1 stop bit
1 = 2 stop bits

bit 1 0 = no parity
1 = with parity

Function Reference Other Communication Drivers s 73

bit 2 0 = 7 data bits
1 = 8 data bits

bit 3 0 = even parity
1 = odd parity

bit 4 0 = no CTS/RTS control
1 = CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.

Refer to ser_send_z1 for sending information, ser_rec_z1
for receiving information, and ser_kill_z1 for aborting
operations.

� void ser_send_z1(char *buf, char *count)

Initializes driver to begin sending information.

PARAMETERS:
buf points to an array that contains the information to be sent.
count points to a count variable that counts how many bytes remain to
be sent. When *count becomes zero, the transmission is finished.
The program should poll *count periodically to check whether the
transmission is finished. A time-out mechanism is recommended to
detect transmission failure.

� void ser_rec_z1(char *buf, char *count)

Initializes driver to begin receiving information.

PARAMETERS:
buf points to an array where the information will be stored.
count points to a count variable that counts how many bytes remain to
be received. When *count becomes zero, the transmission is finished.
The program should poll *count periodically to check whether the
reception is finished. A time-out mechanism is recommended to detect
reception failure.

� void ser_kill_z1(void)

Aborts all operations for Z180 serial port 1. This function stops the
receiver and the transmitter, but does not reset the counters associated
with the transmitter and receiver.

� void ser_init_z0(char mode, char baud)

Similar to ser_init_z1, but handles serial port 0 on the Z180.

� void ser_send_z0(char *buf, char *count)

Similar to ser_send_z1, but handles serial port 0 on the Z180.

$

Dynamic C 32 v. 6.x74 s Other Communication Drivers

� void ser_rec_z0(char *buf, char *count)

Similar to ser_rec_z1, but handles serial port 0 on the Z180.

� void ser_kill_z0(void)

Similar to ser_kill_z1, but handles serial port 0 on the Z180.

� void ser_init_s0(char mode, char baud)

Similar to ser_init_z1, but handles SIO port A.

� void ser_send_s0(char *buf, char *count)

Similar to ser_send_z1, but handles SIO port A.

� void ser_rec_s0(char *buf, char *count)

Similar to ser_rec_z1, but handles SIO port A.

� void ser_kill_s0()

Similar to ser_kill_z1, but handles SIO port A.

� void ser_init_s1(char mode, char baud)

Similar to ser_init_z1, but handles SIO port B.

� void ser_send_s1(char *buf, char *count)

Similar to ser_send_z1, but handles SIO port B.

� void ser_rec_s1(char *buf, char *count)

Similar to ser_rec_z1, but handles SIO port B.

� void ser_kill_s1()

Similar to ser_kill_z1, but deals with SIO port B.

S0232.LIB
These are RS-232 functions for the BL1100�s KIO serial port A (first port
on KIO). This library is only for the BL1100.

� void s0binaryset(void)

Puts the serial receiver in BINARY mode. This means that all received
characters are placed in the receive buffer.

� void s0binaryreset(void)

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

Function Reference Other Communication Drivers s 75

� int s0modemstat(void)

Returns the status of the modem.

RETURN VALUE:
1 if the modem is in command mode.
0 if the modem is in data mode (i.e., open to communication).

� int s0modemset(void)

Returns information about modem selection.

RETURN VALUE:
1 if the modem option is selected.
0 otherwise.

� void Ds0send_prompt(void)

Places CR, LF and > in the transmit buffer.

� int Dinit_s0(void *rbuf, void *tbuf,
int rsize, int tsize, char mode,
char baud, byte ismodem, byte isecho)

Initializes SIO port 0 for communication. This function uses circular
receive and transmit buffers, which are allocated by the programmer.
This function tells the software what the setup is.

PARAMETERS:
rbuf is a pointer to the receive buffer.
tbuf is apointer to the transmit buffer
rsize is the size, in bytes, of the receive buffer.
tsize is the size, in bytes, of the transmit buffer.
mode selects communication criteria as follows.

bit 0 0 = 1 stop bit
1 = 2 stop bits

bit 1 0 = no parity
1 = with parity

bit 2 0 = 7 data bits
1 = 8 data bits

bit 3 0 = even parity
1 = odd parity

bit 4 0 = no CTS/RTS control
1 = CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.
ismodem if 1, modem communication is supported. Otherwise is 0.
isecho if 1, every character is echoed. Otherwise is 0.

Dynamic C 32 v. 6.x76 s Other Communication Drivers

If CTS/RTS handshaking is selected, transmission from the sender is
disabled (by raising RTS) when the receive buffer is 80% full. The
software lowers RTS (enabling the sender to transmit) when the receive
buffer falls below 20% of capacity. In a similar manner, a remote
system can prevent transmission of data by SIO port 0 by asserting its
RTS (connected to the SCC port 0 CTS).

RETURN VALUE: always 1.

� void Dreset_s0rbuf(void)

Resets the receive buffer.

� void Dreset_s0tbuf(void)

Resets the transmit buffer and stops transmission.

� int Dwrite_s0(char *buffer, int count)

Copies count bytes from buffer to the transmit buffer. If KIO serial
port 0 is not already transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for count bytes.
1 if the write is successful.

� int Dread_s0(char *buffer, char terminate)

Checks the receive buffer for a message terminated with the character
terminate. The message is copied to buffer. The terminating
character is discarded and the message in the buffer is terminated with
a null character according to the C convention.

RETURN VALUE:
0 if no message was found with the specified terminating character.
1 if a message has been successfully extracted from buffer.

� int Dwrite_s01ch(char ch)

Places character ch in the transmit buffer. If KIO serial port A is not
already transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for ch.
1 if the write was successful.

� int Dread_s01ch(char *data)

Reads a character from the serial receive buffer.

PARAMETER:
data is pointer to a character.

RETURN VALUE:
0 if the buffer is empty.
1 if a byte has been extracted successfully from the buffer.

Function Reference Other Communication Drivers s 77

� void Dkill_s0(void)

Disables SIO port 0.

� void Drestart_s0modem(void)

Restarts the modem during start-up or because of abnormal operation
in SIO serial port 0.

A Hayes SmartModem or compatible modem is recommended.
A null modem connection is needed between the BL1100 and
the modem for the TX and RD lines since both the BL1100�s
serial port and the modem are data communication equipment
(DCE). A commercial null modem would have its CTS and
RTS lines tied together right away on both sides. Some modems
require that the RTS, CTS, and DTR lines be tied together.

� int Ds0modem_chk(char *buffer)

Checks the buffer for valid modem commands. The function takes
the appropriate response to the modem command if it finds a valid
modem command.

RETURN VALUE:
0 if a valid modem command is found.
�1 if an invalid modem command is found.

� void Ds0_circ_int(void)

This is an interrupt service routine for SIO port 0.

� int Dxmodem_s0down(char *buffer, int count)

Sends (downloads) count 128-byte blocks in buffer using the
XMODEM protocol.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by receiver.

� int Dxmodem_s0up (unsigned long address,
int *pages, int dest, int(*parser)())

Receives (uploads) a file using the XMODEM protocol.

PARAMETERS:
address is the physical address in RAM where the received data are
to be stored. If the receive buffer is allocated by xdata, then the name
of the array may be used for the address argument. If, however, the
data area is allocated using �normal� C, you must first convert the
logical address of the buffer to a physical address using the library
function phy_adr.

!

Dynamic C 32 v. 6.x78 s Other Communication Drivers

pages is the number of 4K blocks of data that have been transferred.
dest If 0, the upload is intended for the master in an RS-485 master-
slave network. If dest is nonzero, the upload is intended for the
designated slave (1�255).
parser is the function that handles parsing of the uploaded data.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by sender side.

S1232.LIB
These are RS-232 functions for the BL1100�s KIO serial port B. The
functions in this library are analogous to the functions in S0232.LIB. Just
replace the �0� in that library�s function name with �1� to get the corre-
sponding function for this library.

Z0232.LIB
These are drivers for Z180 port 0. Be sure to include the following call
before initializing Z180 port 0 regardless of whether application develop-
ment is through the SIB 2 or direct.

reload_vec(14,Dz0_circ_int);

Depending on your application, it may be desirable to delay initialization
of the serial port to make sure your hardware is connected. Alternatively,
an external trigger from a keypad or input port could signal the software to
initialize the serial port.

� void z0binaryset(void)

Puts the serial receiver in BINARY mode. This means that all received
characters are placed in the receive buffer.

� void z0binaryreset(void)

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

� int z0modemstat(void)

Returns the status of the modem.

RETURN VALUE:
1 if the modem is in command mode.
0 if the modem is in data mode (i.e., open to communication).

Function Reference Other Communication Drivers s 79

� int z0modemset(void)

Returns information about modem selection.

RETURN VALUE:
1 if the modem option is selected.
0 otherwise.

� void Dz0send_prompt(void)

Places CR, LF and > in the transmit buffer.

� int Dinit_z0(void *rbuf, void *tbuf,
int rsize, int tsize, char mode,
char baud, char ismodem, char isecho)

Initializes Z180 port 0 for communication. This function uses circular
receive and transmit buffers, which are allocated by the programmer.
This function tells the software what the setup is.

PARAMETERS:
rbuf is a pointer to the receive buffer.
tbuf is apointer to the transmit buffer
rsize is the size, in bytes, of the receive buffer.
tsize is the size, in bytes, of the transmit buffer.
mode selects communication criteria as follows.

bit 0 0 = 1 stop bit
1 = 2 stop bits

bit 1 0 = no parity
1 = with parity

bit 2 0 = 7 data bits
1 = 8 data bits

bit 3 0 = even parity
1 = odd parity

bit 4 0 = no CTS/RTS control
1 = CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.
ismodem if 1, modem communication is supported. Otherwise is 0.
isecho if 1, every character is echoed. Otherwise is 0.
If CTS/RTS handshaking is selected, transmission from the sender is
disabled (by raising RTS) when the receive buffer is 80% full. The
software lowers RTS (enabling the sender to transmit) when the receive
buffer falls below 20% of capacity. In a similar manner, a remote
system can prevent transmission of data by Z180 port 0 by asserting its
RTS (connected to the Z180 port 0 CTS).

RETURN VALUE: always 1.

Dynamic C 32 v. 6.x80 s Other Communication Drivers

� void Dreset_z0rbuf(void)

Resets the receive buffer.

� void Dreset_z0tbuf(void)

Resets the transmit buffer and stop transmission.

� int Dwrite_z0(char *buffer, int count)

Copies count bytes from buffer to the transmit buffer. If Z180 port
0 is not already transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for count bytes.
1 if the write was successful.

� int Dread_z0(char *buffer, char terminate)

Checks the receive buffer for a message terminated with the character
terminate. The message is copied to buffer. The terminating
character is discarded and the message in the buffer is terminated with
a null character according to the C convention.

RETURN VALUE:
0 if no message was found with the specified terminating character.
1 if a message has been extracted successfully from the buffer.

� int Dwrite_z01ch(char ch)

Places character ch in the transmit buffer. If Z180 port 0 is not already
transmitting, the function initiates transmission.

RETURN VALUE:
0 if the transmit buffer did not have space for ch.
1 if the write was successful.

� int Dread_z01ch(char *data)

Reads a character from the serial receive buffer.

PARAMETER:
data is pointer to a character.

RETURN VALUE:
0 if the buffer is empty.
1 if a byte has been extracted successfully from the buffer.

� void Dkill_z0(void)

Disables Z180 port 0.

Function Reference Other Communication Drivers s 81

� void Drestart_z0modem(void)

Restarts a modem during start-up or because of abnormal operation in
Z180 port 0.

A Hayes SmartModem or compatible modem is recommended.
A null connection is also required for the TX and RD lines
since both the controller�s serial port and the modem are data
communication equipment (DCE). A commercial NULL
modem would have its CTS and RTS lines tied together right
away on both sides. Some modems require that the RTS, CTS,
and DTR lines be tied together on the modem side. The CTS
and RTS lines on the controller side also have to be tied together.

� void Dz0modem_chk(char *buffer)

Checks the buffer for valid modem commands. The function takes
the appropriate response to the modem command if it finds a valid
modem command.

RETURN VALUE:
0 if a valid modem command is found.
�1 if an invalid modem command is found.

� void Dz0_circ_int(void)

This is an interrupt service routine for Z180 port 0.

� int Dxmodem_z0down(char *buffer, int count)

Sends (downloads) count 128-byte blocks in buffer using the
XMODEM protocol.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by receiver.

!

Dynamic C 32 v. 6.x82 s Other Communication Drivers

� int Dxmodem_z0up (unsigned long address,
int *pages, int dest, int(*parser)())

Receives (uploads) a file using the XMODEM protocol.

PARAMETERS:
address is the physical address in RAM where the received data are
to be stored. If the receive buffer is allocated by xdata, then the name
of the array may be used for the address argument. If, however, the
data area is allocated using �normal� C, you must first convert the
logical address of the buffer to a physical address using the library
function phy_adr.
pages is the number of 4K blocks of data that have been transferred.
dest If 0, the upload is intended for the master in an RS-485 master-
slave network. If dest is nonzero, the upload is intended for the
designated slave (1�255).
parser is the function that handles parsing of the uploaded data.

RETURN VALUE:
0 timed-out (no transfer).
1 successful transfer.
2 transfer canceled by sender side.

Z1232.LIB
These are the drivers for Z180 port 1. The functions in this library are
almost exactly analogous to the functions in Z0232.LIB. Replace the �0�
in that library�s function name with �1� to get the corresponding function
names in this library. The only difference is that because CTS/RTS
handshake is not possible on the Z1 port, any reference to it should be
ignored.

Function Reference Modbus Slave Libraries s 83

CHAPTER 5: MODBUS SLAVE LIBRARIES

Modbus is the generic name for two serial communication protocols,
Modbus ASCII and Modbus RTU, originally developed by Modicon, Inc.,
for communication between programmable logic controllers (PLCs). Both
protocols are easily implemented on standard asynchronous serial hard-
ware. Its ease of implementation has made Modbus the most accepted of
the asynchronous protocols for industrial inputs/outputs.

Z-World�s Modbus slave libraries allow existing and new applications to
act as slaves on a Modbus network. Both the Modbus ASCII and Modbus
RTU protocols are supported.

Dynamic C 32 v. 6.x84 s Modbus Slave Libraries

Getting Started
Z-World�s Modbus Slave libraries consist of two files, MS.LIB and
MSZ.LIB.

� MS.LIB is the library that actually performs most Modbus operations.
Among other things, MS.LIB decodes command packets from the
network master, dispatches read/write commands to user-definable C
function stubs, and encodes replies for transmission to the network
master.

� MSZ.LIB provides easy-to-use standard drivers for the serial ports of
the Z180. In accordance with the typical usage of the Z180 UARTs on
Z-World controllers, MSZ.LIB drivers for Serial Port Z0 implement
full-duplex RS-232 communication, and drivers for Serial Port Z1
implement half-duplex (two-wire) RS-485 communication. MSZ.LIB
supports both the ASCII and RTU protocols on each port.

Standard Modbus Slave Procedure

Use the standard procedure to implement the Modbus interface as RS-232
on Serial Port Z0 or as RS-485 on Serial Port Z1. MSZ.LIB allows
relatively simple implementation of a Modbus interface. The following
five steps will allow you to add Modbus slave support to an existing or
new application.

Step 1: Use MSZ.LIB

The following line must appear near the beginning of your program
(typically after the opening comments) in order to use MSZ.LIB.

#use "MSZ.LIB"

Note that MSZ.LIB automatically uses MS.LIB, so a second #use is not
required.

Step 2: Call _GLOBAL_INIT

MS.LIB has several global initializations that must be performed and also
uses costatements. Therefore, the function _GLOBAL_INIT must be called
during the initialization of the controller. This can be done by placing the
following statement within your initialization code.

_GLOBAL_INIT ();

Note that the initialization functions uplc_init and VdInit call
_GLOBAL_INIT directly. Thus, _GLOBAL_INIT does not have to be called
explicitly if either of these initialization functions are used.

Refer to the Dynamic C 32 Application Frameworks manual
for more information on costatements.$

Function Reference Modbus Slave Libraries s 85

Step 3: Initialize the Modbus Serial Port

MSZ.LIB contains four initialization functions. Call one of these during
initialization. The choice of which function to select depends on the
protocol (Modbus ASCII or Modbus RTU) and on the serial port (Z0 or
Z1). Note that Serial Port Z0 is assumed to be RS-232 and Serial Port Z1
is assumed to be half-duplex (two-wire) RS-485. Table 1 lists the four
initialization functions.

Table 1. MSZ.LIB Initialization Functions

Function Protocol Serial Port/Type

msaZ0 Modbus ASCII

msrZ0 Modbus RTU
RS-232 on Z0

msaZ1 Modbus ASCII

msrZ1 Modbus RTU
RS-485 on Z1

Each of the msaZ0, msrZ0, msaZ1 and msrZ1 functions use the same
calling conventions, as shown in the example below for msaZ0.

� int msaZ0(unsigned Addr, unsigned long Baud,
unsigned Mode)

Addr is the Modbus address of this slave. It should be set for a value
between 1 and 255, with 0 being reserved as the address of messages
broadcast to all slaves on the network. It is your responsibility to
ensure that no two nodes (Z-World controller or other) on the Modbus
network share the same address.

Baud is the desired baud rate of the Modbus interface. Many of the
standard baud rates are supported, but 9600 bps and 19,200 bps are the
most common. Reliable communications at baud rates beyond 19,200
bps cannot be guaranteed in applications with a high multitasking
density or in environments where serial communication is subject to
noise. Also note that limitations in the baud-rate generators of the
Z180 restrict which baud rates (even common baud rates) are attain-
able. The initialization will fail if attempts are made to select illegal
baud rates, such as 38,400 bps on a 9.216 MHz Z180.

Mode sets the desired serial character frame parameters according to
the following list. Modbus RTU requires 8 data bits, and unlisted
values default to 8-N-1 for both ASCII and RTU. All serial character
frames listed below begin with one start bit. Eight data bits with no
parity and either one or two stop bits are the most common Modbus
settings, and should be tried first on existing systems with unknown
parity settings.

Dynamic C 32 v. 6.x86 s Modbus Slave Libraries

Modbus RTU has an additional timing requirement that
Modbus ASCII does not have. In order to meet this timing
requirement, the Modbus RTU drivers (msrZ0 and msrZ1)
use Programmable Reload Timer 0 (PRT0) of the Z180.
Make sure this does not conflict with your existing applica-
tion or with code you add to the application in the future.
For more details, see the section later in this chapter on the
high-resolution timer.

!

 0 - 8 bit data, no parity, 1 stop bit (default, ASCII and RTU)
 1 - 7 bit data, odd parity, 1 stop bit (ASCII only)
 2 - 7 bit data, even parity, 1 stop bit (ASCII only)
 3 - 7 bit data, no parity, 2 stop bits (ASCII only)
 4 - 8 bit data, odd parity, 1 stop bit (ASCII and RTU)
 5 - 8 bit data, even parity, 1 stop bit (ASCII and RTU)
 6 - 8 bit data, no parity, 2 stop bits (ASCII and RTU)
 7 - 7 bit data, odd parity, 2 stop bits (ASCII only)
 8 - 7 bit data, even parity, 2 stop bits (ASCII only)
 9 - 8 bit data, odd parity, 2 stop bits (ASCII and RTU)
10 - 8 bit data, even parity, 2 stop bits (ASCII and RTU)
11 - 7 bit data, no parity, 1 stop bit (ASCII only)

Each initialization function returns true (non-zero) if the function succeeds
in initializing the serial port. False (zero) is returned if the initialization
fails. This is usually the result of selecting an unattainable baud rate.

Step 4: Call msRun Periodically

The function msRun decodes command packets from the network master,
dispatches read/write commands to user-definable C function stubs, and
encodes replies for transmission to the network master. Since msRun
controls the flow of data between the Z-World controller and the Modbus
network, care must be exercised in how frequently msRun is called.

The first consideration is the integrity of the serial data. If serial drivers
have little or no buffering, then received characters must be processed
promptly, or incoming bytes will be lost. Modbus RTU also uses timing
for packet delimiting�any gap of 3.5 or more characters in serial data
(transmitted or received) is seen as a packet delimiter. In such circum-
stances, msRun should be called nearly constantly. If the Z-World control-
ler has little else to do, this might provide an acceptable solution and
would allow for a simple user-defined serial driver.

Function Reference Modbus Slave Libraries s 87

The serial drivers provided in MSZ.LIB are fully buffered. As such, delays
of 25 ms, 100 ms, or even more can be tolerated between calls to msRun
without a loss of serial integrity. It should be noted, however, that Modbus
network masters commonly implement a simple timeout. Delaying a reply
to a packet by not calling msRun frequently enough may result in an
uncommonly large number of network errors.

Step 5: Write Modbus Slave Command Handlers

Once you reach this point successfully, your application should compile
and run. However, every request by the Modbus master will still return an
invalid address error. Why?

Z-World�s Modbus Slave Driver allows elements of a C application to be
arbitrarily mapped onto the Modbus registers. This is accomplished by
Modbus handler functions such as msIn, msOut, and msRead. If these
functions do not appear in your application, then default handlers in
MS.LIB indicate that no valid registers of that particular register type are
available on this slave.

For more information, check out the BL15MS.C, BL17MS.C,
LP31MS.C and PK22MS.C sample programs and read the sections later
in this chapter on the Modbus Registers and the Modbus Slave Command
Handlers.

Advanced Modbus Slave Procedure

If you require something other than full-duplex RS-232 communication on
Serial Port Z0 or half-duplex RS-485 communication on Serial Port Z1,
Z-World�s Modbus Driver allows you to implement Modbus on any serial
port. Doing so requires almost the same steps that are required to use
MSZ.LIB, but requires the additional step of writing a serial driver and
possibly a timer for the driver in conjunction with the MS.LIB library.

Step 1: Use MS.LIB

The following line must appear near the beginning of your program
(typically after the opening comments) in order to use MS.LIB.

#use "MS.LIB"

Steps 2�5

These steps are the same as for the Standard Modbus Slave Procedure.

Step 6: Write A Modbus Slave Compatible Serial Driver

MS.LIB uses a generic model for the serial device it uses to interface to the
Modbus network. Any device supplying the required functions can be
used to interface to a Modbus network. For more details, see the section
later in this chapter on the Modbus Serial Interface.

Dynamic C 32 v. 6.x88 s Modbus Slave Libraries

Modbus Registers
In C, actions and manipulation of data are performed by functions, while
data are stored in variables. This organization dominates most program-
ming languages and is so logical as to be intuitive to C programmers.

PLCs, however, do not operate on this principle. In PLCs, actions are
performed by manipulating coils and registers, which also serve as storage
for data. This uniformity is initially counter-intuitive to C programmers,
but actually make for a simple interface.

Modbus simplifies this even further by supporting only two data types.
Coils (referring to the coils in mechanical relays) store true/false informa-
tion, a �bit� in common computer technology. Registers store 16-bit
unsigned numbers.

The Modbus protocol provides for five classes of objects that can be
manipulated. Since each class is assigned a unique, nonoverlapping
address range, these objects are often referred to by their address space.

0X References (Discrete Outputs)

These bits are readable and writable. Some are used to control the PLC
outputs , some are used to store internal bits, and others perform
special PLC operations.

1X References (Discrete Inputs)

These bits are read only. They are used mainly for the digital inputs
and to check the PLC status.

3X References (Input Registers)

These registers are read only. They are used mainly for multi-bit inputs
such as analog/digital readings and pulse measurement readings.

4X References (Holding Registers)

These registers are readable and writable. They are used primary to
hold data and for multi-bit outputs (such as digital/analog).

6X References (Extended Memory)

These registers are not supported by Dynamic C�s Modbus Slave
Driver nor are they supported by most Modbus-compatible devices. In
fact, even Modicon�s use of 6X registers is so nonstandard as to make a
general-purpose driver difficult to implement.

Function Reference Modbus Slave Libraries s 89

Modbus Slave Command Handlers
The last step in implementing the Modbus driver is to define the functions
used to perform read and write operations on the Modbus registers. These
functions are called as needed by the Modbus driver while processing
commands from the Modbus master. The functions are used to map the Z-
World resources (I/O, variables and functions) to the Modbus paradigm.

You may define only the functions as you need, and any functions left
undefined will be handled by dummy stubs in the library and reported as
errors. While each function has a unique set of parameters, all return a
common set values:

� MS_BADADDR is returned when the register or coil address is unsup-
ported.

� MS_BADDATA is returned if a write command supplies data that are
illegal for the addressed register or coil.

� 0 is returned if the operation can be performed successfully.

The functions used to perform read and write operations are listed below.

� void msStart(void)

msStart is called just before a received packet is processed. While
this can be used for any purpose, it is mainly intended to �lock�
Modbus resources so that data returned in one packet are atomic.

� void msDone(void)

msDone is called after the Modbus command has been processed and
just before the reply is sent. msDone is primarily intended to �unlock�
Modbus resources locked by msStart.

� int msIn(unsigned Coil, int *State)

msIn is called to read the specified input Coil (1X reference). The
coil�s current state (0 for off and 1 for on) is stored to the int pointed to
by State. Note that State is a pointer, thus it is necessary to precede
State with an asterisk when making an assignment (i.e., *State =
1;).

The following function treats the PK2200 inputs (1�16) as Modbus input
coils (0�15).

int msIn(unsigned Coil, int *State) {
if ((0 <= Coil) && (Coil <= 15)) {

*State = up_digin(Coil + 1);
return 0;

}
return MS_BADADDR;

}

Dynamic C 32 v. 6.x90 s Modbus Slave Libraries

� int msOutRd(unsigned Coil, int *State)

msOutRd is called to read the specified output Coil (0X reference),
and operates identically to msIn.

� int msOutWr(unsigned Coil, int State)

msOutWr is called to write the specified output Coil (0X reference).
State is 0 if the output is to be �off,� and 1 if the output is to be �on.�

The following function treats the PK2200 outputs (1�14) as Modbus
output coils (0�13).

int msOutWr(unsigned Coil, int State) {
if ((0 <= Coil) && (Coil <= 13)) {

up_setout(Coil + 1, State);
return 0;

}
return MS_BADADDR;

}

� int msInput(unsigned Reg, unsigned *Value)

msInput is called to read the specified input register Reg (3X refer-
ence). The input�s current value is stored to the integer pointed to by
Value. Since Value is a pointer, precede Value with an asterisk
when making an assignment (i.e., *Value = 1;).

The following function maps Modbus input registers to the universal
inputs of the PK2100 (1�6). Input registers (0�5) return calibrated input
values (0�10000 represent 0 V�10 V), and input registers (16�21)
return raw input values (0�1024 represent 0�VRef).

int msInput(unsigned Reg, unsigned *Value) {
if ((0 <= Reg) && (Reg <= 5)) {

*Value = up_adcal(Reg + 1);
return 0;

}
if ((16 <= Reg) && (Reg <= 21)) {

*Value = up_adraw(Reg - 15);
return 0;

}
return MS_BADADDR;
}

� int msRead(unsigned Reg, unsigned *Value)

msRead is called to read the specified holding register Reg (4X
reference). The holding register�s current value is stored to the
unsigned integer pointed to by Value. Since Value is a pointer, it is
necessary to precede Value with an asterisk when making an assign-
ment (i.e., *Value = 1;).

Function Reference Modbus Slave Libraries s 91

� int msWrite(unsigned Reg, unsigned Value)

msWrite is called to write Value to the specified holding register Reg
(4X reference).

The following functions map the variables x, y and z onto holding registers
10, 20 and 30.

int msRead(unsigned Reg, unsigned *Value) {
switch (Reg) {

case 10: *Value = x; break;
case 20: *Value = y; break;
case 30: *Value = z; break;
default: return MS_BADADDR;

}
return 0;

}

int msWrite(unsigned Reg, unsigned Value) {
switch (Reg) {

case 10: x = Value; break;
case 20: y = Value; break;
case 30: z = Value; break;
default: return MS_BADADDR;

}
return 0;
}

Modbus Slave Serial Interface
If the serial driver supplied in MSZ.LIB is not suited to your application, it
is fairly straightforward to write your own serial driver. MS.LIB uses a
standard set of functions to interface to the Modbus network, so writing
new functions as described below will enable MS.LIB to talk to your
Modbus network.

� void msaInit(unsigned Addr)

� void msrInit(unsigned Addr, unsigned Timeout)
Call msaInit to initialize the slave as a Modbus ASCII device, or call
msrInit to initialize the slave as a Modbus RTU device. Both
functions take the Addr parameter, which defines the slave�s Modbus
address. Addr is a value from 1 to 255, with 0 reserved as the address
for broadcast messages.

msrInit requires the additional parameter Timeout. This is the
number of �RTU ticks� that constitute an RTU timeout, which is equal
to the period of 3.5 bytes. For more information on RTU ticks, consult
the description of the msTimer function description.

Dynamic C 32 v. 6.x92 s Modbus Slave Libraries

� void msError(void)

Call msError whenever an error is detected on the serial port to abort
processing of the current packet. msError affects only the HL and AF
registers, and can be called from assembly language as well as from C.

� void msRecv(int Byte)

Call msRecv for each byte received by the Modbus interface. msRecv
affects only the HL and AF registers, and can be called from assembly
language as well as from C. The value of the received byte should be
passed in the L register (H is ignored).

� int msSend(char *Reply, unsigned Len)

Your Modbus interface must supply a function, msSend, to send Len
bytes from the Reply buffer to Modbus interface. Prior to the actually
sending the reply, the Modbus driver calls msSend with a NULL value
for the Reply parameter. This can be used to �reset� or �ready� the
Modbus interface for sending a reply to the network. At the very
minimum, msSend should ignore calls when Reply is NULL.

The Modbus driver will call msSend as often as msRun is called until
the reply has been sent completely. msSend does this by returning a
false (zero) value until the reply packet has completed transmission, at
which time msSend returns a true (non-zero) value.

� unsigned msTimer(void)

If you call msrInit, Modbus RTU requires that some timing be
performed on incoming bytes. This is because a 3.5-byte silence
period delimits the packets. In order to provide this timing, you need
to supply an msTimer function. This function returns a free-running
16-bit timer that does a full 16-bit count from 0x0000 to 0xFFFF.
msTimer must count up (0, 1, 2, 3�65534, 65535, 0,�).

Rather than force a timer on the user-defined Modbus interface,
MS.LIB allows an arbitrary timer to be used. This is accomplished by
forcing the user to not only supply the free-running timer, but to also
define the 3.5-byte period (in their arbitrary time units) when the
Modbus RTU driver is initialized. For example, if the baud rate is slow
enough, it would be possible for someone to used the lower 16 bits of
MS_TIMER (initialized and maintained by uplc_init and VdInit) to
provide millisecond timing.

The function msTimer should be written in assembly language because
msTimer can only modify the HL and AF registers. Technically, it
could be written in C by declaring the msTimer function as interrupt,
but the overhead from this is prohibitive. The free-running 16-bit up
count should be returned in the HL register.

Function Reference Modbus Slave Libraries s 93

MSZ.LIB uses a special 32-bit high resolution timer based on PRT0 of
the Z180. This allows timing down to 20 system clocks, which is
roughly 2.1 µs at 9.216 MHz.

High-Resolution Timer
If you�re using the Modbus RTU drivers in MSZ.LIB (via msrZ0 or
msrZ1), then you have invoked a 32-bit free-running counter in the
background using Programmable Reload Timer 0 (PRT0) of the Z180.
While this timer is mandatory for the proper operation of the RTU drivers
in MSZ.LIB, it can also provide a time base that is extremely useful for
other purposes.

� void hrtInit(void)

Initializes and zeroes the 32-bit high-resolution timer based on PRT0.

� unsigned long hrtRead(void)

Returns the current value of the 32-bit high resolution timer based on
PRT0. This timer is incremented once every 20 system clocks.

Modbus Slave Supported Commands
Modbus protocols were created by Modicon to communicate with their
PLCs. As such, the Modbus protocols are filled with commands that are
specific to Modicon products and are, therefore, not well-suited for general
use. Thus, Z-World�s Modbus slave libraries support only the following
Modbus commands.

0x01 : Read Coil Status
0x02 : Read Input Status
0x03 : Read Holding Registers
0x04 : Read Input Registers
0x05 : Force Single Coil
0x06 : Preset Single Register
0x0B : Fetch Communication Event Counter
0x0F : Force Multiple Coils
0x10 : Preset Multiple Registers
0x16 : Mask Write 4X Register
0x17 : Read/Write 4X Registers

Dynamic C 32 v. 6.x94 s Modbus Slave Libraries

Modbus Slave Unsupported Commands
The following Modbus commands are not supported in Z-World�s Modbus
slave libraries. Please note that this is not an exhaustive list, as many
vendors have added their own PLC-specific commands to the Modbus
protocol.

0x07 : Read Exception Status
0x08 : Diagnostics
0x09 : Program 484
0x0A : Poll 484
0x0C : Fetch Communication Event Log
0x0D : Program Controller
0x0E : Poll Controller
0x11 : Report Slave ID
0x12 : Program 884/M84
0x13 : Reset Communication Link
0x14 : Read General Reference
0x15 : Write General Reference
0x18 : Read FIFO Queue

For more information on the Modbus protocol, check the
Modicon Modbus Protocol Reference Guide (Modicon
Document PI-MBUS-300). This can be found on the World
Wide Web at the Modicon website at
 (http://www.modicon.com).

$

Function Reference Modbus Master Libraries s 95

CHAPTER 6: MODBUS MASTER LIBRARIES

Modbus is the generic name for two serial communication protocols,
Modbus ASCII and Modbus RTU, originally developed by Modicon, Inc.,
for communication between programmable logic controllers (PLCs). Both
protocols are easily implemented on standard asynchronous serial hard-
ware. Its ease of implementation has made Modbus the most accepted of
the asynchronous protocols for industrial inputs/outputs.

Z-World�s Modbus master libraries allow existing and new applications to
be the master on a Modbus network. Both the Modbus ASCII and
Modbus RTU protocols are supported.

Dynamic C 32 v. 6.x96 s Modbus Master Libraries

Getting Started
Z-World�s Modbus Master libraries consist of two files, MM.LIB and
MMZ.LIB.

� MM.LIB implements the Modbus commands. Each supported com-
mand of the Modbus protocol has a function within MM.LIB. Each
function creates a Modbus packet representing the command, sends it
to the specified slave or broadcasts it to all slaves, and reads any reply
returned by a slave. Commands also return diagnostic information,
telling why commands in failed packets were not executed. Each
function works equally well under Modbus ASCII or RTU.

� MMZ.LIB provides easy-to-use standard drivers for the serial ports of
the Z180. It implements two separate serial interfaces, an RS-232
interface for serial port Z0 and a half-duplex (two-wire) RS-485
interface for serial port Z1. Since these are the common assignments of
these ports on Z-World controllers, both drivers will work on most
controllers and at least one will work on every controller. The serial
drivers in MMZ.LIB support both Modbus ASCII and RTU protocols.

Standard Modbus Master Procedure

Use the standard procedure to implement the Modbus interface as RS-232
on serial port Z0 or as RS-485 on serial port Z1. The following four steps
will allow you to add Modbus master support to an existing or new
application. See the PK22MM.C sample program to test a selection of the
Modbus commands and display information returned in Modbus slave
replies. This sample program can be easily modified to run on any Z-
World controller with a 2x20 LCD display.

Step 1: Use MMZ.LIB

The following line must appear near the beginning of your program
(typically after the opening comments) in order to use MMZ.LIB.

#use "MMZ.LIB"

Note that MMZ.LIB automatically uses MM.LIB, so a second #use is not
required.

Step 2: Call VdInit or uplc_init

The Modbus master functions in MM.LIB are based on costatements and
use the DelayMs function to perform certain timeout procedures. As such,
the appropriate one of either the VdInit function (in VDRIVER.LIB) or
the uplc_init function (in CPLC.LIB) must be used to initialize the
target controller.

Refer to the Dynamic C 32 Application Frameworks manual
for more information on costatements.$

Function Reference Modbus Master Libraries s 97

Step 3: Initialize the Modbus Serial Port

MMZ.LIB contains four initialization functions, one of which must be
called to initialize the Modbus master�s serial port prior to executing
Modbus commands. The function that is selected determines the Modbus
master�s serial port and standard (Z0/RS-232 or Z1/RS-485) as well as the
protocol (ASCII or RTU). Table 6-1 lists the four initialization functions.

Table 6-1. MMZ.LIB Initialization Functions

Function Protocol Serial Port/Type

mmaZ0 Modbus ASCII

mmrZ0 Modbus RTU
RS-232 on Z0

mmaZ1 Modbus ASCII

mmrZ1 Modbus RTU
RS-485 on Z1

Each of the mmaZ0, mmrZ0, mmaZ1 and mmrZ1 functions use the same
calling conventions, as shown in the example below for mmaZ0.

� int mmaZ0(unsigned long Baud, unsigned Mode)

Baud specifies the communication rate (bps) for the serial port, and can
be any value supported by the selected port. Communication rates of
9600 or 19200 bps are the most common, and rates above 19200 bps
are generally unreliable in most industrial settings due to noise.

Mode sets the desired serial character frame parameters according to
the following list. Modbus RTU requires 8 data bits, and unlisted
values default to 8-N-1 for both ASCII and RTU. All serial character
frames listed below begin with one start bit. Eight data bits with no
parity and either one or two stop bits are the most common Modbus
settings, and should be tried first on existing systems with unknown
parity settings.

 0 - 8 bit data, no parity, 1 stop bit (default, ASCII and RTU)
 1 - 7 bit data, odd parity, 1 stop bit (ASCII only)
 2 - 7 bit data, even parity, 1 stop bit (ASCII only)
 3 - 7 bit data, no parity, 2 stop bits (ASCII only)
 4 - 8 bit data, odd parity, 1 stop bit (ASCII and RTU)
 5 - 8 bit data, even parity, 1 stop bit (ASCII and RTU)
 6 - 8 bit data, no parity, 2 stop bits (ASCII and RTU)
 7 - 7 bit data, odd parity, 2 stop bits (ASCII only)
 8 - 7 bit data, even parity, 2 stop bits (ASCII only)
 9 - 8 bit data, odd parity, 2 stop bits (ASCII and RTU)
10 - 8 bit data, even parity, 2 stop bits (ASCII and RTU)
11 - 7 bit data, no parity, 1 stop bit (ASCII only)

Dynamic C 32 v. 6.x98 s Modbus Master Libraries

Return Value of the initialization functions is always 1 (true), even if
an unattainable baud rate has been selected. This is due to MMZ.LIB�s
use of the serial drivers in Z0232.LIB and Z1232.LIB, whose
initialization functions always return 1. Thus, checking the return code
will only be useful in order to take advantage of possible future
enhancements to the Modbus master libraries.

Step 4: Call Modbus Master Command Functions

Now that the Modbus master�s serial port is initialized and ready, you are
in control of the Modbus network. To read or write any Modbus register
on any slave, just use one of the Modbus command functions such as
mmInput or mmForceCoils. One such function exists for each of the
Modbus commands supported in MM.LIB. Lists of supported and unsup-
ported Modbus commands appear at the end of this chapter.

Each Modbus command function should be called within a loop or in a
waitfor costatement, since each command contains an internal
costatement which controls the process of sending the command and
parsing the slave�s reply, if any. When the network transaction has
completed, the function will return a value indicating success or failure
(and if so, why) as well as any valid data in the slave�s reply.

Advanced Modbus Master Procedure

While MMZ.LIB will work fine for most Z-World applications, occasion-
ally you�ll need to use a port other than Z0 or Z1 as the Modbus master
serial port. In order to facilitate this, MM.LIB interfaces to the Modbus
serial port through a very simple pair of functions, mmRecv and mmSend.

Any implementation of these functions which matches the description in
the Modbus Serial Interface section later in this chapter will allow MM.LIB
to control the Modbus network to which these functions interface.

It should be noted that the Modbus command functions in MM.LIB assume
that the serial port has already been initialized prior to the first attempt to
execute a Modbus command. In addition to initializing the Modbus serial
port, you must also call the appropriate one (and only one) of the Modbus
master initialization functions, mmaInit or mmrInit:

� void mmaInit(void)

mmaInit initializes the Modbus ASCII protocol by importing the
appropriate version of the mmExec function and the mmLRC function
from MM.LIB. It does not, in fact, contain any executable code.

� void mmrInit(unsigned long Baud)

mmrInit initializes the Modbus RTU protocol by importing the
appropriate version of the mmExec function and the mmCRC function
from MM.LIB.

Function Reference Modbus Master Libraries s 99

Baud is the serial communication rate (bps) used to set the Modbus
RTU inter-packet gap (End Reply Time Out) value, unless overridden
by a user-defined value.

Also note that the following line must appear near the top of the applica-
tion in order for it to use MM.LIB:

#use �MM.LIB�

Modbus Master Timeouts

The default Modbus master ASCII timeouts are standard at 1 second for
both Begin Reply Time Out (MM_BRTO) and End Reply Time Out
(MM_ERTO). However, the default Modbus master RTU timeouts are a
combination of arbitrary at 100 mS for MM_BRTO and standard at 3.5
character times for MM_ERTO (calculated based on the Baud value passed
to the mmrInit function, assuming 11 bit serial character frames and
rounded up to the next whole mS). Note that the default timeouts can be
overridden by defining MM_BRTO and/or MM_ERTO millisecond values at
the beginning of the application, eg:

#define MM_BRTO 1000 // Modbus ASCII standard
#define MM_ERTO 1000 // Modbus ASCII standard

or,

#define MM_BRTO 100 // Modbus RTU default
#define MM_ERTO 100 // Modbus RTU override

Note that these timeout values apply directly only to the Modbus master
and may be adjusted to suit a particular Modbus network�s conditions.
Each Modbus slave has its own timeout values, which may differ from the
master and from other slaves.

Modbus Registers
In C, actions and manipulation of data are performed by functions, while
data are stored in variables. This organization is so logical as to be
intuitive to C programmers. This organization dominates most program-
ming languages.

PLCs, however, do not operate on this principle. In PLCs, actions are
performed by manipulating coils and registers, which also serve as storage
for data. This uniformity is initially counter-intuitive to C programmers,
but actually make for a simple interface.

Modbus simplifies this even further by supporting only two data types.
Coils (referring to the coils in mechanical relays) store true/false informa-
tion, a �bit� in common computer technology. Registers store 16-bit
unsigned numbers.

Dynamic C 32 v. 6.x100 s Modbus Master Libraries

The Modbus protocol provides for five classes of objects that can be
manipulated. Since each class is assigned a unique, nonoverlapping
address range, these objects are often referred to by their address space.

0X References (Discrete Outputs)

These bits are readable and writable. Some are used to control the PLC
outputs , some are used to store internal bits, and others perform
special PLC operations.

1X References (Discrete Inputs)

These bits are read only. They are used mainly for the digital inputs
and to check the PLC status.

3X References (Input Registers)

These registers are read only. They are used mainly for multi-bit inputs
such as analog/digital and pulse measurement readings.

4X References (Holding Registers)

These registers are readable and writable. They are used primary to
hold data and for multi-bit outputs (such as digital/analog).

6X References (Extended Memory)

These registers are not supported by Dynamic C�s Modbus Slave
Driver nor are they supported by most Modbus-compatible devices. In
fact, even Modicon�s use of 6X registers is so nonstandard as to make a
general-purpose driver difficult to implement.

Modbus Master Command Functions
� int mmOutRd(unsigned Addr, unsigned Coil,

unsigned Count, void *Coils)

mmOutRd reads one or more consecutive 0X output coils. Broadcast is
not supported.

Addr is the address (ID) of the Modbus slave whose coils are to be
read. Valid addresses are 1 through 255, inclusive.

Coil is the number of the first coil to be read. Valid coil numbers are
0 through 65534, inclusive. Since Modbus numbers the coils from 1
through 65535, Coil should be 0 to read coil 1.

Count is the number of consecutive coils to be read. Limitations in the
size of a Modbus packet reduce the number of coils that can be read at
one command to just under 2048.

Function Reference Modbus Master Libraries s 101

Coils is a pointer to the memory where coil results are stored, often a
character array. Coil states are packed eight to a byte with lowest coil
number represented in the LSbit of the first byte. The minimum
number of bytes required is equal to Count coils divided by eight
rounded up to the next whole number. Unused bits in the last required
byte are zero-filled. If its address is cast to void *, an unsigned
integer can store up to 16 coils and an unsigned long integer can store
up to 32 coils, with the lowest numbered coil represented in the LSbit
of each type.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores Coils data in the memory
pointed to by Coils. Otherwise, an error code is returned to indicate
the reason for failure. See the Modbus Command Return Values
section later in this chapter for more information.

� int mmIn(unsigned Addr, unsigned Coil,
unsigned Count, void *Coils)

mmIn reads one or more consecutive 1X input coils. Broadcast is not
supported.

Addr is the address (ID) of the Modbus slave whose coils are to be
read. Valid addresses are 1 through 255, inclusive.

Coil is the number of the first coil to be read. Valid coil numbers are
0 through 65534, inclusive. Since Modbus numbers the coils from 1
through 65535, Coil should be 0 to read coil 1.

Count is the number of consecutive coils to be read. Limitations in the
size of a Modbus packet reduce the number of coils that can be read at
one command to just under 2048.

Coils is a pointer to the memory where coil results are stored, often a
character array. Coil states are packed eight to a byte with lowest coil
number represented in the LSbit of the first byte. The minimum
number of bytes required is equal to Count coils divided by eight
rounded up to the next whole number. Unused bits in the last required
byte are zero-filled. If its address is cast to void *, an unsigned
integer can store up to 16 coils and an unsigned long integer can store
up to 32 coils, with the lowest numbered coil represented in the LSbit
of each type.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores coils data in the memory
pointed to by Coils. Otherwise, an error code is returned to indicate
the reason for failure. See the Modbus Command Return Values
section later in this chapter for more information.

Dynamic C 32 v. 6.x102 s Modbus Master Libraries

� int mmInput(unsigned Addr, unsigned Reg,
unsigned Count, void *Regs)

mmInput reads one or more consecutive 3X input registers. Broadcast
is not supported.

Addr is the address (ID) of the Modbus slave whose registers are to be
read. Valid addresses are 1 through 255, inclusive.

Reg is the number of the first register to be read. Valid register
numbers are 0 through 65534, inclusive. Since Modbus numbers the
registers from 1 through 65535, Reg should be 0 to read register 1.

Count is the number of consecutive registers to be read. Limitations in
the size of a Modbus packet reduce the number of registers that can be
read at one command to just under 128.

Regs is a pointer to the memory where register results are stored, often
an array of unsigned integers. Registers are 16-bit unsigned values, so
the minimum number of bytes required is equal to Count times two. If
its address is cast to void *, an unsigned integer can store one register
and an unsigned long integer can store up to two consecutive registers.
Similarly, a Dynamic C float can be mapped to store two consecutive
registers which use the IEEE-754 32-bit floating point representation,
which fortunately is a common (but not mandatory) format in Modbus
software that supports floats.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores registers data in the
memory pointed to by Regs. Otherwise, an error code is returned to
indicate the reason for failure. See the Modbus Command Return
Values section later in this chapter for more information.

� int mmRead(unsigned Addr, unsigned Reg,
unsigned Count, void *Regs)

mmRead reads one or more consecutive 4X holding registers. Broad-
cast is not supported.

Addr is the address (ID) of the Modbus slave whose registers are to be
read. Valid addresses are 1 through 255, inclusive.

Reg is the number of the first register to be read. Valid register
numbers are 0 through 65534, inclusive. Since Modbus numbers the
registers from 1 through 65535, Reg should be 0 to read register 1.

Count is the number of consecutive registers to be read. Limitations in
the size of a Modbus packet reduce the number of registers that can be
read at one command to just under 128.

Function Reference Modbus Master Libraries s 103

Regs is a pointer to the memory where register results are stored, often
an array of unsigned integers. Registers are 16-bit unsigned values, so
the minimum number of bytes required is equal to Count times two. If
its address is cast to void *, an unsigned integer can store one register
and an unsigned long integer can store up to two consecutive registers.
Similarly, a Dynamic C float can be mapped to store two consecutive
registers which use the IEEE-754 32-bit floating point representation,
which fortunately is a common (but not mandatory) format in Modbus
software which supports floats.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores registers data in the memory
pointed to by Reg. Otherwise, an error code is returned to indicate the
reason for failure. See the Modbus Command Return Values section
later in this chapter for more information.

� int mmForceCoil(unsigned Addr, unsigned Coil,
int State)

mmForceCoil forces a single 0X output coil to the on or off state.
Broadcast is supported.

Addr is the address (ID) of the Modbus slave whose coil is to be
forced. Valid addresses are 0 (broadcast) and 1 through 255, inclusive.

Coil is the number of the coil to be forced. Valid coil numbers are 0
through 65534, inclusive. Since Modbus numbers the coils from 1
through 65535, Coil should be 0 to force coil 1.

State is 0 to force the specified coil off, non-zero to force the coil on.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1). Note that because there is no slave
response to a broadcast command, it will always return MM_OK when
completed. Otherwise, an error code is returned to indicate the reason
for failure. See the Modbus Command Return Values section later in
this chapter for more information.

� int mmForceCoils(unsigned Addr, unsigned Coil,
unsigned Count, void *Coils)

mmForceCoils forces one or more consecutive 0X output coils to the
on or off state, individually. Broadcast is supported.

Addr is the address (ID) of the Modbus slave whose coils are to be
forced. Valid addresses are 0 (broadcast) and 1 through 255, inclusive.

Coil is the number of the first coil to be forced. Valid coil numbers
are 0 through 65534, inclusive. Since Modbus numbers the coils from
1 through 65535, Coil should be 0 to force coil 1.

Dynamic C 32 v. 6.x104 s Modbus Master Libraries

Count is the number of consecutive coils to be forced. Limitations in
the size of a Modbus packet reduce the number of coils that can be read
at one command to just under 2048.

Coils is a pointer to the memory where the desired coil states reside,
often a character array. Coil states are packed eight to a byte with
lowest coil number represented in the LSbit of the first byte. The
minimum number of bytes required is equal to Count coils divided by
eight rounded up to the next whole number. Unused bits in the last
required byte should be zero-filled. If its address is cast to void *, an
unsigned integer can store up to 16 coils and an unsigned long integer
can store up to 32 coils, with the lowest numbered coil represented in
the LSbit of each type.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1). Note that because there is no slave
response to a broadcast command, it will always return MM_OK when
completed. Otherwise, an error code is returned to indicate the reason
for failure. See the Modbus Command Return Values section later in
this chapter for more information.

� int mmPresetReg(unsigned Addr, unsigned Reg,
unsigned Value)

mmPresetReg forces a single 4X holding register to the specified
value. Broadcast is supported.

Addr is the address (ID) of the Modbus slave whose register is to be
forced. Valid addresses are 0 (broadcast) and 1 through 255, inclusive.

Reg is the number of the register to be forced. Valid register numbers
are 0 through 65534, inclusive. Since Modbus numbers the registers
from 1 through 65535, Reg should be 0 to force register 1.

Value is any unsigned integer from 0 through 65535, inclusive.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1). Note that because there is no slave
response to a broadcast command, it will always return MM_OK when
completed. Otherwise, an error code is returned to indicate the reason
for failure. See the Modbus Command Return Values section later in
this chapter for more information.

� int mmPresetRegs(unsigned Addr, unsigned Reg,
unsigned Count, void *Regs)

mmPresetRegs forces one or more consecutive 4X holding registers to
specified values, individually. Broadcast is supported.

Function Reference Modbus Master Libraries s 105

Addr is the address (ID) of the Modbus slave whose registers are to be
forced. Valid addresses are 0 (broadcast) and 1 through 255, inclusive.

Reg is the number of the first register to be forced. Valid register
numbers are 0 through 65534, inclusive. Since Modbus numbers the
registers from 1 through 65535, Reg should be 0 to force register 1.

Count is the number of consecutive registers to be forced. Limitations
in the size of a Modbus packet reduce the number of registers that can
be forced at one command to just under 128.

Regs is a pointer to the memory where the desired register values
reside, often an array of unsigned integers. Registers are 16-bit
unsigned values, so the minimum number of bytes required is equal to
Count times two. If its address is cast to void *, an unsigned integer
can store one register and an unsigned long integer can store up to two
consecutive registers. Similarly, a Dynamic C float can be mapped to
store two consecutive registers which use the IEEE-754 32-bit floating
point representation, which fortunately is a common (but not manda-
tory) format in Modbus software that supports floats.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1). Note that because there is no slave
response to a broadcast command, it will always return MM_OK when
completed. Otherwise, an error code is returned to indicate the reason
for failure. See the Modbus Command Return Values section later in
this chapter for more information.

� int mmRegRdWr(unsigned Addr, unsigned RdReg,
unsigned RdCount, void *RdRegs,
unsigned WrReg, unsigned WrCount,
void *WrRegs)

mmRegRdWr forces one or more consecutive 4X holding registers to
specified values, individually, then reads one or more consecutive 4X
holding registers. Broadcast is not supported.

Addr is the address (ID) of the Modbus slave whose registers are to be
read and then forced. Valid addresses are 0 (broadcast) and 1 through
255, inclusive.

RdReg is the number of the first register to be read. Valid register
numbers are 0 through 65534, inclusive. Since Modbus numbers the
registers from 1 through 65535, Reg should be 0 to read register 1.

RdCount is the number of consecutive registers to be read. Limitations
in the size of a Modbus packet reduce the total number of registers that
can be forced and read at one command to just under 128.

Dynamic C 32 v. 6.x106 s Modbus Master Libraries

RdRegs is a pointer to the memory where register results are stored,
often an array of unsigned integers. Registers are 16-bit unsigned
values, so the minimum number of bytes required is equal to RdCount
times two. If its address is cast to void *, an unsigned integer can
store one register and an unsigned long integer can store up to two
consecutive registers. Similarly, a Dynamic C float can be mapped to
store two consecutive registers which use the IEEE-754 32-bit floating
point representation, which fortunately is a common (but not manda-
tory) format in Modbus software that supports floats.

WrReg is the number of the first register to be forced. Valid register
numbers are 0 through 65534, inclusive. Since Modbus numbers the
registers from 1 through 65535, WrReg should be 0 to force register 1.

WrCount is the number of consecutive registers to be forced. Limita-
tions in the size of a Modbus packet reduce the total number of
registers that can be forced and read at one command to just under 128.

WrRegs is a pointer to the memory where the desired register values
reside, often an array of unsigned integers. Registers are 16-bit
unsigned values, so the minimum number of bytes required is equal to
WrCount times two. If its address is cast to void *, an unsigned
integer can store one register and an unsigned long integer can store up
to two consecutive registers. Similarly, a Dynamic C float can be
mapped to store two consecutive registers which use the IEEE-754 32-
bit floating point representation, which fortunately is a common (but
not mandatory) format in Modbus software that supports floats.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores registers data in the
memory pointed to by RdRegs. Otherwise, an error code is returned to
indicate the reason for failure. See the Modbus Command Return
Values section later in this chapter for more information.

� int mmRegMask(unsigned Addr, unsigned Reg,
unsigned And, unsigned Or)

mmRegMask, in a single atomic operation, masks a single 4X holding
register according to the following formula: 4X[Reg] = (4X[Reg] &
And) | (Or & ~And). This formula allows any combination of bits
in the register to be set, cleared or left unchanged without the chance of
the register value being solved (changed) by the slave in between a
read command and a subsequent preset command. Broadcast is
supported.

Addr is the address (ID) of the Modbus slave whose register is to be
masked. Valid addresses are 0 (broadcast) and 1 through 255, inclu-
sive.

Function Reference Modbus Master Libraries s 107

Reg is the number of the register to be masked. Valid register numbers
are 0 through 65534, inclusive. Since Modbus numbers the registers
from 1 through 65535, Reg should be 0 to mask register 1.

And is any unsigned integer from 0 through 65535, inclusive. If And is
zero, the result is simply 4X[Reg] = Or.

Or is any unsigned integer from 0 through 65535, inclusive. If Or is
zero, the result is 4X[Reg] = 4X[Reg] & And.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1). Note that because there is no slave
response to a broadcast command, it will always return MM_OK when
completed. Otherwise, an error code is returned to indicate the reason
for failure. See the Modbus Command Return Values section later in
this chapter for more information.

� int mmFetchCommCnt (unsigned Addr, void
*Count, void *Status)

mmFetchCommCnt reads the current value of the communication event
counter and the status. The communications event count is commonly
read before and after a critical broadcast command has been executed,
to check each slave�s response. The count can also be helpful when
debugging Modbus installations. Broadcast is not supported.

Addr is the address (ID) of the Modbus slave whose communication
events count is to be read. Valid addresses are 1 through 255, inclu-
sive.

Count is a pointer to the memory where the communications event
count is stored, often an unsigned integer. Each Modbus slave is
supposed to maintain a communication event counter which starts at
zero and is incremented once for each successfully executed Modbus
command.

Status is a pointer to the memory where the status word is stored,
often an unsigned integer. The status word has all bits set (0xFFFF) if
the slave is still busy processing a previous command, or all bits clear
(0x0000) if the slave is not busy.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores count and status informa-
tion in the memory pointed to by Count and Status, respectively.
Otherwise, an error code is returned to indicate the reason for failure.
See the Modbus Command Return Values section later in this chapter
for more information.

Dynamic C 32 v. 6.x108 s Modbus Master Libraries

� int mmRdExcStat (unsigned Addr, void *Coils)

mmRdExcStat reads the eight exception status coils. The assignment
and meaning of each coil depends on the type of slave device and may
be either predefined or programmable. Broadcast is not supported.

Addr is the address (ID) of the Modbus slave whose coils are to be
read. Valid addresses are 1 through 255, inclusive.

Coils is a pointer to the memory where coil results are stored, often a
single character. Coil states are packed eight to a byte with lowest coil
number represented in the LSbit of the byte.

Return Value is MM_BUSY (0) until the command is completed. If
successful, returns MM_OK (-1) and stores coils data in the memory
pointed to by Coils. Otherwise, an error code is returned to indicate
the reason for failure. See the Modbus Command Return Values
section later in this chapter for more information.

Modbus Master Serial Interface
If the default serial driver supplied in MMZ.LIB is not suited to your
application, it is fairly straightforward to write your own serial driver.
MM.LIB uses just two functions to interface to the Modbus network. The
mmRecv function reads a byte from the Modbus network and the mmSend
function sends a block of bytes to the Modbus network. Write your own
versions of these functions according to the guidelines below to enable
MM.LIB to talk to your Modbus network.

� int mmRecv(void)

mmRecv attempts to read a single byte from the Modbus network. If a
byte is read successfully, mmRecv should return the received value in
the range of 0 through 255, inclusive. If no byte is available then -1
should be returned.

� int mmSend(unsigned char *Cmd, unsigned Len)

mmSend transmits a block of Len bytes from the Cmd character array to
the Modbus network. Rather than busy waiting while the processor is
transmitting the specified bytes, mmSend is called repeatedly by the
Modbus Master library command functions until the entire packet is
transmitted. While transmitting, mmSend should return false (zero).
When transmission is complete, mmSend should return true (non-zero).

Function Reference Modbus Master Libraries s 109

Prior to the actual attempt to transmit data, the Modbus Master library
command functions call mmSend with a NULL value for the Cmd
parameter. This is a signal to mmSend that a new Modbus command
transmission is about to take place, and any chores required to set up
for the new command (such as clearing out remaining Rx and Tx data
from a previous command that is being canceled) should be done at this
time. At the very minimum, mmSend should ignore calls when Cmd is
NULL. The Modbus Master library command functions ignore
mmSend�s return value when Cmd is NULL.

Modbus Master Supported Commands
The following commands are supported in the Modbus Master library:

0x01 : Read Coil Status
0x02 : Read Input Status
0x03 : Read Holding Registers
0x04 : Read Input Registers
0x05 : Force Single Coil
0x06 : Preset Single Register
0x07 : Read Exception Status
0x0B : Fetch Communication Event Counter
0x0F : Force Multiple Coils
0x10 : Preset Multiple Registers
0x16 : Mask Write 4X Register
0x17 : Read/Write 4X Registers

Modbus Master Unsupported Commands
The following Modbus commands are not supported in Z-World�s Modbus
master libraries. Please note that this is not an exhaustive list, as many
vendors have added their own PLC-specific commands to the Modbus
protocol.

0x08 : Diagnostics
0x09 : Program 484
0x0A : Poll 484
0x0C : Fetch Communication Event Log
0x0D : Program Controller
0x0E : Poll Controller
0x11 : Report Slave ID
0x12 : Program 884/M84
0x13 : Reset Communication Link
0x14 : Read General Reference
0x15 : Write General Reference
0x18 : Read FIFO Queue

Dynamic C 32 v. 6.x110 s Modbus Master Libraries

Modbus Master Command Function Return Values
Below are listed the possible return values from the Modbus master
command functions in MM.LIB. Each is followed by a brief explanation.

It is worth noting that zero indicates an unfinished command, negative one
indicates success, all other negative values indicate a failure in the master,
and positive values generally indicate failure in the slave or network. This
scheme was chosen to expand on the Modbus standard of using only
positive unsigned byte values for slave exception codes.

#define MM_NOBROAD (-9) // Broadcast Not Supported

MM_NOBROAD indicates that the Modbus master has attempted to
broadcast a command that is not supported in broadcast mode. An
example of this is an attempt to read register contents simultaneously
from all slaves, which otherwise would be ignored by all properly
configured slaves and eventually result in a less informative
MM_TIMEOUT error. Note that this error is returned immediately by the
Modbus master command, and no traffic is generated on the Modbus
network.

#define MM_TIMEOUT (-8) // Response Timeout

MM_TIMEOUT indicates that the Modbus command appears to have
been transmitted successfully, but no reply has been received from the
slave within an acceptable period of time. See the Modbus Master
Timeouts section earlier in this chapter for information about and
customization of the acceptable time period macros MM_BRTO and
MM_ERTO. This error can indicate one (or more) of several condi-
tions:
· The slave doesn�t exist.
· The slave is currently non-operational.
· The command was sent, but serial garbage prevented the slave

from validating the command.
· The command was received successfully by the slave, which has

taken too long to process the response.

This last condition is particularly troublesome because the slave�s late
response will often interrupt subsequent commands from the master. If
you suspect such a situation, changing timeouts to a high value (2000
mS or more) will often reveal the problem. If this proves to be the
case, you can either leave the high timeout values (which will allow the
slow slave to dominate and ultimately cripple network bandwidth) or
you can have the slave repaired or replaced.

Function Reference Modbus Master Libraries s 111

#define MM_GARBAGE (-7) // Garbage In Response

MM_GARBAGE indicates the received packet contained illegal data. This
usually results from serial noise or data collisions.

#define MM_TOOLONG (-6) // Response Exceeds Buffer
Length

MM_TOOLONG indicates that the slave�s response does not fit in the
Modbus master�s reply buffer. In practice, a properly functioning slave
should catch this error and return the MS_BADRESP / MS_DEVFAIL
error code, so the most likely causes are serial noise, data collisions or
a malfunctioning slave.

#define MM_BADXRC (-5) // Bad CRC/LRC

MM_BADXRC indicates that an otherwise well-formed packet was
received, but the received and computed values for longitudinal
redundancy check (LRC for Modbus ASCII) or cyclic redundancy
check (CRC for Modbus RTU) do not match. Usually, this is the result
of errors in a small number of serial bits, which is quite rare. Persistent
MM_BADXRC errors are often the result of incorrectly coded Modbus
slaves. Occasional errors are usually the result of faulty hardware or
wiring. Typical serial noise is more likely to produce MM_GARBAGE or
MM_TIMEOUT errors.

#define MM_BADID (-4) // Unexpected Slave ID in
Response

MM_BADID indicates that the response packet is well-formed, but not
from the expected slave device. This unlikely error can occur if the
Modbus master sequentially issues the same command to a number of
slaves, but one slave�s response is delayed and results in a
MM_TIMEOUT error. When the tardy response is finally received (after
the command is issued to another slave, and assuming no data colli-
sions) it is not from the expected slave device.

#define MM_BADCODE (-3) // Unexpected Response
Code

MM_BADCODE indicates that the response packet is well-formed, but not
a response to the expected command. This unlikely error can occur if a
Modbus master command resulting in an MM_TIMEOUT error is fol-
lowed by a different command to the same slave. When the tardy
response to the first command is finally received (after the second
command is issued, and assuming no data collisions) it is not a re-
sponse to the expected (second) command.

Dynamic C 32 v. 6.x112 s Modbus Master Libraries

#define MM_RESCODE (-2) // Reserved Exception Code
(zero)

MM_RESCODE indicates that a well-formed exception response packet
has been received, but its exception byte is zero (ie: MM_BUSY, a
reserved return value). Note that the Modbus standard uses only
positive unsigned byte values for slave exception codes.

#define MM_OK (-1) // Success

MM_OK indicates that the Modbus master command has completed
successfully.

#define MM_BUSY 0 // Master Still Processing

MM_BUSY indicates that the command is still being processed. Since
Modbus commands generally perform serial communications which do
not complete instantly, each takes a fair amount of time. Rather than
halting execution of the entire application while the Modbus command
function is waiting on serial communications, each command will
return a value of MM_BUSY until the command is finished. The function
should be called periodically (as often as the programmer is able or
wishes) until a value other than MM_BUSY is returned. The particular
return value of zero was chosen because it is logically distinct from
non-zero values (false vs. true), so it works well with C control
structures and fits nicely with a costatement�s waitfor requirements.

#define MS_BADFUNC 0x01 // Illegal Function

MS_BADFUNC is returned by the slave to indicate that while a valid
packet did arrive, the opcode of the packet was not recognized by that
slave. In general, this means that the slave does not support the
specified command. This failure is quite common, since most devices
only implement a subset of the Modbus protocol.

#define MS_BADADDR 0x02 // Illegal Data Address

MS_BADADDR is returned by the slave to indicate that an attempt was made
to read or write a coil or register which is unsupported by that slave.
While coil and register spaces span 16-bits (64K coils or 64K regis-
ters), slaves typically only support some limited subset.

This error often confuses customers because Modbus slaves will fail a
whole packet if any portion of it is illegal. Consider Modbus slave
0x23, which implements only registers 40001 through 40008, inclusive.
Using the following command will result in an MS_BADADDR error:

unsigned MyRegs[9];
int Err;
while(!(Err = mmRead(0x23, 0, 8, MyRegs)));

Function Reference Modbus Master Libraries s 113

The attempt to read unsupported register 40009 generates an
MS_BADADDR error despite the fact that registers 40001 through 40008
are supported. No data are returned because of the single breach.

#define MS_BADDATA 0x03 // Illegal Data Value

MS_BADDATA is returned by the slave to indicate that an attempt was
made to force a coil or register with an illegal value. This error is rare
and never encountered for coils and registers used for general purpose
output. It is generally a response to an attempt to write an illegal value
into a specialized register, for example, writing 13 to a slave�s register
which represents the current month.

#define MS_BADRESP 0x04 // Illegal Response Length
(unrecoverable error)

#define MS_DEVFAIL 0x04 // Slave Device Failure
(unrecoverable error)

MS_BADRESP and MS_DEVFAIL are synonymous errors indicating that
the slave has had an unrecoverable error while attempting to perform
the command. A common cause of MS_BADRESP / MS_DEVFAIL is a
request for more information than can fit in a single Modbus packet.
Different sources of Modbus literature refer to this error code using
different terminology, so both names are defined in MM.LIB for the
convenience of the user.

#define MS_ACK 0x05 // Acknowledge (long duration
program)

MS_ACK is returned by the slave to indicate that the command has been
accepted, but a long processing time is required. This response is
returned to prevent a timeout error from occurring in the Modbus
master. Currently, no command supported in the Modbus master
library should result in this response from a slave.

#define MS_DEVBUSY 0x06 // Slave Device Busy (long
duration program)

MS_DEVBUSY is returned by the slave to indicate that the command can
not be accepted, because it is still processing a previous command.
Currently, no command supported in the Modbus master library should
result in this response from a slave.

#define MS_NACK 0x07 // Negative Acknowledge
(reject program)

MS_NACK is returned by the slave to indicate that the command
specifies a program function that the slave can not perform. Currently,
no command supported in the Modbus master library should result in
this response from a slave.

Dynamic C 32 v. 6.x114 s Modbus Master Libraries

#define MS_MEMPERR 0x08 // Memory Parity Error
(read extended memory)

MS_MEMPERR is returned by the slave to indicate that a parity error was
detected while attempting to read extended memory (6X references). If
this error is persistent the slave device may need service. Currently, no
command supported in the Modbus master library should result in this
response from a slave.

#define MS_NOGPATH 0x0A // Gateway Path Unavail-
able (Modbus Plus)

MS_NOGPATH has specialized use in conjunction with Modbus Plus
network gateways to indicate that the gateway was unable to allocate
the PATH required to process the request. It usually means that the
gateway is misconfigured. Currently, the Modbus master library does
not support the Modbus Plus protocol.

#define MS_NOGRESP 0x0B // Gateway Target Device
Failed to Respond (Modbus Plus)

MS_NOGRESP has specialized use in conjunction with Modbus Plus
network gateways to indicate that no response was obtained from the
target device. It usually means that the device is not present on the
network. Currently, the Modbus master library does not support the
Modbus Plus protocol.

For more information on the Modbus protocol, check the
Modicon Modbus Protocol Reference Guide (Modicon
Document PI-MBUS-300). This can be found on the World
Wide Web at the Modicon Web site at
(http://www.modicon.com).

$

Function Reference Graphics Engine Support Library s 115

CHAPTER 7:

GRAPHICS ENGINE SUPPORT LIBRARY

The GESUPRT.LIB Graphics Engine support library described in this
chapter can be #used by applications for any of Z-World�s Z180-based
controllers. It may also be helpful as a reference when integrating the
Graphics Engine into other types of systems.

Dynamic C 32 v. 6.x116 s Graphics Engine Support Library

GESUPRT.LIB
These interface functions support the use of the op7100ge.c Graphics
Engine sample program (found in the SAMPLES\OP71XX sub-folder of the
main Dynamic C 32 installation folder) as an intelligent, on-the-fly
customizable operator interface for any Z-World Z180-based controller
application.

GESUPRT.LIB supports anywhere from one up to four Graphics Engine
devices connected to a controller whose application defines one or more of
the following four macros in any combination:

#define GE_USE_PORTZ0 // G.E. on port Z0
#define GE_USE_PORTZ1 // G.E. on port Z1
#define GE_USE_PORTA // G.E. on port SCC A
#define GE_USE_PORTB // G.E. on port SCC B

One or more of the following four macros will be available to the applica-
tion after the respective #define GE_USE_PORTx macro definition has
been made. Use the appropriate following macros for the Port parameter
in all GESUPRT.LIB user-callable functions:

GE_PORTZ0
GE_PORTZ1
GE_PORTA
GE_PORTB

GESUPRT.LIB has both blocking and non-blocking versions of all user-
callable functions. Blocking functions do not return until either completed
or timed out; they return 1 on success and a negative error code on failure.
Non-blocking functions immediately return 0 if the Graphics Engine�s
response is still pending; otherwise they return 1 on success and a negative
error code on failure. The list of Graphics Engine error codes follows:

-1 CRC fail
-2 record less than 5 bytes
-3 command not recognized
-4 command not implemented yet
-5 option not recognized
-6 real time clock has failed or is not installed
-7 command queue full
-8 command not allowed in a macro
-9 error adding a macro to the list
-10END_MACRO command when not building a macro
-11 a command target (add, delete) does not exist
-12memory allocation error
-13parameter out of range, or object not found
-14command other than STOP_MACRO if a macro is running
-15time out error (no response received from G.E. device)

Function Reference Graphics Engine Support Library s 117

� int GEInit(int Port, long BaudRate)

This blocking function always returns 1 when complete. Sets up the
serial port and buffers. It may be necessary to delay briefly after this
function is called in order to permit the Graphics Engine device to
power up and be ready to accept commands. This function must be
called once before any other Graphics Engine commands are issued.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

BaudRate is the communication bps rate to operate at (eg: 9600,
19200, etc.). Maximum for the OP7100 is 57600.

� int GEHardResetWF(int Port)

This non-blocking version of the GEHardReset function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEHardReset(int Port)

If successful, instructs the Graphics Engine to perform a hard reset and
returns 1; otherwise, returns a negative error code from the list at the
beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GESendStatusWF(int Port, int *status,
int *errCode)

This non-blocking version of the GESendStatus function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESendStatus(int Port, int *status,
int *errCode)

If successful, instructs the Graphics Engine to report its current status
and returns 1; otherwise, returns a negative error code from the list at
the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

status is a pointer to where the Graphics Engine�s current status will
be stored.

errCode is a pointer to where the Graphics Engine�s current error code
(if any) will be stored.

Dynamic C 32 v. 6.x118 s Graphics Engine Support Library

� int GESendLastPushWF(int Port, char iFunction,
int *iBtnVal)

This non-blocking version of the GESendLastPush function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GESendLastPush(int Port, char iFunction,
int *iBtnVal)

If successful, instructs the Graphics Engine to report its last button or
cell push and returns 1; otherwise, returns a negative error code from
the list at the beginning of this chapter. Note that after the last-pushed
cell number or button ID is sent, the Graphics Engine resets the value
to zero in order to prevent continually sending the same information.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

iFunction is a flag which: if 1, selects last cell push information; if
2, selects last button push information.

iBtnVal is a pointer to where the last-pushed cell number or button ID
will be stored.

� int GESendStringWF(int Port, char *String)

This non-blocking version of the GESendString function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESendString(int Port, char *String)

If successful, instructs the Graphics Engine to report the last string
entered via the Virtual Keyboard or set by a SetString command and
returns 1; otherwise, returns a negative error code from the list at the
beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

String is a pointer to where the Graphics Engine�s reported string will
be stored.

� int GESendLongWF(int Port, long *lValue)

This non-blocking version of the GESendLong function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

Function Reference Graphics Engine Support Library s 119

� int GESendLong(int Port, long *lValue)

If successful, instructs the Graphics Engine to report the last long
integer value entered via the Virtual Keyboard or set by a SetLong
command and returns 1; otherwise, returns a negative error code from
the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

lValue is a pointer to where the Graphics Engine�s reported long
integer value will be stored.

� int GESendFloatWF(int Port, float *fValue)

This non-blocking version of the GESendFloat function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESendFloat(int Port, float *fValue)

If successful, instructs the Graphics Engine to report the last float value
entered via the Virtual Keyboard or set by a SetFloat command and
returns 1; otherwise, returns a negative error code from the list at the
beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

fValue is a pointer to where the Graphics Engine�s reported float
value will be stored.

� int GESendCharWF(int Port, char *cVal)

This non-blocking version of the GESendChar function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESendChar(int Port, char *cVal)

If successful, instructs the Graphics Engine to report the last character
entered via the Virtual Keyboard or set by a SetChar command and
returns 1; otherwise, returns a negative error code from the list at the
beginning of this chapter. Note that after the last-entered character is
sent, the Graphics Engine resets the value to zero in order to prevent
continually sending the same information.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

cVal is a pointer to where the Graphics Engine�s reported character
will be stored.

Dynamic C 32 v. 6.x120 s Graphics Engine Support Library

� int GESendTodWF(int Port, struct tm *time)

This non-blocking version of the GESendTod function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESendTod(int Port, struct tm *time)

If successful, instructs the Graphics Engine to report its current date
and time of day and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

time is a pointer to where the Graphics Engine�s reported time
structure will be stored.

� int GEClearBufferWF(int Port)

This non-blocking version of the GEClearBuffer function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEClearBuffer(int Port)

If successful, instructs the Graphics Engine to clear the Virtual
Keyboard�s string buffer and returns 1; otherwise returns a negative
error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GEDeleteBitMapWF(int Port, int BitmapID)

This non-blocking version of the GEDeleteBitMap function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDeleteBitMap(int Port, int BitmapID)

If successful, instructs the Graphics Engine to delete the specified user-
defined stored bit map and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

BitmapID is the ID number of a user-defined stored bit map, and can�t
be 0 or a reserved bit map ID (251 through 255, inclusive).

Function Reference Graphics Engine Support Library s 121

� int GELoadBitMapWF(int Port, int BitmapID,
int Width, int Height,
unsigned long BmData)

This non-blocking version of the GELoadBitMap function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GELoadBitMap(int Port, int BitmapID,
int Width, int Height,
unsigned long BmData)

If successful, instructs the Graphics Engine to load and store the
specified user-defined bit map and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter. Note
that this function call may require multiple Graphics Engine communi-
cation packets to finish.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

BitmapID is the ID number associated with the user-defined bit map,
and can�t be 0 or a reserved bit map ID (251 through 255, inclusive).

Width is the horizontal size (width) of the bit map in pixels.

Height is the vertical size (height) of the bit map in pixels.

BmData is the physical address of the user-defined bit map source.

� int GEDeleteFontWF(int Port, int FontID)

This non-blocking version of the GEDeleteFont function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEDeleteFont(int Port, int FontID)

If successful, instructs the Graphics Engine to delete the specified user-
defined font and returns 1; otherwise returns a negative error code from
the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FontID is the ID number of a user-defined stored font, and can�t be 0
or a default font ID (1 through 3, inclusive).

Dynamic C 32 v. 6.x122 s Graphics Engine Support Library

� int GELoadFontWF(int Port, int FontID,
int Width, int Height, int SChar,
int EChar, unsigned long FontData)

This non-blocking version of the GELoadFont function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GELoadFont(int Port, int FontID, int Width,
int Height, int SChar, int EChar,
unsigned long FontData)

If successful, instructs the Graphics Engine to load and store the
specified user-defined font and returns 1; otherwise returns a negative
error code from the list at the beginning of this chapter. Note that this
function call may require multiple Graphics Engine communication
packets to finish.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FontID is the ID number associated with the user-defined font, and
can�t be 0 or a default font ID (1 through 3, inclusive).

Width is the horizontal size of each font character in pixels.

Height is the vertical size of each font character in pixels.

SChar is the index (often the ASCII code) of the first font character.

EChar is the index (often the ASCII code) of the last font character.

FontData is the physical address of the user-defined font source.

� int GEDisableCellsWF(int Port, int CellID)

This non-blocking version of the GEDisableCells function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDisableCells(int Port, int CellID)

If successful, instructs the Graphics Engine to disable either one or all
touch-screen cells and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

CellID is the ID number of a single cell, or 0 to disable all cells.

Function Reference Graphics Engine Support Library s 123

� int GEEnableCellsWF(int Port, int CellID)

This non-blocking version of the GEEnableCells function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEEnableCells(int Port, int CellID)

If successful, instructs the Graphics Engine to enable either one or all
touch-screen cells and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

CellID is the ID number of a single cell, or 0 to enable all cells.

� int GESuperResetWF(int Port)

This non-blocking version of the GESuperReset function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESuperReset(int Port)

If successful, instructs the Graphics Engine to clear all user-defined
stored bit maps and fonts by initializing their storage structures and
returns 1; otherwise returns a negative error code from the list at the
beginning of this chapter. Note that this function must be called once
before user-defined bit maps and fonts can be stored.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GEBeginMacroWF(int Port, int MacroID)

This non-blocking version of the GEBeginMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEBeginMacro(int Port, int MacroID)

If successful, instructs the Graphics Engine to store subsequent
commands in a macro, up to the required EndMacro command, and
returns 1; otherwise returns a negative error code from the list at the
beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

MacroID is the ID number associated with the user-defined macro, and
can�t redefine a macro ID number that is already in use.

Dynamic C 32 v. 6.x124 s Graphics Engine Support Library

� int GEEndMacroWF(int Port, int MacroID)

This non-blocking version of the GEEndMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEEndMacro(int Port, int MacroID)

If successful, instructs the Graphics Engine to stop storing commands
in a macro and returns 1; otherwise returns a negative error code from
the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

MacroID is the ID number associated with the user-defined macro that
is under construction.

� int GEClearScreenWF(int Port)

This non-blocking version of the GEClearScreen function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEClearScreen(int Port)

If successful, instructs the Graphics Engine to clear its display screen
and returns 1; otherwise returns a negative error code from the list at
the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GESetBrushTypeWF(int Port, int Btype)

This non-blocking version of the GESetBrushType function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GESetBrushType(int Port, int Btype)

If successful, instructs the Graphics Engine to set the brush type used
for subsequent draw commands and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Btype is the brush type, where 1 = CLEAR (white), 2 = SET (black),
and 3 = XOR (change).

Function Reference Graphics Engine Support Library s 125

� int GEPutPixelWF(int Port, int Xcoord,
int Ycoord)

This non-blocking version of the GEPutPixel function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPutPixel(int Port, int Xcoord,
int Ycoord)

If successful, instructs the Graphics Engine to draw a pixel using the
current brush and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Xcoord is the pixel�s horizontal coordinate.

Ycoord is the pixel�s vertical coordinate.

� int GEPutLineWF(int Port, int Xcoord,
int Ycoord, int XXcoord, int YYcoord)

This non-blocking version of the GEPutLine function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPutLine(int Port, int Xcoord, int Ycoord,
int XXcoord, int YYcoord)

If successful, instructs the Graphics Engine to draw a line using the
current brush and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Xcoord is the horizontal coordinate of the line�s start point pixel.

Ycoord is the vertical coordinate of the line�s start point pixel.

XXcoord is the horizontal coordinate of the line�s end point pixel.

YYcoord is the vertical coordinate of the line�s end point pixel.

� int GEPutCircleWF(int Port, int FillOnOff,
int Xcoord, int Ycoord, int Radius)

This non-blocking version of the GEPutCircle function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

Dynamic C 32 v. 6.x126 s Graphics Engine Support Library

� int GEPutCircle(int Port, int FillOnOff,
int Xcoord, int Ycoord, int Radius)

If successful, instructs the Graphics Engine to draw a circle using the
current brush and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FillOnOff is a flag which: if 1, draws the circle filled; if 0, draws the
circle outline.

Xcoord is the horizontal coordinate of the circle�s center point pixel.

Ycoord is the vertical coordinate of the circle�s center point pixel.

Radius is the circle�s radius in pixels.

� int GEPutRectangleWF(int Port, int FillOnOff,
int Xcoord, int Ycoord, int XXcoord,
int YYcoord)

This non-blocking version of the GEPutRectangle function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEPutRectangle(int Port, int FillOnOff,
int Xcoord, int Ycoord, int XXcoord,
int YYcoord)

If successful, instructs the Graphics Engine to draw a rectangle using
the current brush and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FillOnOff is a flag which: if 1, draws the rectangle filled; if 0, draws
the rectangle outline.

Xcoord is the horizontal coordinate of the rectangle�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the rectangle�s upper left corner
point pixel.

XXcoord is the horizontal coordinate of the rectangle�s lower right
corner point pixel.

YYcoord is the vertical coordinate of the rectangle�s lower right corner
point pixel.

Function Reference Graphics Engine Support Library s 127

� int GEPutPolygonWF(int Port, int FillOnOff,
int NumSides, int X1, int Y1, int X2,
int Y2, int X3, int Y3, ...)

This non-blocking version of the GEPutPolygon function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPutPolygon(int Port, int FillOnOff,
int NumSides, int X1, int Y1, int X2,
int Y2, int X3, int Y3, ...)

If successful, instructs the Graphics Engine to draw a polygon using the
current brush and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter. Note that the count n of
(Xi,Yi) coordinate pairs must equal NumSides, and the last side is
automatically drawn from (Xn,Yn) back to (X1,Y1).

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FillOnOff is a flag which: if 1, draws the polygon filled; if 0, draws
the polygon outline.

NumSides is the number of sides in the polygon; a minimum of 3, and
equal to the number of supplied (Xi,Yi) coordinate pair parameters.

X1 is the horizontal coordinate of the 1st vertex. Note that all subse-
quent parameters X2, ..., Xn are the horizontal coordinates of
additional vertices.

Y1 is the vertical coordinate of the 1st vertex. Note that all subsequent
parameters Y2, ..., Yn are the vertical coordinates of additional
vertices.

� int GEBlankRegionWF(int Port, int FillOnOff,
int Xcoord, int Ycoord, int XXcoord,
int YYcoord)

This non-blocking version of the GEBlankRegion function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEBlankRegion(int Port, int FillOnOff,
int Xcoord, int Ycoord, int XXcoord,
int YYcoord)

If successful, instructs the Graphics Engine to blank (clear or set) a
region on the display screen and returns 1; otherwise returns a negative
error code from the list at the beginning of this chapter.

Dynamic C 32 v. 6.x128 s Graphics Engine Support Library

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FillOnOff is a flag which: if 1, draws the region set (filled); if 0,
draws the region clear (empty).

Xcoord is the horizontal coordinate of the region�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the region�s upper left corner point
pixel.

XXcoord is the horizontal coordinate of the region�s lower right corner
point pixel.

YYcoord is the vertical coordinate of the region�s lower right corner
point pixel.

� int GEInvertRegionWF(int Port, int Xcoord,
int Ycoord, int XXcoord, int YYcoord)

This non-blocking version of the GEInvertRegion function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEInvertRegion(int Port, int Xcoord,
int Ycoord, int XXcoord, int YYcoord)

If successful, instructs the Graphics Engine to invert a region on the
display screen and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Xcoord is the horizontal coordinate of the region�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the region�s upper left corner point
pixel.

XXcoord is the horizontal coordinate of the region�s lower right corner
point pixel.

YYcoord is the vertical coordinate of the region�s lower right corner
point pixel.

� int GEStoreRegionWF(int Port, int RegionID, int
Xcoord, int Ycoord, int XXcoord, int YYcoord)

This non-blocking version of the GEStoreRegion function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

Function Reference Graphics Engine Support Library s 129

� int GEStoreRegion(int Port, int RegionID,
int Xcoord, int Ycoord, int XXcoord,
int YYcoord)

If successful, instructs the Graphics Engine to store a region on the
display screen and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

RegionID is the ID number associated with the stored region, a
number from 1 through 255, inclusive.

Xcoord is the horizontal coordinate of the region�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the region�s upper left corner point
pixel.

XXcoord is the horizontal coordinate of the region�s lower right corner
point pixel.

YYcoord is the vertical coordinate of the region�s lower right corner
point pixel.

� int GERestoreRegionWF(int Port, int RegionID,
int Xcoord, int Ycoord)

This non-blocking version of the GERestoreRegion function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GERestoreRegion(int Port, int RegionID,
int Xcoord, int Ycoord)

If successful, instructs the Graphics Engine to restore a stored region
on the display screen and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter. Note that the region
does not have to be restored to its original location; but if Xcoord and
Ycoord each equal -1 the region is restored to the stored coordinates.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

RegionID is the ID number associated with the stored region, a
number from 1 through 255, inclusive.

Xcoord is the horizontal coordinate of the region�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the region�s upper left corner point
pixel.

Dynamic C 32 v. 6.x130 s Graphics Engine Support Library

� int GEPutBitMapWF(int Port, int BitmapID,
int Xcoord, int Ycoord)

This non-blocking version of the GEPutBitMap function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPutBitMap(int Port, int BitmapID,
int Xcoord, int Ycoord)

If successful, instructs the Graphics Engine to display a stored bit map
on the screen and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

BitmapID is the ID number of a stored bit map.

Xcoord is the horizontal coordinate of the displayed bit map�s upper
left corner point pixel.

Ycoord is the vertical coordinate of the displayed bit map�s upper left
corner point pixel.

� int GEScrollRegionWF(int Port, int Direction,
int Distance, int Xcoord, int Ycoord,
int XXcoord, int YYcoord)

This non-blocking version of the GEScrollRegion function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEScrollRegion(int Port, int Direction,
int Distance, int Xcoord, int Ycoord,
int XXcoord, int YYcoord)

If successful, instructs the Graphics Engine to scroll a region on the
display screen and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Direction is the scroll movement code, one of: 1 (up), 2 (down), 3
(right), or 4 (left).

Distance is the number of pixels that the region is to scroll.

Xcoord is the horizontal coordinate of the region�s upper left corner
point pixel.

Ycoord is the vertical coordinate of the region�s upper left corner point
pixel.

Function Reference Graphics Engine Support Library s 131

XXcoord is the horizontal coordinate of the region�s lower right corner
point pixel.

YYcoord is the vertical coordinate of the region�s lower right corner
point pixel.

� int GESetFontWF(int Port, int FontID)

This non-blocking version of the GESetFont function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESetFont(int Port, int FontID)

If successful, instructs the Graphics Engine to set the font used for
subsequent PutText commands and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

FontID is the ID number associated with the stored font, and can�t be
0. Default font IDs are 1 (small - 6x8), 2 (medium - 12x16), and 3
(large - 17x35).

� int GEPutTextWF(int Port, char *string,
int Xcoord, int Ycoord)

This non-blocking version of the GEPutText function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPutText(int Port, char *string,
int Xcoord, int Ycoord)

If successful, instructs the Graphics Engine to display text using the
currently selected font and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

string is a pointer to the displayed zero-terminated character string.

Xcoord is the horizontal coordinate of the displayed text�s upper left
corner point pixel.

Ycoord is the vertical coordinate of the displayed text�s upper left
corner point pixel.

Dynamic C 32 v. 6.x132 s Graphics Engine Support Library

� int GESetTextDirWF(int Port, int Direction)

This non-blocking version of the GESetTextDir function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESetTextDir(int Port, int Direction)

If successful, instructs the Graphics Engine to set the text printing
direction used for subsequent PutText commands and returns 1;
otherwise returns a negative error code from the list at the beginning of
this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Direction is the text printing movement code, one of: 0 (left-to-
right), 1 (right-to-left), 2 (bottom-to-top), or 3 (top-to-bottom).

� int GEBackLightWF(int Port, int OnOff)

This non-blocking version of the GEBackLight function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEBackLight(int Port, int OnOff)

If successful, instructs the Graphics Engine to switch its display screen
backlight on or off and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

OnOff is a flag which: if 1, switches the backlight on; if 0, switches
the backlight off.

� int GESetContrastWF(int Port, int Contrast)

This non-blocking version of the GESetContrast function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GESetContrast(int Port, int Contrast)

If successful, instructs the Graphics Engine to set the contrast on its
display screen and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Contrast is a level value from 0 through 63, inclusive; 0 sets the
highest contrast.

Function Reference Graphics Engine Support Library s 133

� int GEBeepWF(int Port, int Duration)

This non-blocking version of the GEBeep function immediately returns
0 while the Graphics Engine�s response is pending, and so is suitable
for use in costatements� waitfor statements. See the following
function description for all other information.

� int GEBeep(int Port, int Duration)

If successful, instructs the Graphics Engine to switch on its buzzer for a
time and returns 1; otherwise returns a negative error code from the list
at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Duration is the count in milliseconds of buzzer-on time; 0 sets the
default time of 100 milliseconds.

� int GESetCellActiveWF(int Port, char cellID,
char flags)

This non-blocking version of the GESetCellActive function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GESetCellActive(int Port, char cellID,
char flags)

If successful, instructs the Graphics Engine to set the active enable/
disable levels for a touch-screen cell and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

CellID is the ID number of the cell.

flags is the bit-coded cell activity enable/disable value where:
if all bits are reset (0), cell is inactive;
if bit 0 set (1), cell-push sends unsolicited response to host;
if bit 1 set, cell-push produces a beep.

� int GEDefineButtonWF(int Port, int ButtonID,
char BtnFlags, char BtnTL, char BtnBR,
char BmID, char *string)

This non-blocking version of the GEDefineButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

Dynamic C 32 v. 6.x134 s Graphics Engine Support Library

� int GEDefineButton(int Port, int ButtonID,
char BtnFlags, char BtnTL, char BtnBR,
char BmID, char *string)

If successful, instructs the Graphics Engine to store a user-defined
button and returns 1; otherwise returns a negative error code from the
list at the beginning of this chapter. Note that the button is defined but
not displayed by this function.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the button being defined.

BtnFlags is the bit-coded button properties value where:
if bit 0 set (1), button-push sends unsolicited response to host;
if bit 1 set, button-push produces a beep;
if bit 2 set, button is drawn with a frame;
if bit 3 set, button frame has rounded corners (requires bit 2 set);
if bit 4 set, button-press draws inverted button;
if bit 5 set, button is normally drawn inverted;
if bit 6 set, button text follows in string (requires bit 7 reset);
if bit 7 set, button bit map set to BmID (requires bit 6 reset).

BtnTL is the ID number of the button�s top left touch-screen cell.

BtnBR is the ID number of the button�s bottom right touch-screen cell.

BmID is the ID number of a stored bit map (0 if BtnFlags bit 6 set).

string is a pointer to the button�s zero-terminated text label (NULL if
BtnFlags bit 7 set).

� int GEDeleteButtonWF(int Port, int ButtonID)

This non-blocking version of the GEDeleteButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDeleteButton(int Port, int ButtonID)

If successful, instructs the Graphics Engine to delete a user-defined
stored button and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being deleted.

� int GEDisplayButtonWF(int Port, int ButtonID)

This non-blocking version of the GEDisplayButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

Function Reference Graphics Engine Support Library s 135

� int GEDisplayButton(int Port, int ButtonID)

If successful, instructs the Graphics Engine to display and to enable a
user-defined button and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter. Note that the
button�s screen region is automatically saved before the button is
displayed.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being displayed.

� int GERemoveButtonWF(int Port, int ButtonID)

This non-blocking version of the GERemoveButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GERemoveButton(int Port, int ButtonID)

If successful, instructs the Graphics Engine to disable and to remove
from display a user-defined button and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter. Note
that the button�s screen region is automatically restored after the button
is removed from display.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being removed from
display (but not deleted).

� int GEDisableButtonWF(int Port, int ButtonID)

This non-blocking version of the GEDisableButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDisableButton(int Port, int ButtonID)

If successful, instructs the Graphics Engine to disable a user-defined
button and returns 1; otherwise returns a negative error code from the
list at the beginning of this chapter. Note that the button�s screen
display is unchanged.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being disabled.

Dynamic C 32 v. 6.x136 s Graphics Engine Support Library

� int GEEnableButtonWF(int Port, int ButtonID)

This non-blocking version of the GEEnableButton function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEEnableButton(int Port, int ButtonID)

If successful, instructs the Graphics Engine to enable a user-defined
button and returns 1; otherwise returns a negative error code from the
list at the beginning of this chapter. Note that the button�s screen
display is unchanged.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being enabled.

� int GELinkCellToMacWF(int Port, int LinkOnOff,
int CellID, int MacroID)

This non-blocking version of the GELinkCellToMac function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GELinkCellToMac(int Port, int LinkOnOff,
int CellID, int MacroID)

If successful, instructs the Graphics Engine to (un)link a cell-push to a
user-defined macro and returns 1; otherwise returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

LinkOnOff is a flag which: if 1, links the cell-push to the macro; if 0,
unlinks the cell-push from the macro.

CellID is the ID number of the cell to be (un)linked.

MacroID is the ID number of the macro to be (un)linked.

� int GELinkBtnToMacWF(int Port, int LinkOnOff,
int ButtonID, int MacroID)

This non-blocking version of the GELinkBtnToMac function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

Function Reference Graphics Engine Support Library s 137

� int GELinkBtnToMac(int Port, int LinkOnOff,
int ButtonID, int MacroID)

If successful, instructs the Graphics Engine to (un)link a user-defined
button-push to a user-defined macro and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

LinkOnOff is a flag which: if 1, links the button-push to the macro; if
0, unlinks the button-push from the macro.

ButtonID is the ID number of the button to be (un)linked.

MacroID is the ID number of the macro to be (un)linked.

� int GEStopMacroWF(int Port)

This non-blocking version of the GEStopMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEStopMacro(int Port)

If successful, instructs the Graphics Engine to stop playing a macro and
returns 1; otherwise returns a negative error code from the list at the
beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GESetStringWF(int Port, char *string)

This non-blocking version of the GESetString function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESetString(int Port, char *string)

If successful, instructs the Graphics Engine to set a default string for
the Virtual Keyboard and returns 1; otherwise, returns a negative error
code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

string is a pointer to the zero-terminated (ASCIIZ) string to be set.

� int GESetLongWF(int Port, long lValue)

This non-blocking version of the GESetLong function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

Dynamic C 32 v. 6.x138 s Graphics Engine Support Library

� int GESetLong(int Port, long lValue)

If successful, instructs the Graphics Engine to set a default long integer
value for the Virtual Keyboard and returns 1; otherwise, returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

lValue is the long integer value to be set.

� int GESetFloatWF(int Port, float fValue)

This non-blocking version of the GESetFloat function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESetFloat(int Port, float fValue)

If successful, instructs the Graphics Engine to set a default float value
for the Virtual Keyboard and returns 1; otherwise, returns a negative
error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

fValue is the float value to be set.

� int GESetCharWF(int Port, char cValue)

This non-blocking version of the GESetChar function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GESetChar(int Port, char cValue)

If successful, instructs the Graphics Engine to append a character to the
string used by the Virtual Keyboard and returns 1; otherwise, returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

cValue is the character to be appended.

� int GESetTodWF(int Port, struct tm *Time)

This non-blocking version of the GESetTod function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

Function Reference Graphics Engine Support Library s 139

� int GESetTod(int Port, struct tm *Time)

If successful, instructs the Graphics Engine to set the date and time of
day to both its system and real time clock and returns 1; otherwise,
returns a negative error code from the list at the beginning of this
chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Time is a pointer to a time structure containing the Graphics Engine�s
new time to be set.

� int GEKeyBoardMacroWF(int Port, char *Prompt,
int OnOff, int Flags, void *max,
void *min)

This non-blocking version of the GEKeyBoardMacro function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEKeyBoardMacro(int Port, char *Prompt,
int OnOff, int Flags, void *max,
void *min)

If successful, instructs the Graphics Engine to (de)activate the built-in
Virtual Keyboard macro and returns 1; otherwise, returns a negative
error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

Prompt is a pointer to the zero-terminated (ASCIIZ) prompt line
string; may be NULL if OnOff is 0.

OnOff is a flag which: if 1, activates the virtual keyboard macro; if 0,
deactivates the virtual keyboard macro.

Flags is the bit-coded virtual keyboard properties value where:
if bit 0 set (1), ENTER key sends unsolicited response to host;
if bit 1 set, ENTER key deactivates the virtual keyboard;
if bit 2 set, password mode (echo stars);
if bits 3-4 are 0-0, string data type (any entry is OK);
if bits 3-4 are 0-1, long integer data type (may check limits);
if bits 3-4 are 1-0, float data type (may check limits);
bit 5 is reserved for future use;
if bit 6 set, long integer or float data is subject to low limit check;
if bit 7 set, long integer or float data is subject to high limit check.

max is a pointer to the maximum (long integer or float) value accepted
by the virtual keyboard; NULL if no upper limit is required.

min is a pointer to the minimum (long integer or float) value accepted
by the virtual keyboard; NULL if no lower limit is required.

Dynamic C 32 v. 6.x140 s Graphics Engine Support Library

� int GEPlayMacroWF(int Port, int MacroID)

This non-blocking version of the GEPlayMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEPlayMacro(int Port, int MacroID)

If successful, instructs the Graphics Engine to start playing a user-
defined macro and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

MacroID is the ID number of the macro to be played (run).

� int GEShiftMacroWF(int Port, int MacroID,
int Xofst, int Yofst)

This non-blocking version of the GEShiftMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEShiftMacro(int Port, int MacroID,
int Xofst, int Yofst)

If successful, instructs the Graphics Engine to start playing a user-
defined macro with shifted (offset) X,Y coordinates and returns 1;
otherwise returns a negative error code from the list at the beginning of
this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

MacroID is the ID number of the macro to be played (run).

Xofst is the horizontal offset applied to the shifted macro�s draw
commands.

Yofst is the vertical offset applied to the shifted macro�s draw
commands.

� int GEDeleteMacroWF(int Port, int MacroID)

This non-blocking version of the GEDeleteMacro function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDeleteMacro(int Port, int MacroID)

If successful, instructs the Graphics Engine to delete a stored user-
defined macro and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Function Reference Graphics Engine Support Library s 141

MacroID is the ID number of the macro to be deleted.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GEDelayPlayWF(int Port, long mDelay)

This non-blocking version of the GEDelayPlay function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GEDelayPlay(int Port, long mDelay)

If successful, instructs the Graphics Engine to delay for a time and
returns 1; otherwise returns a negative error code from the list at the
beginning of this chapter. Note that when this command is in a macro
it will always produce a delay in the execution sequence; however,
when this command is issued directly the following (subsequent)
commands are processed without delay:

BeginMacro, DefineButton, DeleteButton,
DeleteMacro, DisableButton, DisableCells,
EnableButton, EnableCells, LinkBtnToMac,
LinkCellToMac, LoopMacro, SetCellActive,
SetFont, SetTod, SendChar, SendFloat,
SendLastPush, SendLong, SendStatus, SendString,
SendTod, StopMacro, SuperReset.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

mDelay is the milliseconds delay time.

� int GELoopMacroWF(int Port)

This non-blocking version of the GELoopMacro function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GELoopMacro(int Port)

If successful, instructs the Graphics Engine to replay from the begin-
ning a stored user-defined macro and returns 1; otherwise returns a
negative error code from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

� int GEDisplayButtonQWF(int Port, int btnID,
char fxn)

This non-blocking version of the GEDisplayButtonQ function
immediately returns 0 while the Graphics Engine�s response is pending,
and so is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

Dynamic C 32 v. 6.x142 s Graphics Engine Support Library

� int GEDisplayButtonQ(int Port, int btnID,
char fxn)

If successful, instructs the Graphics Engine to display (either normally
or inverted) and to enable a user-defined button and returns 1; other-
wise returns a negative error code from the list at the beginning of this
chapter. Note that the button�s screen region is automatically saved
before the button is displayed.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

btnID is the ID number of the stored button being displayed.

fxn is a flag which: if 1, sets normal button; if 2, sets inverted button.

� int GELockBufferWF(int Port, char LockUnlock)

This non-blocking version of the GELockBuffer function immediately
returns 0 while the Graphics Engine�s response is pending, and so is
suitable for use in costatements� waitfor statements. See the follow-
ing function description for all other information.

� int GELockBuffer(int Port, char LockUnlock)

If successful, instructs the Graphics Engine to (un)lock its screen
display buffer and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

LockUnlock is a flag which: if 1, unlocks the buffer; if 0, locks the
buffer.

� int GEGetPcktWF(int Port, char *cPacket)

This non-blocking function operates identically to the GEGetPckt
function. See the following function description for all information.

� int GEGetPckt(int Port, char *cPacket)

If successful, copies a Graphics Engine�s unsolicited response packet
(less the CRC) to the specified buffer and returns 1; otherwise immedi-
ately returns 0 if a complete packet is not available, or returns a
negative error code from the list at the beginning of this chapter. Note
that both this function and the GEGetPcktWF function return 0 when a
Graphics Engine�s response is pending, and so are equally suitable for
use in costatements� waitfor statements.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

cPacket is a pointer to where the Graphics Engine�s unsolicited
response packet (less the CRC) will be stored.

Function Reference Graphics Engine Support Library s 143

� int GEDisableBtnAreaWF(int Port, char CellTL,
char CellBR)

This non-blocking version of the GEDisableBtnArea function
immediately returns 0 while the Graphics Engine�s response is pending,
and so is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEDisableBtnArea(int Port, char CellTL,
char CellBR)

If successful, instructs the Graphics Engine to disable all currently
enabled user-defined buttons that are at least partially in the desgnated
touch-screen area and returns 1; otherwise returns a negative error code
from the list at the beginning of this chapter. Note that the buttons�
screen display is unchanged.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

ButtonID is the ID number of the stored button being disabled.

CellTL is the ID number of the area�s top left touch-screen cell.

CellBR is the ID number of the area�s bottom right touch-screen cell.

� int GEEnableBtnAreaWF(int Port, char CellTL,
char CellBR)

This non-blocking version of the GEEnableBtnArea function immedi-
ately returns 0 while the Graphics Engine�s response is pending, and so
is suitable for use in costatements� waitfor statements. See the
following function description for all other information.

� int GEEnableBtnArea(int Port, char CellTL,
char CellBR)

If successful, instructs the Graphics Engine to re-enable all
DisableBtnArea command-disabled user-defined buttons that are at
least partially in the desgnated touch-screen area and returns 1;
otherwise returns a negative error code from the list at the beginning of
this chapter. Note that the buttons� screen display is unchanged.

Port is one of GE_PORTZ0, GE_PORTZ1, GE_PORTA, or GE_PORTB.

CellTL is the ID number of the area�s top left touch-screen cell.

CellBR is the ID number of the area�s bottom right touch-screen cell.

Dynamic C 32 v. 6.x144 s Graphics Engine Support Library

Function Reference Other Libraries s 145

CHAPTER 8: OTHER LIBRARIES

The libraries described in this chapter are specific to one or more types of
controllers.

Dynamic C 32 v. 6.x146 s Other Libraries

5KEY.LIB
These LCD and keypad functions support the PK2100 and PK2200 series
controllers. This is the old five-key system. It uses the real-time kernel
(RTK). The standard LCD is 2 × 20. To run the five-key system with a
2 × 16 LCD, write #define LCD16x2 at the start of the program.

� void _5keysettime(char *time)

Sets real-time clock time, based on string *time. The string format is
�hh:mm:ss�.

� void _5keysetdate(char *date)

Sets real-time clock date, based on string pointed to by *date. The
string format is �mm-dd-yy�.

� void _5keygettime(char *time)

Gets real-time clock time and stores it in *time. The string format is
�hh:mm:ss�.

� void _5keygetdate(char *date)

Gets real-time clock date and stores it in *date. The string format is
�mm-dd-yy�.

� void lcd_server(char mode, long position,
char *lcd_msg)

Clears number of lines, specified by mode, and displays message
*lcd_msg at position. See CPLC.LIB for description of position
fields.

� int _5key_float(char *label, float *data,
float max, float min, char *help[],
char size, char modify, char delay)

This is the five-key system handler for a float parameter. It modifies or
monitors the following parameters.

label the address of the item label (string)

value pointer to a float variable

max, min the data limits

help[] an array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

delay number of 25 ms RTK ticks after which the software will
release the current five-key task, freeing other lower
priority tasks.

Function Reference Other Libraries s 147

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_integer(char *label, int *value,
int max, int min, char *help[],
char size, char modify, char delay)

This is the five-key system handler for an integer parameter. It
modifies or monitors the following parameters.

label the item label (string)

value pointer to an integer variable

min, max the data limits

help[] an array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

delay number of 25 ms RTK ticks after which the software will
release the current five-key task, freeing other lower
priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_boolean(char *label, char *value,
char *help[], char size, char modify,
char delay)

This is the five-key system handler for a Boolean parameter. It modi-
fies or monitors the following parameters.

label the item label (string)

value pointer to a �Boolean� variable

help[] an array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Dynamic C 32 v. 6.x148 s Other Libraries

� int _5key_time(char *label, char *string,
char *help[], char size,
char set_clock, char modify,
char delay)

This is the five-key system handler for a time parameter. It modifies or
monitors the following parameters.

label the item label (string)

string the time string

help[] an array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

set_clock if non-zero, set the real-time clock

modify if 1, value is updated; if 0, value is only monitored

delay number of 25 ms RTK ticks after which the software will
release the current five-key task, freeing other lower
priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_date(char *label, char *string,
char *help[], char size,
char set_clock, char modify,
char delay)

This is the five-key system handler for a date parameter. It modifies or
monitors the following parameters.

label the item label (string)

string the date string

help[] an array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

set_clock if non-zero, set the real-time clock

modify if 1, value is updated; if 0, value is only monitored

delay number of 25 ms RTK ticks after which the software will
release the current five-key task, freeing other lower
priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Function Reference Other Libraries s 149

� void _5key_setmenu(char *menu, char *item,
char mode, void *ptr, float max,
float min, char *help[], char size,
char modify, char delay, char display)

Adds a five-key item to the five-key linked list. Items with the same
menu label are grouped together. The following parameters are used.

menu the menu label (string)

item the item label (string)

mode type of data being created according to the list below

ptr pointer to the data

max, min the data limits

help[] array of help strings

size size of the help array (two times the actual number of help
lines); use sizeof(help)

modify determines the handling of the data. To modify or to
monitor.

delay number of RTK ticks (25 ms) after which the software will
release the current five-key task, allowing other lower
priority tasks to execute

display 1 if item is to be added to the list of periodically
displayed items; 0 if item is not to be added to the list.

Data Mode Type Macro

0 float _5key_Fdata

1 int _5key_Idata

2 char (Boolean) _5key_Bdata

3 time strings _5key_Tdata

4 date strings _5key_Ddata

Dynamic C 32 v. 6.x150 s Other Libraries

� int _5key_init_item(_5KEYITEM *thisitem,
char *d_menu, char *d_item,
char data_mode, void *data_ptr,
float max_data, float min_data,
char *my_help[], char help_line,
char data_modify, char delay)

Is called by _5key_setmenu to create a five-key item. The following
parameters are used.

thisitem points to a five-key item structure for the five-key
link list

d_menu points to a menu label

d_item points to an item label

data_mode type of data being created according to the list below

max_data is the upper limit and min_data is the lower limit for
the data

my_help[] is a list of help strings

help_line is twice the actual number of help strings

data_modify is 1 if data are to be modified through the five-key
system; else 0, if data are just monitored

delay is the five-key task suspend period

idisp is 1 if data are to be displayed periodically when there are
no keypad and LCD activities; else 0.

� int _5key_server(_5KEYITEM *t_item)

Services a five-key item for display to the LCD and actions. The
function returns any of the five-key menu keys pressed.

� void _5key_menu(void)

Services the linked list created with _5key_setmenu(). This function
must be called inside an RTK task.

Data Mode Type Macro

0 float _5key_Fdata

1 int _5key_Idata

2 char (Boolean) _5key_Bdata

3 time strings _5key_Tdata

4 date strings _5key_Ddata

Function Reference Other Libraries s 151

� void _5key_setalarm (int(*func1)(),
int(*func2)(), int(*func3)(), int(*func4)())

Sets up the service functions for the software alarms.

func1(), the service function for _ALARM1
func2(), the service function for _ALARM2
func3(), the service function for _ALARM3, and
func4(), the service function for _ALARM4.

All the functions default to NO_FUNCTION. Service functions can be
changed or turned off at run-time as long as there is no conflict with the
execution of a service function.

� void _5key_setfunc (int(*func1)(),
int(*func2)(), int(*func3)(), int(*func4)())

Sets up the service functions for the function keys.

func1(), the service function for F1
func2(), the service function for F2
func3(), the service function for F3, and
func4(), the service function for F4.

All the functions default to NO_FUNCTION. Service functions can be
changed or turned off at run-time as long as there is no conflict with the
execution of a service function.

� void _5key_setmsg(byte message_no,
char *the_message)

Sets one of ten message strings for periodic display.

message_no the message number, 0�9
the_message the message string.

All the messages default to NULL.

5KEYEXTD.LIB
These keypad functions support the PK2100 and PK2200 series control-
lers. They use the real-time kernel (RTK).

� int _5key_12out(void)

This is the five-key server for the ten �virtual� digital outputs and two
�virtual� relay outputs. The digital output and the relay output states
can be modified through the five-key system. If an output state
changes, this function will refresh the display to reflect the change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Dynamic C 32 v. 6.x152 s Other Libraries

� int _5key_dacout(void)

This is the five-key server for the �virtual� DAC channel. If the output
value changes, this function will refresh the screen to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_uinput(void)

This is the five-key server for the six �virtual� universal inputs. If an
input state changes, this function will refresh the display to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_diginput(void)

This is the five-key server for the seven �virtual� digital inputs. If an
input state changes, this function will refresh the screen to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_bank1dig(void)

This is the five-key server for the �virtual� digital inputs 1�8. If an
input state changes, this function will refresh the screen to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_bank2dig(void)

This is the five-key server for the �virtual� digital inputs 9�16. If an
input state changes, this function will refresh the screen to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_14out(void)

This is the five-key server for the 14 �virtual� digital outputs. The
digital output states can be modified through the five-key system. If an
output state changes, this function will refresh the display to reflect it.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Function Reference Other Libraries s 153

CPLC.LIB
These functions support the PK2100 and PK2200 series controllers.

� void uplc_init(void)

Initializes drivers and variables for the following.

interrupt routine for background timer 1
LCD, when selected
keypad, if selected (keypad is scanned at 25 ms)
virtual drivers, virtual timers and virtual watchdogs, when selected.

The timer 1 interrupt routine also services the watchdog timer.

� void lc_kxinit(void)

Initializes keypad driver and associated variables as well as virtual
watchdog variables.

� void up_beepvol(int vol)

Sets beeper volume: vol = 1 for low volume; 2 for high volume.

� void lc_loadtab(int *tab, int tab_size)

Loads tab tables to match LCD screen.

� void lc_settab(char flag)

Sets the tab variable lc_usetab.

� int lc_kxget(char mode)

Fetches key value from FIFO keypad buffer. If mode = 0, value is
removed from buffer; else value remains in buffer.

The function returns the key value, or �1 if no key was pressed.

� void lc_setbeep(int delay)

Sets beeper duration for delay counts of 1280 Hz cycles.

� void up_beep(unsigned int k)

Sets beeper on for k milliseconds.

� unsigned int up_lastkey(void)

Returns time since last key was pressed, in units of 1/40 second. The
function returns elapsed time.

� void lc_init_keypad(void)

Initializes timer1, keypad driver and variables, and the real-time
kernel.

� void GLOBAL_INIT(void)

Refer to VDRIVER.LIB for a description of this function.

Dynamic C 32 v. 6.x154 s Other Libraries

� int up_synctimer(void)

Synchronizes the virtual SEC_TIMER with the real-time clock (RTC).
The function returns 0 if RTC is read properly, and �1 otherwise.

DRIVERS.LIB
These are miscellaneous hardware drivers.

� int plcport(int bit)

Checks the specified bit of the PLCBus port. The function returns 1 if
the specified bit is set, or 0 if not.

� void set16adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 16-bit
physical address (for 4-bit bus). The high-order nibble contains the
expansion register value, while the remaining nibbles form a 12-bit
address (the first and third nibbles must be swapped).

� void set12adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 12-bit
physical address (for 4-bit bus) with the first and third nibbles swapped
(most significant nibble are in the low four bits).

� void set4adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address contains
the last 4 bits of the physical address (for 4-bit bus) in bits 8�11. A
12-bit address may be passed to this function, but only the last 4 bits
will be set. This function should only be called if the first 8 bits of the
address are the same as the address in the previous call to set12adr.

� char read4data(int address)

Sets the last 4 bits of the current PLCBus address using address (bits
8�11), then reads 4 bits of data off of the bus with a BUSRD0 cycle.
Returns PLCBus data in the lower 4 bits (upper bits are undefined).

� char read12data(int address)

Sets the current PLCBus address using the 12-bit address. Then
reads 4 bits of data off of the bus with a BUSRD0 cycle. The function
returns PLCBus data in the lower 4 bits (upper bits are undefined).

� void write4data(int address, char data)

Sets the last 4 bits of the current PLCBus address using address (bits
8�11). Then writes the low 4 bits of data to the bus.

Function Reference Other Libraries s 155

� void write12data(int address, char data)

Sets the current PLCBus address using the 12-bit address. Then
writes the low 4 bits of data to the bus.

� void hv_wr(char v)

Writes 8 bits to the high-voltage driver. Each bit affects one high-
voltage output. A 1 enables the corresponding output; 0 disables the
output.

� void hv_enb(void)

Enables high-voltage driver.

� void hv_dis(void)

Disables high-voltage driver.

� void lcd_init(char mode)

Initializes the LCD; mode should normally be set to 0x18.

� void lputc(char cc)

Sends a character to the LCD and updates the cursor (without wrap-
around); cc is the character to send: if the high bit is set, it will be
treated as a control character. Possible control characters are as
follows.

\n Newline (position cursor to line 1, column 0)
\xFF Clear screen
\xF0 Clear line 0
\xF1 Clear line 1
\xF2 Cursor OFF (cursor invisible, blink off)
\xF3 Cursor ON (solid cursor block)
\xF4 Cursor BLINK (blinks continuously)
\xF5 Shift display left
\xF6 Shift display right
\x80�\xA7 Position cursor at line 0
\xC0�\xE7 Position cursor at line 1

� void lcd_clr_line(char code)

Clears a line on the LCD; code should be 0x80 to clear line 0 and
0xC0 to clear line 1.

� void lcd_wait(void)

Waits until the LCD is ready to accept data.

� int lprintf(char *fmt, ...)

Operates the same as printf, but outputs to LCD.

Dynamic C 32 v. 6.x156 s Other Libraries

� char *lputs(char *p)

Sends the null-terminated string *p to the LCD and updates the cursor
(without wraparound). All characters (except null) are sent directly to
the LCD; control characters are not recognized. The function returns a
pointer to the string.

� void* intoff(void *ptr)

Saves the current interrupt state in *ptr and then disables interrupts.
The function returns the pointer ptr.

� void* inton(void *ptr)

Enables interrupts if they were previously on, according to *ptr. ptr
must have been set previously by a call to intoff. The function
returns the pointer ptr.

� void doint(void)

Enables interrupts for a short time and then disables them (if they were
previously off). This allows interrupts to be processed in code where
they are otherwise disabled.

� int tm_rd(struct tm *t)

Reads the current system time into the structure t. This routine works
with either the Toshiba or Epsom clocks. The function returns 0 if
successful, and �1 if the clock is failing or is not installed.

The following structure is used to hold the time and date:

struct tm {
 char tm_sec; // 0-59
 char tm_min; // 0-59
 char tm_hour; // 0-23
 char tm_mday; // 1-31
 char tm_mon; // 1-12
 char tm_year; // 00-150 (1900-2050)
 char tm_wday; // 0-6 where 0 means Sunday
};

� int tm_wr(struct tm *t)

Sets the system time according to the structure t (see the description in
tm_rd above). This routine works with either the Toshiba or Epson
clocks. The function returns 0 if successful, and �1 if the clock is
failing or is not installed.

� void mktm(struct tm *timeptr, long time)

Fills the structure pointed to by timeptr according to time, specified
in seconds since January 1, 1980.

Function Reference Other Libraries s 157

� long mktime(struct tm *timeptr)

Converts the contents of timeptr into a long integer. The function
returns time in seconds since January 1, 1980.

� long clock(void)

Reads the system clock and converts time to a long integer. The
function returns system time in seconds since January 1, 1980.

� long phy_adr(char *adr)

Converts a logical (16-bit) address to a physical (20-bit) address. adr
points to the address. The function returns 20-bit address as a long
integer.

� void dmacopy(long dest, long src,
unsigned int count)

Uses DMA to copy count bytes from one physical address (src) to
another (dest).

� void outportn(int port, char *buf, char count)

Writes count bytes to the specified output port. buf points to the
sequence of bytes to write.

� void init_timer0(unsigned int count)

Initializes timer 0. count is the value placed in the reload register.
Some common count values and the frequencies they generate are
provided below for a 9.216 MHz clock.

9126 50 Hz 7680 60 Hz 7200 64 Hz
4608 100 Hz 2304 200 Hz 1152 400 Hz

900 512 Hz 600 768 Hz 500 928 Hz
450 1024 Hz

� void timer0_isr(void)

timer0 interrupt service routine, runs the real-time kernel.

� void init_timer1(unsigned int count)

Initializes timer1. count is the value placed in the reload register.
Some common count values and the frequencies they generate are
provided below for a 9.216 MHz clock.

9126 50 Hz 7680 60 Hz 7200 64 Hz
4608 100 Hz 2304 200 Hz 1152 400 Hz

900 512 Hz 600 768 Hz 500 928 Hz
450 1024 Hz

Dynamic C 32 v. 6.x158 s Other Libraries

� void tdelay(int msec)

Waits for msec milliseconds, assuming that timer1 is running at
750 Hz. The actual delay is related to the frequency of timer1 by the
formula delay = 3 × (msec/4)/freq1.

� void int_timer1(void)

timer1 interrupt service routine. Drives the beeper and keypad. Also
runs the real-time kernel if RUNKERNEL is defined.

� void save_shadow(void)

Saves PLCBus shadow registers on the stack.

� void restore_shadow(void)

Restores PLCBus shadow registers from the stack and resets the
current bus address.

� void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
8 bits of data to the bus.

� void write8data(long address, char data)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then writes 8 bits of data to the bus.

� int read24data0(long address)

Sets the current PLCBus address using the 24-bit address, then reads
8 bits of data off of the bus with a BUSRD0 cycle. The function returns
PLCBus data in the lower 8 bits (upper bits are 0).

� int read8data0(long address)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then reads 8 bits of data from the bus with a BUSRD0 cycle.
The function returns PLCBus data in the lower 8 bits, with the upper
bits 0.

� int read24data1(long address)

Sets the current PLCBus address using the 24-bit address, then reads
8 bits of data from the bus with a BUSRD1 cycle. The function returns
PLCBus data in the lower 8 bits (upper bits are 0).

� int read8data1(long address)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then reads 8 bits of data from the bus with a BUSRD1 cycle.
The function returns PLCBus data in the lower 8 bits (upper bits are 0).

Function Reference Other Libraries s 159

� void set24adr(long address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 24-bit
physical address (for the 8-bit bus), with the first and third bytes
swapped (low byte most significant).

� void set8adr(long address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address contains
the last 8 bits of the physical address (for the 8-bit bus) in bits 16�23.
A 24-bit address may be passed to this function, but only the last 8 bits
will be set. This function should only be called if the first 16 bits of the
address are the same as the address in the previous call to set24adr.

� void plcbus_isr(void)

This function is used to service all PLCBus /AT line interrupts. The
/AT line is connected to INT1 of the Z180. Each interrupt service
routine (ISR) is responsible for assuring its device releases the /AT
signal once the ISR has been performed.

� void relocate_int1(void)

Reprograms the INT1 vector.

� int DelayTicks(CoData *pfb, unsigned int ticks)

Provides tick time mechanism for costatements. Ticks occur 1280
times per second. (The period is 781.25 µs.) The function returns 1 if
the specified tick delay has lapsed. Otherwise, it returns 0.

� int DelayMs(CoData *pfb, long delayms)

Provides millisecond time mechanism for costatements. The function
returns 1 if the specified millisecond delay has lapsed. Otherwise, it
returns 0.

� int DelaySec(FuncBlk *pfb, long delaysec)

Provides second time mechanism for costatements. Returns 1 if the
specified second delay has lapsed; otherwise, it returns 0.

� int eei_rd(int address)

Reads two consecutive byte areas of the EEPROM for integer data.
The low byte is from address and the high byte is from address+1.
The function returns the integer at address from EEPROM.

� int eei_wr(int address, unsigned int value)

Writes an integer value to the EEPROM at address. The lower byte
is at address and the high byte is at address+1. The function returns
0 if the write was successful.

Dynamic C 32 v. 6.x160 s Other Libraries

� void DMA0(unsigned int cnt)

Loads cnt to DMA0 counter to count high-speed pulses in hardware.
Maximum count is 64,000. _DMAFLAG0 is set to 0. If the DMA has
counted out, the interrupt service routine for DMA0 will generate an
interrupt in which _DMAFLAG0 is set to 1. Events are edge sensed.
C1A and C1B must both be low for /DREQ0 to generate an interrupt.

� void DMA1(unsigned int cnt)

Loads cnt to the DMA1 counter to count high-speed pulses in hard-
ware. Maximum count is 64,000. _DMAFLAG1 is set to 0. If the DMA
has counted out, the interrupt service routine for DMA1 will generate
an interrupt in which _DMAFLAG1 is set to 1. Events are edge sensed.
C2A and C2B must both be low for /DREQ1 to generate an interrupt.
C2B uses one of the RS-485 receivers for differential input. For
example, tie C2B� to 5 volts; when the signal at C2B+ is lower than
5 V, a negative edge is generated for the DMA counter.

� unsigned int DMASnapShot(char channel,
unsigned int *count)

Takes a �snap shot� of a DMA channel (0 or 1) for the number of
pulses counted. The function returns 0 if the pulse train is too fast to
have a snapshot taken; or 1 if a snapshot is obtained and valid data is in
*count.

� void powerdown(void)

Turns the power off. Power can only be turned back on by external
means. This only works for boards with a switching power supply
(except for the PK2200).

� void powerup(void)

Reverses the effect of powerdown so power stays on after external
power is disabled. See powerdown.

� void nmiint(void)

Default power-fail interrupt handler. The function does nothing and
never returns.

� void setperiodic(int period)

Sets a timer to periodically power up the BL1100. After this call, the
board may be put to sleep and will automatically awaken at the
specified interval. Execution will begin in the main function when
power is restored. period may be 4 (to wake once per second), 8 (to
wake once per minute), or 12 (to wake once per hour). Works only for
boards that have a switching power supply, except the PK2200.

Function Reference Other Libraries s 161

� void sleep(void)

Puts the controller to sleep. Works for all boards that use a switching
power supply, except the PK2200.

The function does not return.

� void init_timer(void)

Initializes the system clock.

� void off_485(void)

Turns off the RS-485 driver for Z180 port 1. Different controllers have
different methods of driving RS-485.

� void on_485(void)

Turns on the RS-485 driver for Z180 port 1. Different controllers have
different methods of driving RS-485.

DMA.LIB
These functions support DMA use on all Z-World controllers.

� void DMA0Count(unsigned int count)

Loads count to DMA0 counter to count high-speed pulses in hard-
ware. The maximum count is 64,000. The function sets the flag
_DMAFLAG0 to 0. DMA0 causes an interrupt when count negative
edges have been detected. The interrupt service routine for DMA0 will
set _DMAFLAG0 to 1. A user program can monitor _DMAFLAG0 to
determine whether count has finished.

� void DMA1Count(unsigned int count)

Loads count to DMA1 counter to count high-speed pulses in hard-
ware. The maximum count is 64,000. The function sets the flag
_DMAFLAG1 to 0. DMA1 will cause an interrupt when count negative
edges have been detected. The interrupt service routine for DMA1 will
set _DMAFLAG1 to 1. A user program can monitor _DMAFLAG1 to
determine whether the count has finished.

� unsigned int DMASnapShot(byte channel,
unsigned int *count)

Reads the number of pulses that a DMA channel (channel = 0 or 1)
has counted. A DMA counter is initialized with either DMA0Count or
DMA1Count. The function returns 0 if a DMA channel is counting too
fast to allow a stable reading of the count value. If the function reads
a stable count value, it returns 1 and sets the parameter *count. Note
that a DMA interrupt will still occur when the DMA channel finishes
counting, even if the count cannot be read.

Dynamic C 32 v. 6.x162 s Other Libraries

� void DMA0_Off(void)
void DMA1_Off(void)

Turns the named DMA channel off.

� unsigned int DMA0_SerialInit(byte channel,
byte mode, byte baud)

Initializes serial port channel (must be 0 or 1) of the Z180 for DMA0
to serial transfers.

The term mode is defined as follows.

bit0 = 0 for 1 stop bit 1 for 2 stop bits
bit1 = 0 for no parity 1 for parity
bit2 = 0 for 7 data bits 1 for 8 data bits
bit3 = 0 for even parity 1 for odd parity.

The term baud is the baud rate in multiples of 1200 bps (e.g., 8 for
9600 bps).

� unsigned int DMA0_Rx(byte port,
unsigned long address, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA0 to receive count bytes from a serial
port (port = 0 or 1) to absolute memory locations starting at address.
The logical memory address for ordinary arrays may be converted to a
physical address with phy_adr(array). Simply pass the array name
directly for xdata arrays.

DMA0 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA0 does not generate an interrupt if interrupts is 0.
The term increments must be 0 to increment the memory address,
and 1 to decrement the memory address.

The function returns 1 if successful, 0 if DMA0 is busy, �1 if the serial
port is busy, and �2 if channel is not 0 or 1.

� unsigned int DMA0_Tx(byte port,
unsigned long address, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA0 to transmit count bytes to a serial port
(port = 0 or 1) from absolute memory locations starting at address.
The logical memory address for ordinary arrays may be converted to a
physical address with phy_adr(array). Simply pass the array name
directly for xdata arrays.

Function Reference Other Libraries s 163

DMA0 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA0 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, 0 if DMA0 is busy, �1 if the serial
port is busy, and �2 if channel is not 0 or 1.

� unsigned int DMA0_MM(unsigned long dst,
unsigned long src, unsigned int count,
int mode, int interrupts)

Initiates a transfer using DMA0 to copy count bytes from absolute
memory locations starting at src to absolute memory locations starting
at dst. The logical memory address for ordinary arrays may be
converted to a physical address with phy_adr(array). Simply pass
the array name directly for xdata arrays.

DMA0 will generate an interrupt at the end of the transfer if
interrrupts is 1. The user program must provide the interrupt
service routine. DMA0 generates no interrupt if interrupts is 0.
The term mode must be 0 for cycle-stealing transfers, and 1 for burst
transfers.

The function returns 1 if successful, and 0 if DMA0 is busy.

� unsigned int DMA0_MIO(unsigned int ioaddr,
unsigned long memaddr, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA0 to write count bytes from absolute
memory locations starting at memaddr to the I/O port designated by
ioaddr. The external device must generate negative-going /DREQ0
pulses for each byte transferred.

The logical memory address for ordinary arrays may be converted to a
physical address with phy_adr(array). Simply pass the array name
directly for xdata arrays.

DMA0 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA0 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA0 is busy.

Dynamic C 32 v. 6.x164 s Other Libraries

� unsigned int DMA0_IOM(unsigned long memaddr,
unsigned int ioaddr, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA0 to read count bytes from the I/O port
designated by ioaddr to the absolute memory locations starting at
memaddr. The external device must generate negative-going /DREQ0
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Pass the array name directly for xdata arrays.

DMA0 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA0 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA0 is busy.

� unsigned int DMA1_MIO(unsigned int ioaddr,
unsigned long memaddr, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA1 to write count bytes from absolute
memory locations starting at memaddr to the I/O port designated by
ioaddr. The external device must generate negative-going /DREQ1
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Pass the array name directly for xdata arrays.

DMA1 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA1 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA1 is busy.

� unsigned int DMA1_IOM(unsigned long memaddr,
unsigned int ioaddr, unsigned int count,
int interrupts, int increments)

Initiates a transfer using DMA1 to read count bytes from the I/O port
designated by ioaddr to the absolute memory locations starting at
memaddr. The external device must generate negative-going /DREQ1
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Pass the array name directly for xdata arrays.

Function Reference Other Libraries s 165

DMA1 will generate an interrupt at the end of the transfer if inter-
rupts is 1. The user program must provide the interrupt service
routine. DMA1 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA1 is busy.

FK.LIB
These are LCD and keypad support functions for use without the real-time
kernel (RTK).

� int fk_helpmsg(char **hptr)

Displays a series of help messages when the HELP key is pressed. The
current display is saved and each message string is displayed for
1.8 seconds, then the previous display is restored. The input should be
an array of strings declared like this.

char *hptr[]={�Str 1�,�Str 2",...,�StrN�,��};

The last string must be null. The function returns non-zero if help is
off, and zero if help is on.

� void fk_monitorkeypad(void)

Monitors the keypad for keys pressed. This function should be called
from an SRTK or RTK high-priority task. It sets global variable
fk_tkey to values from 1 to 12 depending on the key pressed. The
value is 0 if no key was pressed. The function also monitors for the
2-key reset combination. If a reset combination is detected, the func-
tion will not return but will force a watchdog timeout. There is no
buffer. Key presses not processed within 100 ms will be lost.

� int fk_item_alpha(char *s1, char *var,
int wdsize)

Modifies a string using the five-key system. The term *s1 is a string
containing a prompt. The term *var is the string to be displayed and/
or modified. The function returns 0 if not done, and 1 if done, and
returns 1 or 0 in global variable fk_newmenu.

� int fk_item_int(char *string, int *num,
int lower, int upper)

Displays/modifies an integer number using the five-key system. The
term *string is a printf format having the form %nu where n is 1
digit, for example, %5d. The term *num is the integer to be displayed
and/or modified. The arguments upper and lower are the upper and
lower limits for the number. The function returns 0 if not done, and 1 if
done, and returns 1 or 0 in global variable fk_newmenu.

Dynamic C 32 v. 6.x166 s Other Libraries

� int fk_item_unsigned int(char *string,
unsigned int *num, unsigned int lower,
unsigned int upper)

This function is the same as fk_item_int, but applies to unsigned
integers. (Remember that unsigned int is a convention in this
manual only and is not a C keyword.)

� int fk_item_float(char*s1, float *num,
float lower, float upper)

Displays/modifies a floating-point number using the five-key system.
The term *s1 is a printf format for displaying the number. The
format code should be in the form of %n.mf. The displayed line
appears as follows.

vvvvvv wwww.yyyy

where vvvvv is a prompt string, wwww is n chars long, and yyyy is m
chars long. The value n must be at least 1. The sum n + m cannot
exceed 9. The default is n = 5 and m = 2. The term *num is the
floating-point number to be displayed and/or modified. The arguments
upper and lower are the upper and lower limits for the number. This
function will work for numbers in the ranges [1E6,�1E�4], [1E�4,1E6]
with the appropriate format specification.

The function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

� int fk_item_enum(char *prompt, int *choice,
char *s1,...*sn, ��)

Allows the user to choose from a list of null-terminated strings (maxi-
mum 20). The string *prompt must contain a string field code (%s or
%ns) used to print the strings. The last of the strings (after *s1, ...
*sn) must be null. The term *choice returns the choice made by the
user, from 0 to (n - 1). The function returns 0 if not done, and 1 if
done, and returns 1 or 0 in global variable fk_newmenu.

� int fk_item_setdate(struct tm *time)

A five-key function to modify the day, month and year fields of a tm
structure. The term *time is the structure to be modified. The
function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

� int fk_item_settime(struct tm *time)

A five-key function to modify the hour, minute and second fields of a
tm structure. The term *time is the structure to be modified. The
function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

Function Reference Other Libraries s 167

IOEXPAND.LIB
These are support functions for the BL1100 expansion boards. They are
divided into two classes.

1. Functions that are hard-coded for default base addresses, 0xFxxx.

2. Functions that allow users to specify a board by its node number.

The former class is faster, but is limited to systems with one expansion
board; the latter class, therefore, should be limited to multiple expansion
board applications.

There is a structure of default addresses to improve lookup speeds for
Class 2 functions. There is a structure that holds the default addresses.
Instead of specifying a node number (0�3), specify �1. This will load the
correct default addresses. The second set of functions allows for stacking
of up to four expansion boards on top of the BL1100.

The board addresses are set through jumper J10.

Refer to the BL1100 User�s Manual for the proper board
addresses.

� int exp_init(int ppia, int ppib, int ppicu,
int ppicl)

Initializes the PIO ports of a BL1100 expansion card with the default
address of 0xFxxx. The U5 PPI uses mode 0 or the basic I/O mode.
ppia, ppib, ppicu,and ppicl are output values for the PPI output
register. Configures Port A as input if ppia = �1, and Port B as input if
ppib = -1. Configures port C upper nibble as inputs if ppicu = �1;
and port C lower nibble as inputs if ppicl = �1. All PPI output ports
are reset to low when the mode is changed. It is important to output a
correct value to the output port right after the mode is changed.

� int mux_ch(int chan)

Sets the DG509A multiplexer (U17) of the BL1100 expansion card
with the default address of 0xFxxx. chan is 0 to 3 for (AN0�, AN0+)
to (AN3�, AN3+), respectively, to multiplex on (MUX-DA, MUX-DB).

� int ad20_mux(int chan)

Sets the multiplexer for the 20-bit AD7703 of the BL1100 expansion
card with the default address of 0xFxxx. Channels 0 to 3 select
unipolar operation (0 to 2.5 volts) for (AN0�, AN0+) to (AN3�,
AN3+), respectively, while channels 4 to 7 select bipolar operation
(-2.5 to 2.5 volts) for (AN0�, AN0+) to (AN3�, AN3+), respectively.

$

Dynamic C 32 v. 6.x168 s Other Libraries

� int ad20_rdy(void)

Tests AD7703 DRDY status from RDTTL bit 1. The function returns 0
if the AD20 is ready, or 1 if AD20 is busy.

� int ad20_cal(int mode)

Calibrates the AD7703 on the BL1100 expansion card with the default
address of 0xFxxx. Mode 0 calibration does not use the multiplexer.
Mode 1 calibration uses the multiplexer to get zero and full scale on
Ain. Mux ch0 is the A/D signal to be measured. Mux ch1 is Ain for
the Mode 1 first step to calibrate the system offset. Mux ch2 is Ain for
Mode 1 second step to calibrate the system gain. Mode 2 calibration
uses the current channel to get Ain as zero to calibrate the system
offset.

The following shows the state of SC1 and SC2 during calibration:

Mode SC1 SC2 Cal type Zero FS Steps
 0 0 0 self-cal AGND REF+1
1 1 1 system offset Ain 1st of 2
1 0 1 system gain Ain 2nd of 2
2 1 0 system offset Ain REF+1

The function returns 0, if calibration was completed, or �1, if there is
an error during calibration.

� long ad20_rd(void)

Reads 20-bit data from the AD7703 serial data port. The 125-millisec-
ond step response time of AD7703 dictates that a time delay should be
guaranteed after a multiplexer switching. A/D data will be valid when
DRDY is low for data output at a rate up to 4 kHz. The polarity and
channel to read should be set previously with ad20_mux. Ain ranges
from 0 to 2.5 volts for the unipolar mode (PA0 = 0). LSB = 2.5 volts/
1048576 = 2.384 microvolts. Ain ranges from �2.5 to +2.5 volts for
the bipolar mode (PA0 = 1). LSB = 5 volts/1048576 = 4.768 micro-
volts.

The function returns 20-bit A/D data. For the unipolar mode, 0x00000
= AGND, 0x7FFFF = 1.25 V, and 0xFFFFF = 2.5 V. For the bipolar
mode, 0x00000 = �2.5 V, 0x7FFFF = AGND, and 0xFFFFF = 2.5 V.

� int exp_init_n(int node, int ppia, int ppib,
int ppicu, int ppicl, int def)

Initializes the PIO port of a BL1100 expansion card corresponding to
the specified node. Node is 0 to 3 for node addresses 0xCxxx to
0xFxxx, respectively. If node equals -1, the function uses the default
address saved in def_na. If def equals 1, the node is saved as the
default node in def_na. If def equals 0, the node is not saved.

Function Reference Other Libraries s 169

The function returns 0 if initialization is okay, or �1 if an unknown
mode is requested.

Consult the BL1100 User�s Manual for the address configura-
tion.

� int get_na(int node, struct node_addr *na)

Gets the node address from the specified node (0�3). The function
returns 0 if node is proper; or �1 if node is out of range. Node address
data are returned in struct node_addr *na.

� int set_def_na(int node)

Sets node address to default node address. The function returns data
from get_na.

� int get_def_na(struct node_addr *na)

Gets the default node address. The function returns the node number.

� int mux_ch_n(int node, int chan, int def)

Sets DF509A multiplexers on specified BL1100 expansion card node.
node is 0 to 3 for address 0xCxxx to 0xFxxx, respectively. chan is 0
to 3 for (AN0�, AN0+) to (AN3�, AN3+), respectively. If node equals
�1, the function uses the default address saved in def_na. If def
equals 1, the node is saved as default node in def_na. If def equals 0,
the node is not saved. The function returns 0 if the mux setup is okay,
or �1 if node is out of range.

� int ad20_mux_n(int node, int chan, int def)

Sets the DG509A multiplexer for the 20-bit AD7703 of a BL1100
expansion card. node 0�3 specifies the node address 0xCxxx to
0xFxxx, respectively. chan 0�3 selects unipolar operation (0 to
2.5 volts) for (AN0�, AN0+) to (AN3�, AN3+), respectively. chan
4�7 selects bipolar operation (�2.5 to +2.5 volts) for (AN0�, AN0+) to
(AN3�, AN3+), respectively. If node equals �1, the function uses the
default address saved in def_na. If def equals 1, the node is saved as
the default node in def_na. If def equals 0, the node is not saved.
The function returns 0 if successful, or �1 for invalid node.

� int ad20_rdy_n(int node)

Tests AD7703 DRDY status from RDTTL bit 1 of a specified BL1100
expansion card node. node 0�3 specifies the node addresses 0xCxxx
to 0xFxxx, respectively. If node equals �1, the function uses the
default node saved in def_na. The function returns 0 if the AD20 is
ready, or �1 if the AD20 is busy or node is out of range.

$

Dynamic C 32 v. 6.x170 s Other Libraries

� int ad20_cal_n(int node, int mode, int def)

Calibrates the AD7703 on a specified BL1100 expansion card. node
0�3 specifies the node address 0xCxxx to 0xFxxx, respectively. If
node equals �1, the function uses the node saved in def_na. If def
equals 1, the node is saved as default node in def_na. If def equals 0,
the node is not saved. Mode 0 calibration does not use the multiplexer.
Mode 1 calibration uses the multiplexer to get zero and full scale on
Ain. Mux ch0 is the A/D signal to be measured. Mux ch1 is Ain for
the Mode 1 first step to calibrate the system offset. Mux ch2 is Ain for
Mode 1 second step to calibrate the system gain. Mode 2 calibration
uses the current channel to get Ain as zero to calibrate the system off-
set. The following shows the state of SC1 and SC2 during calibration.

Mode SC1 SC2 Cal type Zero FS Steps
0 0 0 self-cal AGND REF+1
1 1 1 system offset Ain 1st of 2
1 0 1 system gain Ain 2nd of 2
2 1 0 system offset Ain REF+1

The function returns 0 if calibration was completed, or �1 if there was
an error during calibration.

� long ad20_rd_n(int node, int def)

Reads 20-bit data from the AD7703 serial data port. The 125-millisec-
ond step response time of AD7703 dictates that a time delay should be
guaranteed after a multiplexer switching. A/D data will be valid when
DRDY is low for an output data rate up to 4 kHz. The polarity and
channel to read should be set previously with ad20_mux. Ain ranges
from 0 to 2.5 volts for the unipolar mode (PA0 = 0). LSB = 2.5 volts/
1048576 = 2.384 microvolts. Ain ranges from �2.5 to +2.5 volts for
the bipolar mode (PA0 = 1). LSB = 5 volts/1048576 = 4.768 micro-
volts. node 0�3 specifies the node address 0xCxxx to 0xFxxx,
respectively. If node equals �1, the function uses the node saved in
def_na. If def equals 1, the node is saved as the default node in
def_na. If def equals 0, the node is not saved.

The function returns 20�bit A/D data. For the unipolar mode, 0x00000
= AGND, 0x7FFFF = 1.25 V, and 0xFFFFF = 2.5 V. For the bipolar
mode, 0x00000 = �2.5 V, 0x7FFFF = AGND, and 0xFFFFF = 2.5 V.
Returns �1 for an invalid node.

KDM.LIB
These KDM (keyboard/display module) functions provide software drivers
for KDM keypads, the text LCD, the graphic LCD, the beeper, and the
timer that drives the keypad. The beeper also drives the real-time kernel
(RTK) when RUNKERNEL is defined.

Function Reference Other Libraries s 171

� int lk_kxinit(void)

Initializes variables, buffers and hardware driver associated with
servicing the KDM keypad.

� int lk_loadtab(int *tab, int tab_size)

Loads keypad numerical table values. Used to rearrange the keypad
keys. tab points to an integer array containing the new keypad
arrangement. tab_size is the table size to change. For example,
new_table[] = {4,3,2,1,....} will rearrange the ordering of the
first four keys.

� int lk_settab(char flag)

Sets the keypad translate table for keypad sizes greater than 24.

� int lk_keyw(char flag)

Writes to specified bits in the key register.

� int lk_kxget(char mode)

Gets character from the KDM keypad. If mode = 0, removes the
character from the keypad buffer and returns it. If mode ! = 0, returns
the character (if available), but does not remove it from the keypad
buffer. The function returns the keypad character pressed, or �1 if the
keypad buffer is empty.

� int lk_setbeep(int count)

Sets up the variable that is used for the KDM beeper.

� int lk_led(int mode)

Turns LEDs on the KDM on/off without conflicting with the keypad
driver. mode = 0 turns off the LEDs. mode =1 turns on the yellow LED.
mode = 2 turns on the green LED. mode = 3 turns on both LEDs. The
function returns the mode that was passed.

� int lk_tdelay(int delay)

Convenient delay mechanism that is tied to timer1 periodic interrupt.

� int lk_int_timer1(void)

Service routine for timer1 interrupt. Drives the beeper and the
keypad. Also drives the real-time kernel if RUNKERNEL is defined.

� int lg_init_keypad(void)

Initializes timer1, KDM keypad driver and the graphic LCD.

� int lk_init_keypad(void)

Initializes timer1, keypad driver and the LCD.

Dynamic C 32 v. 6.x172 s Other Libraries

� void lk_wr(int x)

Writes low byte of x to LCD register in the high byte of x.

� int lk_rd(int addr)

Reads data from the LCD read register addr. The function returns the
data from LCD read register addr.

� int lk_init(void)

Initializes LCD on the KDM. Initializes software variables associated
with use of the LCD.

� int lk_cmd(int cmd)

Sends command in the lower byte of cmd to the LCD register specified
by the upper byte of cmd.

� int lk_wait(void)

Waits for appropriate LCD unit to clear its busy flag. The function
returns 0 or 1 depending on the LCD controller.

� int lk_char(char x)

Sends one character to data register of the appropriate LCD.

� int lk_ctrl(char x)

Sends one character to control register of the appropriate LCD.

� int lk_putc(char x)

Low-level driver (printf analog) for the LCD. Sends a character to
the LCD and updates software variables for storing the LCD screen
status.

� int lk_nl(void)

Generates a new line on the LCD screen.

� int lk_pos(int line, int col)

Positions LCD cursor to line and col location.

� int lk_printf(char *fmt, ...)

This is the printf analog for the LCD. The following escape se-
quences are available.

esc p n mm positions cursor to line n and column mm. Example:

lk_printf(�\x1bp234�);

means line 2, column 34. Lines are numbered 0, 1, 2, 3.
Columns 0,1,..39.
esc 1Turns cursor on
esc 0Turn cursor off
esc cErases from cursor position to end of line

Function Reference Other Libraries s 173

esc bEnables blinking cursor mode
esc nDisables blinking cursor mode
esc eErases display and homes cursor

� void lk_cgram(char *p)

Special character generator for the LCD. *p (first byte) is the number
of bytes to store (up to 64 for 8 characters). The lower five bits of each
byte make one row of the character from left to right and from top to
bottom. The eighth row of each is in the cursor position.

� int lk_stdcg(void)

Loads a table of special characters, lk_stdchars, to the LCD.

� int lk_run_menu(char *call_menu,
struct lk_menu *menu, int index)

Menuing scheme for the KDM unit. The following mtype codes in the
menu structures are available.

Code Description

0 end of menu

1 view floating

2 view floating and adjust in limits

3 view floating and enter new value on enter

4 like 2 but call specified function passing pointer after each step

5 like 3 but call specified function passing pointer to new value

8 view logical

9 view logical and adjust true/false

10 like 9 but call specified function passing pointer to variable

16 view date/time

17 view/modify date/time

18 view/modify date/time and call routine

20 view time (16-bit)

21 view/modify time (16-bit)

22 view/modify time (16-bit) and then call routine

32 call a new menu (msg is the top line name for new menu,
valptr is the pointer to the new menu structure, the index is
always passed as 0)

40 call a function (msg is displayed, ptr and limit are ignored)

Dynamic C 32 v. 6.x174 s Other Libraries

The string call_menu is initially printed when the menu is entered.
The pointer menu points to the lk_menu structure. The index is the
starting point in the menu, often zero. The run_menu function returns
the last value of the index.

� void lk_setdate(char *msg, struct tm *dat)

Sets date data and prints to the LCD. Also prints msg to the LCD.
Used by lk_run_menu.

� int lk_chkdat(struct tm *dat)

Checks validity of date data. May change day of the month. The
function returns 0 if date data is okay, or 1 for invalid date data.

� void lk_showdate(char *msg, struct tm *tmm)

Displays date data and msg to the LCD.

� unsigned int lk_settime(char *msg,
unsigned int time)

Sets time and prints to the LCD. Also prints msg to LCD.

� int lk_showtime(char *msg, unsigned int time)

Displays msg and time data on the LCD.

� int st_hour(unsigned int j)

Hour parser used by lk_run_menu. The function returns j/1800.

� int st_min(unsigned int j)

Minutes parser used by lk_run_menu. The function returns
(j mod 1800)/30.

� int st_sec(unsigned int j)

Seconds parser used by lk_run_menu. The function returns
2 × (j mod 30).

� unsigned int mk_st(int hour, int min, int sec)

Time data builder used by lk_run_menu. The function returns
hour × 1800 + min × 30 + sec × 2.

� unsigned int ad_st(unsigned int t1,
unsigned int t2)

Time data adder used by lk_run_menu. The function returns adjusted
time data of the two times added together.

� int lk_secho(void)

Pulls character from key buffer and generates a short beep.

Function Reference Other Libraries s 175

� int lk_lecho(void)

Pulls character from the keypad buffer and generates a long beep.

� void lk_viewl(char *fmt, char var)

Views a logical variable.

� float lk_getknum(void)

Gets a floating-point number from the keypad. The function returns the
floating-point number entered through the keypad.

� void lg_init(void)

Initializes the graphic LCD and its associated software variables.

� void lg_char(char x)

Writes a character to the graphic LCD.

� void lg_putc(char x)

Low-level driver (printf analog) for the graphic LCD. Puts char on
the graphic LCD and updates software variables that store the graphic
LCD screen status.

� void lg_nl(void)

Generates a new line on the graphic LCD screen.

� void lg_pos(int line, int col)

Positions cursor on the graphic LCD screen.

� void lg_printf(char *fmt, ...)

This is the printf analog for the graphic LCD. The following escape
sequences are available.

esc p n mm positions cursor to line n and column mm. Example:

lg_printf(�\x1bp234�);

means line 2, column 34. Lines are numbered 0, 1, 2, 3.
Columns 0,1,..39.
esc 1Turns cursor on
esc 0Turn cursor off
esc cErases from cursor position to end of line
esc bEnables blinking cursor mode
esc nDisables blinking cursor mode
esc eErases display and homes cursor

� void Set_Display_Mode(int mode)

Sets the display mode of the graphic LCD. mode is
DISPLAY_TEXT (4) or DISPLAY_GRAPHICS (8).

Dynamic C 32 v. 6.x176 s Other Libraries

� void Clear_GrTxt_Screen(void)

Clears the graphic LCD text screen.

� void Stall(int tix)

Software delay loop. Counts down tix × 10.

� void sta01(void)

Writes 4 to the LCD write register and waits for a 3 on the LCD read
register.

� void sta03(void)

Writes 4 to the LCD write register and waits for a 0x08 on the LCD
read register.

� void lg_wr(int x)

Writes data to graphic LCD register. The register value is in the high
byte and data value is in the low byte of x. Uses sta01 to wait for
clear to write.

� void lg_wr03(int x)

Writes data to graphic LCD register. The register value is in the high
byte and data value is in the low byte of x. Uses sta03 to wait for
clear to write.

� void lg_rd(void)

Waits for clear and reads the graphic LCD read register.

� void grp_home_area(char gal, char gah,
char ghl, char ghh)

Sets the graphic area by defining the home (ghl,ghh) and the area
(gal,gah).

� void text_home_area(char tal, char tah,
char thl, char thh)

Sets the text area by defining the home (thl,thh) and the area
(tal,tah).

� void Graph_Init(void)

Initializes the graphic LCD text and graphics areas.

� void Set_Pointer(int address, int ptr)

Sets the appropriate pointer by using the �pointer set� command.
address is the address to set the pointer to. ptr is the pointer to set: 1
= cursor, 2 = offset, 4 = address.

See page 25 of the Toshiba ST-LCD manual.$

Function Reference Other Libraries s 177

� int Text_Addr(int col, int row)

Computes location of text based on the row and col data.

The function returns

GRTXT_BASE_ADDRESS + row × LK_COLS + col .

� void Set_Auto_Mode(int mode)

Sets the graphic LCD into auto mode.

� void Set_Overlap_Mode(int mode)

Sets the graphic LCD to overlap mode.

� void Define_Cursor(int lines)

Defines the cursor for the graphic LCD.

� void Set_Pixel(int col, int row, int wr_mode)

Sets an LCD pixel to coordinates (col, row). wr_mode = 0 to clear,
wr_mode = 1 to set, and wr_mode = 2 to XOR. (0,0) is the lower left
corner. col ranges from 0 to 239; row ranges from 0 to 63.

� void Clear_Gr_Screen(void)

Erases the graphic palette by writing 0s to all addresses in the graphic
LCD RAM.

� void Map_Bit_Pattern(int *config,
char *bitarray, int wr_mode)

Maps a bit pattern to the graphic LCD area. config points to an array
of 4-integer data defining the upper left corner (x,y) to start the pattern
and the width and height of the figure in dots. bitarray points to a
character data array that has �1� or �*� in each location to set a dot in.
Data appear in sequential order, starting at the top left corner, progress-
ing left to right and top to bottom. wr_mode = 0 to clear; wr_mode = 1
to set and wr_mode = 2 to XOR.

� void Draw_Line(int stx, int sty, int enx,
int eny, int wr_mode)

Draws a line from starting point (stx,sty) to end point (enx,eny).
wr_mode = 0 to clear, wr_mode = 1 to set and wr_mode = 2 to XOR.

� void Draw_Poly(int numpoints, int *point,
int wr_mode)

Draws a polygon by connecting successive points. numpoints is the
number of (x,y) coordinate pairs. point points to an integer array of
(x,y) coordinate pairs.

Dynamic C 32 v. 6.x178 s Other Libraries

� void Draw_Axis(int ox, int oy, int ex, int ey,
int ticks_x, int ticks_y, int wr_mode)

Draws an axis with (ox,oy) as the axis origin. (ex,ey) are the highest
coordinates of the axis. ticks_x is the number of x-axis ticks.
ticks_y is the number of y-axis ticks.

� void Sin_Wave(int ox, int oy, int ex, int ey,
int cycles, int wr_mode)

Draws a sine wave with (ox,oy) as the sine-wave origin. (ex,ey) are
the highest possible coordinates of the sine wave. cycles is the
number of cycles to display.

LCD2L.LIB
These functions support a 2 × 20 LCD on controllers with an LCD port.

� void lc_wr(char data)

Low-level routine for writing char data to a control register of the
LCD. The control register accessed is embedded in char data.

� int lc_rd(void)

Low-level routine to read the LCD register LCDWR. The function
returns the busy flag in bit 7 and the address counter of the LCD in the
lower seven bits.

� void lc_init(void)

Initializes the PK2100 or PK2200 LCD by executing the recommended
LCD power-up protocol. Sets LCD for auto increment; display and
cursor on; and clears the display memory.

� int lc_cmd(int cmd)

Waits for LCD busy flag to clear, then sends cmd to the LCD command
register. The function returns 0 if successful in writing to the LCD, or
�1 if there is a timeout because the LCD is busy.

� int lc_wait(void)

Waits for the LCD busy flag to clear. The function returns 0 when the
LCD busy flag has cleared, or �1 if it times out after ten tries.

� void lc_char(char x)

Writes char x to the LCD data register.

� void lc_ctrl(char x)

Writes char x to the control register of the LCD. Unlike lc_wr, this
function waits for the busy flag of the LCD to clear before writing data
to an LCD control register.

Function Reference Other Libraries s 179

� int lc_putc(char x)

Decodes char x for special command sequence for writing to the
LCD command or data registers. This function serves as the driver for
lc_printf.

� void lc_nl(void)

Moves the LCD cursor to the first column of the next line. If the
current line is the last LCD line, then the cursor position is only moved
to column 0 of the current line.

� void lc_pos(int line, int col)

Positions PK2100 LCD cursor at the specified line (0�3) and col
(0�19).

� void lc_printf(char *fmt, ...)

This is the printf analog for the PK2100 LCD.

� void lc_cgram(char *p)

Character matrix = 5 rows × 8 cols. p points to a data array with the
following format: first character is the number of bytes to store (8 bytes
per character) with a maximum of 64, the lower five bits of each byte
form one row of the character from left to right, and the eighth row per
special character is in the cursor position.

� void lc_stdcg(void)

Loads eight special characters of arrows and lines to the LCD special
character location.

� void lcd_init_printf(void)

Initializes the LCD with lcd_init. Also initializes related variables
to allow for saving duplicate image of the LCD screen.

� void lcd_putc(char x)

Decodes char x for special command sequence for writing to the
LCD command or data registers. Serves as the driver for
lcd_printf. Like lc_putc except that shadow variables for the
LCD are also updated.

� void lcd_erase(void)

Erases entire LCD and homes cursor. LCD shadow variables are
updated.

� void lcd_erase_line(int line)

Erases a specified line on the LCD and updates shadow variables.

Dynamic C 32 v. 6.x180 s Other Libraries

� void lcd_printf(long cursor, char *fmt, ...)

This is the printf analog for the LCD screen. Displays a string at a
specified starting position and leaves the cursor at a specified end
position. cursor bytes are Y1,X1,Y2,X2, where the most significant
byte, Y1, is the start line number (0, 1, 2 or 3); X1 the is start column
number (0, 1, 2...), and Y2 and X2 are the final line and column
coordinates. The upper four bits of Y2 are used to specify the final
state of the cursor (1 = on, 0 = off). Only cursor positioning takes
place if *fmt is a null string.

When lcd_printf runs, a semaphore is invoked to ensure that only
one execution thread is running through it, so it can be called from
various tasks without interference. Execution is suspended for 10 ticks
when the semaphore is busy.

A duplicate copy of the display contents and the cursor location is
updated in memory when lcd_printf prints to the LCD display. The
lcd_savscrn copies this image to a user-specified area.
lcd_resscrn copies the user-saved area back to the screen and the
image area. Using these routines, a task can interrupt the current thread
and save the current display, use the display in a new thread, and then
restore the original display.

� void lcd_savscrn(void *s)

Saves LCD screen image to vector identified by s.

� void lcd_resscrn(void *s)

Restores image stored in vector identified by s to the LCD.

MISC.LIB
� void setbeep(int delay)

Sets up a timed beep. delay specifies the length of the beep in number
of timer1 ticks. timer1 interrupt performs the beep in the back-
ground, so this function returns immediately.

PBUS_LG.LIB
This library contains the PLCBus support functions for the BL1100
controller and the PLCBus interface library for the BL1100 and the
BL1300 controllers. The library contains the functions necessary to access
PLCBus devices through PIO Port A on the BL1100. The library also
provides low-level PLCBus functions as well as high-level functions for
the relay and DAC expansion boards.

Function Reference Other Libraries s 181

The bus must interface to the PIO port as follows.

PIO pin 0: STB PIO pin 4: D2
PIO pin 1: A3 PIO pin 5: D3
PIO pin 2: A2 PIO pin 6: D0
PIO pin 3: A1 PIO pin 7: D1

� void PBus12_Addr(int addr)

Sets the current address for the PLCBus . All read and write operations
will access this address until a new address is set. addr is the 12-bit
physical address with the first and third nibbles swapped (most
significant nibble in the lower four bits).

� void PBus4_Write(char data)

Writes 4-bit data on PLCBus . The address must be set by a call to
PBus12_Addr before calling this function. data should contain the
value to write in the lower four bits.

� int PBus4_Read0(void)

Reads 4 bits of data from the PLCBus using a BUSRD0 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

� int PBus4_Read1(void)

Reads 4 bits of data from the PLCBus using a BUSRD1 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

� int PBus4_ReadSp(void)

Reads 4 bits of data from the PLCBus using a BUSSPARE cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

� int Relay_Board_Addr(int board)

Converts a logical relay board address to a physical PLCBus address.
board must be a number between 0 and 63, and represents the relay
board to access. This number has the binary form pppzyx where ppp
is determined by the board PAL number and x, y, and z are determined
by jumper J1 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4500, FPO4510, FPO4520, etc.; x, y,
and z correspond to jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx000y000z.

Dynamic C 32 v. 6.x182 s Other Libraries

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Set_PBus_Relay(int board, int relay,
int state)

Sets a relay on an expansion bus relay board. board must be a number
between 0 and 63, and represents the relay board to access. This
number has the binary form pppzyx where ppp is determined by the
board PAL number and x, y, and z are determined by jumper J1 on the
board. ppp values of 000, 001, 010, etc., correspond to PAL numbers
of FPO4500, FPO4510, FPO4520, etc.; x, y, and z correspond to
jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 = closed, 1 = open).
relay is the relay number on the board (0�5 for XP8300 board; 0�7
for XP8400 board). state must be 1 to turn the relay on and 0 to turn
the relay off.

� int DAC_Board_Addr(int bd)

Converts a logical DAC board address to a physical PLCBus address.
bd must be a number between 0 and 63, and represents the DAC board
to access. This number has the binary form pppzyx where ppp is
determined by the board PAL number and x, y, and z are determined
by jumper J3 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4800, FPO4810, FPO4820, etc.; x, y,
and z correspond to jumper J3 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx001y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Write_DAC1(int val)

Loads Register A of DAC #1 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC1 is
called.

� void Write_DAC2(int val)

Loads Register A of DAC #2 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC2 is
called.

Function Reference Other Libraries s 183

� void Latch_DAC1(void)

Moves the value from Register A of DAC 1 to the Register B. The
value in Register B represents the actual DAC output. The board
address must have been set previously with a call to PBus12_Addr,
and the value should have been loaded into Register A with a call to
Write_DAC1.

� void Latch_DAC2(void)

Moves the value from Register A of DAC #2 to Register B. The value
in Register B represents the actual DAC output. The board address
must have been set previously with a call to PBus12_Addr, and the
value should have been loaded into Register A with a call to Write_DAC2.

� void Init_DAC(void)

Initializes DAC board and sets all output values to 0. Call this function
before writing data to the DAC. The board address must have been set
previously with a call to PBus12_Addr.

� void Set_DAC1(int val)

Sets DAC #1 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), V

OUT
 = (val/4096) ×

10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), I

OUT
 = (val/4096) × 22 milliamps with Z-World

default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void Set_DAC2(int val)

Sets DAC #2 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), V

OUT
 = (val/4096) ×

10.22 V with Z-World default settings. In current-output mode (J1 pins
1�2 jumpered), I

OUT
 = (val/4096) × 22 mA with Z-World default

settings. The board address must have been set previously with a call
to PBus12_Addr.

� void DAC_On(void)

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void DAC_Off(void)

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void Reset_PBus(void)

Resets the PLCBus.

Dynamic C 32 v. 6.x184 s Other Libraries

� int Poll_PBus_Node(int addr)

Polls a PLCBus device by performing a BUSRD0 cycle and checking
the low bit of the returned value. addr is the 12-bit physical address of
the device, with the first and third nibbles swapped.

The function returns 1 if node answers poll, 0 if not.

� void Reset_PBus_Wait(void)

Provides the minimum delay necessary for PLCBus expansion boards
after a bus reset, assuming a 9 MHz CPU. This delay will be insuffi-
cient for a faster CPU and must be increased.

PBUS_TG.LIB
These functions support the BL1000 controller. The PLCBus interface
library is provided for the BL1000. This library contains functions
necessary to access PLCBus devices through PIO Port B on the BL1000.
The library provides low-level PLCBus functions as well as high-level
functions for the relay and DAC expansion boards.

The bus must interface to the PIO port as follows.

PIO pin 0: D1 IO pin 4: A1
PIO pin 1: D0 PIO pin 5: A2
PIO pin 2: D3 PIO pin 6: A3
PIO pin 3: D2 PIO pin 7: STB

� void PBus12_Addr(int addr)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. addr is the 12-bit
physical address with the first and third nibbles swapped (most
significant nibble in the low four bits).

The function returns None.

� void PBus4_Write(char data)

Writes 4-bit data on the PLCBus. The address must be set by a call to
PBus12_Addr before calling this function. data should contain the
value to write in the lower four bits.

� int PBus4_Read0(void)

Reads 4 bits of data from the PLCBus using a BUSRD0 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

Function Reference Other Libraries s 185

� int PBus4_Read1(void)

Reads 4 bits of data from the PLCBus using a BUSRD1 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

� int PBus4_ReadSp(void)

Reads 4 bits of data from the PLCBus using a BUSSPARE cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

� int Relay_Board_Addr(int board)

Converts a logical relay board address to a physical PLCBus address.
board must be a number between 0 and 63, and represents the relay
board to access. This number has the binary form pppzyx where ppp
is determined by the board PAL number and x, y, and z are determined
by jumper J1 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4500, FPO4510, FPO4520, etc.; x, y,
and z correspond to jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx000y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Set_PBus_Relay(int board,int relay,
int state)

Sets a relay on an expansion bus relay board. board must be a number
between 0 and 63, and represents the relay board to access. This
number has the binary form pppzyx, where ppp is determined by the
board PAL number and x, y, and z are determined by jumper J1 on the
board. ppp values of 000, 001, 010, etc., correspond to PAL numbers
of FPO4500, FPO4510, FPO4520, etc.; x, y, and z correspond to
jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 = closed, 1 = open).
relay is the relay number on the board (0�5 for XP8300 board; 0�7
for XP8400 board). state must be 1 to turn the relay on and 0 to turn
the relay off.

Dynamic C 32 v. 6.x186 s Other Libraries

� int DAC_Board_Addr(int bd)

Converts a logical DAC board address to a physical PLCBus address.
bd must be a number between 0 and 63, and represents the DAC board
to access. This number has the binary form pppzyx where ppp is
determined by the board PAL number and x, y, and z are determined
by jumper J3 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4800, FPO4810, FPO4820, etc.; x, y,
and z correspond to jumper J3 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx001y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Write_DAC1(int val)

Loads Register A of DAC #1 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC1 is
called.

� void Write_DAC2(int val)

Loads Register A of DAC #2 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC2 is
called.

� void Latch_DAC1(void)

Moves the value in Register A of DAC #1 to Register B. The value in
Register B represents the actual DAC output. The board address must
have been set previously with a call to PBus12_Addr, and the value
should have been loaded into Register A with a call to Write_DAC1.

� void Latch_DAC2(void)

Moves the value in Register A of DAC #2 to Register B. The value in
Register B represents the actual DAC output. The board address must
have been set previously with a call to PBus12_Addr, and the value
should have been loaded into Register A with a call to Write_DAC2.

� void Init_DAC(void)

Initializes DAC board and sets all output values to 0. Call this function
before writing data to the DAC. The board address must have been set
previously with a call to PBus12_Addr.

Function Reference Other Libraries s 187

� void Set_DAC1(int val)

Sets DAC #1 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), VOUT = (val/4096) ×
10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), IOUT = (val/4096) × 22 milliamps with Z-World
default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void Set_DAC2(int val)

Sets DAC #2 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2�3 jumpered), V

OUT
 = (val/4096) ×

10.22 V with Z-World default settings. In current-output mode (J1 pins
1�2 jumpered), I

OUT
 = (val/4096) × 22 mA with Z-World default

settings. The board address must have been set previously with a call
to PBus12_Addr.

� void DAC_On(void)

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void DAC_Off(void)

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void Reset_PBus(void)

Resets the PLCBus.

� int Poll_PBus_Node(int addr)

Polls a PLCBus device by performing a BUSRD0 cycle and checking
the low bit of the returned value. addr is the 12-bit physical address of
the device, with the first and third nibbles swapped. The function
returns 1 if node answers poll, 0 if not.

� void Reset_PBus_Wait(void)

Provides the minimum delay necessary for PLCBus expansion boards
after a bus reset, assuming a 9 MHz CPU. This delay will be insuffi-
cient for a faster CPU and must be increased.

Dynamic C 32 v. 6.x188 s Other Libraries

Function Reference Dynamic C Libraries s 189

APPENDIX A: DYNAMIC C LIBRARIES

The libraries provided with Dynamic C 32 are listed here, each with a brief
description of its purpose. For detailed information on the requirements
for library code, of particular interest to those who write their own custom
libraries, see the �Software Libraries� appendix in the Dynamic C 32
Version 6.x Technical Reference manual.

Dynamic C 32 v. 6.x190 s Dynamic C Libraries

LIB
These are the mainstream libraries, found in the LIB subfolder of the main
Dynamic C 32 installation folder.

5KEY.LIB

For PK2100 series and PK2200 series controllers. Basic support for the
original �five-key system.�

5KEYEXTD.LIB

For PK2100 series and PK2200 series controllers. Extensions to the
original �five-key system.�

96IO.LIB

For BL1000 series controllers. Driver functions for the DGL96 daughter
board.

AASC.LIB

Abstract Application-Level Serial Communication (AASC) high level
functions, this library is automatically #used by the low level AASC*.LIB
libraries. These high level functions are intended to be called from the
application.

AASCDIO.LIB

STDIO window functions supporting the AASC.LIB library, primarily
useful while debugging an application. Although the application should
#use this library if it is required, these low level functions are not intended
to be called from the application.

AASCDUM.LIB

Dummy device functions supporting the AASC.LIB library. Although the
application should #use this library if it is required, these low level
functions are not intended to be called from the application.

AASCSCC.LIB

For BL1300 series, BL1700 series and PK2600 (BL1700 side only) series
controllers. Zilog 85C30 Serial Communication Controller (SCC)
functions supporting the AASC.LIB library. Although the application
should #use this library if it is required, these low level functions are not
intended to be called from the application.

AASCSIOA.LIB

For BL1100 series controllers. Zilog 84C90 KIO Serial/Parallel/Counter/
Timer SIOA functions supporting the AASC.LIB library. Although the
application should #use this library if it is required, these low level
functions are not intended to be called from the application.

Function Reference Dynamic C Libraries s 191

AASCUART.LIB

For BL1200 series, BL1600 series, PK2100 series and PK2200 series
controllers. XP8700 UART PLCBus expansion board functions support-
ing the AASC.LIB library. Although the application should #use this
library if it is required, these low level functions are not intended to be
called from the application.

AASCURT2.LIB

For BL1700 series and PK2600 (BL1700 side only) series controllers.
XP8700 UART PLCBus expansion board functions supporting the
AASC.LIB library. Although the application should #use this library if it
is required, these low level functions are not intended to be called from the
application.

AASCZ0.LIB

Z180 built-in Z0 (ASCI0) functions supporting the AASC.LIB library.
Although the application should #use this library if it is required, these
low level functions are not intended to be called from the application.

AASCZ1.LIB

Z180 built-in Z1 (ASCI1) functions supporting the AASC.LIB library.
Although the application should #use this library if it is required, these
low level functions are not intended to be called from the application.

AASCZN.LIB

Z180 built-in Z1 (ASCI1) ZNet functions supporting the AASC.LIB
library. Although the application should #use this library if it is required,
these low level functions are not intended to be called from the application.

BIOS.LIB

Prototypes of functions and declarations of variables that are defined in the
BIOS, and which are available for use by the application program.

BL11XX.LIB

For BL1100 series controllers. ADC, DAC, I/O and timer functions.

BL13XX.LIB

For BL1300 series controllers. Serial Communication Controller (SCC)
functions.

BL14_15.LIB

For BL1400 series and BL1500 series controllers. Timer, RTC, RTC
RAM, PIO, simulated PLCBus, character LCD and keypad functions.

Dynamic C 32 v. 6.x192 s Dynamic C Libraries

BL16XX.LIB

For BL1600 series controllers. Digital I/O and virtual I/O functions.

CIRCBUF.LIB

Circular buffer functions supporting the AASC.LIB library.

CM71_72.LIB

For CM7100 series and CM7200 series core modules. Keypad and beeper
functions.

COM232.LIB

For Z104/ZISA series controllers. COM1 and COM2 communication
functions.

COSTATE.LIB

Declarations, definitions and functions supporting costatements, a form of
cooperative multitasking unique to Dynamic C.

CPLC.LIB

For BL1600 series, PK2100 series, PK2200 series and Z104/ZISA series
controllers. Timer, character LCD, keypad, virtual driver and beeper
functions.

CTYPE.LIB

Character case conversion and type classification functions.

DC.HH

This file contains definitions basic to, and required by, Dynamic C 32.
Even though it is not strictly a library, it is included in the lib.dir file�s
library list.

DEFAULT.H

Contains lists of #use directives for various Z-World Z180-based control-
lers. Based on the controller�s BOARD_TYPE, Dynamic C 32 automatically
selects the list appropriate for controller being programmed. Even though
it is not strictly a library, it is included in the lib.dir file�s library list.

DMA.LIB

Functions supporting the Z180 built-in direct memory access (DMA)
channels.

DRIVERS.LIB

PLCBus, high voltage output, character LCD, interrupt, time, RTC, logical
to physical address conversion, DMA memory copy, port output, PRT,
interrupt vector, EEPROM, DMA counter, flash EPROM write and RS-
485 driver enable/disable functions.

Function Reference Dynamic C Libraries s 193

EPSONRTC.LIB

Epson 72421 RTC existence check function.

FK.LIB

For PK2100 series and PK2200 series controllers. New �five-key system�
support to be used with costatements (Dynamic C�s cooperative
multitasking).

GATE_P.LIB

For PK2100 series and PK2200 series controllers. Functions for gate
programming of ladder logic using the �five-key system.�

GESUPRT.LIB

Support functions for interfacing any controller to Z-World�s Graphics
Engine sample program running on an OP7100 series or PK2600 (OP7100
side only) series controller. The Graphics Engine provides a flexible and
on-the-fly customizable operator interface via its controller�s RS-232
communication port.

GLCD.LIB

For OP7100 series (when #used with the obsolete LQVGA.LIB or
PQVGA.LIB libraries), PK2240, PK2400 and PK2600 (OP7100 side only,
when #used with the obsolete LQVGA.LIB or PQVGA.LIB libraries) series
controllers. High level (abstracted) graphic LCD primitive functions.

IOEXPAND.LIB

For BL1100 series controllers. Expansion board functions supporting both
default and non-default board addresses.

KDI.LIB

For BL1100 series, BL1200 series, BL1400 series, BL1500 series,
BL1600 series, BL1700 series, CM7100 series, CM7200 series, PK2100
series, PK2200 series, PK2400 series and PK2600 (BL1700 side only)
series controllers. High level (abstracted) keypad/display interface
functions.

KDM.LIB

For BL1200 series, BL1600 series, BL1700 series, PK2100 series,
PK2200 series and PK2600 (BL1700 side only) series controllers. Driver
functions for Z-World OP6000 series, OP6100, OP6200 and OP6300
keypad/display modules.

Dynamic C 32 v. 6.x194 s Dynamic C Libraries

KP.LIB

For BL1500 series, LP3100 series, OP7100 series, PK2200 series,
PK2400 series and PK2600 (OP7100 side only) series controllers. High
level (abstracted) keypad interface functions.

KP_KDI.LIB

For BL1500 series, PK2200 series and PK2400 series controllers. Low
level (hardware specific) keypad interface functions supporting the
KP.LIB library.

KP_LP31.LIB

For LP3100 series controllers. Low level (hardware specific) keypad
interface functions supporting the KP.LIB library.

KP_OP71.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Low level (hardware specific) touch-screen keypad interface functions
supporting the KP.LIB library.

LCD2L.LIB

For BL1200 series, BL1600 series, BL1700 series, CM7100 series,
CM7200 series, PK2100 series, PK2200 series, PK2600 (BL1700 side
only) series and Z104/ZISA series controllers. Two line character LCD
support functions.

LP.LIB

For BL1100 series, BL1200 series, BL1400 series, BL1500 series,
BL1600 series, BL1700 series, CM7100 series, CM7200 series, PK2100
series, PK2200 series, PK2400 series and PK2600 (BL1700 side only)
series controllers. Switch library uses controller�s BOARD_TYPE definition
to select the appropriate LP_*.LIB function library. Also contains
function help headers.

LP_16.LIB

For BL1100 series, BL1200 series, BL1600 series and PK2100 series
controllers. Nonnative (16-bit addressable port) character LCD interface
functions, #used by the LP.LIB library.

LP_8.LIB

For BL1700 series, CM7100 series, CM7200 series, PK2200 series and
PK2600 (BL1700 side only) series controllers. Native (8-bit addressable
port) character LCD interface functions, #used by the LP.LIB library.

Function Reference Dynamic C Libraries s 195

LP_BL145.LIB

For BL1400 series and BL1500 series controllers. Shared I/O character
LCD port interface functions, #used by the LP.LIB library.

MATH.LIB

Mathematical and trigonometric functions.

MISC.LIB

For BL1000 series and BL1100 series controllers. Miscellaneous driver
functions for Z-World OP6000 series, OP6100, OP6200 and OP6300
keypad/display modules.

MM.LIB

High level (abstracted) MODBus network master device functions.

MMZ.LIB

Low level (hardware specific) MODBus network master device Z0
(ASCI0) and Z1 (ASCI1) serial I/O functions supporting the MM.LIB
library.

MODEM232.LIB

Modem functions supporting the COM232.LIB, NETWORK.LIB,
S0232.LIB, S1232.LIB, SCC232.LIB, UART232.LIB, UART2.LIB,
UART3.LIB, Z0232.LIB and Z1232.LIB libraries.

MS.LIB

High level (abstracted) MODBus network slave device functions.

MSZ.LIB

Low level (hardware specific) MODBus network slave device Z0 (ASCI0)
and Z1 (ASCI1) serial I/O functions supporting the MS.LIB library.

NETWORK.LIB

Opto22 9th bit binary protocol master-slave networking via the Z180�s
built-in Z1 (ASCI1) serial port.

OP71HW.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Generic (i.e. both landscape and portrait mode) graphic and hardware
(backlight, contrast, I/O) functions. The application must #use the
appropriate one of the OP71L.LIB or OP71P.LIB libraries as well as any
font libraries that are required.

Dynamic C 32 v. 6.x196 s Dynamic C Libraries

OP71L.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Landscape mode LCD buffer transfer functions supporting the
OP71HW.LIB library.

OP71P.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Portrait mode LCD buffer transfer function supporting the OP71HW.LIB
library.

PBUS_LG.LIB

For BL1100 series controllers. Simulated PLCBus functions.

PBUS_TG.LIB

For BL1000 series controllers. Simulated PLCBus functions.

PK21XX.LIB

For PK2100 series controllers. Digital I/O, virtual I/O, DAC, ADC,
universal I/O, high gain input, beeper and keypad functions.

PK22XX.LIB

For PK2200 series controllers. Digital I/O, virtual I/O, beeper and keypad
functions.

PLC_EXP.LIB

For BL1200 series, BL1600 series, PK2100 series and PK2200 series
controllers. Native (8-bit addressable port) PLCBus functions.

PRPORT.LIB

For BL1000 series, BL1100 series and BL1300 series controllers. Func-
tions that implement a parallel port communication protocol between the
Z-World controller and a PC compatible printer or printer port.

PWM.LIB

Pulse width modulation functions. Uses Z180�s built-in timer 0.

RTK.LIB

Real time kernel (RTK) preemptive multitasking functions.

S0232.LIB

For BL1100 series controllers. Serial communication driver for the KIO�s
SIO port 0 (SIOA).

S1232.LIB

For BL1100 series controllers. Serial communication driver for the KIO�s
SIO port 1 (SIOB).

Function Reference Dynamic C Libraries s 197

SCC232.LIB

For BL1300 series controllers. Serial communication driver for the Zilog
85C30 Serial Communication Controller (SCC).

SERIAL.LIB

Z180 built-in Z0 (ASCI0), Z1 (ASCI1) as well as Z80-SIO (Serial I/O)
SIOA and SIOB serial communication functions.

SF1000_Z.LIB

For BL1100 series, BL1400 series, BL1500 series, BL1600 series,
BL1700 series, LP3100 series, PK2200 series and PK2600 (BL1700 side
only) series controllers. Driver functions for Z-World�s SF1000 series of
serial flash EPROM memory boards.

SRTK.LIB

Simplified real time kernel (SRTK) preemptive multitasking functions.

STDIO.LIB

�String� formatting functions, character and �string� I/O functions for
Dynamic C 32�s STDIO window.

STEP.LIB

For BL1200 series, BL1600 series, PK2100 series and PK2200 series
controllers. Native (8-bit addressable port) PLCBus XP8800 expansion
board stepper motor control functions.

STEP2.LIB

For BL1700 series and PK2600 (BL1700 side only) series controllers.
Nonnative (16-bit addressable port) PLCBus XP8800 expansion board
stepper motor control functions.

STRING.LIB

�String� manipulation functions.

SYS.LIB

General system functions.

TGIANT.LIB

For BL1000 series controllers only. ADC, power fail functions.

THERMADC.LIB

For BL1200 series, BL1600 series, PK2100 series, PK2200 series,
PK2300 series, PK2400 series and Z104/ZISA series controllers. Ther-
mistor via ADC temperature measurement functions.

Dynamic C 32 v. 6.x198 s Dynamic C Libraries

TIO.LIB

Device independent terminal I/O functions via the AASC.LIB library.

TL.LIB

For LP3100 series controllers. High level (abstracted) character (text)
LCD functions.

TL_LP31.LIB

For LP3100 series controllers. Low level (hardware specific) character
(text) LCD functions.

TOSHRTC.LIB

Toshiba 8250 RTC existence check function.

UART2.LIB

For BL1200 series, BL1600 series, BL1700 series, PK2100 series,
PK2200 series and PK2600 (BL1700 side only) series controllers.
Functions supporting an XP8700 UART PLCBus expansion board
addressed at 0x040010.

UART232.LIB

For BL1200 series, BL1600 series, BL1700 series, PK2100 series,
PK2200 series and PK2600 (BL1700 side only) series controllers.
Functions supporting an XP8700 UART PLCBus expansion board
addressed at 0x040018.

UART3.LIB

For BL1200 series, BL1600 series, BL1700 series, PK2100 series,
PK2200 series and PK2600 (BL1700 side only) series controllers.
Functions supporting an XP8700 UART PLCBus expansion board
addressed at 0x040008.

UIBOARD.LIB

For BL1200 series, BL1600 series, PK2100 series, PK2200 series and
Z104/ZISA series controllers. XP8200 universal digital I/O, virtual I/O,
analog comparator inputs and high current digital outputs PLCBus
expansion board functions.

UTIL.LIB

Low level support (utility) functions.

Function Reference Dynamic C Libraries s 199

V256X64.LIB

For BL1100 series, BL1200 series, BL1400 series, BL1500 series,
BL1600 series, BL1700 series, CM7100 series, CM7200 series, PK2100
series, PK2200 series, PK2400 series and PK2600 (BL1700 side only)
series controllers. Low level (hardware specific) Noretaki graphic VFD
primitive functions supporting the GLCD.LIB library. Root data and
xdata versions of 6 pixels wide by 8 pixels high fonts, ASCII characters
0x20 through 0x7E inclusive.

VDRIVER.LIB

Virtual driver, fastcall, timer and delay functions supporting the RTK.LIB
and SRTK.LIB libraries.

VWDOG.LIB

Virtual watchdog functions supporting the VDRIVER.LIB library.

WINTEK.LIB

For PK2240 controllers. Low level (hardware specific) graphic LCD
primitive functions supporting the GLCD.LIB library. Root data and
xdata versions of 6 pixels wide by 8 pixels high fonts, ASCII characters
0x20 through 0xFF inclusive.

XMEM.LIB

Logical (root)/physical memory information transfer, address translation
and conversion functions related to extended memory.

Z0232.LIB

Z180 built-in Z0 (ASCI0) serial communication driver functions.

Z104.LIB

For Z104/ZISA series controllers. VGA initialization, control, graphics
and text functions. Parallel printer, virtual I/O and PC104 memory and I/O
port access functions. Power fail and beeper functions.

Z1232.LIB

Z180 built-in Z1 (ASCI1) serial communication driver functions.

ZNPAKFMT.LIB

Low level ZNet functions supporting the AASCZN.LIB library.

Dynamic C 32 v. 6.x200 s Dynamic C Libraries

LIB\DEMO
These libraries, found in the LIB\DEMO subfolder of the main Dynamic C
32 installation folder, are required to compile certain factory installed
demonstration programs.

QVGADEMO.LIB

Bit mapped fonts, graphics and functions used in the SAMPLES\OP71XX
subfolder�s op71_demo.c and pk26_gedemo.c sample programs. These
are the factory installed demonstration programs for OP7100 series and
PK2600 (OP7100 side only) series controllers, respectively.

ZWLOGOS.LIB

Several sizes of Z-World�s bit mapped logo.

LIB\EASYSTRT
These libraries were, or are based upon libraries which were, originally
delivered with Z-World�s EasyStart controller kits. Found in the
LIB\EASYSTRT subfolder of the main Dynamic C 32 installation folder,
they contain some unique functionality and are slated for reorganization
and integration into the mainstream libraries.

EZIO.LIB

Board-independent unified I/O space driver functions.

EZIOBL17.LIB

For BL1700 series and PK2600 (BL1700 side only) series controllers.
Low level (hardware specific) functions supporting the EZIO.LIB library.

EZIOCMMN.LIB

Common definitions, high level (abstracted) ADC and board initialization
functions.

EZIODPWM.LIB

For BL1700 series, PK2300 series, PK2500 series and PK2600 (BL1700
side only) series controllers. DMA-driven pulse width modulation (PWM)
functions.

EZIOLGPL.LIB

For BL1100 series controllers. Simulated PLCBus functions.

EZIOLP31.LIB

For LP3100 series controllers. Low level (hardware specific) functions
supporting the EZIO.LIB library.

Function Reference Dynamic C Libraries s 201

EZIOMGPL.LIB

For BL1400 series and BL1500 series controllers. Simulated PLCBus
functions.

EZIOOP71.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Low level (hardware specific) functions supporting the EZIO.LIB library.

EZIOPBDV.LIB

Low level (hardware specific) PLCBus expansion board device drivers
supporting the EZIO.LIB library.

EZIOPK23.LIB

For PK2300 series controllers. Low level (hardware specific) functions
supporting the EZIO.LIB library.

EZIOPK24.LIB

For PK2400 series controllers. Low level (hardware specific) functions
supporting the EZIO.LIB library.

EZIOPK25.LIB

For PK2500 series controllers. Low level (hardware specific) functions
supporting the EZIO.LIB library.

EZIOPLC.LIB

For BL1200 series, BL1600 series, PK2100 series and PK2200 series
controllers. Native (8-bit addressable port) PLCBus functions.

EZIOPLC2.LIB

For BL1700 series and PK2600 (BL1700 side only) series controllers.
Nonnative (16-bit addressable port) PLCBus functions.

EZIOPPLC.LIB

For BL1000 series, BL1100 series, BL1400 series and BL1500 series
controllers. Simulated PLCBus functions.

EZIOTGPL.LIB

For BL1000 series controllers. Simulated PLCBus functions.

ZIO.LIB

Function help descriptions for ZIO routines.

ZIO1.LIB

Common call interface to ZIO local I/O.

Dynamic C 32 v. 6.x202 s Dynamic C Libraries

ZIO1DB.LIB

Common call interface to ZIO local debounced I/O.

ZIO1L.LIB

Common call interface to ZIO local debounced I/O and long range
networked remote I/O.

ZIO1S.LIB

Common call interface to ZIO local debounced I/O and short range
networked remote I/O.

ZIO2.LIB

Common call interface to ZIO local I/O and PLCBus devices.

ZIO2DB.LIB

Common call interface to ZIO local debounced I/O and PLCBus devices.

ZIO3L.LIB

Common call interface to ZIO long range networked remote I/O.

ZIO3S.LIB

Common call interface to ZIO short range networked remote I/O.

ZIONET.LIB

High level (abstracted) ZIO Z180 built-in Z1 (ASCI1) network functions.

LIB\FONT
These are bit mapped font libraries, found in the LIB\FONT subfolder of
the main Dynamic C 32 installation folder. They may be #used by
applications for controllers with a graphic LCD or by applications which
use an OP7100 series or PK2600 series (OP7100 side only) controller,
running the Graphics Engine sample program, as an operator interface.
Note that fonts displayed in applications which #use OP71HW.LIB and
either OP71L.LIB or OP71P.LIB (including the Graphics Engine) should
always be landscape mode.

12X16L.LIB

Landscape mode xdata font. 12 pixels wide by 16 pixels high, ASCII
characters 0x20 through 0x7F inclusive.

16X20L.LIB

Landscape mode xdata font. 16 pixels wide by 20 pixels high, ASCII
characters 0x20 through 0x7F inclusive.

Function Reference Dynamic C Libraries s 203

8X10L.LIB

Landscape mode xdata font. 8 pixels wide by 10 pixels high, ASCII
characters 0x20 through 0x7F inclusive.

ENGFNT2L.LIB

Landscape mode xdata fonts. 16 pixels wide by 32 pixels high, ASCII
characters 0x20 through 0x7F inclusive. 17 pixels wide by 35 pixels high,
ASCII characters 0x20 through 0x7F inclusive.

ENGFONT.LIB

Portrait mode fonts. Root data and xdata versions of 6 pixels wide by 8
pixels high, ASCII characters 0x20 through 0xFF inclusive. Root data and
xdata versions of 17 pixels wide by 35 pixels high, ASCII characters
0x20 through 0x7F inclusive.

ENGFONT2.LIB

Portrait mode xdata fonts. 16 pixels wide by 32 pixels high, ASCII
characters 0x20 through 0x7F inclusive. 17 pixels wide by 35 pixels high,
ASCII characters 0x20 through 0x7F inclusive.

ENGFONTL.LIB

Landscape mode fonts. Root data and xdata versions of 6 pixels wide by
8 pixels high, ASCII characters 0x20 through 0xFF inclusive. Root data
and xdata versions of 17 pixels wide by 35 pixels high, ASCII characters
0x20 through 0x7F inclusive.

LIB\OBSOLETE
These are deprecated libraries, deemed obsolete by Z-World, found in the
LIB\OBSOLETE subfolder of the main Dynamic C 32 installation folder.
Most of these obsolete libraries� functionality has been completely
replaced by, or moved into, the mainstream libraries. Where an obsolete
library still has content, those functions are retained to maintain backwards
compatibility with legacy applications. The use, in new applications, of
any functions found in these deprecated libraries is strongly discouraged.

IOE.LIB

For BL1100 series controllers. Empty library, replaced by the
IOEXPAND.LIB library.

LGIANT.LIB

For BL1100 series controllers. Empty library, replaced by the
BL11XX.LIB library.

Dynamic C 32 v. 6.x204 s Dynamic C Libraries

LITTLEG.LIB

For BL1600 series controllers. Empty library, replaced by the
BL16XX.LIB library.

LQVGA.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Low level (hardware specific) landscape mode graphic LCD primitive
functions supporting the GLCD.LIB library.

LSTAR.LIB

For PK2200 series controllers. Empty library, replaced by the
PK22XX.LIB library.

MICROG.LIB

For BL1400 series and BL1500 series controllers. Empty library, replaced
by the BL14_15.LIB library.

PQVGA.LIB

For OP7100 series and PK2600 (OP7100 side only) series controllers.
Low level (hardware specific) portrait mode graphic LCD primitive
functions supporting the GLCD.LIB library.

PS.LIB

For BL1300 series controllers. Empty library, replaced by the
BL13XX.LIB library.

RG.LIB

For PK2100 series controllers. Empty library, replaced by the
PK21XX.LIB library.

SCOREZ1.LIB

For CM7100 series and CM7200 core modules. Empty library, replaced
by the CM71_72.LIB library.

Function Reference Library Lists for Z-World Products s 205

APPENDIX B: LIBRARY

LISTS FOR Z-WORLD PRODUCTS

The libraries included with Dynamic C 32 are listed here according to the
Z180-based controller(s) they are intended for use with.

Dynamic C 32 v. 6.x206 s Library Lists for Z-World Products

ALL
AASC.LIB, AASCDIO.LIB, AASCDUM.LIB, AASCZ0.LIB,
AASCZ1.LIB, AASCZN.LIB, BIOS.LIB, CIRCBUF.LIB,
COSTATE.LIB, CTYPE.LIB, DC.HH, DEFAULT.H, DMA.LIB,
DRIVERS.LIB, EPSONRTC.LIB, EZIO.LIB, EZIOPBDV.LIB,
GESUPRT.LIB, MATH.LIB, MM.LIB, MMZ.LIB, MS.LIB, MSZ.LIB,
MODEM232.LIB, NETWORK.LIB, PWM.LIB, RTK.LIB, SERIAL.LIB,
SRTK.LIB, STDIO.LIB, STRING.LIB, SYS.LIB, TIO.LIB,
TOSHRTC.LIB, UTIL.LIB, VDRIVER.LIB, VWDOG.LIB, XMEM.LIB,
Z0232.LIB, Z1232.LIB, ZIO.LIB, ZIO1.LIB, ZIO1DB.LIB,
ZIO1L.LIB, ZIO1S.LIB, ZIO2.LIB, ZIO2DB.LIB, ZIO3L.LIB,
ZIO3S.LIB, ZIONET.LIB, ZNPAKFMT.LIB

BL1000
EZIOPPLC.LIB, EZIOTGPL.LIB, MISC.LIB, PBUS_TG.LIB,
PRPORT.LIB, TGIANT.LIB

BL1100
96IO.LIB, AASCSIOA.LIB, BL11XX.LIB, EZIOLGPL.LIB,
EZIOPPLC.LIB, IOEXPAND.LIB, KDI.LIB, LP.LIB, LP_8.LIB,
MISC.LIB, PBUS_LG.LIB, PRPORT.LIB, S0232.LIB, S1232.LIB,
SF1000_Z.LIB

BL1200
AASCUART.LIB, EZIOCMMN.LIB, EZIOPLC.LIB, KDI.LIB,
KDM.LIB, LCD2L.LIB, LP.LIB, LP_8.LIB, PLC_EXP.LIB,
STEP.LIB, THERMADC.LIB, UART2.LIB, UART232.LIB,
UART3.LIB, UIBOARD.LIB

BL1300
AASCSCC.LIB, BL13XX.LIB, PRPORT.LIB, SCC232.LIB

BL1400
BL14_15.LIB, EZIOMGPL.LIB, EZIOPPLC.LIB, KDI.LIB, LP.LIB,
LP_BL145.LIB, SF1000_Z.LIB

BL1500
BL14_15.LIB, EZIOMGPL.LIB, EZIOPPLC.LIB, KDI.LIB, KP.LIB,
KP_KDI.LIB, LP.LIB, LP_BL145.LIB, SF1000_Z.LIB

Function Reference Library Lists for Z-World Products s 207

BL1600
BL16XX.LIB, CPLC.LIB, EZIOCMMN.LIB, EZIOPLC.LIB, KDI.LIB,
KDM.LIB, LCD2L.LIB, LP.LIB, LP_8.LIB, PLC_EXP.LIB,
SF1000_Z.LIB, STEP.LIB, THERMADC.LIB, UART2.LIB,
UART232.LIB, UART3.LIB, UIBOARD.LIB

BL1700
AASCSCC.LIB, AASCURT2.LIB, EZIOBL17.LIB, EZIOCMMN.LIB,
EZIODPWM.LIB, EZIOPLC2.LIB, KDI.LIB, KDM.LIB, LCD2L.LIB,
LP.LIB, LP_16.LIB, SF1000_Z.LIB, STEP2.LIB, UART2.LIB,
UART232.LIB, UART3.LIB

CM7100
CM71_72.LIB, KDI.LIB, LCD2L.LIB, LP.LIB, LP_16.LIB

CM7200
CM71_72.LIB, KDI.LIB, LCD2L.LIB, LP.LIB, LP_16.LIB

LP3100
EZIOCMMN.LIB, EZIOLP31.LIB, KP.LIB, KP_LP31.LIB,
SF1000_Z.LIB, TL.LIB, TL_LP31.LIB

OP7100
12X16L.LIB, 16X20L.LIB, 8X10L.LIB, ENGFNT2L.LIB,
ENGFONT.LIB, ENGFONT2.LIB, ENGFONTL.LIB, EZIOOP71.LIB,
KP.LIB, KP_OP71.LIB, OP71HW.LIB, OP71L.LIB, OP71P.LIB,
QVGADEMO.LIB, ZWLOGOS.LIB

PK2100
5KEY.LIB, 5KEYEXTD.LIB, AASCUART.LIB, CPLC.LIB,
EZIOCMMN.LIB, EZIOPLC.LIB, FK.LIB, GATE_P.LIB, KDI.LIB,
KDM.LIB, LCD2L.LIB, LP.LIB, LP_8.LIB, PK21XX.LIB,
PLC_EXP.LIB, STEP.LIB, THERMADC.LIB, UART2.LIB,
UART232.LIB, UART3.LIB, UIBOARD.LIB

Dynamic C 32 v. 6.x208 s Library Lists for Z-World Products

PK2200
12X16L.LIB, 16X20L.LIB, 5KEY.LIB, 5KEYEXTD.LIB,
8X10L.LIB, AASCUART.LIB, CPLC.LIB, ENGFNT2L.LIB,
ENGFONT.LIB, ENGFONT2.LIB, ENGFONTL.LIB, EZIOCMMN.LIB,
EZIOPLC.LIB, FK.LIB, GATE_P.LIB, GLCD.LIB, KDI.LIB,
KDM.LIB, KP.LIB, KP_KDI.LIB, LCD2L.LIB, LP.LIB, LP_16.LIB,
PK22XX.LIB, PLC_EXP.LIB, SF1000_Z.LIB, STEP.LIB,
THERMADC.LIB, UART2.LIB, UART232.LIB, UART3.LIB,
UIBOARD.LIB, V256X64.LIB, WINTEK.LIB, ZWLOGOS.LIB

PK2300
EZIOCMMN.LIB, EZIODPWM.LIB, EZIOPK23.LIB, THERMADC.LIB

PK2400
12X16L.LIB, 16X20L.LIB, 8X10L.LIB, ENGFNT2L.LIB,
ENGFONT.LIB, ENGFONT2.LIB, ENGFONTL.LIB, EZIOCMMN.LIB,
EZIOPK24.LIB, GLCD.LIB, KDI.LIB, LP.LIB, LP_BL145.LIB,
KP.LIB, KP_KDI.LIB, THERMADC.LIB, WINTEK.LIB, ZWLOGOS.LIB

PK2500
EZIOCMMN.LIB, EZIODPWM.LIB, EZIOPK25.LIB

PK2600
12X16L.LIB, 16X20L.LIB, 8X10L.LIB, AASCSCC.LIB,
AASCURT2.LIB, ENGFNT2L.LIB, ENGFONT.LIB, ENGFONT2.LIB,
ENGFONTL.LIB, EZIOBL17.LIB, EZIOCMMN.LIB, EZIOOP71.LIB,
EZIOPLC2.LIB, KDI.LIB, KDM.LIB, KP.LIB, KP_OP71.LIB,
LCD2L.LIB, LP.LIB, LP_16.LIB, OP71HW.LIB, OP71L.LIB,
OP71P.LIB, QVGADEMO.LIB, SF1000_Z.LIB, STEP2.LIB,
UART2.LIB, UART232.LIB, UART3.LIB, ZWLOGOS.LIB

Z104/ZISA
COM232.LIB, CPLC.LIB, LCD2L.LIB, THERMADC.LIB,
UIBOARD.LIB, Z104.LIB

Function Reference Using AASC Libraries s 209

APPENDIX C: USING AASC LIBRARIES

The Abstract Application-Level Serial Communication (AASC) library
and its low-level support functions facilitate serial communication between
controllers and between a controller and another device such as a PC.

Dynamic C 32 v. 6.x210 s Using AASC Libraries

AASC Library Description
AASC libraries allow the programmer to create buffered character streams
that perform input/output to/from ports in the communication devices.
One principal library, AASC.LIB, contains all the functions required for
these tasks. Table C-1 lists the support libraries used with AASC.LIB.

The AASC libraries are as device-independent as possible. Programs
include only the AASC.LIB code and the code required for the communi-
cation devices used by the application (for example, AASCSCC.LIB). The
application handles different communication devices simply by creating
separate device channels.

Two hidden circular buffers for each AASC channel store incoming and
outgoing information. This allows the application to process incoming and
outgoing information in chunks not larger than the circular buffers. The
buffer size is specified in the application.

Table C-1. Drivers Used in AASC.LIB

Driver Library Description

AASCDIO.LIB Contains specific standard input/output (STDIO)
routines to support the AASC libraries.

AASCSCC.LIB Operates channels on the Zilog 85C30 Serial
Communication Controller used in BL1100 and
BL1700 controllers.

AASCUART.LIB Operates RS-232 port on the XP8700 PLCBus
expansion board supported by most Z-World
controllers.

AASCURT2.LIB Operates RS-232 port on the XP8700 PLCBus
expansion board on controllers (e.g., BL1700) with
16-bit PLCBus addressing.

AASCZ0.LIB Handles communication on the Z0 port of the Zilog
Z180 microprocessor used by Z-World controllers.
This port is usually connected to an RS-232 driver.

AASCZ1.LIB Handles communication on the Z1 port of the Zilog
Z180 microprocessor used by Z-World controllers.
This port is usually connected to an RS-485 driver.

AASCZN.LIB Operates ZNet-specific routines on the RS-485
network. All participating controllers must use the
same driver. One controller is designated the master
controller by defining the macro ZNMASTER to be
non-zero before invoking #use AASCZN.LIB.
This library uses the Z1 port of the Zilog Z180
microprocessor.

Function Reference Using AASC Libraries s 211

AASC support libraries implement custom device drivers and interrupt
service routines (ISRs) for each communication device. The application
only needs to initialize a channel and a local buffer, then make function
calls to check the status of the buffers, and read or write to/from the
buffers.

AASC Library Operation

AASC libraries read (receive), write (transmit), peek (search), provide
status, and handle errors. Figure C-1 shows the hierarchy of these AASC
functions. Note that the management of the circular buffer and the
hardware/serial ISR levels is hidden from the programmer. These two
reserved levels are contained in the support libraries listed in Table C-1.

Figure C-1. Hierarchy of AASC Functions

Read

Information is received either by block or by byte. Only one method is
needed, but the other can always be implemented. It is more efficient to
have both methods available. The block read function supports fixed-size
and variable-size reads. The application may read exactly n bytes, it may
read nothing at all, or it may read up to n bytes. In any case, the function
returns the number of bytes actually read.

Read operations may preempt write operations and vice versa,
but a read operation cannot preempt another read operation
and a write operation cannot preempt another write operation.

Application Program Level

Read
Buffer

Write
Buffer

aascReadChar() aascWriteChar()

Reserved Level

Circular Buffer
Management

User�s Buffer

Reserved Level
Hardware and Serial ISR Level

CTS

RTS

Rx

Tx

!

Dynamic C 32 v. 6.x212 s Using AASC Libraries

Write

The transmit (write) routines are mirror images of the read functions.
There is one function for byte writes and one for block writes. The block
write function can write part of a block, or it may write all or none of the
block. This is important for multi-threaded programs because writing all
or none prevents interleaving messages originating from different coopera-
tive threads.

Peek

A special function supported by the AASC libraries allows the application
to �peek� into the buffer without retrieving a byte. The peek function
aascPeek searches for a substring, for example, to identify the type of
incoming packet, without actually changing the contents of the buffer.
Another �peek� type function, aascScanTerm, can also search for a
particular character such as the terminating character of a packet.

Status and Errors

AASC libraries provide full status reports about the application. The
libraries can report the number of bytes used and the number of bytes still
free in the read or write buffers. Such information is useful for the applica-
tion to schedule message checking or dynamic transmission.

AASC libraries also report both hardware errors (for example, framing
error, parity error) and software errors (for example, buffer overrun).
Error conditions are not cleared automatically.

Library Use

Follow these six steps when using AASC libraries.

1. Identify the communication device (e.g., Z0, SCC Channel A, UART).

2. Allocate and initialize the channel with aascOpen().

3. Set up read (receive) and write (transmit) circular buffers (e.g., use
aascSetReadBuf()).

4. Carry out reads and writes (e.g., use aascWriteChar()).

5. Check status and handle errors (e.g., use aascGetError()).

6. When finished, close the channel with aascClose().

Function Reference Using AASC Libraries s 213

Sample Program

The following sample program provides an example of the use of the
AASC framework in asynchronous serial communication with a terminal.
The program demonstrates how to use port SCC Channel A as an AASC
device. Other sample programs may be found in the Dynamic C
SAMPLES\AASC subdirectory.

This program simply echoes text typed at an ascii terminal back to the
terminal. Connect a controller with a serial communication controller IC
through SCC Channel A to a PC or dumb terminal. If using a PC, Win-
dows terminal.exe can be used in ANSI Terminal Emulation with
Local Echo disabled and Flow Control set to None. If RTS/CTS hand-
shaking is enabled by setting the macro SHAKE to non-zero, enable Flow
Control" within terminal.exe to Hardware. This sample program
defaults to settings of No Parity, One Stop Bit, and Eight Data Bits. Set
your PC accordingly.

The following steps describe how this �echoing� process works.

1. The program accesses AASC.LIB and the appropriate AASC library
AASCSCC.LIB with #use.

2. Definitions are created for circular read and write buffers, and for the
user buffer workBuffer. A user buffer pointer, pworkBuffer, is
also created for this example.

3. The _GLOBAL_INIT() function chain is called to initialize the AASC
framework.

4. The function aascOpen() is used to create a channel to the DEV_SCC
device at 8N1.

5. The program checks to make sure that a controller with an SCC IC is
being used.

6. The transmitter and receiver for the channel chan are switched on by
aascTxSwitch() and by aascRxSwitch().

7. The program sets up the circular buffers with aascReadBuf and
aascSetWrite Buf.

8. If a character is read, the program enters another loop that sends the
characters in workBuffer back to the remote terminal. The function
will not return until all the characters are read from workBuffer and
sent back to the terminal. (For example, if two characters are in
workBuffer, the function will return only when both characters are
sent.)

Dynamic C 32 v. 6.x214 s Using AASC Libraries

SCCECHO.C

#use aasc.lib
#use aascscc.lib
#define BUFSIZE 684 // Size of circular buffer.
#define BAUDMULT 8 // multiples of 1200 bps
 // (8 × 1200 bps = 9600 bps).
#define SHAKE 0 // Set to 1 for RTS/CTS handshaking.
char readBuffer[BUFSIZE],writeBuffer[BUFSIZE];
char workBuffer[BUFSIZE],*pworkBuffer;
struct _Channel *aascChannel;
main(){
 _GLOBAL_INIT(); // This must be the first action
 // performed in main().

 // Open channel A of the SCC at 8N1

 aascChannel = aascOpen(DEV_SCC, SHAKE,
 SCC_A | SCC_1STOP | SCC_NOPARITY | SCC_8DATA |
 SCC_1200*BAUDMULT, NULL);
 if(aascChannel==NULL) {
 printf("SCC channel A not available.");
 return;
 }

 // Set up the circular buffers.

 aascSetReadBuf(aascChannel, readBuffer,
 sizeof(readBuffer));
 aascSetWriteBuf(aascChannel, writeBuffer,
 sizeof(writeBuffer));

 // Process the data transfer.

 while(1) {
 hitwd();

 // Perform data transfer.

 if(aascReadChar(aascChannel, workBuffer)) {
 while(!aascWriteChar(aascChannel,
 workBuffer[0])) {
 hitwd();
 }
 }
 }
}

Function Reference Using AASC Libraries s 215

XModem Transfer
The AASC libraries have extensive support for the XModem-CRC transfer
protocol. The AASC libraries allow the application to define callback
functions to read or write each block of an XModem packet. This means
there is no need to have the entire transfer block ready before transmission,
or to allocate space for the entire incoming block. Default callback func-
tions are provided for normal read-to-memory or write-from-memory op-
erations.

Library Use

1. Initialize the virtual driver.

2. Initialize the AASC framework with an appropriate device such as SCC
Channel A.

3. Initialize an XModem data buffer and the number of bytes to transfer
with aascXMWrInitPhy() or aascXMRdInitPhy() for physical
memory, or aascXMWrInitLog() or aascXMRdInitLog() for
logical memory.

4. Initialize XModem transfer with aascWriteXModem() or
aascReadXModem().

5. Perform the XModem transfer with aascWriteModem() or
aascReadXModem().

Dynamic C 32 v. 6.x216 s Using AASC Libraries

Sample Program

The following sample program provides an example of the use of an
AASC framework in XModem data transfer. The program sends one block
of 128 characters to a remote device using XModem-CRC. Configure the
remote device for 9600 bps at 8N1 without RTS/CTS flow control.

The virtual driver must be used since XModem incorporates costatements
to enable multitasking.

Note that any channel may be used by changing SCC Channel A to the
desired port. For example, to use port Z1 on the Z180, change
AASCSCC.LIB to AASCZ1.LIB, and change the parameters in
aascOpen() to reflect those for Z1.

The following steps describe the XModem transmission example.

1. The program accesses the appropriate libraries with #use.

2. Definitions are created for the circular read and write buffers, and for
the XModem buffer.

3. aascInit() is called to initialize the AASC framework.

4. A data string is created for transfer.

5. VdInit() is called to initialize the virtual driver.

6. aascOpen() is used to create a channel to the SCC_A device at 8N1
and 9600 bps.

7. The program checks for the presence of the SCC chip on the controller.

8. The circular buffers are then initialized by aascSetReadBuf() and by
aascSetWriteBuf(), and are made accessible to the AASC frame-
work.

9. XModem transmission is then performed by repeatedly calling
aascWriteXModem() with the initialization parameter set to 0.

10. XModem transmission finishes when aascWriteXModem() returns a 1.

Function Reference Using AASC Libraries s 217

XM_SEND.C

#use vdriver.lib
#use aasc.lib
#use aascscc.lib
#define BUFSIZE 1024 // Size of circular buffer.
#define BAUDMULT 8 // multiples of 1200 bps

// (8 × 1200 bps = 9600 bps).
struct _Channel *aascChannel;
char circBufIn[BUFSIZE], circBufOut[BUFSIZE];
char aascBuffer[BUFSIZE];

int aascInit(void);

void main(void){
// Initialize the AASC framework.
if(!aascInit()) exit(-1);
// Create some data to transfer.
strcpy(aascBuffer, "This is some xmodem data transfer…");
// Process the data transfer.
while(1) {

hitwd();
printf("Press any key to initiate Xmodem

Controller-to-Device transfer.\r");
hitwd();
if(kbhit()) {

getchar();
printf("\n\nXmodem transfer initiated...\n");
hitwd();
// Set up XModem transfer to logical memory.
aascXMWrInitLog((unsigned) aascBuffer, 128);
aascWriteXModem(aascChannel, 0, 1,

aascWrCallBackLg);
while(!aascWriteXModem(aascChannel, 0, 0,

aascWrCallBackLg)) hitwd();
printf("\n\nXmodem transfer finished...\n\n");
hitwd();

}
}

}

int aascInit(void){
// Initialize the virtual driver
VdInit();
// Open channel A of the SCC at 8N1
aascChannel = aascOpen(DEV_SCC, 0,

SCC_A | SCC_1STOP | SCC_NOPARITY | SCC_8DATA |
SCC_1200*BAUDMULT, NULL);

if(aascChannel==NULL) {
printf("SCC channel A not available.");
return;

}
// Set up the circular buffers.
aascSetReadBuf(aascChannel, circBufIn,

sizeof(circBufIn));
aascSetWriteBuf(aascChannel, circBufOut,

sizeof(circBufOut));
}

Dynamic C 32 v. 6.x218 s Using AASC Libraries

Function Reference Index s 219

INDEX

96IO.LIB 190, 191, 206
9th-bit binary communication 61

A

a24_32 37
a32_24 37
AASC....................................... 190

_Channel structure 46
CHANNEL 46

AASC libraries 46, 50, 210
buffer sizes 210
callback functions 215
description 210
operations 211

peek.................................. 212
read 211
write 212

sample programs 213
status and errors 212
use .. 212
XModem transfer 215

AASC.LIB .. 45, 46, 190, 191, 192,
198, 206, 210

aascClearError 50
aascClose 47
AASCDIO.LIB 190, 191, 206, 210
aascDLPReOpen 47
AASCDUM.LIB 190, 206
aascFlush 51
aascFlushRdBuf 51
aascFlushWrBuf 51
aascGetError 50
aascGetStatus 50
aascOpen 46, 47, 48
aascPeek 49, 212
aascPipe 50
aascPrintf 52
aascRdCBackCfmLg 53, 55
aascRdCBackCfmPh............ 53, 54
aascRdCBackLocLg 53, 54
aascRdCBackLocPh 53, 54

Symbols

__qe ... 24
__qen ... 24
_5key_12out 151
_5key_14out 152
_5key_bank1dig 152
_5key_bank2dig 152
_5key_boolean 147
_5key_dacout 152
_5key_date 148
_5key_diginput 152
_5key_float 146
_5key_init_item 150
_5key_integer 147
_5key_menu 150
_5key_server 150
_5key_setalarm 151
_5key_setfunc 151
_5key_setmenu 149, 150
_5key_setmsg 151
_5key_time 148
_5key_uinput 152
_5keygetdate 146
_5keygettime............................ 146
_5keysetdate 146
_5keysettime 146
_ALARM1 ... _ALARM4 151
_Channel structure 46
_flashInfo 35
_GLOBAL_INIT 14, 43, 84
_pow10 23
_prot_init 34
_prot_recover 34
12X16L.LIB 202, 207, 208
16X20L.LIB 202, 207, 208
5KEY.LIB 146, 190, 191, 207, 208
5KEYEXTD.LIB 151, 190, 191,

207, 208
84C90 190
85C30 190, 197
8X10L.LIB 203, 207, 208

Dynamic C 32 v. 6.x220 s Index

aascReadBlk 48
aascReadBufFree 51
aascReadBufLeft 50
aascReadChar 48
aascReadXModem 53, 54, 55
aascRxSwitch 48, 50
aascScanTerm 49, 212
AASCSCC.LIB 190, 191, 206, 207,

208, 210
aascSetReadBuf 47
aascSetStatus 50
aascSetWriteBuf 48
AASCSIOA.LIB 190, 206
aascTxSwitch 48, 50
AASCUART.LIB 191, 206, 207,

208, 210
AASCURT2.LIB 191, 207, 208,

210
aascVPrintf 52
aascWrCallBackLg 56, 57
aascWrCallBackPh 56
aascWriteBlk.............................. 49
aascWriteBufFree 51
aascWriteBufLeft 51
aascWriteChar 49
aascWriteXModem 56, 57
aascXMRdInitLog 53
aascXmRdInitLog 54
aascXMRdInitPhy 52
aascXmRdInitPhy 54
aascXMWrInitLog 55
aascXmWrInitLog 57
aascXMWrInitPhy 55
aascXmWrInitPhy 56
AASCZ0.LIB 191, 206, 210
AASCZ1.LIB 191, 206, 210
AASCZN.LIB .. 191, 199, 206, 210
abs .. 20
acos .. 20
acot .. 20
acsc .. 20
ad_st ... 174
ad20_cal 168
ad20_cal_n 170
ad20_mux 167

ad20_mux_n 169
ad20_rd 168
ad20_rd_n 170
ad20_rdy 168
ad20_rdy_n 169
ADD key 147, 148, 151, 152
address conversion 199
address translation 199
adelay_50ms 61
alarm functions

five-key system 151
ASCI0 191, 195, 199
ASCI1 191, 195, 199, 202
asec .. 20
asin ... 21
atan .. 21
atan2 .. 21
atof ... 28
atoi ... 28
atol ... 29

B

baud rate 61, 66, 67, 75, 79
Begin Reply Time Out 99
bfree ... 33
BIOS .. 191
BIOS.LIB 14, 191, 206
bit ... 15
BL1000 ... 190, 195, 196, 197, 201,

206
BL1100 ... 167, 180, 190, 191, 193,

194, 195, 196, 197, 199, 200,
201, 203, 206

setperiodic 160
BL11XX.LIB 191, 203, 206
BL1200 ... 191, 193, 194, 196, 197,

198, 199, 201, 206
BL1300 190, 191, 196, 204, 206
BL13XX.LIB 191, 204, 206
BL14_15.LIB 191, 204, 206
BL1400 ... 191, 193, 194, 195, 197,

199, 201, 204, 206
BL1500 ... 191, 193, 194, 195, 197,

199, 201, 204, 206

Function Reference Index s 221

BL1600 ... 191, 192, 193, 194, 196,
197, 198, 199, 201, 204, 207

BL16XX.LIB ... 191, 192, 204, 207
BL1700 ... 190, 191, 193, 194, 197,

198, 199, 200, 201, 207
BOARD_TYPE 192, 194
Boolean parameters

five-key system 147
buffer

receive60, 61, 66, 67, 69, 71, 76,
80
initialization 66, 67, 75, 79
reading 69, 71, 76, 80

transmit 67, 76, 80
initialization 66, 67, 75, 79
writing . 68, 69, 71, 75, 76, 79,
80

C

calloc .. 33
ceil ... 21
changing parameters with the five-

key system146, 147, 148, 151,
152

CHANNEL 46
character LCD. 191, 192, 194, 195,

198
check sum

computing 23
check_opto_command 60
checking for modem commands 69,

71, 77, 81
checksum 65
CIRCBUF.LIB . 191, 192, 206, 210
Clear_Gr_Screen 177
Clear_GrTxt_Screen 176
clink_init 64
clock .. 157
CM71_72.LIB . 191, 192, 204, 207
CM7100 .. 192, 193, 194, 199, 204,

207
CM7200 .. 192, 193, 194, 199, 204,

207
CoBegin 18

CoData 18, 19
COM1 192
COM2 192
COM232.LIB... 191, 192, 195, 208
comp48 41
cooperative multitasking .. 192, 193
CoPause 19
CoReset 18
CoResume 19
cos .. 21
cosh .. 21
COSTATE.LIB 192, 206
costatements 192, 193
CPLC.LIB 153, 191, 192, 207, 208
CRC 60, 61

computing 23
CSIO .. 60
CTS 66, 67, 75, 76, 79
CTS/RTS

XP8700 66, 67, 79
CTYPE.LIB 192, 206
cyclic redundancy check 60, 61

computing 23

D

DAC output 152
DAC_Board_Addr 182, 186
DAC_Off 183, 187
DAC_On 183, 187
data types

five-key system 146, 147, 148
date and time 156
date parameters

five-key system 148
DC.HH 192, 206
deciphering modem commands . 60
DEFAULT.H 192, 206
Define_Cursor 177
deg ... 21
DelayMs............................. 96, 159
DelaySec 159
DelayTicks 159
DELETE key ... 147, 148, 151, 152
deprecated libraries 203

Dynamic C 32 v. 6.x222 s Index

Dget_modem_command 60
DGL96 190
di .. 15
digital input 152
Dinit_s0 75
Dinit_sca 66
Dinit_scb 67
Dinit_z0 79
direct memory access 192
disabling interrupts 15, 60

DMA channels 60
Z180 serial channels 0 and 1 . 60

disabling the RS-485 driver 62
Dkill_s0 77
Dkill_z0 80
DMA 192, 200
DMA channels

disabling interrupts 60
DMA.LIB 161, 192, 206
DMA0 160
DMA0_IOM 164
DMA0_MIO 163
DMA0_MM 163
DMA0_Off 162
DMA0_Rx 162
DMA0_SerialInit 162
DMA0_Tx 162
DMA0Count 161
DMA1 160
DMA1_IOM 164
DMA1_MIO 164
DMA1_Off 162
DMA1Count 161
dmacopy 157
DMASnapShot 160, 161
doint ... 156
doprnt 24, 26
doreti .. 63
downloading data 69, 77, 81
Draw_Axis 178
Draw_Line 177
Draw_Poly 177
Dread_s0 76
Dread_s01ch 76

Dread_sca 69
Dread_sca1ch 69
Dread_scb 71
Dread_scb1ch 71
Dread_z0 80
Dread_z01ch 80
Dreset_s0rbuf 76
Dreset_s0tbuf 76
Dreset_scarbuf 66
Dreset_scatbuf 67
Dreset_scbrbuf 67
Dreset_scbtbuf 67
Dreset_z0rbuf 80
Dreset_z0tbuf 80
Drestart_s0modem 77
Drestart_scamodem 68
Drestart_scbmodem 68
Drestart_z0modem..................... 81
driver

virtual 151, 152
DRIVERS.LIB 154, 192, 206
Ds0_circ_int 77
Ds0modem_chk 77
Ds0send_prompt 75
Dscamodem_chk........................ 69
Dscasend_prompt 68
Dscbmodem_chk 71
Dscbsend_prompt 71
Dwrite_s0 76
Dwrite_s01ch 76
Dwrite_sca 68
Dwrite_sca1ch 69
Dwrite_scb 71
Dwrite_scb1ch 71
Dwrite_z0 80
Dwrite_z01ch............................. 80
Dxmodem_s0down 77
Dxmodem_s0up 77
Dxmodem_scadown 69
Dxmodem_scaup 70
Dxmodem_scbdown 72
Dxmodem_scbup 72
Dxmodem_z0down 81
Dxmodem_z0up 82

Function Reference Index s 223

Dynamic C
list of function libraries 191, 192,

193, 194
Dz0_circ_int 81
Dz0modem_chk 81
Dz0send_prompt 79

E

echo option 66, 67, 75, 79
ee_rd .. 15
ee_wr ... 15
eei_rd 159
eei_wr 159
EEPROM 192
ei .. 15
enable interrupts 15
End Reply Time Out 99
ENGFNT2L.LIB 203, 207, 208
ENGFONT.LIB 203, 207, 208
ENGFONT2.LIB 203, 207, 208
ENGFONTL.LIB 203, 207, 208
Epson 72421 RTC 193
EPSONRTC.LIB 193, 206
exit ... 18
exp ... 21
exp_init 167
exp_init_n 168
extended five-key service functions

151, 152
extended memory 199
EZIO.LIB 192, 200, 201, 206
EZIOBL17.LIB 192, 200, 207, 208
EZIOCMMN.LIB ... 192, 200, 206,

207, 208
EZIODPWM.LIB ... 192, 200, 207,

208
EZIOLGPL.LIB 200, 206
EZIOLP31.LIB 192, 200, 207
EZIOMGPL.LIB...... 192, 201, 206
EZIOOP71.LIB 192, 201, 207, 208
EZIOPBDV.LIB 192, 201, 206
EZIOPK23.LIB 192, 201, 208
EZIOPK24.LIB 192, 201, 208
EZIOPK25.LIB 192, 201, 208

EZIOPLC.LIB 192, 201, 206, 207,
208

EZIOPLC2.LIB 192, 201, 207, 208
EZIOPPLC.LIB 201, 206
EZIOTGPL.LIB 201, 206

F

F1, F2, F3, F4 151
fabs .. 21
fastblock 65
fastcall .. 44
five-key programming 146, 147,

148, 149, 150, 151, 152
five-key system 146, 147, 148, 149,

150, 151, 152, 190, 193
ADD key 147, 148, 151, 152
alarm functions 151
Boolean parameters 147
changing parameters ... 146, 147,

148, 151, 152
data types 146, 147, 148
date parameters 148
DELETE key 147, 148, 151, 152
extended service functions .. 151,

152
float parameters 146
function keys 151
integer parameters 147
ITEM key 147, 148, 151, 152
MENU key ... 147, 148, 151, 152
monitoring parameters 146, 147,

148, 151, 152
parameter list 150

adding items 149
parameters

Boolean 147
date 148
float 146
integer 147
time 148

service functions 151
string messages 151
time parameters 148

FK.LIB 165, 192, 193, 207, 208

Dynamic C 32 v. 6.x224 s Index

fk_helpmsg 165
fk_item_alpha 165
fk_item_enum 166
fk_item_int 165, 166
fk_item_setdate 166
fk_item_settime 166
fk_item_uint 166
fk_monitorkeypad 165
FKSAMP.C 165
flash ... 192

serial 197
float parameters

five-key system 146
floating-point functions 20
floor ... 21
fmod ... 22
free ... 33
frexp ... 22
ftoa ... 26
function chain 14
function keys

five-key system 151
function libraries

list 191, 192, 193, 194

G

GATE_P.LIB 193, 207, 208
GE_PORTA 116
GE_PORTB 116
GE_PORTZ0 116
GE_PORTZ1 116
GE_USE_PORTA 116
GE_USE_PORTB 116
GE_USE_PORTZ0 116
GE_USE_PORTZ1 116
GEBackLight 132
GEBackLightWF 132
GEBeep.................................... 133
GEBeepWF.............................. 133
GEBeginMacro 123
GEBeginMacroWF 123
GEBlankRegion 127
GEBlankRegionWF 127
GEClearBuffer 120

GEClearBufferWF 120
GEClearScreen 124
GEClearScreenWF 124
GEDefineButton 133, 134
GEDefineButtonWF 133
GEDelayPlay 141
GEDelayPlayWF 141
GEDeleteBitMap 120
GEDeleteBitMapWF 120
GEDeleteButton 134
GEDeleteButtonWF................. 134
GEDeleteFont 121
GEDeleteFontWF 121
GEDeleteMacro 140
GEDeleteMacroWF 140
GEDisableBtnArea 143
GEDisableBtnArea(................. 143
GEDisableBtnAreaWF 143
GEDisableButton 135
GEDisableButtonWF 135
GEDisableCells 122
GEDisableCellsWF 122
GEDisplayButton 134, 135
GEDisplayButtonQ 141, 142
GEDisplayButtonQWF 141
GEDisplayButtonWF 134
GEEnableBtnArea 143
GEEnableBtnAreaWF 143
GEEnableButton 136
GEEnableButtonWF 136
GEEnableCells 123
GEEnableCellsWF................... 123
GEEndMacro 124
GEEndMacroWF 124
GEGetPckt 142
GEGetPcktWF 142
GEHardReset 117
GEHardResetWF 117
GEInit 117
GEInvertRegion 128
GEInvertRegionWF 128
GEKeyBoardMacro 139
GEKeyBoardMacroWF 139
GELinkBtnToMac 136, 137
GELinkBtnToMacWF 136

Function Reference Index s 225

GELinkCellToMac 136
GELinkCellToMacWF 136
GELoadBitMap 121
GELoadBitMapWF 121
GELoadFont 122
GELoadFontWF 122
GELockBuffer 142
GELockBufferWF 142
GELoopMacro 141
GELoopMacroWF 141
GEPlayMacro 140
GEPlayMacroWF 140
GEPutBitMap 130
GEPutBitMapWF 130
GEPutCircle 125, 126
GEPutCircleWF 125
GEPutLine 125
GEPutPixel 125
GEPutPixelWF 125
GEPutPolygon 127
GEPutPolygonWF 127
GEPutRectangle 126
GEPutRectangleWF................. 126
GEPutText 131
GEPutTextWF 131
GERemoveButton 135
GERemoveButtonWF 135
GERestoreRegion 129
GERestoreRegionWF 129
GEScrollRegion 130
GEScrollRegionWF 130
GESendChar 119
GESendCharWF 119
GESendFloat 119
GESendFloatWF 119
GESendLastPush 118
GESendLastPushWF 118
GESendLong 118, 119
GESendLongWF 118
GESendStatus 117
GESendStatusWF 117
GESendString 118
GESendStringWF 118
GESendTod 120
GESendTodWF........................ 120

GESetBrushType 124
GESetBrushTypeWF 124
GESetCellActive...................... 133
GESetCellActiveWF................ 133
GESetChar 138
GESetCharWF 138
GESetContrast 132
GESetContrastWF 132
GESetFloat 138
GESetFloatWF 138
GESetFont 131
GESetFontWF 131
GESetLong 137, 138
GESetLongWF 137
GESetString 137
GESetStringWF 137
GESetTextDir 132
GESetTextDirWF 132
GESetTod 138, 139
GESetTodWF 138
GEShiftMacro 140
GEShiftMacroWF 140
GEStopMacro 137
GEStopMacroWF 137
GEStoreRegion 128, 129
GEStoreRegionWF 128
GESuperReset 123
GESuperResetWF 123
GESUPRT.LIB 115, 116, 193, 206
get_def_na 169
get_na 169
getchar 24
getcrc ... 23
gets ... 23
gettimer 40
getvect .. 34
GLCD.LIB 192, 193, 199, 204, 208
GLOBAL_INIT 153
Graph_Init 176
graphic LCD 193, 199, 204
graphic VFD 199
Graphics Engine 116, 193
grp_home_area 176
gtoa .. 26
gtoan .. 26

Dynamic C 32 v. 6.x226 s Index

H

Hayes compatible modem 60
Hayes Smart Modem 60
high-current output 151, 152
High-Resolution Timer 93
hitwd .. 17
hltoa ... 28
hrtInit ... 93
hrtRead 93
htoa .. 28
hv_dis 155
hv_enb 155
hv_wr 155

I

IBIT ... 16
iff ... 15, 34
Init_DAC 183, 186
init_kernel 42
init_srtkernel 42
init_timer 161
init_timer0 157
init_timer1 157
initialization

receive buffer 66, 67, 75, 79
transmit buffer 66, 67, 75, 79
Z180 Port 1 61

initiating
serial transmission68, 69, 71, 76,

80
input

digital 152
RS-232 69, 71, 76, 80
universal 152

int GEPutLineWF 125
int_timer1 158
INT1 .. 60
INT2 .. 60
integer parameters

five-key system 147
interrupt service routines 77, 81
interrupts

disabling 60

intoff .. 156
inton ... 156
intrmode 17
intrmode_1 17
intrmode_2 17
IOE.LIB 192, 203
IOEXPAND.LIB 167, 193, 203,

206
IRES .. 17
isalnum 20
isalpha .. 20
iscntrl ... 20
isCoDone 19
isCoRunning 19
isdigit ... 19
ISET ... 16
isgraph 20
islower 19
isprint ... 19
ispunct .. 19
isspace .. 19
isupper 19
isxdigit 19
IsZ80180 35
ITEM key 147, 148, 151, 152
itoa ... 28

K

k_lock .. 40
k_unlock 40
kbhit ... 18
KDI.LIB 193, 206, 207, 208
KDM.LIB 170, 193, 206, 207, 208
kernel

real-time 150
KIO 190, 196
KP.LIB 194, 206, 207, 208
KP_KDI.LIB 194, 206, 208
KP_LP31.LIB 194, 207
KP_OP71.LIB 194, 207, 208

L

labs ... 22
landscape mode LCD............... 196
Latch_DAC1 183, 186

Function Reference Index s 227

Latch_DAC2 183, 186
lc_cgram 179
lc_char 178
lc_cmd 178
lc_ctrl 178
lc_init 178
lc_init_keypad 153
lc_kxget 153
lc_kxinit 153
lc_loadtab 153
lc_nl ... 179
lc_pos 179
lc_printf 179
lc_putc 179
lc_rd ... 178
lc_setbeep 153
lc_settab 153
lc_stdcg 179
lc_wait 178
lc_wr .. 178
LCD

character191, 192, 194, 195, 198
graphic 193, 199, 204
landscape mode 196
portrait mode 196

lcd_clr_line 155
lcd_erase 179
lcd_erase_line 179
lcd_init 155
lcd_init_printf 179
lcd_printf 180
lcd_putc 179
lcd_resscrn 180
lcd_savscrn 180
lcd_server 146
lcd_wait 155
LCD2L.LIB 178, 193, 194, 206,

207, 208
ldexp .. 22
lg_char 175
lg_init 175
lg_init_keypad 171
lg_nl ... 175
lg_pos 175
lg_printf 175

lg_putc 175
lg_rd ... 176
lg_wr .. 176
lg_wr03 176
LGIANT.LIB 203
LIB ... 190
lib.dir 192
LIB\DEMO 200
LIB\EASYSTRT 200
LIB\FONT 202
LIB\OBSOLETE 203
libraries

deprecated 203
mainstream 190
obsolete 203

LITTLEG.LIB 204
lk_cgram 173
lk_char 172
lk_chkdat 174
lk_cmd 172
lk_ctrl 172
lk_getknum 175
lk_init 172
lk_init_keypad 171
lk_int_timer1 171
lk_keyw.................................... 171
lk_kxget 171
lk_kxinit 171
lk_lecho 175
lk_led 171
lk_loadtab 171
lk_nl ... 172
lk_pos 172
lk_printf 172
lk_putc 172
lk_rd ... 172
lk_run_menu 173
lk_secho 174
lk_setbeep 171
lk_setdate 174
lk_settab 171
lk_settime 174
lk_showdate 174
lk_showtime 174
lk_stdcg 173

Dynamic C 32 v. 6.x228 s Index

lk_tdelay 171
lk_viewl 175
lk_wait 172
lk_wr .. 172
log .. 22
log10 .. 22
logical memory 199
longjmp 32
LP.LIB 194, 195, 206, 207, 208
LP_16.LIB 194, 207, 208
LP_8.LIB 194, 206, 207
LP_BL145.LIB 195, 206, 208
LP3100 194, 197, 198, 200, 207
lprintf 155
lputc ... 155
lputs ... 156
LQVGA.LIB 193, 204
LSTAR.LIB 204
ltoa ... 26
ltoan ... 26

M

mainstream libraries 190
malloc .. 32
Map_Bit_Pattern 177
master message format 60
master-slave networking 195
master-slave serial communication

60
math functions 20
MATH.LIB ... 18, 19, 20, 193, 195,

206
memchr 30
memcmp 31
memcpy 30
memory

extended
and uploaded data . 70, 72, 77,
82

memset 29
MENU key 147, 148, 151, 152
MICROG.LIB 204
MISC.LIB 193, 195, 206

mk_st 174
mktime 157
mktm .. 156
MM.LIB............... 96, 98, 195, 206
mmaInit 98
mmaZ0 97
mmaZ1 97
mmCRC 98
mmExec 98
mmFetchCommCnt 107
mmForceCoils 98
mmInput 98
mmLRC 98
mmRdExcStat 108
mmRecv 98, 108
mmrInit 98, 99
mmrZ0 97
mmrZ1 97
mmSend 98, 108
MMZ.LIB 96, 98, 195, 206
Modbus

ASCII protocol 83, 95
RTU protocol 83, 95

MODBus master 195
Modbus Master

Advanced Procedure 98
Command Functions 98, 100
Command Return Values 110
Getting Started 96
Standard Procedure 96
Supported Commands 109
Timeouts 99
Unsupported Commands 109

Modbus Registers 88, 99
MODBus slave 195
Modbus Slave

Advanced Procedure 87
Command Handlers 87, 89
Getting Started 84
High-Resolution Timer 93
Serial Interface 91
Standard Procedure 84
Supported Commands 93
Unsupported Commands 94

Function Reference Index s 229

modem
commands

deciphering 60
communication60, 66, 67, 75, 79

checking for commands69, 71,
77, 81
restarting 77, 81

MODEM232.LIB60, 193, 195, 206
modf ... 22
Modicon, Inc. 83, 95

website 94, 114
monitoring parameters with the

five-key system 146, 147, 148,
151, 152

MS.LIB 84, 87, 195, 206
MS_TIMER 92
msaInit 91
msaZ0 .. 85
msaZ1 .. 85
msDone 89
msError 92
msIn 87, 89
msInput 90
msOut ... 87
msOutRd 90
msOutWr 90
msRead 87, 90, 91
msRecv 92
msrInit .. 91
msRun .. 86
msrZ0 ... 85
msrZ1 ... 85
msSend 92
msStart 89
msTimer 92
msWrite 91
MSZ.LIB.............. 84, 93, 195, 206
multitasking

cooperative 192, 193
preemptive 196, 197

mux_ch 167
mux_ch_n 169

N

NETWORK.LIB 60, 193, 195, 206
networking

master-slave 195
nmiint 160
NO_FUNCTION 151
number of bits 66, 67, 75, 79

O

obsolete libraries 203
off_485 161
on_485 161
op_init_z1 61
op_kill_z1 62
OP6000 193, 195
OP6100 193, 195
OP6200 193, 195
OP6300 193, 195
op71_demo.c 200
OP7100 ... 193, 194, 195, 196, 200,

201, 202, 204, 207
op7100ge.c 116
OP71HW.LIB 195, 207, 208
OP71L.LIB 195, 196, 207, 208
OP71P.LIB 195, 196, 207, 208
opto 22 binary protocol . 60, 61, 62
Opto22 195
outchrs 28
outport .. 15
outportn 157
output

DAC 152
high-current 151, 152
relay 151, 152
RS-232 68, 69, 71, 75, 76, 79, 80
RS-485 61

outstr .. 28

Dynamic C 32 v. 6.x230 s Index

P

pack .. 33
parameters

five-key system
Boolean 147
date 148
float 146
integer 147
time 148

parity 66, 67, 75, 79
PBUS_LG.LIB . 180, 193, 196, 206
PBUS_TG.LIB . 184, 193, 196, 206
PBus12_Addr 181, 184
PBus4_Read0 181, 184
PBus4_Read1 181, 185
PBus4_ReadSp 181, 185
PBus4_Write 181, 184
pflt .. 27
phex ... 27
phy_adr 70, 72, 77, 82, 157
physical memory 199
pint ... 26
pioint .. 65
piolatch 63
PK2100 ... 190, 191, 192, 193, 194,

196, 197, 198, 199, 201, 204,
207

PK21XX.LIB ... 193, 196, 204, 207
PK2200 ... 190, 191, 192, 193, 194,

196, 197, 198, 199, 201, 204,
208

PK2240 193, 199
PK22XX.LIB ... 193, 196, 204, 208
PK2300 197, 200, 201, 208
PK2400 ... 193, 194, 197, 199, 201,

208
PK2500 200, 201, 208
pk26_gedemo.c 200
PK2600 ... 190, 191, 193, 194, 195,

196, 197, 198, 199, 200, 201,
202, 204, 208

PLC_EXP.LIB 193, 196, 206, 207,
208

PLCBus ... 191, 192, 197, 198, 201,
202

simulated 191, 196, 200, 201
plcbus_isr 159
plcport 154
plhex .. 27
plink_getc0 63
plink_init0 63
plink_intr0 64
plink_rdy0 63
plinki0 .. 64
plint .. 26
Poll_PBus_Node 184, 187
poly .. 22
portrait mode LCD................... 196
pow .. 22
pow10 .. 23
powerdown 160
powerlo 18
powerup 160
PQVGA.LIB 193, 204
preemptive multitasking ... 196, 197
printf 24, 25

field codes 25
programming

five-key 146, 147, 148, 149, 150,
151, 152

PRPORT.LIB 62, 193, 196, 206
prsend0 62
prsend0_init 62
prsend1 62
prsend1_init 62
PRT 60, 192
PS.LIB 204
pulse width modulation 200
putchar 24
puts .. 24
PWM 200
PWM.LIB 193, 196, 206

Q

qsort ... 33
QVGADEMO.LIB .. 200, 207, 208

Function Reference Index s 231

R

rad .. 21
read12data 154
read24data0 158
read24data1 158
read4data 154
read8data0 158
read8data1 158
readireg 34
real time kernel 196

simplified 197
real-time kernel 150
realloc .. 33
receive buffer60, 61, 66, 67, 69, 71,

76, 80
initialization 66, 67, 75, 79
reading 69, 71, 76, 80

relay output 151, 152
Relay_Board_Addr 181, 185
reload_vec 34
relocate_int1 159
replyOpto22 61
request .. 40
RES .. 16
res .. 16
Reset_PBus 183, 187
Reset_PBus_Wait 184, 187
resetZ180int 60
restarting modem communication

77, 81
restore_shadow 158
RG.LIB 204
rkernel .. 41
root memory............................. 199
root2xmem 36
RS-232 193
RS-232 serial communication ... 68,

69, 71, 75, 76, 79, 80
CTS/RTS control 66, 67, 79
serial input 69, 71, 76, 80
serial output .. 68, 69, 71, 75, 76,

79, 80
RS-485 192

RS-485 serial communication61, 62
disabling serial driver 62
serial output 61

RTC
Epson 72421 193
Toshiba 8250 198

RTK ... 196
RTK.LIB 40, 193, 196, 199, 206
RTS 66, 67, 75, 76, 79
run_after 40
run_at ... 40
run_cancel 40
run_every 40, 41
run_timer 41
RUNKERNEL 42, 43
runwatch 18

S

S0232.LIB . 74, 193, 195, 196, 206
s0binaryreset 74
s0binaryset 74
s0modemset 75
s0modemstat 75
S1232.LIB . 78, 193, 195, 196, 206
sample program

op71_demo.c 200
pk26_gedemo.c 200

sample programs
echo transmission 213
five-key system 165
XModem data transfer 216

save_shadow 158
scabinaryreset 68
scabinaryset 68
scamodemset 68
scamodemstat 68
scbbinaryreset 70
scbbinaryset 70
scbmodemset 70
scbmodemstat 70
SCC 190, 191, 197
SCC port A........................... 66, 67
SCC port B 67

Dynamic C 32 v. 6.x232 s Index

SCC232.LIB66, 194, 195, 197, 206
sccint .. 68
SCOREZ1.LIB 204
sendfast 65
sendOp22 60
ser_init_s0 74
ser_init_s1 74
ser_init_z0 73
ser_init_z1 72
ser_kill_s0 74
ser_kill_s1 74
ser_kill_z0 74
ser_kill_z1 73
ser_rec_s0 74
ser_rec_s1 74
ser_rec_z0 74
ser_rec_z1 73
ser_send_s0 74
ser_send_s1 74
ser_send_z0 73
ser_send_z1 73
serial communication 61

master-slave 60
RS-232 68, 69, 71, 75, 76, 79, 80
RS-485 61, 62

master-slave 60
Serial Communication Controller

190, 191, 197
serial flash 197
serial transmission

initiating 68, 69, 71, 76, 80
terminating 67, 76, 80

SERIAL.LIB 72, 194, 197, 206
service functions

five-key system 151, 152
SET .. 16
set ... 16
Set_Auto_Mode 177
Set_DAC1 183, 187
Set_DAC2 183, 187
set_def_na 169
Set_Display_Mode 175
Set_Overlap_Mode 177
Set_PBus_Relay 182, 185

Set_Pixel 177
Set_Pointer 176
set12adr 154
set16adr 154
set24adr 159
set4adr 154
set8adr 159
setbeep 180
setireg .. 34
setjmp .. 32
setperiodic 160

BL1100 160
setvect .. 34
setwaits 63
SF1000 197
SF1000_Z.LIB . 197, 206, 207, 208
simplified real time kernel 197
simulated PLCBus .. 191, 196, 200,

201
sin .. 23
Sin_Wave 178
sinh ... 23
SIO port 0 75, 76, 77
SIOA 190, 196, 197
SIOB 196, 197
sizeof 146, 147, 148, 149
slave response format 61
sleep ... 161
snprintf 25
sprintf 24, 25
sqrt ... 23
SRTK 197
SRTK.LIB .. 42, 194, 197, 199, 206
srtk_hightask 42
srtk_lowtask 42
st_hour 174
st_min 174
st_sec 174
sta01 ... 176
sta03 ... 176
Stall .. 176
STDIO.LIB 194, 197, 206
STEP.LIB . 194, 197, 206, 207, 208
STEP2.LIB 194, 197, 207, 208

Function Reference Index s 233

stepper motor control 197
stop bits 66, 67, 75, 79
strcat .. 29
strchr .. 29
strcmp .. 29
strcpy ... 29
strcspn .. 30
string messages in the five-key

system 151
STRING.LIB 28, 194, 197, 206
strlen .. 30
strncat .. 29
strncmp 29
strncpy 29
strpbrk .. 30
strrchr ... 30
strspn .. 30
strstr ... 31
strtod .. 30
strtok .. 31
strtol ... 31
struct tm 156
suspend 41
swap ... 33
SYS.LIB 32, 35, 194, 197, 206
sysChk2ndFlash 35
sysclock 18
sysDI .. 35
sysIsFlash 35
sysRestoreI 35
sysRoot2FXmem 35

T

tan .. 23
tanh .. 23
tdelay 158
Text_Addr 177
text_home_area 176
TGIANT.LIB 197, 206
THERMADC.LIB .. 197, 206, 207,

208
time and date 156

time parameters
five-key system 148

Timeouts 99
timer0_isr 157
timers

PRT .. 60
TIO.LIB 198, 206
TL.LIB 198, 207
TL_LP31.LIB 198, 207
tm ... 156
tm_rd .. 156
tm_wr 156
tolower 19
Toshiba 8250 RTC 198
TOSHRTC.LIB 198, 206
toupper 19
transmission

initiating 68, 69, 71, 76, 80
transmit buffer 67, 76, 80

initialization 66, 67, 75, 79
writing 68, 69, 71, 75, 76, 79, 80

trigonometric functions 20

U

UART 191, 198
UART2.LIB 194, 195, 198, 206,

207, 208
UART232.LIB 194, 195, 198, 206,

207, 208
UART3.LIB 195, 198, 206, 207,

208
UIBOARD.LIB194, 198, 206, 207,

208
universal input 152
up_beep 153
up_beepvol 153
up_lastkey 153
up_synctimer 154
uplc_init 84, 92, 96, 153
uploading data 70, 72, 77, 82
UTIL.LIB......................... 198, 206
utoa .. 28

Dynamic C 32 v. 6.x234 s Index

V

V256X64.LIB 199, 208
VD_FASTCALL 43, 44
vd_fastcall 43, 44
vd_initquickloop 43, 44
VdAdjClk 43
VdGetFreeWd............................ 44
VdInit 43, 84, 92, 96
VdReleaseWd 44
VDRIVER.LIB .. 43, 194, 199, 206
VdWdogHit 44
VFD

graphic 199
virtual driver 17, 151, 152
virtual I/O driver 151
VWDOG.LIB 44, 199, 206

W

waitfor .. 98
wderror 17
WINTEK.LIB 199, 208
Write_DAC1 182, 186
Write_DAC2 182, 186
write12data 155
write24data 158
write4data 154
write8data 158

X

x_makadr 37
xdata 70, 72, 77, 82, 199, 202, 203
xgetchar 36
xgetfloat 36
xgetint .. 36
xgetlong 36
xmadr ... 36
XMEM.LIB 36, 194, 199, 206
xmem2root 36
XModem data transfer

packet structure 52
protocol 69, 70, 72, 77, 81, 82
sample program 216

XP8200 198
XP8700 191, 198
XP8800 197
xputchar 36
xputfloat 36
xputint .. 36
xputlong 36
xstrlen .. 37

Z

Z0 191, 195, 199
Z0232.LIB .. 78, 98, 194, 195, 199,

206
z0binaryreset 78
z0binaryset 78
z0modemset 79
z0modemstat 78
Z1 191, 195, 199, 202
Z104 . 192, 194, 197, 198, 199, 208
Z104.LIB 194, 199, 208
Z1232.LIB .. 82, 98, 194, 195, 199,

206
Z180 ... 15

port 0 79, 80, 81
port 1 62, 72

initialization 61
serial channels 0 and 1

disabling interrupts 60
Z80-SIO 197
ZIO.LIB 201, 206
ZIO1.LIB 201, 206
ZIO1DB.LIB 202, 206
ZIO1L.LIB 202, 206
ZIO1S.LIB 202, 206
ZIO2.LIB 202, 206
ZIO2DB.LIB 202, 206
ZIO3L.LIB 202, 206
ZIO3S.LIB 202, 206
ZIONET.LIB.................... 202, 206
ZISA 192, 194, 197, 198, 199, 208
ZNet ... 191
ZNPAKFMT.LIB 194, 199, 206
ZWLOGOS.LIB 200, 207, 208

Printed in U.S.A.

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

