
DIGI INTERNATIONAL
9350 Excelsior Blvd, Suite 700
Hopkins, MN 55343, USA
+1 (952) 912-3444 | +1 (877) 912-3444
www.digi.com

Dynamic C 10 Release Notes
Dynamic C 10

Version 10.72E (August 2020)

INTRODUCTION

These are the release notes for Dynamic C 10.

Dynamic C 10 is the IDE (Integrated Development Environment) for Digi International’s core modules and single-board computers based
on Rabbit 4000, 5000 and 6000 processors.

The IDE includes a graphical editor and debugger, a command-line compiler, and a graphical tool (Rabbit Field Utility) for installing
compiled binary firmware to a serially-connected device.

SUPPORTED PRODUCTS

RCM4000, RCM4010, RCM4050
RCM4100, RCM4110, RCM4120
RCM4200, RCM4210
RCM4300, RCM4310, RCM4320
RCM4400W
RCM4510W
RCM5400W, RCM5450W
RCM5600W, RCM5650W
RCM5700, RCM5710, RCM5750, RCM5760
RCM6600W, RCM6650W
RCM6700, RCM6710, RCM6720, RCM6730, RCM6750, RCM6760
BL4S100, BL4S110, BL4S150, BL4S160
BL4S200, BL4S210, BL5S220, BL4S230

KNOWN ISSUES

1. Debugger issues

When debugging a program using either F7 or F8 into or over a call to kbhit() will cause the debug cursor to disappear.
Pressing F7 or F8 two more times will make the debug cursor reappear following the kbhit() call.

The breakpoint highlight for the closing brace of a function does not display correctly if the brace is not in the first column
of the editor window.

The debugger currently only supports 128 breakpoints. Setting more than 128 breakpoints will result in the loss of target
communications.

https://www.digi.com
https://www.digi.com/support/productdetail?pid=4978

The debugger does not support assembly language single stepping over function calls that do not return to the instruction
following the call such as "_switch". Any attempt to do so will result in loss of target communication. Stepping into the
function in assembly is supported, as is stepping over such functions in C.

If an ipset or ipres instruction is followed immediately by an rst 0x28, the debug kernel will not step over the rst 0x28
correctly, but will end up in an unexpected location. When either of these instructions are followed by instructions other
than rst 0x28, the debug kernel behaves correctly.

The Register Contents debug window (F11) doesn’t report the correct LXPC value if it’s >= 0xFF. It reports 0x0FF as “LXPC:
FFF” and leaves the high nibble off of values >= 0x100 (so 0x123 appears as “LXPC: 023”).

2. Software modules.

RabbitWeb gives a cryptic error message for buffer overflow when using the print_select() statement. The workaround is to
make HTTP_MAXBUFFER large enough to hold all of the OPTION statements generated by the print_select() statement.

3. Complex casts

The compiler will not accept multidimensional array types or derivatives thereof as cast expressions, even if the cast expression is
a typedef name. Use a union to work around this problem.

4. Advanced 16-bit memory mode CPU bug

The Rabbit 4000 CPU’s advanced 16-bit memory mode has a defect which affects ioe instructions (auxiliary I/O, external I/O) and
self-timed chip select. The Dynamic C BIOS has been updated to work around this ioe defect on affected boards, all of the
RCM40xx family. If absolute top performance is required and the User is certain their application is unaffected by the ioe bug, the
work around can be disabled by adding the __ALLOW_16BIT_AUXIO_DEFECT macro into Dynamic C’s Project Options Defines Box.
See the Rabbit 4000 Users Manual Appendix B (errata section) or TN255 for complete details.

5. In separate I/D mode, an array declared as

far char bar[] = {0,1,2,3,...};

will not compile correctly when the size of the array exceeds the size of the root constant space and will give an error that the ‘}’
character is missing. The work-around is to specify the size of the array as follows:

far char bar[32000] = {0,1,2,3,...};

6. Highlighting a block of text while in Stop mode

In some cases, depending on the specific text, highlighting a block of text can result in a flyover watch which returns a copy of that
text in the hint window.

7. Using #pragma SIZEOF32 can result in a sizeof problem for a large struct.

Using #pragma SIZEOF32 allows the argument of sizeof to be up to 4GB but will return an incorrect value without warning or
error if the argument involves a struct of size 32K or larger. When using #pragma SIZEOF32, always restore to the default with
#pragma SIZEOF16 following the use of sizeof.

8. Initialized global and static variables and #GLOBAL_INIT expressions run with a limited stack (256 bytes). Deeply nested functions
(including printf()) will cause a loss of target communications.

9. Cast ternary operator(s) if both values do not have the same type and type qualifiers - example: condition ? &aFarChar : (far
char *)NULL. In the example, if condition is true and NULL is not cast, a near address is erroneously returned.

10. As of 10.66, symbols are distinguished using the first 63 characters of the name. Older versions used 31 characters, the minimum
per the ANSI specification. If a long symbol name is used as a library module label (i.e., in a BeginHeader statement), the library’s
.MD1 file will contain the short version of the name, and the module will not be found. For example:

/*** BeginHeader A12345678911234567892123456789312 ***/
extern int A12345678911234567892123456789312;
/*** EndHeader ***/
int A12345678911234567892123456789312;

will generate the error line XXX : ERROR MY_LIB.LIB : Undefined (but used) global label
A12345678911234567892123456789312. The workaround is to change the timestamp on the library file (e.g., modify it and save it)
and recompile. The .MD1 file will be regenerated with the correct (longer) module label.

11. More than one return statement in a cofunction will result in unpredictable behavior.

12. For auto int i, the expression (far*)&i should be (far int*)&i, but the first form will produce confusing error messages:

Invalid expression.
Missing character ';'.
Missing character ')'.
Not a pointer, cannot dereference.

13. A c return statement in an assembly block can produce an error like Undefined (but used) global label
.DCLAB__ZW00000190 in large programs. The assembly block can be ended followed by the return statement in C followed by the
remaining assembly in a new assembly block.

14. The active status of hardware breakpoints is not retained when a program restarts. Each breakpoint must be modified in some
way such as toggling a checkbox so that the “Update” button becomes active.

15. Setting a hardware breakpoint on some internal I/O addresses can lead to a target communication error. Since setting a
breakpoint mask to 0xffffff will include all internal I/O address, the address and mask should be set to include only the intended
range of addresses.

16. Programs larger than 512K will not compile to RAM successfully on an RCM5450W core module. Compiling such programs to flash
works fine.

17. Number of dimensions in array initializer are not checked against the array declaration.

Dynamic C will compile an initializer with too few dimensions without complaining:

// two few dimensions in initializer
const static int a[][3][2] = {{11, 12}, {21, 22}};

The results are undefined. If there are too many dimensions in the initializer, Dynamic C will indicate an error } is
missing/expected.

18. For functions with both a near and far syntax, function help is available only using the unadorned name. For instance, placing the
cursor over _f_memset will not find the function help for memset. In order to find function help for a function prepended with
either _n_ or _f_, such as _f_memset, separate the main part of the function name before pressing Ctrl+h.

19. A function that returns a struct by value does not work correctly within a cofunction. A work around is to have the function return
a static struct by reference and then dereference the function result on assignment in the cofunction, e.g.:

struct point { int x; int y; };

struct point *foop(void) {
 static struct point tmp;

 tmp.x = 3;
 tmp.y = 4;
 return &tmp;
}

cofunc void co_func(void) {
 struct point tmp;

 tmp = *foop(); // dereference the result at time of assignment
 printf("cofunction by reference, x=%d, y=%d\n", tmp.x, tmp.y);
}

void main(void) {
 struct point tmp;

 costate {
 wfd co_func();
 }
}

20. An index variable used in calling an indexed cofunction cannot be auto. The index variable must have static (local) or global
storage, e.g.:

#define INDICES 5

cofunc void my_icofunc[INDICES](void)
{
 ;
}

void main(void)
{
 static int i;

 while (1) {
 for (i = 0; i < INDICES; ++i) {
 costate {
 wfd my_icofunc[i]();
 }
 }
 }
}

21. Auto pointers to CoData structures cannot be used in named costatements. The CoData structure pointer must have static (local)
or global storage, e.g.:

#define NUMTASKS 5

void main(void)
{
 auto int i;
 static CoData task[NUMTASKS];
 static CoData *ptr2codata;

 for (i = 0; i < NUMTASKS; ++i)
 CoBegin(&task[i]);

 while (1) {
 for (i = 0; i < NUMTASKS; ++i) {
 ptr2codata = &task[i];
 costate ptr2codata always_on {
 ;
 }
 }
 }
}

22. Dynamic C currently does not allow function pointers to return structures by value. The following code snippet will generate an
error:

typedef struct { int a; } my_struct_t;
my_struct_t (*func_ptr)();
main() {
 my_struct_t s;
 s = func_ptr();
}

23. Assembly labels within #asm blocks inside C functions are treated as if they are local C-labels, rather than existing within their own
scopes. In the following code, the expected behavior would be an “unknown label” error on the jp to foo since there is no global
label foo defined. However, the linker associates the local label with the jp instruction and the code compiles.

Note that this behavior only occurs between #asm blocks within C functions. It does not exist between stand-alone #asm blocks or
between blocks in separate C functions.

void func(void) {
 #asm
 jp foo ; This jumps to the label in the next block
 #endasm
 // Some C code
 #asm
 foo: ; The jp above lands here
 #endasm
}

24. The strtod function’s underflow detection fails when converting strings of the following forms and lengths:

".00000000000000000000000000000000000001"
".000000000000000000000000000000000000001"
. . .
".0001"
".1e-38
".01e-38"
. . .
".00000000000000000000000000000000000001e-38"

25. Dynamic C’s assembler does not support embedded C return statements (e.g. c return; or c return X;) within an asm block
that is within a C function. All such occurrences have been removed from standard libraries (i.e. DMA.LIB, FFT.LIB) and no
occurrences exist in standard samples code. Custom assembly code with embedded C return statements as described above
should be rewritten such that any explicit or implicit return from the C function is done in standard C code.

26. Complex macros inside a one-line for-loop may fail to compile, with an internal error (Internal error: input stream non-
existant. Compiler confused. Look for previous syntax error.) that requires Dynamic C to be restarted.

Work-around: replace

for (i = 0; i < max; i++){ complex_macro; }

with

for (i = 0; i < max; i++){
 complex_macro;
}

27. When compiling an initialized array of unspecified dimension(s) in a nested scope, Dynamic C does not generate a jump over the
initializer data, which results in errant execution of the initializer data. One work around is to avoid declaration of such arrays in
nested scope. Another work around is to ensure all initialized arrays in nested scope have fully specified dimensions.

Work-around example: replace

while (1) {
 char *foo[] = { "123", "abc" };
 printf("%s %s\n", foo[0], foo[1]);
}

with

while (1) {
 char *foo[2] = { "123", "abc" };
 printf("%s %s\n", foo[0], foo[1]);
}

28. The compiler incorrectly throws an error (Duplicate 'const' keywords not allowed in this context.) if a function
contains multiple, non-pointer const parameters.

Work-around example: replace

void foo(const int bar, const int baz) {}

with

typedef const int const_int;
void foo(const_int bar, const_int baz) {}

29. On platforms with an ASIX Ethernet controller (e.g., RCM42xx, RCM43xx), the network stack can get stuck in an infinite loop after
executing the sequence ifdown()/pd_powerdown()/pd_powerup()/ifup(). Issue present since at least Dynamic C 10.60, and
might only happen when calling tcp_tick() while interface is powered down, or calling ifup() too soon after pd_powerup(). If
this affects you, contact Digi and reference issue DC-300.

30. The compiler incorrectly reports errors and warnings as occurring on line 1 if they are beyond line 32,767 of a file. Limit file sizes
by creating .LIB modules loaded with #use, or .H header files loaded with #include.

31. Compiler will report Cannot load object, report to Rabbit. when trying to compile (0 && j == 0) in the code below:

int foo(int i, int j) { return (i == 0 || (0 && j == 0)); }

This can occur when using constant macros to short-circuit conditionals at compile time. The workaround is to adapt the
conditional using the macro preprocessor. In the example above:

int foo(int i, int j) {
 return (i == 0
 #if FOO
 || (j == 0)
 #endif
);
}

32. The “Start” button may be hidden on the main Rabbit Field Utility screen when using certain Windows Display Scaling values (seen
at 125% but not 199%).

33. The command-line compiler fails on project files that contain multiple .C files. As a workaround, compile a single .C file that
references either libraries (with the #use directive) or .H files (with the #include directive) for additional code.

UPDATE CONSIDERATIONS

Reminder: When opening a project in a new version of Dynamic C, update the “Include Path” tab in the Project Options to use the new
Dynamic C directory. (Or change it to .\include to always use the current compiler’s include directory.)

If updating an existing installation of 10.72D or earlier via the Dynamic C 10 GitHub repository, you should manually apply the changes in
ucos2.patch, found in the Dynamic C installation directory.

If using I2C with Dynamic C 10.72B on Rabbit 6000 products, you must update your calls to I2CRead() and I2CWrite() to pass the slave
address in bits 1-7 instead of bits 0-6 of the first parameter. This release restores compatibility with software-based I2C from Dynamic C
10.72A and earlier. In addition, the APIs for I2C_ReadFromSlave() and I2C_WriteToSlave() now include an index parameter so
I2C_ReadFromSlave() can send a START, SLAVE_WRITE, INDEX, START, SLAVE_READ sequence for efficient reads. If necessary, use the
new CC_REV compiler macro to conditionally compile code so it can work with new and old APIs.

If updating iDigi-enabled applications to Dynamic C 10.72B or later, you should update all IDIGI/idigi references to CLOUD/cloud and
replace #use "iDigi.lib" with #use "Device_Cloud.lib". All of the iDigi libraries, APIs and samples were renamed to match the
(then) current “Device Cloud” name for that service. iDigi.lib remains with macros mapping old names to new ones.

UPDATE BEST PRACTICES

Digi recommends testing the new release in a controlled environment with your application before you deploy firmware to production
devices.

TECHNICAL SUPPORT

Get the help you need via our Technical Support team and online resources. Digi offers multiple support levels and professional
services to meet your needs. All Digi customers have access to product documentation. firmware, drivers, knowledge base and peer-to-
peer support forums.

Visit us at https://www.digi.com/support to find out more.

CHANGE LOG

10.72E (August 31, 2020)

This is a recommended release.

Note that the bugfix for DC-391 below is included in the Dynamic C 10.72E installer, but included as a patch in the GitHub repository due
to licensing issues with the uC/OS-II code. View ucos2.patch for instructions on how to apply it.

NEW FEATURES

Add sample with default calibration constants for BL4S2xx SBCs.

https://github.com/digidotcom/DCRabbit_10
https://www.digi.com/support

Add Samples/RCM4200/Serial_Flash/SFLASH_ERASE.C to completely erase serial flash.

BUG FIXES

DC-319: Only cache ARP info for unicast UDP frames (ignore broadcast/multicast) in anticipation of responding.
DC-391: Usage of OS_TASK_OPT_STK_CLR with OSTaskCreateExt() would erase an extra byte before the stack, and leave out the
last byte of the stack (see ucos2.patch).
DC-428: Increase TLS Record Limit from 16KB+53 to 16KB+256 (maximum specified in TLS 1.3).
GITHUB-16: Fix X509.LIB bugs parsing BasicConstraints (2.5.29.19).
GITHUB-17: Increase SSL_MAX_HANDSHAKE_SIZE to allow 4096-bit key in client key exchange.
GITHUB-19: Fix I2CRead() length calculation in I2C_DEVICES.LIB.
GITHUB-20: Correctly reference far pointer in httpc_set_extra_headers().
GITHUB-23: Fix field in Samples/RemoteProgramUpdate/pages/upload.zhtml.
GITHUB-25: Don’t allow expiration of existing ARP entry in router_add(). Ensures that we don’t flush entries for routers added via
ifconfig()’s IFS_ROUTER_SET.
Create Function Help (CTRL-H) for MP_SIZE macro (SSL/TLS related).
Document command-line compiler errors with project files containing multiple C source files as “Known Issue #33”.
Fix reporting of write errors in Samples/RemoteProgramUpdate/upload_firmware.c.

10.72D (April 13, 2018)

This is a required release for Wi-Fi products, and recommended for all others.

The primary focus of this release is to address the Key Reinstallation Attacks (KRACK) against WPA2. Dynamic C includes two versions of
wpa_supplicant – v0.2.8 used when WPA_USE_EAP isn’t defined and v0.5.11 for when it is. This release updates to the last stable release
of each series and patches them to block the KRACKs.

The release also addresses routing problems present on RCM66xxW modules that enable both Ethernet and Wi-Fi interfaces.

SECURITY FIXES

DC-349: Fix WPA2 KRACK vulnerability.
CWE-323 - Reusing a Nonce, Key Pair in Encryption.
CVE-2017-13077 - reinstallation of the pairwise key in the Four-way handshake
CVE-2017-13078 - reinstallation of the group key in the Four-way handshake
CVE-2017-13079 - reinstallation of the integrity group key in the Four-way handshake
CVE-2017-13080 - reinstallation of the group key in the Group Key handshake
CVE-2017-13081 - reinstallation of the integrity group key in the Group Key handshake
CVE-2017-13082 - accepting a retransmitted Fast BSS Transition Reassociation Request and reinstalling the pairwise key
while processing it
CVE-2017-13084 - reinstallation of the STK key in the PeerKey handshake
CVE-2017-13086 - reinstallation of the Tunneled Direct-Link Setup (TDLS) PeerKey (TPK) key in the TDLS handshake
CVE-2017-13087 - reinstallation of the group key (GTK) when processing a Wireless Network Management (WNM) Sleep
Mode Response frame
CVE-2017-13088 - reinstallation of the integrity group key (IGTK) when processing a Wireless Network Management (WNM)
Sleep Mode Response frame

BUG FIXES

DC-255: Updated change from 10.72B release related to IP address reuse during PPP handshaking. Users can re-enable the
disabled feature by defining IPCP_ENABLE_IPADDR_REUSE.
DC-337: Store correct value for freq_divider. Was previously one less than the correct value which would affect baud rate
calculations.
DC-344: Fix error when setting default Wi-Fi router when also using Ethernet.
DC-345: Fix behavior of IFG_WIFI_MODE option to ifconfig().
DC-346: Fix default route when using both Ethernet and Wi-Fi.
DC-357: Document compiler error (aborts compilation of valid code) as “Known Issue #31”.
Document Rabbit Field Utility UI issue when using Display Scaling as “Known Issue #32”.

OTHER FUNCTIONAL CHANGES

https://en.wikipedia.org/wiki/KRACK
https://cwe.mitre.org/data/definitions/323.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13077
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13078
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13079
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13080
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13081
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13082
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13084
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13086
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13087
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13088

An I2C-related change from 2017-08-30 was erroneously tagged as included in the 10.72C release. The shipping installer for 10.72C did
not include the commit and it first appeared in this release.

10.72C (August 16, 2017)

This is a recommended release.

NEW FEATURES

Adds support for RCM4320 variant – an RCM4310 with 1MB of SRAM for firmware (instead of 512KB) and a 4MB serial flash for
storage (instead of 1MB).
Updated sdflash.lib to support SDHC cards from 4GB to 32GB. Note that Dynamic C still does not support FAT32. When using
SDHC cards you must format them on the Rabbit with up to four FAT16 partitions, but you can still read and write them on
Mac/Windows/Linux. Email Jim.Pause@digi.com if interested in FAT32 support in Dynamic C.
Updated FAT16.lib to work on SDHC cards (larger than 2GB).
Defined a CC_REV macro as ‘C’ for use in compiler version checks.
Added RCM6xxx support for Panel-Mount Keypad/Display Unit (Digi part number 20-101-0502).

ENHANCEMENTS

Updated TLS to send Server Name Indication (SNI) in ClientHello. Includes updates to HTTP, SMTP and POP3 client libraries.
Updated X.509 certificate handling to process subjectAltName extension, allowing for improved hostname matching in TLS client
connections.

BUG FIXES

Addresses compiler errors with I2C_HW.LIB for Rabbit 6000 boards.
HTTP client now sends correct Content-Type on non-blocking PUT/POST.
Moved duplicated MODBUS_CRC() from modbus_{master,slave}.lib to CRC16.LIB.
Updated FTP server samples to work with default FileZilla FTP client settings.
DC-295: Get_Stack_Size() returns correct size instead of smallest stack size.
DC-304: After DHCP fallback, further DHCP discovery would fail.
DC-310: Revert commit that incorrectly processed slave address in I2CRead() and I2CWrite() calls on Rabbit 6000 hardware with
DC 10.72B.
DC-317: Correctly set interrupt level when RS232_INT_LEVEL != 1.
DC-322: Don’t hard-code keysize in AES{en,de}cryptStream_CBC() and _CBC_XMEM() functions. Now works correctly for AES-
192/256.
DC-332: Fix Rabbit 6000 link recovery, broken in pre-release 10.72C.
DC-334: Ignore non-fatal “warning” TLS alerts instead of aborting connection.
GITHUB-13: Fix return value of _n_strcpy().
GITHUB-14: Fix bug in httpc_skip_headers() for non-blocking connections.
RCM-143: Only call dhcp_tick() if interface is up.
RCM-143: When Ethernet powered down, link status should always be “down” (changed for Rabbit 6000 and ASIX-based
hardware).

OTHER FUNCTIONAL CHANGES

Disabled incomplete I2C slave mode for Rabbit 6000 hardware.
Please note that while all Rabbit MAC addresses have previously used an OUI (manufacturer code) of 00:90:C2, future products
may ship with an alternate OUI. Please be proactive and replace any code that requires that byte sequence.
Added “Known Issue” about compiler errors/warnings in files that exceed 32,767 lines.

10.72B (October 31, 2016)

This is a recommended release.

This release builds upon the TLS 1.2 update in Dynamic C 10.72A, by adding support for SHA384 and SHA512 hashes in TLS
communications and X.509 certificates. It also brings back support for TLS 1.0 in outbound client connections to support legacy servers
that have not implemented TLS 1.2 yet. Details in function help for TCPCONFIG, tls_set_flags(), httpc_set_tls(), pop3_set_tls(),
and smtp_set_tls().

There’s an important update to ASIX.LIB which should finally resolve all outstanding link recovery issues.

NEW FEATURES

Adds support for SHA384/SHA512 hashes:
New library and updated sample.
TLS update to support for SHA384 and SHA512 hashes.
X.509 update to support sha224, sha384 and sha512 signatures.

Adds support for falling back to TLS 1.0 on outbound (client) TLS connections.
Adds source code and tools for building binaries in BIOS directory (cold loaders and pilot BIOSes).
Adds sample for run-from-RAM boards to download a copy of the boot flash via HTTP. Useful for firmware recovery and analysis
of flash contents.
Improves boot time on 6000-based hardware (now < 1 second) when _FAST_BIOS_LOAD macro defined in Project Options [DC-
269].
Replaces the outdated SSL Certificate Creation GUI (in Utilities/SSL_Utilities) with command-line OpenSSL version 1.0.2j.
Added instructions on using OpenSSL to create certificates, which should allow for more control over key size and choice of
hashing algorithm.

BUG FIXES

Corrected compilation errors when X509_VERBOSE or WPA_VERBOSE defined.
Fix bug in http_finderrbuf() affecting variable names longer than SSPEC_MAXSPEC characters.
DC-216: Update I2C for Rabbit 6000 hardware.
DC-255: Disabled IP address reuse during negotiation of PPP connections with other active interfaces (e.g. Ethernet or Wi-Fi).
DC-260: Improve ASIX Ethernet link recovery by allowing more time to establish link after turning PHY back on (8s vs. 2s).
DC-264: IIS servers require signature_algorithms extension in TLS Client Hello.
DC-264: Increase TCP receive buffer size to account for additional TLS 1.2 overhead.
DC-267: FTP server incorrectly stripped leading slash from absolute pathnames in STOR, MKD and RMD commands.
DC-275: Disable attempted lease renewal for permanent DHCP leases.
DC-280: Fix for serial connections with 2 stop bits. First byte was always sent with 1 stop bit.
DC-281: Correct invalid JSON generated by web_iter_next() (RabbitWeb).
DC-283: Repeatedly setting a gateway then deleting all routers no longer fills APR cache.
DC-285: Fix possible overflow when calculating PMKSA reauth timeout for WPA/WPA2 Enterprise Wi-Fi connections.
DC-287: Fix for FTP client uploading files using a datahandler instead of a fixed-length buffer (broken by DC-129 in Dynamic C
10.72A).
DC-290: Ensure that SSL_set_private_key() always returns error upon failure to parse key.
GITHUB-7/DC-265: Handle Ethernet netport interrupt on 6000-based hardware so transmit errors don’t hold buffers forever.
RCM-77: Improve Ethernet link recovery on 5000/6000-based hardware.
RCM-121: Fix buffer overflow caused by large packets on WPA/TKIP (but not WPA2/CCMP) networks.

OTHER FUNCTIONAL CHANGES

Update samples using SSL_Cert_t to store certs in far memory and not on the stack.
Optimization from petermcs to reduce code size and speed execution of sha256_process() in SHA2.LIB.
DC-268: Changed some function variables in FTP server from “static” to “auto”.
DC-284: Updated firmware_info_t structure to include compiler revision.

10.72A (March 17, 2016)

This is a recommended release.

The big change for this release is that Dynamic C is now an Open Source project on GitHub. It includes source code to the previously-
encrypted Wi-Fi and SSL libraries, and the license was changed to MPL 2.0 (Libraries) and ISC (Samples).

https://github.com/digidotcom/DCRabbit_10

This release was made as 10.72A since it does not include changes to the compiler and only contains modified libraries, samples and
documentation. It uses shortcuts (.lnk files) to launch the compiler with a command-line parameter of -c A, forcing the compiler to
identify itself as 10.72A and use registry entries for version 10.72A.

The installer is also smaller, due to the removal of an outdated XCTU installer, the “XBee GPIO GUI” utility/source (designed for sample
programs removed in the 10.70 release), and a Microsoft .NET installer (dotnetfx.exe) required by that utility.

The latest version of XCTU is on Digi’s website.

NEW FEATURES

Includes library and utility programs to write a System ID Block to a device’s flash (Utilities/Write_ID).

Incorporates NAND flash library patch (40002851_A, 2012-12-01) for Micron/Numonyx/ST NAND256W3A (32MB) devices used in
new hardware.

Incorporates Serial Flash update (40002882_A) for revision E of 45DB641 chips used in new hardware.

Add httpc_set_extra_headers() API to HTTPC.LIB for user code to add headers to outbound requests.

Upgrades TLS (Transport Layer Security, aka SSL/HTTPS) implementation from 1.0 to 1.2.

Is compatible with modern web browsers.
Removes support for insecure SSLv2, SSLv3 and TLS 1.0 protocols.
Removes support for insecure RC4 cipher and MD5 digest.
Automatically enables required AES128_CBC cipher.
Defaults to 2048-bit RSA keys (previously 1024-bit).
Adds optional AES256_CBC cipher, SHA256 digests, and support for SHA256 signatures in X.509 (TLS/SSL) certificates.

BUG FIXES

Fix conversion of RabbitWeb multi-select 32-bit enum to text. (contributed by titobrasolin).
Initialize struct tm in _atodt() before use to avoid random hour/minute/second values affecting result (contributed by
titobrasolin).
Fix return value of asix_ioctl() for unsupported features. Was previously returning uninitialized value from stack instead of 0.
DC-6: Fix rebalancing of HTTPS Rx and Tx transport buffers, enabling HTTPS upload of large files.
DC-10: Fix PPP baud rate calculations, corrects problem with 9600 baud.
DC-19: ASIX PHY link-fail recovery now works after extended cable disconnection (20 minutes or more).
DC-27: Improved SPI.LIB’s SPIWrRd() function’s Rabbit 6000-specific work around.
DC-31: HTTP.LIB’s zhtml_handler() function now correctly handles HttpState (unsigned) extlen values greater than 32767.
DC-55: Fixed multiple stacks (as when using e.g. uC/OS-II multi-tasking) misplacement bug affecting Dynamic C versions 10.62
through 10.72, inclusive.
DC-78: Fix memory leaks in idigi_put() and idigi_upload().
DC-117: PPP.LIB’s LCPsendEchoReply() now echoes the request’s non-zero length data.
DC-129: Fix FTP_CLIENT uploading files smaller than TCP socket buffer size.
DC-130: SNMP: Correctly store zero-length octet strings and prevent xmem window wraparound (in all data formats).
DC-215: Fix keepalive handling in tcp.lib.
DC-200: Update some incorrect macro names (contributed by Richard Pletcher).
DC-200: Update start of write buffer when adjusting TCP buffer split between read/write. Possible fix for broken HTTPS Upload
(contributed by Richard Pletcher).
DC-207: Correctly render SSI/RabbitWeb (shtml/zhtml) tags spanning multiple 256-byte blocks in files on FAT filesystem.
DC-217: Add full HDLC support for Rabbits 4000-6000, including sample program.
DC-220: Added test for non-zero length in tcp_write(), for retransmission.
DC-224: Fixed corruption of register ix around _pb_free call in SERLINK.LIB.
DC-235: Corrects an error where the HTTP server would fail to find files on FAT filesystem due to stale data in SSpecFileUnion
structure allocated from a pool of memory.
DC-241: Function sdspi_process_command() in SDFLASH.LIB wasn’t releasing the SPI semaphore (contributed by Mark Leichty).
DC-248: Update HTTPS_CLIENT.c to follow URL redirects and correctly print far hostname from httpc_Socket.
GITHUB-1: Correct invalid strtol() and strtoul() behavior.
GITHUB-2: Fix %g formatting error for floats smaller than 0.1.
RCM-7: Don’t reset TCP keepalive timer on reused connections.
RCM-109: Fix issue preventing module from joining WPA mixed-mode (TKIP/CCMP) networks.

http://www.digi.com/xctu

10.72 (December 2012)

This is a recommended release.

NEW FEATURES

FCC-labeled versions of RCM6600W family boards are locked to the Americas region code.

The following new options are available in the command line Rabbit Field Utility (Utilities\clRFU.exe):

-i pathname Specify application binary image file, -i BinPath
-si Print formatted contents of System ID block
-ma Print formatted MAC address
-bi Print Board ID
--boot-flashtype flash_type
 Specify flash_type as either parallel or serial
--boot-memorywidth memory_width
 Specify memory_width (in bits) as either 8 or 16
--boot-ram-selectenable mb0cr_value
 Specify mb0cr_value in the range [0,7]
 /CS0:3 in bits 1:0, /OE0:1 (== /WE0:1) in bit 2

Previously, the command line RFU required that its first parameter must be the path name of the binary image to load to the
Rabbit target board.

Now, when the new -i pathname option is not specified, it is possible to check Rabbit board information via the new -si and/or -
ma and/or -bi options without loading a binary image to the Rabbit target board.

The Rabbit Field Utility, after successfully loading a binary image onto a Rabbit target board, now automatically starts program
execution. RabbitBios.c has been updated to provide the following three behavior options after the RFU has started program
execution:

Default behavior. When neither RFU_BIN_RUN_IMMEDIATELY nor RFU_BIN_WAIT_FOR_RUN_MODE are defined, a BIN program
image successfully loaded by RFU 4.72 or later will run BIOS code only and then will wait in an idle loop until a hardware
reset occurs. Following a hardware reset and with the programming cable disconnected, BIOS code and user code will
execute as usual.

This mode of operation most closely emulates the behavior of RFU versions prior to 4.72. It can also be useful in test fixture
code, for example, where a test fixture can control at least one of the SMODEx levels as well as the RESET level, and manual
disconnection of the programming cable is inconvenient or undesirable.

When RFU_BIN_RUN_IMMEDIATELY is defined in Dynamic C’s Project Options’ Defines tab, a BIN program image successfully
loaded by RFU 4.72 or later will run both BIOS code and user code immediately after loading, with the programming cable
still connected. With the programming cable disconnected, BIOS code and user code will execute as usual.

This mode of operation is enforced when Dynamic C’s debug kernel is enabled. It can also be useful in test fixture code, for
example, where a test fixture can not or does not control the SMODEx levels and manual disconnection of the programming
cable is inconvenient or undesirable.

When RFU_BIN_WAIT_FOR_RUN_MODE is defined in Dynamic C’s Project Options’ Defines tab, a BIN program image
successfully loaded by RFU 4.72 or later will run BIOS code and then pause in an idle loop, waiting for the programming
cable to be disconnected. As soon as the programming cable is disconnected, user code will begin to execute. With the
programming cable disconnected, BIOS code and user code will execute as usual.

This mode of operation can be useful in test fixture code, for example, where a test fixture can control at least one of the
SMODEx levels and manual disconnection of the programming cable is inconvenient or undesirable.

ENHANCEMENTS

The Lib\Rabbit4000\NandFlash\nflash.lib driver library has been updated with support for Micron/Numonyx/ST
NANDxxxW3A nand flash devices. Previously supported nand flash devices, used on RCM4000 and RCM4050 boards, have been
discontinued and are no longer available. As of 01-Dec-2012, new production RCM4000 and RCM4050 boards will have a
Micron/Numonyx/ST NAND256W3A (32MB) nand flash device installed. Custom applications which use nand flash, whether based
on RCM4000, RCM4050 boards or a custom nand flash board design, should be recompiled using Dynamic C 10.72 in order to

support the new, increased selection of small-block nand flash devices.
The EXCEPTION(x) macro is no longer used in any standard Dynamic C code and is now deprecated. Please refer to the associated
deprecation comments in ERRORS.LIB for more information.
iDigi access via a PPP serial port can now be hosted on an alternate parallel port by defining one of IDIGI_PPP_USE_PORTD or
IDIGI_PPP_USE_PORTE before #use idigi.lib.

BUG FIXES

Defect #41708. Prevented possible program hang and possible false-positive file transfer success result in ftp_client.lib.
Defect #41912. When HTTP_CUSTOM_HEADERS is defined and used, an incorrect buffer offset calculation results in corrupted HTTP
header buffer content.
Defect #42073. The digOutConfig_H() function in BLxS2xx.LIB now returns the expected 0 result on success.
Defect #43173. Dynamic C’s run time error reporting now consistently reports the return address on the stack when exception()
is called.

Release Notes Part Number: 93000751

	Dynamic C 10 Release Notes
	Dynamic C 10
	Version 10.72E (August 2020)
	INTRODUCTION
	SUPPORTED PRODUCTS
	KNOWN ISSUES
	UPDATE CONSIDERATIONS
	UPDATE BEST PRACTICES
	TECHNICAL SUPPORT

	CHANGE LOG
	10.72E (August 31, 2020)
	NEW FEATURES
	BUG FIXES

	10.72D (April 13, 2018)
	SECURITY FIXES
	BUG FIXES
	OTHER FUNCTIONAL CHANGES

	10.72C (August 16, 2017)
	NEW FEATURES
	ENHANCEMENTS
	BUG FIXES
	OTHER FUNCTIONAL CHANGES

	10.72B (October 31, 2016)
	NEW FEATURES
	BUG FIXES
	OTHER FUNCTIONAL CHANGES

	10.72A (March 17, 2016)
	NEW FEATURES
	BUG FIXES

	10.72 (December 2012)
	NEW FEATURES
	ENHANCEMENTS
	BUG FIXES

