
Dynamic C®

Integrated C Development System
For Rabbit Microprocessors

Digi Remote Manager Services
for Rabbit Developers User Guide

90001161 B

Digi Remote Manager Services for Rabbit Developers User Guide

Part Number 90001161 B • Printed in U.S.A.

Digi International Inc. 2007-2017 • All rights reserved.

Digi International Inc reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit® and Dynamic C® are registered trademarks of Digi International Inc.

The latest revision of this manual is available at www.digi.com/support.

http://www.digi.com/support

TABLE OF CONTENTS

 1. Introduction ... 5

1.1 Sample programs.. 6

 2. device_cloud.lib configuration macros ... 7

2.1 Feature selection .. 7

#define CLOUD_USE_TLS... 7

#define CLOUD_USE_ADDP ... 7

#define CLOUD_USE_DS... 7

#define CLOUD_USE_RPU .. 7

2.2 Device personality selection.. 8

2.3 Macros that must be defined ... 9

#define CLOUD_SERVER “my.devicecloud.com” .. 9

#define CLOUD_SERVER_PASSWORD “cloud” ... 9

#define CLOUD_USERBLOCK_OFFSET 0 .. 9

#define CLOUD_USERBLOCK_MAX_LEN 8192.. 9

2.4 Other macros... 9

#define CLOUD_MIN_CONNECT_TIMEOUT 30... 9

#define CLOUD_MAX_CONNECT_TIMEOUT 300 ... 9

#define CLOUD_DEBUG.. 9

#define CLOUD_VERBOSE ... 10

#define CLOUD_IFACE_VERBOSE.. 10

2.5 Using Remote Program Update with Remote Manager applications....... 10

2.6 Code and data memory requirements for Remote Manager applications 12

 3. Developing Remote Manager applications on a Rabbit device 15

3.1 Feature selection .. 15

3.2 Converting an existing application ... 16
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 3

http://www.digi.com

3.3 Non-volatile storage ... 16

3.4 Initial configuration... 17

 4. API Functions .. 18

cloud_init() ... 19

cloud_tick() ... 20

cloud_status() ... 21

cloud_secure() ... 21

cloud_register_target() .. 22

cloud_put() .. 24

cloud_ds_tick() .. 26

web_error() ... 27
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 4

http://www.rabbit.com

 1. Introduction

The Rabbit API for Digi Remote Manager is a set of libraries for use with a Dynamic C programming
environment. It allows any Rabbit 4000, 5000 or 6000-based device with an Ethernet or Wi-Fi communi-

cations port, and at least 512 kB of RAM, to connect to a Digi Remote Manager® server.

NOTE: To serve our customers most effectively, Digi International Inc. is consolidating its cloud
services, iDigi, Digi Device Cloud and Digi Remote Manager®, under the Remote Man-
ager name. This phased process does not affect device functionality or the functionality of
the web services and other features. However, you will find instances of iDigi & Device
Cloud in some documentation, firmware, and user interfaces.

Remote Manager solves some difficult problems for deployment of devices with a communications inter-
face, and allows application developers to concentrate on their field of interest without having to worry
about network management, data storage and remote firmware updates.

The Rabbit API for Remote Manager presents a simple interface for performing the following tasks:

• Robust network configuration management, with backup settings
• Logging data to a central Remote Manager server
• Remote firmware update
• Customizable remote command and query execution.

All of this is available if there is an available connection to the Internet, at least part of the time but prefera-
bly with permanent access. It works behind firewalls, or with direct Internet connections.

Security is provided via SSL (or TLS).

It is easy to update an existing application (written with the Rabbit TCP/IP API) to take advantage of
Remote Manager. Basically, most of the application which is concerned with managing the network con-
figuration can be removed. The program main loop, which normally calls tcp_tick(), is modified to
call cloud_tick() instead.

Existing libraries that have a role in network and firmware management, namely ADDP and the Remote
Program Update facility, are automatically integrated when you use Remote Manager. There is no require-
ment for additional programming.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 5

http://www.digi.com

1.1 Sample programs
Use of Remote Manager in an application is simple enough that it is most easily described using sample
programs. Samples are in samples\Device_Cloud under the Dynamic C installation folder. The sample pro-
grams are listed below.

cloud_simple_tls.c

This is the first sample to run. It provides a “bare-bones” sample that enables remote network configura-
tion of the target board, with the connection secured via TLS. This and all other Remote Manager samples
have comments at the top of the program with instructions for setting up a test account, and compiling the
program.

At its simplest, Remote Manager provides the ability to reconfigure network settings from the server, via a
web-based application. Since this application can run on any PC, anywhere, it is possible to reconfigure
devices anywhere in the world, without fear that an inadvertent misconfiguration will render the device
inaccessible.

cloud_update_firmware.c

This sample should be run after the one above, if only to ensure that a successful connection to the server
can be obtained. This sample shows how to configure an application so that it supports remote firmware
updates via the Remote Manager server.

Programmatically, firmware updates are enabled simply by defining the CLOUD_USE_RPU preprocessor
macro. This sample has fairly complex instructions, however end-users need not be concerned with this if
they are provided with a binary firmware image file.

cloud_put_data.c

This shows how to upload data from the application to the Remote Manager server. The library handles
most of the details of using the Remote Manager data services. The application decides where the data will
be placed on the server account (folder and file name) and provides the data content via a memory buffer.

cloud_do-command.c

This demonstrates customization of a device to support a “do command”. Digi devices such as the 
ConnectPort X2 that act as gateway devices support the Python programming language for customization.
The Rabbit device does not include a Python interpreter; however it is easy to register C functions to per-
form whatever custom processing is required in a Remote Manager application. Rather than allowing
upload of new Python code to modify functionality, the Rabbit device assumes that most custom functions
are not intended to be modifiable by end-users other than by completely replacing the firmware.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 6

http://www.digi.com

 2. device_cloud.lib configuration
macros

This section defines the Digi Remote Manager API configuration macros, functions and data structures
that are documented for use by developers.

2.1 Feature selection
The following macros specify inclusion of various subsystems. Their use can cause a lot of extra code to
be included, and hence use a lot of flash memory.

#define CLOUD_USE_TLS

If defined, include SSL/TLS code for secure connections

#define CLOUD_USE_ADDP

If defined, include ADDP for convenient device provisioning. Note that an ADDP callback function is
automatically installed which is compatible with Remote Manager. Only the ADDP_PASSWORD macro
needs to be defined.

#define CLOUD_USE_DS

If defined, include code to use Remote Manager data services (i.e. ability to store data on the Remote Man-
ager server using HTTP or HTTPS PUT). Since this facility uses the HTTP client library, it sets the HTTP
client mode using httpc_set_mode(HTTPC_NONBLOCKING | HTTPC_AUTO_REDIRECT).
The application should not change the non-blocking setting.

#define CLOUD_USE_RPU

If defined, include Remote Program Update library to allow firmware updates from the Remote Manager
server. In this case, you will also need to define the following macros in the project settings “defines” box:

_FIRMWARE_NAME_="MyFirmware"

_FIRMWARE_VERSION_=0x0101

The firmware name is not directly significant to Remote Manager; however, it is used as a default for
CLOUD_PRODUCT (see below). Digi recommends that you define _FIRMWARE_NAME_ to be the same
string as CLOUD_PRODUCT, provided the name is 19 characters or less.

NOTE: The length of the _FIRMWARE_NAME_ must not exceed 19 characters; otherwise,
firmware updates will fail.

The _FIRMWARE_VERSION_ should be two hex bytes (combined into 16 bits as shown). The version
number should increment for each firmware release, in order to be able easily to identify the firmware ver-
sion that is running and connected to the Remote Manager server. In the user interface, this version number
appears in the “Firmware Level” column, as a dotted decimal with two leading zeros e.g. 0.0.1.1.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 7

http://www.digi.com

2.2 Device personality selection
The following macros define the device “personality”. The defined values represent the defaults. Your
application can override these by defining the macros before #use device_cloud.lib.

Digi highly recommends that you define at least CLOUD_PRODUCT to a non-default value.
CLOUD_PRODUCT and _FIRMWARE_VERSION_ together define a unique “key” for the Remote Man-
ager server. The server caches certain (static) information about each device+firmware, keyed by this com-
bination of values.

#define CLOUD_PRODUCT _FIRMWARE_NAME_

#define CLOUD_VENDOR “Unknown”

#define CLOUD_VENDOR_ID “0”

#define CLOUD_FIRMWARE_ID “1.00.00”

The default for CLOUD_PRODUCT is the value defined for _FIRMWARE_NAME_. It is recommended to
keep these macros the same. Remote Manager uses CLOUD_PRODUCT not _FIRMWARE_NAME_, how-
ever the latter macro is significant to the Remote Program Update facility, which is used by Remote Man-
ager to manage firmware updates. CLOUD_FIRMWARE_ID is an arbitrary string, and is only significant in
that it appears in the Remote Manager user interface under the System Information/device_info/Firmware
version field. To avoid end-user confusion, this string should be made the same (or similar to) the
_FIRMWARE_VERSION_ macro, rendered as dotted decimal.

The following are used as initial values. They can be set using Remote Manager web services or user inter-
face.

#define CLOUD_CONTACT “None”

#define CLOUD_LOCATION “Unknown”

#define CLOUD_DESCRIPTION “Unknown”
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 8

http://www.digi.com

2.3 Macros that must be defined
These macros must be defined since they have no defaults. The defined values are provided as examples
only.

#define CLOUD_SERVER “my.devicecloud.com”

The Remote Manager server fully qualified domain name. It may be the name of a global string variable.
This is an initial default. The Remote Manager server can set this to a different value. The macro
CLOUD_SERVER_CURRENT returns the current server FQDN string.

#define CLOUD_SERVER_PASSWORD “cloud”

The password for accessing the server. If never defined, the password is an empty (zero length) string. This
is only used as an initial default. The password (_RCI_Settings.devicesecurity.password) is usually set via
the Remote Manager server.

#define CLOUD_USERBLOCK_OFFSET 0

A byte offset into the userID block at which to save the Remote Manager network configuration and other
settings. If this is not defined, a warning is issued, since the ability to remember settings over a reboot is
important to most applications. Currently, the application programmer needs to manage the offsets and
sizes of objects in the userID block. If the application makes no other use of the userID block, then it is
advantageous to allow Remote Manager to access the entire block (set this macro to 0 and the following
macro to the entire userID block size i.e. SysIDBlock.userBlockSize)

#define CLOUD_USERBLOCK_MAX_LEN 8192

Maximum amount of userID block storage dedicated to saving the Remote Manager network and other
settings. This is used the first time the settings are saved. Thereafter, the length is saved in the storage area
itself, and will not be decreased, however it will be increased if this macro value is increased.

2.4 Other macros

#define CLOUD_MIN_CONNECT_TIMEOUT 30

Define to specify an initial connection timeout (sec), from the point at which the network is brought up and
a Remote Manager server connection is attempted, to the establishment of an open connection. Default 30
seconds. If a backup configuration is available (i.e. a connection was established using a previous configu-
ration) then that backup configuration will be attempted.

#define CLOUD_MAX_CONNECT_TIMEOUT 300

Define to specify the maximum desired timeout for a Remote Manager server connection. This should be
reasonably long to prevent unnecessary flipping between network configurations in the case that, for
example, a cable is disconnected. The initial connection timeout (given by
CLOUD_MIN_CONNECT_TIMEOUT) is applied to the first connection attempt (e.g. after a reboot). This
macro determines the timeout value for subsequent attempts.

#define CLOUD_DEBUG

If defined, turns on debugging for all Remote Manager subsystems.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 9

http://www.digi.com

#define CLOUD_VERBOSE

If defined, turns on debugging printfs for all Remote Manager subsystems. This can cause shortage of root
constant space. If so, add ROOT_SIZE_4K=9 in the project defines box, and turn on the separate I & D
option in the compiler settings.

#define CLOUD_IFACE_VERBOSE

If defined, causes messages related to the network interfaces and Remote Manager connection to be
printed. This causes a lot less output than CLOUD_VERBOSE, yet it is still useful for debugging connec-
tions.

2.5 Using Remote Program Update with Remote Manager applications
RPU is a Rabbit facility which pre-dates the availability of Digi’s cloud services. The firmware update
facility in Remote Manager uses the RPU library to actually perform the firmware update in an efficient
and robust manner.

RPU is enabled in a Remote Manager application by #define CLOUD_USE_RPU. When done, this
automatically causes inclusion of board_update.lib. Rabbit Application Note 421, available on
www.digi.com describes use of this library in detail. The following macros are significant to RPU, and are
also used by Remote Manager to promote a consistent view of the target device.

#define _FIRMWARE_NAME_ “GyroSensor Mk II”

#define _FIRMWARE_VERSION_ 0x0101

The _FIRMWARE_NAME_ definition is propagated to Remote Manager as the default value for
CLOUD_PRODUCT. It is possible to define ClOUD_PRODUCT independently; however, Digi recommends
that you keep the same definition since the macros basically define the same firmware identification string.

 _FIRMWARE_VERSION_ is an arbitrary 16-bit value, which feeds into a 32-bit identifier used by Remote
Manager. The larger sized identifier exists because Remote Manager supports non-Rabbit devices that have
larger identifiers. On the Rabbit device, since RPU existed first and used 16 bit numeric identifiers, this
value is simply re-used in place of the larger identifier by padding it on the left with zeros. Thus, the identi-
fier as seen by the Remote Manager server is 0x00000101, which is typically rendered as “0.0.1.1”.

There is currently no requirement to change the version number from the default 0x0101, since it is used
by the Remote Manager server to determine whether the firmware has been upgraded in a manner which is
significant to the Remote Manager user interface. Since Remote Manager itself is not customizable on the
Rabbit device, the firmware version number does not need to be changed. Note that customization of a
Remote Manager application via registration of different “do commands” is not considered to be a “signif-
icant” firmware change by the Remote Manager server, and thus changes to the registered commands do
not need to have an incremented firmware version number.

There is, however, a good reason to increment the _FIRMWARE_VERSION_ number for each new public
release of a product firmware. That reason is that the current firmware version appears in the user interface
devices table (under the “firmware level” column). When upgrading firmware, it is useful to provide feed-
back that the new firmware version is correctly installed. Thus, Digi recommends that you increment the
number for each release.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 10

www.digi.com
http://www.digi.com

There is a related versioning macro, CLOUD_FIRMWARE_ID, which is basically historical and does not
have any significance other than appearing in the Remote Manager user interface under the System Infor-
mation panels. Digi recommends that you make this appear similar to the _FIRMWARE_VERSION_
macro value as it appears in the devices list, in order to avoid user confusion, and thus should be a dotted
decimal whose last two fields equal the _FIRMWARE_VERSION_ value e.g. “X.1.1”.

When RPU is enabled in a Remote Manager application, the procedure for updating the firmware is basi-
cally as follows:

1. The programmer creates a new .bin file as normal for a Rabbit Application. This is described in detail in
the CLOUD_UPD_FIRMWARE.C sample program. End users do not need to be concerned with this
process; they only need the resulting binary firmware image. Note that the file extension (.bin) should
not be changed, otherwise the target device will reject the firmware update. In an effort to avoid simple
mistakes, the target rejects any file that does not have a .bin extension. The rest of the name is not sig-
nificant to the target.

2. In the user interface, the end-user selects (highlights) the target device(s) which are to be updated, and
executes the “update firmware” menu option.

3. The user enters the firmware .bin file name in the dialog box, and hits the “update firmware” button.
This will transmit the new firmware to all selected target devices, and reboot them.

4. In the device list, the new firmware version number should be displayed. If any device experiences a
failure, the previous firmware version will be displayed. The RPU library ensures that updates are
robust. If the new firmware is fully tested (and does not have any crash bugs) then the update will either
succeed, or the old version will continue to run.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 11

http://www.digi.com

2.6 Code and data memory requirements for Remote Manager appli-
cations
The Remote Manager library makes extensive use of dynamically allocated memory, and thus does not
significantly impact root data memory use. All Rabbit-provided library code uses the system memory
space, _sys_malloc(), leaving use of malloc() memory entirely to the user application.

The following table shows memory usage for the CLOUD_DO_COMMAND.C sample program. Numbers
indicate memory usage in kilobytes. For the RCM5450W, no encryption was used except: WPA - Wifi
Protected Access (Personal) encryption added; EAP - WPA Enterprise authentication added.

Table 2-1.

Core
Module

Options RAM
SYS malloc

memory

ADDP RPU DS RootCode XMEMCode RootConst RootVar XMEMVar HWM Idle

RCM4200 No No No No 26k 245k 1k0 5k 21k 45k 28k

Yes No No No 27k 253k 11k 5k 21k 45k 28k

Yes Yes No No 28k 263k 11k 5k 26k 45k 28k

Yes Yes Yes No 29k 335k 12k 9k 31k 64k 48k

RCM4550W No No No No 28k 288k 11k 6k 59k 45k 28k

Yes Yes No No 28k 307k 12k 7k 67k 45k 28k

Yes Yes No Yes 28k 32k0 12k 7k 64k 45k 28k

Yes Yes Yes No 29k 380k 13k 1k 68k 64k 48k

RCM5450W
+WPA

Yes Yes Yes No 3k0 408k 14k 12k 70k 64k 50k

RCM5450W
+EAP

Yes Yes Yes No 30k 501k 17k 10k 70k 64k 50k

From the above table, an estimate of the additional resources for each Remote Manager-related feature
may be obtained:

Table 2-2.

Option Additional Memory

RootCode XmemCode RootConst RootVar XMEMVar SYS malloc

Addp 1k 8k 1k

RPU 1k 10k 5k

DS 13k 1k

TLS 1k 73k 1k 4k 5k 19k

TLS
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 12

http://www.digi.com

If the application is failing to compile because the compiler cannot fit the application in the available
memory, then the following methods may help resolve the problem.

1. For any Remote Manager application, use a core module with at least 512 k program space and 256 k
data memory. If using EAP on a Wi-Fi module, at least 1 MB code space is required. Although it is pos-
sible to use WPA on a module with 512 k code space, it restricts the size of the application code. Thus
Digi recommends a 1 MB module for any Remote Manager application that also requires any form of
WPA.

2. Adjust one or more of the following parameters in the compiler options settings:

• Turn on “separate instruction and data” if not already checked. In rare cases, better memory utili-
zation can be obtained by turning separate I&D off. This is only the case if the total root code,
constants and variables add up to less than about 48 k, which may allow slightly more memory to
be used by xmem code, variables, and dynamic allocation.

• In the “defines” tab, add definitions for the following macros:

ROOT_SIZE_4K = 7

This specifies a basic dividing line for root memory allocation. The lower part is specified by
this number (multiplied by 4096), with the upper part specified by the remaining memory up to
about 47 k. Memory from 47 k up to 64 k is devoted to special use like the stack and xmem code
window.

With separate I&D on, ROOT_SIZE_4K specifies the available space for root constants (espe-
cially C string literals) at the expense of root variables, with root code able to take up the full
47k. With separate I & D off, this number indicates the total amount for root code plus root
constants, at the expense of root variables.

XMEMCODE_SIZE = 0x70000

This increases the amount of space that can be used for code. On a module with 512 k of code
space, the maximum value for this number is about 0x78000, since 32 k is normally reserved
for the Rabbit system- and user-ID blocks that are used to store configuration and calibration
data.

Adjust the values shown above and recompile.

3. Once the application can be successfully compiled and run on the target board, if the application runs
out of dynamic memory (system malloc) then:

• Add the macro _MALLOC_HWM_STATS to the defines tab. This enables simple statistics for
dynamic memory usage.

• Modify the application so that at the start of main(), the following code is inserted:

_init_sys_mem_space();
_sys_malloc_stats();

This initializes the system memory space, and prints its size and usage (usage should be zero at
this point since no allocation has been performed). You can insert additional calls to
_sys_malloc_stats() at various points in the code (e.g. after calling cloud_init())
in order to detect where memory exhaustion is occurring.

It is also possible to add a detection of keypress (kbhit() and getchar()) in the main loop
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 13

http://www.digi.com

which calls cloud_tick(), and print the memory statistics at that point.

• The following macro can be set in the defines tab:

_SYS_MALLOC_BLOCKS=32

Adjust the value (which is in units of 4 k memory blocks) to avoid dynamic system memory
space exhaustion. The maximum allowable value depends on the amount of free RAM on the
board, and how much is required by the application memory space (ordinary malloc()). The
default is 16 (giving 64 k system RAM), however for applications which require TLS this
should be changed to 32 (for 128 k). You can insert the following code at the start of main()
to print a listing of the available xalloc memory areas, from which the system memory space is
obtained:

xalloc_stats(xubreak);

“xubreak” is an internal library global variable which is the start of a BIOS-generated list of
available xmem blocks. The system memory is typically allocated from the largest of these
blocks. System dynamic memory cannot be split over two such blocks.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 14

http://www.digi.com

 3. Developing Remote Manager
applications on a Rabbit device

3.1 Feature selection
The first step in application development should be to decide which features are required. The requirement
for robust security, #define CLOUD_USE_TLS, adds the largest overhead. CLOUD_USE_DS (data
services) adds an HTTP client. Use of RPU and ADDP add a relatively small overhead. See section 2.6 for
memory requirements.

If an existing application is being upgraded to use Remote Manager, then the Remote Manager library will
probably be able to make use of much of the existing library code. In particular, the following existing
subsystems will be reused by Remote Manager:

• TLS/SSL (if secure HTTP or WPA enterprise in use)
• Dynamic memory allocation (malloc.lib)
• General ethernet or Wifi networking (dcrtcp.lib)
• RabbitWeb
• HTTP client (for data services)
• Remote Program Update (RPU)
• Advanced Device Discovery protocol (ADDP)

If Remote Manager is used, it may be possible to remove existing network configuration code since this is
completely handled by Remote Manager. An exception may be if a local configurator is required, which
cannot be replaced with ADDP, such as a serial port terminal.

The following table shows the amount of additional code and data memory when adding basic Remote
Manager support to existing applications. The first column of the table lists a standard Rabbit sample pro-
gram, and the other columns show the additional memory used when the sample is modified to #use
"device_cloud.lib" and the main loop is changed to call cloud_tick().

Table 3-3.

Sample Program
Dynamic

RootCode +
Xmem Code

RootConst RootVar XMEMvar
System

Malloc

pong.c +226 k +9 k +4 k +59 k +45 k

tcpip|http\static.
c

+126 k +8 k +2 k +2 k +40 k

tcpip\rabbitweb\
humidity.c

+81 k +7 k +2 k +2 k +40 k

In general, Remote Manager does not have any root code requirement. The sum of root and xmem code
size may be used when estimating additional code memory requirements.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 15

http://www.digi.com

pong.c is a program with no existing network functionality, thus addition of Remote Manager to this pro-
gram adds the most amount of code. The other samples selected have more existing functionality which is
re-used by the Remote Manager code, thus less additional memory is required for these samples.

3.2 Converting an existing application
The following steps outline the procedure for converting an existing application (assumed to contain some
networking code such as an HTTP server) to a Remote Manager application.

a) Replace the following code (usually at the top of the main C code):

#define TCPCONFIG 1
#use "dcrtcp.lib"

with this:

#define CLOUD_PRODUCT "<my product>"
#define CLOUD_VENDOR "<my company>"
#define CLOUD_VENDOR_ID "<my vendor ID>"
#define CLOUD_FIRMWARE_ID "<my firmware id>"
#define CLOUD_CONTACT "<contact email>"
#define CLOUD_LOCATION "<location>"
#define CLOUD_DESCRIPTION "<description>"
#define CLOUD_SERVER "<initial Remote Manager URL>"
#use "device_cloud.lib"

Add macros to select options if desired (CLOUD_USE_ADDP etc.).

b) In the main initialization code, replace

sock_init_or_exit(1);

with

if (cloud_init()) 
 exit(1);

c) In the main application loop, at least insert a call to

cloud_tick();

This can replace a call to tcp_tick(), however it does not replace a call to http_handler() or any
other specific network protocol handlers.

Robust applications should use the style of main loop shown in all the Remote Manager samples. In par-
ticular, check for the return code from cloud_tick() and perform the appropriate actions

3.3 Non-volatile storage
When incorporating Remote Manager into an application, or writing a new application, the developer
needs to keep in mind the fact that Remote Manager stores settings in non-volatile memory. Without
Remote Manager, the initial state of a program is determined entirely by compile-time defaults, such as
provided by configuration macros. When Remote Manager is used and connects to a Remote Manager
server, then network settings may be changed and stored in non-volatile memory. The new settings may be
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 16

http://www.digi.com

used the next time the program is run (even if re-compiled and reloaded). This can be surprising to
developers who are used to Rabbit programming.

Normally, this behavior should not be too troubling. However, if the developer is experimenting with
various Remote Manager features, then sometimes the configuration saved in non-volatile memory can
conflict with options selected in the new program. this is particularly so in the case that a subsystem has
been omitted. For example, if you initially run with TLS enabled, but subsequently re-compile without
TLS, then the saved settings may be telling Remote Manager to use a secure connection when the required
code is not even included. This will cause permanent errors at start-up.

One way of getting around this problem is to start from scratch each time. If the macro 
_CLOUD_FORCE_FACTORY is defined, then this will bypass the initial read of the previously saved set-
tings. It may be handy to always define this macro during development, but remember to remove it prior
to deployment.

3.4 Initial configuration
The most likely problem when initially developing a Remote Manager application is that the board will fail
to make an initial connection to the Remote Manager server. The initial connection is critical, and depends
on compile-time defaults. If the defaults are invalid for the local network, then the connection will never be
established. The problem of initial configuration when new devices are deployed must be solved by local
configuration means.

If the intended network environment is guaranteed to have a DHCP server, then that is the most convenient
means of initially provisioning devices without end-user involvement. It is also wise to include ADDP,
since that will allow local configuration (via a laptop or PC) even if there is no DHCP server.

The other critical piece of information is the URL of the Remote Manager server. An initial default for this
is selected via the CLOUD_SERVER macro. See “Macros that must be defined”.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 17

http://www.digi.com

 4. API Functions

Rabbit's Remote Manager implementation is comprised of the following API functions:

cloud_init() Initialize all of Remote Manager and start/maintain network
interfaces.

cloud_tick() Non-blocking driver for all Remote Manager functionality

cloud_status() Query current Remote Manager connectivity status

cloud_secure() Test if Remote Manager connection secured by TLS/SSL

cloud_register_target() Register a custom do_command target function

cloud_put() Use Remote Manager data services to save data on the Re-
mote Manager server

cloud_ds_tick() Non-blocking processing of a PUT operation

web_error() Used to indicate errors to the server for custom targets
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 18

http://www.digi.com

cloud_init()

SYNTAX

int cloud_init(void)

DESCRIPTION

Initialize Remote Manager and the network.

Non-Remote Manager applications call sock_init() or related functions to start up the
network. When using Remote Manager, all network configuration is handled automatically and
the application should *not* call sock_init().

Registration of do_command targets should not be performed until this function has been
called.

RETURN VALUE

0: OK

-ENOMEM: insufficient memory

Any other: internal error, contact technical support

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 19

http://www.digi.com

cloud_tick()

SYNTAX

int cloud_tick(void)

DESCRIPTION

Drive all state machines for maintaining Remote Manager and the network configuration. Your
main application loop should call this function whenever possible. Before calling,
cloud_init() must have been called successfully.

RETURN VALUE

Integer code as follows:

0 OK, keep calling

-NETERR_NONE A remote configuration change has been received which re-
quires one or more network interfaces to be temporarily
shut down. This code can be ignored (treat like 0) or the ap-
plication can cleanly shut down any open connections be-
fore calling cloud_tick() again. This return code can
be ignored if Remote Manager is the only network connec-
tion used in the application, or if only standard library serv-
ers (such as HTTP or FTP) are in use. If client sessions are
in use e.g. the application connects to a database server and
wishes to shut down cleanly, then the application should
perform the necessary cleanup (including calls to
tcp_tick()) before resuming calls to
cloud_tick().

-NETERR_ABORT A reboot request has been received. Application should per-
form any clean-up, then reboot using exit(0) from main().
Alternatively, this request can be ignored, however this may
cause a surprise to web services clients or Remote Manager
user interface users. Note that a reboot is requested after
firmware updates.

Other Generally, these will be negative network error codes. They
can occur if the network is misconfigured and the Remote
Manager server cannot be reached. If ignored,
cloud_tick() will try again in three seconds.

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 20

http://www.digi.com

cloud_status()

SYNTAX

int cloud_status(void)

DESCRIPTION

Return Remote Manager server connectivity status.

RETURN VALUE

Integer code as follows:

CLOUD_DOWN Not connected or invalid state.

CLOUD_COMING_UP Attempting to connect

CLOUD_UP Connected OK

CLOUD_COMING_DOWN Temporarily bringing network down for reconfiguration.

LIBRARY

device_cloud.lib

cloud_secure()

SYNTAX

int cloud_secure(void)

DESCRIPTION

Return TRUE if Remote Manager server connectivity is secured via TLS/SSL.

RETURN VALUE

0 if not secure

1 if secured via TLS

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 21

http://www.digi.com

cloud_register_target()

SYNTAX

int cloud_register_target(char far * name, char far * request, char
far * reply)

DESCRIPTION

Register a Remote Manager do_command target.

EXAMPLE

struct {
 int a;
 char b[20];
} request;
#web request
// example validity checker:
#web request ($request.a != 13 || \

 web_error("13 is unlucky for 'a'!"))

struct {
 float b;
 int z[4];
} reply;
#web reply

void actionRequest(void);
#web_update request actionRequest
void actionRequest(void) {
 reply.b = request.a + 3.14159;

 ...

}

int main() {
 cloud_init();
 cloud_register_target("myTarget", "request", "reply");
 ...

}

NOTE: All parameters must point to static storage, since only the pointers are stored in the
registered target table.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 22

http://www.digi.com

PARAMETER 1

The name of the target, as it would appear in the target attribute of the <do_command>
element. If a target of this name is already registered, its entry is updated with the following
parameters. Otherwise, it is created.

PARAMETER 2

Name of the variable which is filled in by the request parameters. This variable must be a
structure, unless the command has no relevant parameter data, in which case it should be the
name of a simple int variable. The variable must be registered to RabbitWeb via a #web
directive.

All targets must have a request parameter. Your application defines a callback function which
is invoked for each do_command received for that target. Use #web_update to register the
callback function against the relevant request parameter variable.

If multiple targets use the same request parameter variable, then the update function should
update all possible reply variables, since it won't know which target was actually specified by
the server.

PARAMETER 3

Name of the variable which is used to generate reply data. This may be NULL if there is no reply
data. Otherwise, it must be the name of a structure variable (not a simple int etc.!) which has
been registered in its entirety using #web. This variable is used to define the structure of any
data returned in the reply. As such, it need not have any guard or update callbacks of its own. It
will usually be manipulated directly by the update function of the request variable in order to
generate the reply.

RETURN VALUE

Integer code as follows:

0 OK

-ENOMEM More than CLOUD_MAX_TARGETS registered.
CLOUD_MAX_TARGETS defaults to 10, but you can #define it to a
larger value before #use cloud.lib.

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 23

http://www.digi.com

cloud_put()

SYNTAX

int cloud_put(DataSvcsState_t far * dss, char far * name, int secure,
char far * contenttype, void far * data, word len);

DESCRIPTION

Use Remote Manager data services to put file (or folder) to the server.

This function is only available if you #define CLOUD_USE_DS.

Only one PUT operation may be in progress at the same time! Attempting multiple operations
will result in application crash.

NOTE: Some of the required parameters for communicating with the server are taken from the
current RCI state. These parameters are:

_RCI_Settings.mgmtglobal.dataServiceEnabled

If not set TRUE, then this function will fail with return code -EPERM. Defaults to TRUE.

_RCI_Settings.mgmtglobal.dataServicePort

Default 80. Sever port number for plaintext requests.

_RCI_Settings.mgmtglobal.dataServiceSecurePort

Default 443. Sever port number for secure requests.

_RCI_Settings.mgmtglobal.dataServiceURL

Defaults to "/ws/device", and is a prefix to the "name" parameter.

_RCI_Settings.mgmtglobal.dataServiceToken

Defaults to "cwm_ds"

PARAMETER 1

Pointer to uninitialized state structure. This will be initialized by this routine, then it must be
passed to cloud_ds_tick() until it returns something other than -EAGAIN.

PARAMETER 2

Resource name to create, relative to the device-specific root. For example, "foo.xml" to
create a file /foo.xml, or "bar/baz.txt" to create a file baz.txt in folder /bar. The create a
folder, pass NULL for data.The length limit for the resouce name is 128 characters.

This name should be URL encoded (e.g. spaces should be %20 and so on).

PARAMETER 3

TRUE if secure connection to be used, else will use plaintext connection. This can only be set
TRUE if CLOUD_USE_TLS is defined.
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 24

http://www.digi.com

PARAMETER 4

String to send as "Content-Type". Use NULL for default of "text/plain". This string must not be
changed until cloud_ds_tick() completes.

NOTE: Currently, the Remote Manager server ignores the specified content type, and infers the
content type from the filename extension. It is recommended to pass NULL for this
parameter.

PARAMETER 5

Data to put. This data must remain unmodified in-place until cloud_ds_tick()
completes. If NULL pointer is passed, this means create a folder. Otherwise, a file is created (or
replaced) on the server.

PARAMETER 6

Length of data to put (typically strlen(data)). A maximum of 65535 bytes is supported.

RETURN VALUE

Integer code as follows:

0 Success. Call cloud_ds_tick() until it completes.

-ENOMEM Could not allocate local resources

-EPERM Not permitted because
_RCI_Settings.mgmtglobal.dataServiceEnabled is not
set TRUE.

-EACCES No access because 'secure' parameter TRUE but no TLS connection is
available.

Other Any return code from httpc_put_ext().

NOTE: For more information, see the Remote Manager Programmer Guide.

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 25

https://www.digi.com/resources/documentation/digidocs/90001437-13/Default.htm
http://www.digi.com

cloud_ds_tick()

SYNTAX

int cloud_ds_tick(DataSvcsState_t far * dss);

DESCRIPTION

Use Remote Manager data services to put file (or folder) to the server. This function is only
available if you #define CLOUD_USE_DS.

Call cloud_put() first to initialize the state structure. This function is used to continue and
complete the process, which may take a relatively long time.

Always call this function with the same DataSvcsState_t structure, until it returns
something other than -EAGAIN. If you do not complete the process in this manner, then there
may be a resource leak.

PARAMETER 1

Pointer to state structure initialized by cloud_put().

RETURN VALUE

Integer code as follows:

positive value PUT completed, with this code returned by the server. Typically, on
success, this will be:

201 Resource created

May also get the following error codes:

400 Bad request

403 Access forbidden (bad credentials)

503 Service unavailable

-EAGAIN Not complete, call again with unchanged data.

-EINVAL Bad parameter: dss appears not to be initialized correctly.

Other Any return code from httpc_put_ext().

NOTE: For details on the positive return codes, see RFC2616.

LIBRARY

device_cloud.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 26

http://www.digi.com

web_error()

SYNTAX

int web_error(char far *error)

DESCRIPTION:

This function may be invoked from #web variable guard expressions, to generate informative
error messages.

EXAMPLE

int myvar;
#web myvar ($myvar < 16 ? 1 : web_error("Too big"))

This works because the return value of web_error() is always zero, and hence causes the
correct result for the guard expression in the case that there is an error.

An alternative style of usage is:

#web myvar ($myvar < 16 || web_error("Too big"))

which takes advantage of C short-cut evaluation to produce the same result as the first form.

NOTE: This function must only be called from #web guard expressions, since it depends on
some global information which is set up during #web transaction processing.

PARAMETER 1:

Pointer to a null-terminated string containing the error message. When used with Remote
Manager do_command targets, this string appears in the <hint> element of the <error>
XML element. Any error generated by a guard expression (whether or not accompanied by
web_error()) causes the entire do_command to be rejected i.e. there will be no update
action.

RETURN VALUE

0

NOTE: See the Remote Manager Programmer Guide. SCI is used by client programs to post
do_command XML requests to one or more Remote Manager-connected devices,
including those based on Rabbit modules.

LIBRARY

rweb_generic.lib
Digi Remote Manager Services for Rabbit Developers User Guide www.digi.com 27

https://www.digi.com/resources/documentation/digidocs/90001437-13/Default.htm
http://www.digi.com

	Digi Remote Manager Services for Rabbit Developers User Guide
	1. Introduction
	1.1 Sample programs

	2. device_cloud.lib configuration macros
	2.1 Feature selection
	#define CLOUD_USE_TLS
	#define CLOUD_USE_ADDP
	#define CLOUD_USE_DS
	#define CLOUD_USE_RPU

	2.2 Device personality selection
	2.3 Macros that must be defined
	#define CLOUD_SERVER “my.devicecloud.com”
	#define CLOUD_SERVER_PASSWORD “cloud”
	#define CLOUD_USERBLOCK_OFFSET 0
	#define CLOUD_USERBLOCK_MAX_LEN 8192

	2.4 Other macros
	#define CLOUD_MIN_CONNECT_TIMEOUT 30
	#define CLOUD_MAX_CONNECT_TIMEOUT 300
	#define CLOUD_DEBUG
	#define CLOUD_VERBOSE
	#define CLOUD_IFACE_VERBOSE

	2.5 Using Remote Program Update with Remote Manager applications
	2.6 Code and data memory requirements for Remote Manager applications

	3. Developing Remote Manager applications on a Rabbit device
	3.1 Feature selection
	3.2 Converting an existing application
	3.3 Non-volatile storage
	3.4 Initial configuration

	4. API Functions
	cloud_init()
	cloud_tick()
	cloud_status()
	cloud_secure()
	cloud_register_target()
	cloud_put()
	cloud_ds_tick()
	web_error()

