\Dic

i

Digi ConnectCore User's Guide for
Command Line Tools

90000854_B

© Digi International Inc. 2007. All Rights Reserved.

The Digi logo and ConnectCore are trademarks or registered trademarks of Digi International, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

Information in this document is subject to change without notice and does not represent a commitment on the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this manual or in the
product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes may be incorporated in new editions of the publication.

Digi International Inc.

11001 Bren Road East

Minnetonka, MN 55343 (USA)

@ +1 877 912-3444 or +1 952 912-3444
http://www.digi.com

http://www.digi.com/

Contents

1.

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

7.1.
7.2.
7.3.
7.4.
7.5.

(70§ (07T o £ TP 5
Embedded LiNUX CONCEPLScciiiiiieiiiiie ettt ettt ettt ettt et et e et e e s snne e e e eneee 5
Digi Embedded LINUX CONCEPLSuuiiiiiiiiieiiiiieit e ettt e e e e e b e e e e e e e e e e aanneees 7
Structure of Digi EMbedded LINUXccoiiiiiiiiiii et e e e e e e 7
SUPPOIEd PIAatfOrMS ...t e et e e e e e s e e e e e e e e e e e e aaee 8
Conventions used IN thiS MANUALoiiiiiiiie e 9
F Y o] o=V T 1T L RSP PR 10
Getting Startedcoovvviii i 11
ConNectionNs and CaDIING........uuiiiiiii e 11
Configure and 0pen & CONSOIE SESSIONcoiuuiiiiiiiiiie ittt 11
Configure requIred ABMONSoiiiiiiiiii ettt e e e e e e bbb e e e e e e e e s anbbrreeeaaaeeaaans 13
Configure the target's Network Parameters.t 15
WOrKING iN the TArget........ooiii et e e e e e e e e 16
Develop a full Embedded Linux project..........ccccevveeeieeeennnnnnn. 21
Overview of Embedded LINUX PrOJECESiiieii i csite s e st e e e e e e sranreee e e e e e 21
Creating different PrOJECEScoi ittt saneeas 21
Identify project partS and CONTENESocuuiiiiiiiiee et 24
D=1 [Lo o] o] =T ot PP PU PP PPPPPPPUPRN 24
Develop applicationsccoieiiiii i 25
Create an aPPlICALIONc..eeieeiiee e e e e e e s s e e e e e e s e e e e e e e e e e raaeenan 25
Add C and C++ sample appliCations............uuveiiiieeiiiiiie e e e 26
21011 To I 1 0 T= o =T X SRR 27
RUN the @PPLICALIONeeiiiiiieee et et e e e s sbbe e e e s nnreeeees 28
Configure the Linux kernelccooooiii i, 30
Kernel configuration OPLIONScuiiiiiiiie e e e e e s s e e e e e e e e e ennes 30
Built-in features and Kernel MOAUIES.eiii i 31
Platform-specific hardware SUPPOITcuviiiiiiee e e e e e e e e e e s nrnreees 32
G (=T I= 1o 01T £ PSR 32
KEINEI MOTUIES ...t ettt e e st e e e s bt e e e sbbeeeesnnaeen e 33
Build the kernel and Kernel MOAUIES..........uuiii i 34
INSEAIl the KEINEL et e e e e e st e e e e e e e ennrnaeeaee s 34
[0 T= To I8 T g = I o o [0 =R 35
MOGIfY KEIMNEI SOUICES ..ottt ettt e e st e e e e st e e e e sbreeeeaas 36
Customize the root file system.......ccccoiiiiiiiiiii e, 37
(070 a1 {To (8= AT oo 1 £ PRRPRR 37
Put files and folders in the TOOLFS............eiiiiiiii e e 39
BUIIA Tthe TOOLES ...t e e st e e st e e e s sabe e e e e snbeee e e 40
1S3 = 11 g =N o To 1 £ PSRRI 40
SPECIAI TIES ...ttt 40
Built-in applicatioNS @nd SEIVICES........uuiiiiiiiiie et 41
Launch an application after STart-Up.........oooeueeiirieiee e 43
Transfer the system to the target..........cccoeveiiiiiiiiicien e, 44
Basic boot l0ader COMMEANTS.........cooiiiiiiii e e e s seneeee s 44
U-BOOt VAIADIES ...ttt e et e e tb e e e s sabe e e e e snbaee e e 45
LIS 0 LTS V] (] 1 SR 46
Update the FIASH MEMOTY......ccoiiiiiiiiiiee ettt 47
BOOt from FIash MeMOIY........coo i 51

8. Devices and Interfacesccccoeeeveiiiiiiiiii i, 52
8.1. Table of devices and their hardware reSOUICESccivieii i 52
8.2. GPIO PINS @nd CUSLOM IVeiiiiiiiiee ittt ettt e et e e e sbb e e e s snbeeee e e 53
8.3, EtNeINET INIEITACEeeeiiii ittt e e et e e e e e e s beneeeeaeaaas 59
8.4. Wireless NetWOork INTEIFACEcoui i 60
8.5. FIash MEMOIY AEVICE ..ot e e e e e e e e e ae s 62
8.6. SErIal EVICE UIVEN ... ueiiiiiiiiiie ettt e e et e e s et e e e e s nbe e e e e snbae e e e sntaeeenees 64
8.7. Serial Peripheral Interface (SPI1) MOUEccviiiiiiiiiieeec e 66
RS T o 10 [o =T T= T o D SPURR 67
8.9. USB NOSEINIEITACE .. .eeiiiiiiiiie e e et e e e e 70
B.10. 1Pttt 72
8.11. Real TIMe ClOCK (RTEC) ..ttt ettt e et e e s sab e e e e sabeeeeeans 75
8.12. VideO/GraphiCS SUPPOIT......eeiiiiiiieeiiitiie et st ettt et e et b e e s st e e s sabe e e e e snbeeeeesbreeeeanes 76
8.13. High-performanCe COUNTET.........ueiiiiiiiie ettt ettt e et e e et e e e e abbeeeeaes 78

9. Usethe WLAN adapter ..o 80
9.1. WIreleSs SECUILY CONCEPLS. . .uuiiiieeiiiiiiiiiieeee e e e e e st re e e e e e e s s st r e e e e e s e s stbrreereeeesssnnsrnrneaeaaeaens 80
9.2. Features of the WLAN A@PLerccooiceiiiieiice et e et e e e e e e s e eeeeee e 80
9.3. Include the wireless interface in the Linux Kernel ... 81
9.4, WIreleSS iNErfaCe LEDSccoiiiiiie ittt et e et e e et e e e s snba e e e s snbeeeeeans 82
9.5. Network settings of WLAN INEITACEcuveiiiiiiiiii it 83
O.6. BasSiC WIr€leSS OPEIALIONScciiuiiiiei ittt st e et e e et e e e abbeeeeaaes 83
9.7. Authentication and ENCIYPLIONcoiiiiiii it e e sbreee e 85
9.8. Wireless CONNECHION EXAMPIES......coi i ittt e e e areeeaae e 86
9.9, Save the CONTIQUIATION.ueiiiiiie et e e et e e e e e e s e annbbeeeaaaaaans 90
9.10. Fine-tune WiIreleSS CONNECTIONSooiuiiiiiiiie ettt et e e e e e e saabeeeeeaeeas 90

10. Bootloader development.......ccccoooiiiiiiiiiiiiiiiieee e 91
IO 0 OO U T o) A o] o] [£ S 91
10.2. CONFIQUIE U-BOOL......ccciiiiiieiiiiiie ittt sttt et e e e e e s bt e e snbne e e s nneas 91
10.3. Platform-sSpecifiC SOUICE COUEuiiiiiiiiieiiiiii ettt e 92
O S O 1S3 (o] 2= T L = o To) SRS 93
10.5. COMPIIE U-BOOL ...ttt ettt ettt ettt e e e e e et bbb e e e e e e e e e s nbnbeeeeaaeeesannees 94
10.6. INSLAII U-BOOT......ciiiiiiiiiiiiei ettt ettt e e e e e ettt e e e e e e s s abb b et et e e e e e e aaababbeeeaaeeannneees 94
O R B oo F= L (= 3O = o To) RSP 95

11. Graphics librarieS. ..o, 96
8 @ (o] o = W oo = P PSP PT PP PPPP 96
11.2. Qtopia core example appliCAtIONSeiiiiiiiiii e 96

D22 I 4o 101 o] 115 o o Yo A1 o Yo RSP 98
12.1. Getting NFS service when booting with the LIVEDVDccooiiiiiiiiieee e 98
12.2. Characters returned by target when target is powered off..........ccccceeeiiiiiii e, 99
12.3. Writing large files to Flash from U-BoOotcooviiiiiiiiiiic e 99

13. RECOVEr @ UBVICE...ui i 100
13.1. JTAG B0OOSter and SOfIWAIEceiiiiiiiiieie ittt a e e e e e e e e e e aaaes 100

14. Uninstall Digi Embedded LinUXccccoeviiiiiiiiiiiiiiiecceieeee 101

15, REfEIENCES ..ouui e 102

1. Concepts

Developing applications for embedded systems differs from developing them for a desktop
computer. Embedded-system applications involve several more elements than the applications
themselves, such as the operating system and any necessary customization of it, the hardware
drivers, the file system, and other elements. This topic introduces the software elements of an
embedded system and the development environment needed to create them.

1.1. Embedded Linux Concepts

Embedded systems are ubiquitous. These dedicated small computers are present in
communications systems, transportation, manufacturing, detection systems, and many machines
that make our lives easier.

The open nature of Linux and its availability for many different hardware architectures makes it the
perfect candidate for embedded platforms.

1.1.1. Cross-compilation

1.1.2.

Whenever code is generated for an embedded target on a development system with a different
microprocessor architecture a cross-development environment is needed. A cross-development
compiler is one that executes in the development system, for example, an x86 PC, but generates
code that executes in a different processor, for example, if the target is ARM.

Digi Embedded Linux provides the GNU cross-development toolchain for ARM architectures, which
contains the compiler, linker, assembler, and shared libraries needed to generate software for the
supported platforms.

Boot loader

A boot loader is a small piece of software that executes soon after powering up a computer. On a
desktop PC, the boot loader resides on the master boot record (MBR) of the hard drive, and is
executed after the PC BIOS performs various system initializations. The boot loader then passes
system information to the kernel, for instance, the hard drive partition to mount as root, and finally
executes the kernel.

In an embedded system, the role of the boot loader is more complicated, since these systems do
not have a BIOS to perform the initial system configuration. The low-level initialization of the
microprocessor, memory controllers, and other board-specific hardware varies from board to board
and CPU to CPU. These initializations must be performed before a Linux kernel image can
execute.

At a minimum, a boot loader for an embedded system performs the following functions:
¢ Initializes the hardware, especially the memory controller.
e Provides boot parameters for the operating system image.
e Starts the operating system image.

Additionally, most boot loaders also provide convenient features that simplify development and
update of the firmware, such as:

e Reading and writing arbitrary memory locations.
e Uploading new binary images to the board's RAM via a serial line or Ethernet

e Copying binary images from RAM to Flash memory.

1.1.3. Kernel

1.1.3.1.

The kernel is the fundamental part of an operating system. It is responsible for managing the
resources and the communication between hardware and software components.

The kernel offers hardware abstraction to the applications and provides a secure access to the
system memory. It also includes an interrupt handler that handles all requests or completed I/O
operations.

Kernel modules

Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They
extend the functionality of the kernel without the need to reboot the system.

For example, one type of module is the device driver, which allows the kernel to access hardware
connected to the system. Without modules, Linux developers would have to build monolithic
kernels and add new functionality directly into the kernel image. Besides resulting in larger kernels,
working without kernel modules would present the disadvantage of requiring rebuilding and
rebooting the kernel every time new functionality was added.

In embedded systems, where functionality can be activated depending on the needs, kernel
modules become a very interesting way of adding features without enlarging the kernel image size.

1.1.4. Root file system

Operating Systems normally rely on a set of files and directories. The root file system is the top of
the hierarchical file tree. It contains the files and directories critical for system operation, including
the device directory and programs for booting the system. The root file system also contains mount
points where other file systems can be mounted to connect to the root file system hierarchy.

1.1.5. Applications

Software applications are programs that employ the capabilities and resources of a computer to do
a particular task.

Applications make use of hardware devices by communicating with device drivers, which are part
of the kernel.

1.2. Digi Embedded Linux concepts

1.2.1. Projects

The philosophy of work in Digi Embedded Linux is linked to the idea of ‘projects’. A project is
actually a folder which contains all the software components required to build a complete solution
for the target platform, such as a kernel, a rootfs, a boot loader and user applications.

With just some simple commands, the compilation process takes care of compiling the kernel, the
applications, generating the target’s file system, and compressing into the final binary images. The
compilation process take place within the project folder with normal user permissions.

1.2.2. Workspace

Although projects can be stored anywhere, it is recommended that all projects are stored within a
single directory: the workspace. This is just an ordering recommendation.

1.2.3. Makefiles and dependencies

Makefiles are special format files that instruct the utility make how to build and manage software
projects. The make program then helps to develop large software projects by keeping track of
which parts of the entire program have changed, building only the parts that have changed since
the last build.

The Makefile structure consists of a set of rules and dependencies that define how the project is
built. To see a complete description of the make utility and Makefiles take a look at the GNU make
manual at http://www.gnu.org/software/make/manual/make.html.

In Digi Embedded Linux Makefile templates are used to generate the main Makefile for the project.
That project Makefile has rules to build the complete project with all of its components.

1.3. Structure of Digi Embedded Linux

Digi Embedded Linux allows easy development of software under Linux 2.6 for Digi International
Inc. embedded modules. The package contains the complete source code of Linux kernel, and
tools to customize rootfs and boot loader and to build user applications. It provides a complete
package for configuring, creating, and modifying custom kernels, boot loaders, rootfs and
applications for specific embedded systems.

1.3.1. Digi EL directory tree

3

Digi Embedded Linux package has the following directory tree:

$ cd /usr/local/DigiEL-4.0

$ s

apps bootloader images libexec scripts
arm-1inux configs include mkproject.sh templates
arm-linux-uclibc digiesp kernel modules uninstall
bin docs lib rootfs

$

http://www.gnu.org/software/make/manual/make.html

Following is a brief description of all the directories and files of the Digi Embedded Linux package.
Most of them are part of the toolchain. The structure of the toolchain directories is fixed:

apps: User applications templates.
arm-linux: Part of the toolchain; symlink to arm-linux-uclibc.
arm-linux-uclibc: Part of the toolchain; several binary tools.

bin: Part of the toolchain; cross-compilers, linkers. There is also some extra-toolchain tools
included that are useful for different stages of project building, for example tools to create
rootfs images of different types (cramfs, jffs2).

bootloader: Source code of U-Boot boot loader.

configs: Default config files for our target platforms.

digiesp: Digi Embedded Linux Eclipse plugin.

docs: Documentation for Digi Embedded Linux.

images: Images ready to be programmed in a target device.

include: Part of the toolchain; header files required to build applications.
kernel: Linux kernel source code.

lib: Part of the toolchain; cross-compiled libraries.

libexec: Part of the toolchain.

mkproject.sh: Project creation script. Run it without options to see its associated help.
modules: External kernel modules templates.

rootfs: A base rootfs for all the projects and the structure to add prebuilt applications at
project configuration time (rootfs_extras).

scripts: Several shell scripts used for different tasks, such as make images, check
libraries, parse headers, etc.

templates: Makefile templates for different types of projects. These are used to generate
the project main Makefile.

uninstall: Uninstalls the Digi Embedded Linux binary.

1.4. Supported Platforms

This document applies to and mentions to the following supported platforms:

Digi ConnectCore 9C platform
Digi ConnectCore Wi-9C platform

Digi ConnectCore 9P platform

Where instructions use the keyword platformname, substitute platformname with the actual
platform being used:

If using this module: Specify this platform name
Digi ConnectCore 9C cc9cjsnand

Digi ConnectCore Wi-9C ccw9cjsnand

Digi ConnectCore 9P cc9p9360js

Depending the platform being used, the information in dialogs and
output messages may vary from that shown this manual.

1.5. Conventions used in this manual

This manual uses the following typographical conventions to display and refer to information:

Convention Use

Style New terms and variables in commands, code, and other input.
stvle In examples, to show the contents of files, the output from
Y commands. In, text the C code.
Variables to be replaced with actual values are shown in italics.
Items in the Digi ESP interface, such as menu items, dialogs, tabs,
Style
buttons, and other controls.
In examples, to show the text that should be typed literally by the
user.
A prompt that indicates the action is performed in the target device.
$

A prompt that indicates the action is performed in the host
computer.

It also uses these frames and symbols:

This is a warning. It helps solve or to avoid common mistakes
or problems

Q This is a hint. It contains useful information about a topic

$ This is a host computer session
2 $ Bold text indicates what must be input

- =~ | # This is a target session
ﬁﬁiﬁ # Bold text indicates what must be input

1.6. Abbreviations

ASCII
BIOS
CPU
CVS
DAC
DHCP
FPGA
FTP
GDB
GNU
GPIO
HID
12C
IDE
lOCTL
P
IRQ
JFFS2
JTAG
LCD
MBR
MTD
NFS
NVRAM
0s
PC
PID
RAM
ROOTFS
RTC
SPI
TFT
TFTP
uiD
USB
VGA
VM

American Standard Code for Information Interchange

Basic Input Output System
Central Processing Unit
Concurrent Versions System

Digital to Analog Converter

Dynamic Host Configuration Protocol

Field-Programmable Gate Array

File Transfer Protocol
GNU Debugger
GNU's Not UNIX
General Purpose Input/Output
Human Interface Device

Inter-Integrated Circuit

Integrated Development Environment

I/O Control
Internet Protocol

Interrupt Request

Journaling Flash File System version 2

Joint Test Action Group
Liquid Crystal Display
Master Boot Record
Memory Technology Device
Network File System
Non-volatile RAM
Operating System

Personal Computer
Process Identification
Random Access Memory
Root File System
Real-Time Clock

Serial Peripheral Interface
Thin Film Transistor

Trivial File Transfer Protocol
User Identification
Universal Serial Bus

Video Graphics Array

Virtual memory

10

WLAN Wireless Local Area Network

2. Getting started

This topic explains how to connect the development board (target) and configure a host PC to
connect to it.

2.1. Connections and cabling

Connect the hardware as explained in the Quick Start Guide.

2.2. Configure and open a console session

)

2.2.1.

The target board prints out messages on the serial port. To be able to see these messages, it is
necessary to start a console session with the target by means of a Linux communications program,
like minicom or seyon.

The default serial communication parameters are 38400 baud, no parity, 8 data bits, and 1 stop bit.
In Linux, the serial ports device nodes are normally at /dev/ttySn (where n is the number of port).

Unless otherwise stated, this guide assumes the target is connected to the first serial port (COM 1,
/dev/ttyS0) of the host. If using another port, change n in ttySn to the appropriate number.

In some Linux distributions, the serial ports have restricted access. If the serial port cannot be
opened, consult the Linux administrator.

Minicom

Minicom is the more popular Linux communications program. Before launching minicom, configure
it. To do so, login in as root and issue the command:

minicom -S

Then go to Serial port setup and change the values to as needed:

Serial Device
Lockfile Location
Callin Program
Callout Progrs :
Pars/Bits v 38400 8Nl

Hardware Flow Control @ Mo
Software Flow Control @ No

Change which setting? |j

11

When all parameters are set, select Save setup as dfl to save the configuration.

[configuration]

Screen and boarc
Save setup as dfl

S setup as..

Exit from Minicom

Next time start minicom as a standard user with:

% $ minicom

2.2.2. Seyon
Seyon is a complete full-featured telecommunications package for the X Window System. To use it
start seyon as a standard user by entering:

% $ seyon -modems /dev/ttySO

wySeyon Command Centel=ilm fac

B I =3 G A

| = lelcome to Seyon wersion 2,20c - |

| about || Help || set || Dial |
| Transfer || Shell || Mizc || Hangup |
| Exit | aral :

In the Seyon Command window, press the Set button to open the settings window. In the settings
window, the communication parameters can be adjusted.

~ Settings = Gl

| Strip 8th || BS-PDEL | i . Settifmd faed

| sonsorr || crserts | Rl | | [200 || 1200 || 2400 |
| Idlebuard || Baud || Bits ||| 4800 |[3600 |
| Parity || Stop Bits || Comman | |1EIECICI| 28400

3]
| Mewline | | Paort. |

4 Settingfms fae

Press the Baud button, and select 38400. Press the common button, and select 8-N-1.

12

2.3. Configure required daemons

2.3.1.

L

This topic shows how to configure additional services that are required to prepare the development
computer to work with the target. If Digi Embedded Linux was installed together with the provided
Kubuntu Linux distribution, a TFTP server and an NFS server are already installed and configured,
and this topic can be skipped.

TFTP daemon

The U-Boot boot loader running in the target board is able to write files to the Flash memory of the
module. A TFTP server is required to transport these files from the host computer to the target.

Debian-like distributions users can execute the following command to install a TFTP server:

apt-get install tftpd

After completing installation, create a directory /tftpboot where exported files will be located. (Must
be root user to create this directory.) Images can be placed in the directory automatically by Digi
Embedded Linux build environment. Activate all the permissions of this folder.

mkdir /tftpboot
chmod 1777 /tftpboot

To make sure the TFTP server is using the /tftpboot directory, check the Internet daemons
configuration file /etc/inetd.conf. It should contain an entry similar to the following:

tftp dgram udp wait nobody /Zusr/sbin/tcpd /usr/sbin/in_tftpd -s /tftpboot

This line is usually added as part of the process of the daemon installation in Debian-like
distributions. If the entry is not there, use an editor and change the file accordingly. For specific
options for tftpd, see the Linux man page for the command:

$ man tftpd

13

2.3.2.

NFS server

The network file system (NFS) simplifies application development on the target. NFS allows a
target board to mount over Ethernet a host computer directory as its root file system with read/write
permissions. NFS also allows access to the file system from the target and host computer at the
same time.

NFS server configuration details are very specific to the various distributions and beyond the scope
of this help. This help describes the necessary modifications on hosts running a Debian-like
distribution only. To set up an NFS server using a different distribution, see the Linux distribution
manual.

When the NFS server package (package nfs-kernel-server) is installed on a Debian-like
distribution, the file /etc/exports contains information on exported directories and their access
rights. For detailed information about the /etc/exports file, refer to the Linux man pages.

Add the following line to the /etc/exports file to provide read/write access for the target:

BOOTDIR IP_ADDRESS(rw,all_squash,anonuid=YOUR_UID,anongid=YOUR_GID,async)

Replace BOOTDIR with the path to the NFS directory which is exported to the target,
IP_ADDRESS with the IP address of the target, YOUR_UID with your user UID and YOUR_GID
with your user GID.

Use the commands id -u and id -g to obtain your user UID and GID:

$ id -u
1000
$ id g
1000

By default, the build process copies the target's rootfs to /export/nfsroot-platformname (see topic
1.4), For example, to export the rootfs for a ConnectCore Wi-9C platform to a target with IP
address 192.168.42.30, write the following to /etc/exports:

/exports/nfsroot-ccwOcjsnand
192.168.42.30(rw,all_squash,anonuid=1000,anongid=1000,async)

Or, for simplicity’s sake, export the whole /exports directory for a complete subnet:

/exports 192.168.42.0/24(rw,all_squash,anonuid=1000,anongid=1000,async)

After modifying the /etc/exports file, restart the NFS server with the following command (as root):

/etc/init.d/nfs-kernel-server restart

14

2.4. Configure the target's network parameters

»

A

Because communication between the Digi ESP environment and target occurs over Ethernet,
network settings must be configured on the target. This is done by changing some variables of the
boot loader. The process is explained in detail in topic 7.

Power on the development board with the power switch. The LEDs on the board light up, and 2
seconds later, the system prints boot messages on the Serial Console view. To stop the autoboot
process, with the focus on the Serial Console view, press any key.

To configure the network settings of the target (IP, mask, the IP address of the host, etc.), enter the
following commands in the Serial Console view:

HHHFHHIEHR

setenv ipaddr XXX.XXX.XXX.XXX
setenv netmask NNN.NNN.NNN.NNN
setenv ipaddr_wlan WWW.WWW_WWW . Www
setenv netmask wlan MMM._.MMM .MMM .MMM
setenv serverip YYY_YYY_YYY._YYY
saveenv

where:

XXX XXX XXX XXX is the IP address for the target's Ethernet interface.
NNN.NNN.NNN.NNN is the target's Ethernet network mask.

WWW.WWW.WWW.WWW is the IP address for the target's WLAN adapter (only if the
module is a ConnectCore Wi-9C).

MMM.MMM.MMM.MMM is the wireless network mask (only if the module is a ConnectCore
Wi-9C).

YYY.YYY.YYY.YYY is the IP address of the development workstation.

The Ethernet IP addresses of the target and the host PC must be in
the same network segment. For a ConnectCore Wi-9C module, the
Wireless IP addresses of the target and the AP must also be in the
same network segment.

The saveenv command saves the target's network settings in NVRAM. As a final step, switch off
the target again.

15

2.5. Working in the target

>

Now that everything is properly set up, the next step is to work with the target. Power on the
development board with the power switch. After power-on, the LEDs on the board will light up, and
2 seconds later, the system will print boot messages on the Serial Console view. To let the target
boot automatically, do not press any key. After 25-30 seconds, the boot loader unpacks and
launches the pre-installed Linux kernel from the built-in Flash memory.

During this process, output messages on the terminal client similar to the output below are
displayed.

U-Boot 1.1.4 (Feb 20 2007 - 14:23:03) DEL_4 0 _RC3
for Digi ConnectCore Wi-9C on Development Board

DRAM: 64 MB

NAND: 128 MiB

In: serial

Out: serial

Err: serial

CPU: NS9360 @ 154.828800MHz
Strap: 0x03

SP1 1D:2007/01/25, V1_4rc2, CCOC/CCWOC, SDRAM 64MByte, CL2, 7.8us, LE
FPGA: wifi.ncd, 2007/01/25, 17:49:41, V2.01
Hit any key to stop autoboot: O

[LINUX KERNEL BOOT MESSAGES]

éiérting dropbear sshd: OK
Starting ftp server: vsftpd.
Starting boa webserver: boa.

BusyBox v1.2.2 (2007.01.16-12:10+0000) Built-in shell (ash)
Enter “help® for a list of built-in commands.

/ #

16

2.5.1. Common Linux commands (busybox)

After Linux starts successfully, two things are available: a root file system, and a shell, as part of
the executable file busybox.

busybox is an executable file that contains small versions of many common UNIX tools. These
smaller versions serve as replacements for most utilities found in desktop Linux distributions, with
the advantage of being small enough to be useful for embedded systems.

busybox includes the most-used shell applications, such as cat, chmod, echo, mount, etc. These
utilities generally have fewer options than their full-featured desktop's equivalents; however, the
included options provide the expected functionality. Further, in Digi Embedded Linux, less-
important shell applications have been stripped off in order to obtain a small busybox binary.

To list currently included applications in busybox, on the Serial Console, type busybox without
arguments.

busybox
}tﬁgh BusyBox v1.2.2 (2006.12.18-19:46+0000) multi-call binary

Usage: busybox [function] [arguments]...
or: [function] [arguments]...

BusyBox is a multi-call binary that combines many common Unix
utilities into a single executable. Most people will create a
link to busybox for each function they wish to use and BusyBox
will act like whatever it was invoked as!

Currently defined functions:
[. [[, addgroup, adduser, ash, awk, basename, bbconfig, bunzip2,
busybox, bzcat, cal, cat, chgrp, chmod, chown, chroot, chvt, clear,
cp, cut, date, dd, deallocvt, delgroup, deluser, df, diff, dirname,
dmesg, dos2unix, du, dumpleases, echo, egrep, env, expr, false,
fbset, fdisk, fgrep, find, free, ftpget, ftpput, fuser, getopt,
getty, grep, gunzip, gzip, halt, head, hexdump, hostid, hostname,
hwclock, id, ifconfig, init, insmod, install, kill, killall, klogd,
less, In, logger, login, logname, logread, losetup, Is, Ismod,
makedevs, md5sum, mdev, mkdir, mknod, mkswap, mktemp, modprobe,
more, mount, mountpoint, mv, nc, netstat, nice, nslookup, od,
openvt, passwd, pidof, ping, pivot_root, poweroff, printenv, ps,
pwd, rdate, readlink, reboot, renice, reset, rm, rmdir, rmmod,
route, run-parts, sed, seq, setsid, sh, shalsum, sleep, sort,
start-stop-daemon, stat, strings, stty, su, sulogin, swapoff,
swapon, sync, sysctl, syslogd, tail, tar, tee, telnet, telnetd,
test, tftp, time, top, touch, tr, true, tty, udhcpc, udhcpd, umount,
uname, unig, unix2dos, unzip, uptime, usleep, uudecode, uuencode,
vi, vlock, watch, wc, wget, which, who, whoami, xargs, yes, zcat

#

Brief help text is provided for each command. To display this help, enter:

}ﬁﬁgh # command_name --help

17

»

For example, to display help about the copy (cp) command, enter:

cp —help
BusyBox v1.2.2 (2006.12.18-19:46+0000) multi-call binary

Usage: cp [OPTION]... SOURCE DEST
Copies SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

-a, Same as —dpR

-d,-P Preserves links

-H,-L Dereference all symlinks (implied by default)
-p Preserves file attributes if possible

-f force (implied; ignored) — always set

-1 interactive, prompt before overwrite

-R,-r Copies directories recursively

cat —help
BusyBox v1.2.2 (2006.12.18-19:46+0000) multi-call binary

Usage: cat [-u] [FILE]--.
Concatenates FILE(s) and prints them to stdout.

Options:
-u ignored since unbuffered i/0 is always used

To list files, use the Is command. To navigate through the directories, use the cd command.

To become familiar with using the busybox shell, try other commands.

2.5.2. Open a Telnet session

3

A Telnet server (telnetd) is included and started by default, so a Telnet session can be opened
from the host computer.

$ telnet 192.168.42.30
Trying 192.168.42.30...
Connected to 192.168.42.30.
Escape character is "~]".

BusyBox v1.2.2 (2006.12.18-19:46+0000) Built-in shell (ash)
Enter “help®” for a list of built-in commands.

/ #

This will open a busybox shell in the Telnet session. There is no need to provide a username and
password to log in the target.

18

2.5.3. Connect to the web server

A webserver, called boa webserver, is included as an extra package. This is a small single-tasking
HTTP server. Connecting from the host with any web browser displays a simple web page with the
Digi logo. The configuration file for the webserver is named boa.conf and is located in the
/etc/boa/ directory on the target.

Open a browser and type the IP address of the target. The default IP address is 192.168.42.30.

Digi International Inc. - Welcome! - Mozilla

. File Edit Wiew Go Bookmarks Tools Window Help

a:l e @ @ " http://192.168.42,30 | [C search | dEE‘ZQ

. 4% Home | FBookmarks % The Mozilla 0... % Latest Builds

iz =

19

2.5.4. File transfer to the target (FTP)

An FTP server (vsftpd) is included as an extra package. FTP sessions can be opened from the
host computer to the target board. The FTP server can be connected to as user anonymous or ftp
without password.

The FTP server allows to transfer files between host and target. To upload a file:
1. Change to the folder in the host where the file is.

From the folder where the file is, open an FTP connection to the target.

Change the target's current directory to /tmp, which has write access.

Upload the file with the FTP command “put <file>".

Check that the file has been transferred doing an 'Is' command.

R T o

Close the FTP connection with “exit”.

$ ftp 192.168.42.30

Connected to 192.168.42.30.

220 (vsfFTPd 2.0.5)

Name (192.168.42.1:myuser): ftp

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd tmp

250 Directory successfully changed.

ftp> put mkproject.sh

local: mkproject.sh remote: mkproject.sh

200 PORT command successful. Consider using PASV.
150 Ok to send data.

226 File receive OK.

13211 bytes sent in 0.01 secs (888.6 kB/s)

ftp> Is

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

5 $ cd /usr/local/DigiEL-4.0/

—FWXIrwXr-— 1 1001 1001 13211 Jan 03 09:18 mkproject.sh
226 Directory send OK.
ftp> exit

221 Goodbye

20

3. Develop a full Embedded Linux project

This topic covers the creation of Digi Embedded Linux projects with its different components. It is
possible to create separate projects for each part (boot loader, kernel, rootfs, applications), or a full
project with all the components integrated.

This topic involves creating a project which will be used and modified later.

3.1. Overview of Embedded Linux projects

An embedded Linux project is a set of software components that are part of the same solution for a
target platform.

As described in topic 1.1, the different parts of an embedded system are the boot loader, the
kernel, the rootfs, and the applications. Since these parts are independent of each other, it is
possible to create a kernel-only project or an applications-only project, for example.

Most of the time, however, several parts (or every single part) of the embedded software need to
be customized. Projects can be created that integrate some or all of the customized parts.

Projects must be given a name, and their files reside on the same directory of the selected
workspace.

3.2. Creating different projects

3.2.1. Project wizard script

-

The project wizard script is a tool that creates the specified projects for the specified platform. The
script is called mkproject.sh and its options are:

$ /usr/local/DigiEL-4.0/mkproject.sh
Usage: mkproject.sh [OPTIONS]

-a, --with-apps: create user applications project

-k, --with-kernel: create kernel project

-1, —--list-platforms: list the available platforms in the environment
-m, --with-modules: create kernel modules (depends on --with-kernel)
-r, —--with-rootfs: create rootfs project

-u, --with-uboot: create U-Boot project
--enable-platform=<platform>: select platform for the project
—-—tftp-dir=<dir>: select tftp directory

--nfs-dir=<dir>: select nfs directory

The available platforms are:

cc9cjsnand cc9p9360js ccw9cjsnand

21

3.2.2. Kernel project

Consider a scenario where different equipment is being designed, with different functionality, but
with the same kernel requirements, in terms of network services or file-systems support. The
targets will have different applications running on them and different root file systems, but they can
have the same kernel. For this kind of scenario, a kernel-only project can be created, which
consists of developing and configuring a kernel to run on all the targets.

To create a kernel-only project (with kernel modules) for a ConnectCore Wi-9C, create the kernel
project folder and execute the project wizard script from there with only kernel and kernel modules
support:

$ mkdir myKernelProject
5 $ cd myKernelProject
= $ /usr/local/DigiEL-4.0/mkproject.sh -km --enable-platform=ccw9cjsnand
—-—tftp-dir=/tftpboot --nfs-dir=/exports/nfsroot-ccw9cjsnand

Projects can be created for different platforms by changing the value of the —
enable-platform argument, as seen in topic 1.4.

Now the kernel project is ready. Configuring, building, and installing the kernel is explained in topic
5.

3.2.3. Rootfs project

Suppose a target has a running kernel but requires a different root file system in it, including a web
page or different applications. To do so, a rootfs-only project is created to generate a new root file
system for the target device.

To create a Digi Embedded Linux rootfs-only project for a ConnectCore Wi-9C, create the rootfs
project folder and execute the project wizard script from there with only rootfs support:

mkdir myRootfsProject

cd myRootfsProject

/usr/local/DigiEL-4.0/mkproject.sh -r --enable-platform=ccw9cjsnand
--tftp-dir=/tftpboot --nfs-dir=/exports/nfsroot-ccw9cjsnand

LR R

Projects can be created for different platforms by changing the value of the —
enable-platform argument, as seen in topic 1.4.

Now the rootfs project is ready. Configuring, building, and installing the rootfs is explained in topic
6.

3.2.4. Applications project

To create one or more applications that can be run on a certain target, create an applications-only
project. These applications can be transferred to the target via FTP, or be put in a storage media
(like a Compact Flash card).

To create a Digi Embedded Linux applications-only project for a ConnectCore Wi-9C, create the
applications project folder and execute the project wizard script from there with only applications
support:

$ mkdir myAppsProject
5 $ cd myAppsProject
= $ /usr/local/DigiEL-4.0/mkproject.sh -a --enable-platform=ccw9cjsnand
—-—tftp-dir=/tftpboot --nfs-dir=/exports/nfsroot-ccw9cjsnand

22

%

Projects can be created for different platforms by changing the value of the —
enable-platform argument,, as seen in topic 1.4.

Now the applications project is ready. Topic 4 describes developing applications.

3.2.5. U-Boot project

©

3.2.6.

v

To customize the boot loader of a device or a set of devices (for example, to make it smaller or use
custom commands), create a Digi Embedded Linux U-Boot-only project.

To create a U-Boot-only project for a ConnectCore Wi-9C, create the U-Boot project folder and
execute the project wizard script from there with only U-Boot support:

$ mkdir myUbootProject

$ cd myUbootProject

$ /usr/local/DigiEL-4.0/mkproject.sh -u --enable-platform=ccw9cjsnand
—--tftp-dir=/tftpboot --nfs-dir=/exports/nfsroot-ccw9cjsnand

Projects can be created for different platforms by changing the value of the —
enable-platform argument, as seen in topic 1.4.

Now the U-Boot project is ready. Topic 10 describes boot loader development.

U-Boot projects copy the complete U-Boot sources (around 55 Mb) to the
project directory.

Full Embedded Linux project

If the intention is to develop and customize each single part of a project, components can be
integrated into a full-featured project, in a manner similar to selecting separate components for the
project.

To create a full-featured Embedded Linux project add the options seen in the previous topics for
the different components.

For example, create a full Embedded Linux project to work with it in the following topics. Call this
project myFullProject. The steps are:

1. Create the project folder

2. Execute the project wizard script from there with Kernel, kernel modules, rootfs, applications
and U-Boot support:

mkdir myFullProject

cd myFullProject
/usr/local/DigiEL-4.0/mkproject.sh -kmrau
--enable-platform=ccw9cjsnand --tftp-dir=/tftpboot
--nfs-dir=/exports/nfsroot-ccw9cjsnand

* H B

This task consists of adding the options for all types of subprojects.

Although a full Embedded Linux project is being created for demonstration purposes, to keep
projects as small as possible, it is recommended that projects be created with the required
components only.

23

3.3. ldentify project parts and contents

Here is the structure of the full project created in the previous topic:

$ cd <path_to_myFullProject>

% $ tree --dirsfirst -L 2

|-- build

| |-- U-Boot

| |-- apps

| |-- kernel

| |-- modules

| |-- rootfs

| |-- scripts

| T -- Makefile

|-- configs

| |-- Kconfig

| "-- add_files.sh

|-- images

T -- Makefile

9 directories, 4 files

The project folder has three main directories and one Makefile:

e huild: Stores the files of the build process for the current project. It contains several
subfolders and one Makefile.

U-Boot: this folder stores all the U-Boot code. Each time U-Boot is selected as
part of a project all the U-Boot code is copied to this folder.

apps: this folder stores the user applications. Each user application is in a
subfolder of its own below this one.

kernel: this folder stores the object files (not sources) of the kernel build
process.

modules: this folder stores the user kernel modules. This is the place to create
custom kernel modules. Each module has to be in a subfolder of this one.

rootfs: this folder stores the built rootfs, and is the source for the rootfs which
is transferred to the target.

scripts: It contains the object files of the kconfig/kbuild configuration tool used
for configuring the different options for the projects.

Makefile: this is a kbuild/kconfig configuration tool required file.

e configs: Stores the Kconfig file for the current project. This file is dynamically created,
depending on the options selected at project creation time, and is the entry point for
the kbuild/kconfig configuration tool. It also contains add_files.sh, a template script for
tweaking the rootfs for a project; for example, creating custom files or folders.

e images: Stores the resulting images of the build process (kernel, rootfs, U-Boot).

o Makefile: The main Makefile of the project. It is also dynamically created at project
creation time depending on the options selected, and it has rules to build the whole
project or just the parts specified by the user, for example u-boot, rootfs, applications,
modules.

3.4. Delete projects

All files related to a project are stored under the project directory, therefore, to delete a project,
delete the project folder.

24

4. Develop applications

This topic covers developing user applications. Digi Embedded Linux provides sample applications
that can be used as templates. Users can also create their own applications starting from scratch.
This topic uses the full project created in topic 3.2.6. In the following lines, instructions are given on
the assumption that the current working directory is the myFullProject directory.

4.1. Create an application

-

As seen previously in topic 3.3 the subfolder build/apps/ contains the user applications. Initially,
that folder is empty because no user application has been created yet.

To create a new application:
1. Create a subfolder of build/apps/ with the name of the application.

2. Create the application source code files inside that folder, and provide a Makefile that
builds and installs the application. The Makefile is the interface between the project.
Specifying a Makefile is required.

As an example, create the famous hello_world.c application. First create the application folder:

$ mkdir -p build/apps/hello_world

Then provide the source code hello_world.c:

#include <stdio.h>
int main(void)

printf(“"Hello World!\n™);
return O;

bs

And provide the Makefile (with clean and installation information):

ROOTFS_DIR = $(strip $(wildcard $(DEL_PROJ_DIR)/build/rootfs))
STRIP = $(CROSS_COMPILE)strip

CE = $(CROSS_COMPILE)gcc

CFLAGS = -Wall

BINARY = hello_world

all: $(BINARY)

install: $(BINARY)
ifneq ($(ROOTFS_DIR),)
$(STRIP) $<
install -D -m 0755 $< $(ROOTFS_DIR)/usr/bin/$<
else
$(info *** Directory $(ROOTFS_DIR) not found, $< not installed.)
endif

clean:
rm -f $(BINARY)

As this Makefile is automatically called by the project topdir Makefile, some exported variables are
available. This is useful, for example, in the install rule, which uses the variable DEL_PROJ_DIR
(path to project directory). Using the provided variables is optional. The application can be installed
anywhere.

25

Now the application is ready to be built.

4.2. Add C and C++ sample applications

Digi Embedded Linux provides some example applications that can be used as templates.

To include the application templates in the project run the configuration tool from the project
directory:

‘g $ make xconfig

This window is displayed:

File QOption Help

O | E

I Option | Option
U-Boot Configuration M.
Linux Kernel Configuration Elgpio_test
= Applications Configuration [hello_world
Ohello_world_cpp_libstdc
= Rootfs Configuration i2c_gpic test
Pre-built applications O pthread_test c
Rootfs images Ortc_test
Flwd_test

Application templates

Under Applications Configuration > User application templates, select which templates to
include in the project. For example, check gpio_test and hello_world, save, and exit the
configuration tool.

The selected templates will be transferred into build/apps folder. There, their source files and
Makefiles can be modified to meet requirements, or used as help files for developing new
applications.

Review the included Makefiles to determine whether any topdir variables can be
used in custom Makefiles.

26

4.3. Build the project

L

After creating an application from scratch and adding an example application to the project, it is
time to build the applications.

From the project folder, execute:

$ make build_apps

The full project Makefile will go down the build/apps/ folder and execute the make rule for each
application subfolder.

Because the application's Makefile also provides an install rule the application can be installed by
typing:

$ make install_apps

The full project Makefile will go down the build/apps/ folder and run the make install rule for each
application subfolder.

Now the application is built and installed according to each application's Makefile rules.

Doing a make without any arguments builds the complete project, including applications,
kernel, kernel modules, rootfs and U-Boot, if these elements were included at the moment
when the project was created.

The same way, doing a make install installs the complete project, including every element of
the project.

27

4.4. Run the application

At this point the application is built and maybe installed (this step is not required). The normal
process in developing stages is to install the application in the NFS exported directory to have it
available to use when booting the target from the net (where the rootfs is mounted via NFS).

If working with a target that boots from flash memory (like the factory default image), the application
needs to be transferred using FTP and then run from a shell (serial console or telnet session).

4.4.1. Transfer application via FTP

FTP is the simplest way to transfer the application to the target. The target contains an FTP server
installed. The FTP server can be connected to as user anonymous or ftp without password. The
file must be transferred to a folder with write permissions like /tmp, which is mountpoint of tmpfs.

1.

2
3.
4

From the folder where the application is, open an FTP connection to the target.
Change directory in the target to /tmp.
Upload the application with the FTP command put.

Close the FTP connection with exit.

5 ~/myFullProject/build/apps/hello_world_c$ Is

hello_world hello world.c Makefile

~/myFul lProject/build/apps/hello_world_c$ ftp 192.168.42.30
Connected to 192.168.42.30.

220 (vsFTPd 2.0.5)

Name (192.168.42.30:myuser): ftp

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd /tmp

250 Directory successfully changed.

ftp> Is

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

226 Directory send OK.

ftp> put hello_world

local: hello world remote: hello world

200 PORT command successful. Consider using PASV.
150 Ok to send data.

226 File receive OK.

3208 bytes sent in 0.00 secs (59109.7 kB/s)

ftp> exit

221 Goodbye.
~/myFullProject/build/apps/hello_world_c$

28

4.4.2. Run application

Once the application has been uploaded to the target a shell is needed to execute it. Either the
serial console (minicom) or a telnet session from the host can be used.

For example, use Telnet:
1. Telnet to the target's IP address.
2. Change directory to where the application was uploaded.

3. Execute the application from there.

$ telnet 192.168.42.30
5 Trying 192.168.42.30...
: Connected to 192.168.42.30.
Escape character is "~]".

BusyBox v1.2.2 (2007.01.16-12:10+0000) Built-in shell (ash)
Enter “help®” for a list of built-in commands.

/ # cd /tmp

/tmp # Is

hello_world

/tmp # ./hello_world

Hello World!

/tmp # exit

Connection closed by foreign host.

29

5. Configure the Linux kernel

One of the finest features of Linux is the ability to customize the kernel. This means support for
unneeded hardware or services can be removed, resulting in a smaller kernel image. Further, it is
possible to choose which parts are embedded in the kernel, and which ones are compiled as
loadable modules that can be loaded or unloaded at will, as needed.

5.1. Kernel configuration options

Customizing the kernel image is done by executing the configuration tool for the project. The
project configuration tool is based in the standard kernel configuration tool, that is, a set of Makefile
rules used depending on the libraries installed on the development host.

The different options for configuring the kernel are:

make
make
make
make

s

LZR R R

xconfig (for KDE users - qt libraries required)
gconfig (for GNOME users - gtk libraries required)
menuconfig (graphical configuration tool for console)
config (console configuration tool)

For example, if make xconfig is executed, the following window is displayed:

Kernel Extra options
Code maturity level options
- General setup
4 Configure standard kernel feature
Loadable module support
& Block layer
10 Schedulers
= System Type
NS Implementations
= Bus support
PCCARD (PCMCIA/CardBus) support
Kernel Features
Boot options
Floating point emulation
Userspace binary formats
Power management options
= Device Drivers
Generic Driver Options
Connector - unified userspace =-= k¢
Memory Technology Devices (MTD)
Parallel port support
Plug and Play support
Block devices
SCSI| device support

g

Pl o] (<]

qconf [S=nT_P=T>]
File Option Help
e | IlE
Option [~ | option
® U-Boot Configuration Hl..
© Linux Kernel Corfiguration o B R —

F MNetworking options
B Amateur Radio support
@ IrDA (infrared) subsystem support
® Bluetooth subsystem support
[Generic IEEE 802,11 Metworking Stack
Enable full debugging output
IEEE 802,11 WEP encryption (B02,1x)
[|IEEE 802.11i CCMP support
|IEEE 802.11i TKIP encryption
= [Software MAC add-on to the IEEE 802.11 networking stzj|
OEnable full debugging output

€

Metworking support (MET)

| D)

Unless you really know what you are doing, you should say ¥
here.

The reason is that some programs need kernel networking
support even

when running on a stand-alone machine that isn't connected
to any

other computer.

If you are upgrading from an clder kernel, you
should consider updating your netwaorking tools too because
changes

:

e . ' o ' e [. '

The tool allows customizing the kernel as needed. Most of the options can be built directly into the
kernel or as modules (explained in following section).

30

5.1.1. Kernel image filename

The resulting kernel image filename is, by default ulmage-target. This name can be modified at
will under the section Kernel Extra options.

qconf =@ fae]
File Option Help

o I E

Option ~| | Option
® U-Boot Configuration M.
- Linux Kernel Configuration Linux kernel image name: ulmage-ccw9cjsnand I
Code maturity level options
= General setup
W Configure standard kernel feature
Loadable module support
= Block layer e
10 Schedulers
= System Type
NS Implementations
= Bus support
PCCARD (PCMCIA/CardBus) support

Kernel Features e | [4I¥]
Boot options < myFullProject_kernel_image)
i

Floating point emulation
Userspace binary formats Li i name (LINUX_IMAGE_NAME)

Fower management options
Networking
= Device Drivers

Generic Driver Options
Connector - unified userspace =-= kit
Memory Technology Devices (MTD)
Parallel port support
Plug and Play support
Block devices
SCS| device support

e (414

Set file name for linux kernel image.

5.2. Built-in features and kernel modules

Most configuration options are tristate: they can be not built at all (N), built directly into the kernel
(Y), or built as a module (M). In the Linux Kernel Configuration display, these three states are
graphically represented by an unchecked checkbox, a checked checkbox and a checkbox with a
black circle in it, respectively.

Built-in features are kernel services or support built directly into the kernel image itself and
available as soon as the kernel starts.

On the other hand, kernel modules are pieces of code that can be loaded and unloaded into the
kernel upon demand. In practice, they are normal files that, when loaded, extend the functionality of
the kernel without needing to reboot the system.

While modules are nice for development, or for hardware that might change from time to time, it is
recommended that hardware support and kernel features be built directly into the kernel. This way,
the kernel can ensure that functionality and hardware support is available whenever it needs it.

For some parts of the configuration, using built-in features is an absolute requirement. For
example, if a root file system is a jffs2 file system, the system would not boot if jffs2 support was
built as a module. The system would have to look on the root partition to find the jffs2 module, but it
cannot look on the root partition unless it already has jffs2 support loaded.

31

5.3. Platform-specific hardware support

For information about the specific hardware devices, see topic 8, Devices and Interfaces.

5.4. Kernel arguments

The Linux kernel has a monolithic architecture: it is one big program. Arguments are passed on the
stack, as in any other C program. The arguments define internal kernel options, such as memory
handling, ramdisk handling, root file system handling, and others. Here are some of the most
common arguments. For a complete list of kernel arguments, refer to the Linux documentation at
/usr/local/DigiEL-4.0/kernel/linux/Documentation/kernel-parameters.txt.

Argument | Description Examples
root= Tells the kernel which device is used as the root file system root=/dev/ram
while booting.

rootfstype= | Specifies a comma-separated list of file system types that are rootfstype=nfs
tried for a match when trying to mount the root file system.

ro Instructs the kernel to mount the root file system as readonly. ro
w Instructs the kernel to mount the root filesystem as read/write. | rw
nfsroot= Tells the kernel which machine, which directory, and NFS nfsroot=192.168.42.1:/exports

options to use for the root file system. Note that the argument
root=/dev/nfs is required.

ip= When using NFS as a root filesystem, there are no programs ip=192.168.42.30
like ifconfig and route present until the rootfs is mounted,
meaning that the kernel has to configure the network interfaces
directly. This argument sets up the various network interface
addresses required to communicate over the network. If this
argument is not specified, the kernel tries to use RARP and/or
BOOTP to determine these parameters.

console= Selects the device to be the console. console=ttyS1,9600

mtdparts= | Defines the partition table of an MTD device (similar to Flash mtdparts=myFlash:0x40000(u-boot)ro,
memory). Configurable options include the partition name, size, | 0x2000000(kernel),-(rootfs)
offset, and write permissions.

All the above arguments except console are set automatically by the
‘dboot linux ..." command, which overwrites user settings. This
command is covered in topic 7.3.

To modify kernel arguments, edit the U-Boot environment variable bootargs. Topic 7.4.3 explains
some basic U-Boot commands for editing environment variables.

32

5.5. Kernel modules

Besides selecting which kernel features are compiled as loadable modules, custom module kernel
modules can be created, for example, to access special hardware for which a driver does not exist.

5.5.1. Write kernel modules

Writing kernel modules is, from the project perspective, very similar to writing applications. First a
project with kernel modules support is needed, (-m option in the project wizard script). Since the
previously created project myFullProject was created with that option, a kernel module can be
created in it.

Provide the module's source code and the Makefile in its own folder inside build/modules/ project
subfolder. There are already some example modules inside build/modules/ folder which can be
used as templates. To do this, follow this little instructions:

1. Create a subfolder of build/modules/ with the name of the module.
2. Create the source files inside the new folder.

3. The Makefile must be provided as well. The Makefile uses the standard rules for Linux
Kernel modules. Therefore, if the module source file is gpio.c (included as example), the
Makefile should contain:

g obj-m := gpio.o

If this interface (the source code + Makefile) is provided in its own directory inside the
build/modules folder, the topdir project Makefile will be able to build the necessary external kernel
modules.

Writing kernel modules is beyond the scope of this manual. A good reference book is "Linux
Device Drivers 3rd edition" by Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman
(ISBN: 0596005903).

33

5.6. Build the kernel and kernel modules

B

Once the kernel is configured and any external kernel modules are written, the kernel is ready to be
built. To build the kernel and kernel modules execute the following rules in project folder:

$ make build_kernel
$ make kernel_modules

The first rule builds the kernel, the second builds the kernel modules (any part of the kernel
configured to be built as a module and also the custom external kernel modules created in
build/modules/ folder).

After the build, the kernel image is stored in the images subfolder of the project, and the built
modules are in their own folders with .ko extension (kernel parts inside the build/kernel/ and the
external modules inside the build/modules/).

$ Is images

ulmage-ccw9cjsnand

$ Is build/modules/gpio/

built-in.o gpio.c gpio.h gpio.ko gpio.mod.c gpio.mod.o gpio.o Makefile
Modules.symvers

Now, the kernel image and the modules are ready. The next topic shows how to install them.

Doing a make without any arguments builds the complete project, including applications,
kernel, kernel modules, rootfs and U-Boot if these elements were included at the moment
when the project was created.

5.7. Install the kernel

Installing the kernel means copying the resulting kernel image to a place accessible by the target
platform.

After the build, the kernel image is stored in the images/ project subfolder. The target, however,
gets the kernel image from TFTP, both to boot or to update the flash memory with the new kernel
image. This is why the kernel image must be copied to the exposed folder of the TFTP server. This
folder was passed as an option to the project maker wizard at project creation time, so it does not
have to be done manually.

To install the kernel image do (as normal user):

$ make install_kernel
Installing ulmage-ccw9cjsnand

This transfers the kernel image to the exposed TFTP directory, making it available to the target via
TFTP. Additionally, if the project was created with support for rootfs, the kernel modules will be
copied to the proper places in the rootfs, inside build/rootfs/lib/modules/ folder.

Q Doing a make install installs the complete project, including every element of the project.

34

5.8. Load kernel modules

Kernel modules are files with the extension ko. They can be managed on the system with the
following commands:

Command Description

Ismod Displays the status of the modules in the Linux kernel.
insmod filename Loads a module in the Linux kernel.

rmmod modulename Unloads a module from the Linux kernel.

modprobe modulename Loads a module in the Linux kernel.

For more information on these commands, see their Linux man pages.

Transfer the kernel module (gpio.ko, for example) to the target via FTP or, if the target mounts the
rootfs via NFS, simply copy the module to the exported directory. Once the kernel module has
been transferred to the target, the above commands can be used to load/unload it:

5 # 1Insmod gpio.ko

}ﬁﬁi gpio: NS9XXX GPIO driver V1.0

1 # Ismod
Module Size Used by Not tainted
gpio 5160 O
rmmod gpio
Ismod
Module Size Used by Not tainted
#

They do not need to be copied. Instead, they can simply be loaded, using the modprobe
command and the name of the module.

Q If the project was created with rootfs support, the modules will be installed into the rootfs.

This GPIO driver provides an interface to configure and manage the GPIO pins of the NS9360
microprocessor. For more information, see topic 8.2.

35

5.9. Modify kernel sources

L

5.9.1.

L

A

Kernel sources are located in a common directory of the Digi Embedded Linux installation folder,
lusr/local/DigiEL-4.0/kernel/linux.

When a project that includes the kernel component is built, only the generated object files and the
final kernel image are stored in the project folder. The kernel sources are not copied to the project
folder, thus saving a lot of hard disk space.

Suppose the kernel sources will be modified to add certain functionality or customizations to a
driver. If the kernel sources were directly edited, those changes would apply to all projects
including the kernel component. However, unless the changes are well-known kernel patches, that
is not normally desired.

To edit the Linux kernel locally to a project copy the files to be modified to the local project’s Linux
kernel folder, located at your_project_path/build/kernel, with exactly the same directory structure
that the copied files have in the original kernel directory tree.

For example, to modify the kernel init process, and specifically the file /usr/local/DigiEL-
4.0/kernel/linux/init/main.c:

1. Create the path in the build/kernel/ directory of the project

2. Copy the original kernel file to the project kernel folder.

$ mkdir -p build/kernel/init
$ cp /usr/local/DigiEL-4.0/kernel/linux/init/main.c build/kernel/init/

3. Edit and modify the local kernel file. During compilation, the environment will check for local
files first and, if they exist, it will compile these sources instead of the global kernel sources.

Import all kernel sources

Obviously, all kernel sources can be imported to a local project, providing a full local copy of the
kernel. This requires much more hard disk space, but allows working on the entire kernel source
code safely.

To do this, copy all kernel sources to the project's build/kernel/ folder.

$ cp -r /usr/local/DigiEL-4.0/kernel/linux/. build/kernel/

The copy process can take several minutes because the kernel sources
occupy around 285 Mb.

Changes done in the project kernel folder are compiled in the build process.

36

6. Customize the root file system

This topic shows how to customize the rootfs of the target. It uses the full project, myFullProject,
created in previous topics.

6.1. Configure the rootfs

Once the project is created, a basic rootfs is in folder build/rootfs/. To configure the rootfs, use the
Configure Project tool seen in previous topics. Just use one of the following:

make xconfig (for KDE users - qt libraries required)

make gconfig (for GNOME users - gtk libraries required)
make menuconfig (graphical configuration tool for console)
make config (console configuration tool)

3

LZR R

The Configuration tool is opened. Expand the Rootfs Configuration for configuring the rootfs. For
the Root File System, there are two configuration menus: Pre-built applications and Rootfs
images.

6.1.1. Including pre-built applications

The pre-built applications menu selects different applications to include in the rootfs.

File Option Help

o I E
I| Optior I: |Opti0n |
U-Boot Configuration ..
Linux Kernel Configuration [~ Boa Webserver
Applications Configuration M Rdate bootscript
= Rootfs Configuration ¥ Dropbear S5H server and client
¥ Mtd-utils package
Rootfs images = Openssl 55L and TLS support

C pciutils

C Point-to-Point protocol caemon.
C Qtopia core example applications
C usbutils

& Vsftp server

¥ Wireless-tools package

z WPA supplicant parkage

Rdate bootscript (DEL PACKAGE_BOOT_RDATE!

Install rdate bootscript to allow the target to update date and
time at boot time.

Warning: This script connects to internet public time servers.
Do not select this if you want your target to be isolated from
internet.

All the source code for these applications is included in the liveDVD, in folder /toolchain. Pre-built
applications and services are briefly explained in topic 6.6.

6.1.2. Rootfs images

The Rootfs images are different file systems that can be used as the root file system:

File Optien Help

v ZE |l E
| Option | | Option |
U-Boot Configuration M. i
Limux Kernel Configuration = [£)FFS2 rootfs image
@ Applications Configuration |FF52 rootfs image basename: rootfs-cow9cjsnand
= Rootfs Configuration JFFS2 image erase block size: 16 128
Pre-built applications M Do NOT add a cleanmarker to every eraseblock
jrrs2 compressiontype

O JFFS2 image with NO compression
®)FFS2 image with priority compression
O JFFS2 image with size compression
O CRAMFS rootfs image
OO ROMFS rootfs image
OINITRD rootfs image (requires CRAMFS in rootfs configuration)

JFFS2 compression type

Select the compression mode for the rootfs image.

6.1.2.1. Network File System (NFS)

A Network File System (NFS) acts like a server/client application that lets a system use files stored
on a remote computer as if they were in the local one. The system using the files requires an NFS
client, while the system serving the files requires an NFS server. Both of them require the TCP/IP
stack for communication. For information about how to configure the NFS server, see topic 2.3.2.

6.1.2.2. Journaling Flash File System 2 (JFFS2)

A Journaling Flash File System 2 (JFFS2) is a log-structured file system specially designed with
flash devices in mind and also the ability to be consistent after a sudden power outage. For more
about JFFS2, see http://en.wikipedia.org/wiki/JFFS2

6.1.2.3. Compressed ROM filesystem (CRAMFS)

A Compressed ROM filesystem (CRAMFS) is a read-only file system designed for simplicity and
space-efficiency. It is mainly used in embedded systems and small-footprint systems. For more
about CRAMFS, see http://en.wikipedia.org/wiki/Cramfs

6.1.2.4. ROM filesystem (ROMFS)

A ROM filesystem (ROMFS) is a space-efficient, small, read-only filesystem for Linux. For more
about ROMFS, see http://[romfs.sourceforge.net/

38

http://en.wikipedia.org/wiki/JFFS2
http://en.wikipedia.org/wiki/Cramfs
http://romfs.sourceforge.net/

6.1.2.5.

Initial ramdisk filesystem (INITRD)

The initial ramdisk (or INITRD) is a temporary filesystem used by a Linux kernel during boot. This
configuration option provides an initrd image of the rootfs. For more about INITRD, see
http://en.wikipedia.org/wiki/Initrd

6.1.3. Report the rootfs type to the kernel

The type of rootfs must be passed as an argument to the kernel. This is done by editing the kernel
argument rootfstype in the U-Boot variable bootargs as seen in topic 5.4.

6.2. Put files and folders in the rootfs

Once the rootfs is configured with the pre-built applications and the image types, add folders and
files to the rootfs structure.

There are two ways to add files and folders:
e Modifying the rootfs folder
e Using the add_files.sh script

6.2.1. Modify the rootfs folder

¥

The target’s root file system is populated in build/rootfs/ folder. Custom files and folders can be
copied and created in that location and will be available after the build and installation process.

Changes in the build/rootfs/ folder require a build and install to make them available to the target.

This method has a disadvantage: executing a make clean or a make rebuild completely erases
and regenerates the build/rootfs/ folder, and any files or folders that were created are lost.

6.2.2. The add_files.sh script

The add_files.sh script is in the folder configs/ of the project directory. This script is initially empty,
but can be populated with commands to create folders and copy files to the build/rootfs/ folder.
The add_files.sh script is called during the build process, thus constructing the desired rootfs at
compilation time. This script can use all the power of the Linux host shell, such as create
directories, change permissions, copy files, use conditions and loops, etc. It also inherits several
environment variables and has defined one, ROOTFS_DIR, that points to the rootfs folder, for
ease of use. Here is an example of a basic add_files.sh script:

ROOTFS_DIR="${DEL_PROJ_DIR}/build/rootfs"

Example: create a custom directory in rootfs etc dir.
mkdir -p "${ROOTFS_DIR}/etc/myfolder™
mkdir —p "${ROOTFS_DIR}/etc/myimgs"

Example: copy files to a directory
cp ~/*.jpg "${ROOTFS_DIR}/etc/myimgs"

39

http://en.wikipedia.org/wiki/Initrd

6.3. Build the rootfs

The rootfs is ready to be built. Building the rootfs means creating the final functional rootfs,
depending on the options selected at the configuration stage. It also creates the images for the
selected rootfs types.

To build the rootfs, execute:

$ make build-rootfs

This action creates the rootfs, checks library dependencies, and creates the images. These images
are stored in the images/ subfolder.

Doing a make without any arguments builds the complete project, including applications,
kernel, kernel modules, rootfs and U-Boot if these elements were included at the moment
when the project was created.

6.4. Install the rootfs

&

%

At this point the rootfs has been created, configured, and built. The final stage is installing the
rootfs, which makes the rootfs available for the target to find it. This is done by copying the rootfs
images to the TFTP-exposed directory, and copying a rootfs tree to the NFS exported directory.
Both parameters were passed as an option to the wizard script at project creation time (see topic
3.2.6).

To install the rootfs, execute:

$ make install_rootfs

Now the target has a rootfs to boot via NFS, or rootfs images to update the flash memory.

Doing a make install installs the complete project, including every element of the project.

6.5. Special files

The /etc folder contains configuration files for applications, services and the system itself. Some of
the files in the /etc folder include:

File Description

letcfinittab Parameters for the init process, the first process started at boot time.
letc/fstab Alist of file systems to be mounted.

letcfinit.d/* System startup and run level change scripts.

letc/passwd Critical list of users, home directories, etc.

letc/shadow User passwords.

letc/group A list of groups of the system.

letcivsftpd FTP daemon configuration file.

letc/boa/boa.conf BOA web server configuration file.

letc/dropbear/* SSH server/client configuration files.

letc/makedevs.conf | Configuration table to create device nodes automatically at startup.

40

6.6. Built-in applications and services

6.6.1.

6.6.1.1.

6.6.2.

6.6.3.

6.6.4.

6.6.5.

6.6.6.

By default, the rootfs contains many folders and files. Some of these files are useful applications
and services. They can be included as needed in the final rootfs. All the source code for these
applications is included in the liveDVD, in folder /toolchain.

busybox

The busybox application provides many Linux utilities, such as cat, chmod, echo, mount, sh and
others. All these tools have been linked into the static application busybox to save Flash memory
at the cost of a larger RAM footprint for each application.

Useful network tools provided in busybox
busybox provides some useful network tools, such as:
® wget: Retrieves files via HTTP or FTP
e ftpget: Retrieves a remote file via FTP.
e ftpput: Stores a local file on a remote machine via FTP.
To display brief help text on the commands in Busybox, enter command --help, for example:

wget --help
ftpget --help
ftpput --help

FTP server

By default, an FTP server is included in the rootfs. The server allows other machines to establish
an FTP session to the target device. For configuration options and further details, see the vsftpd
documentation at /usr/local/DigiEL-4.0/docs/Software/Packages/vsftpd-2.0.5. The FTP server
can be connected to as user anonymous or ftp without password. Or log in as user root and
password root.

Boa webserver

A small Boa webserver is included and running in the default rootfs. By default, it serves any web
page located at folder /var/www/ of the rootfs. For configuration options and further details, see
the Boa documentation at /usr/local/DigiEL-4.0/docs/Software/Packages/boa-0.94.14rc21 or the
official Boa website at http://www.boa.org

gdbserver

gdbserver is a server that allows GDB debugging sessions to be established between a
development machine and the device target. For more information about GDB, see
http://sourceware.org/gdb/documentation/

update_flash

update_flash is a custom application that allows writing to the Flash partitions from Linux. The
graphic wrapper of this tool is explained in topic 7.4.

nvram

The nvram tool is a custom application for managing settings in NVRAM, such as MAC addresses,
IP configuration, the Flash partition table, and OS-specific configuration. It is the same application
as the intnvram U-Boot command. For more information about NVRAM settings and the nvram

41

http://www.boa.org/
http://sourceware.org/gdb/documentation/

application, see the topic Using NVRAM in the U-Boot Reference Manual or type "nvram --help" in
the target Linux system.

6.6.7. boot_rdate
boot_rdate is a bootscript that sets the system's date and time from a remote host at boot time. It

uses the rdate utility (part of busybox) and a list of hosts configured in /etc/rdate.conf file.

6.6.8. pppd

The Point-to-Point Protocol daemon (pppd) is used to establish network connections between two
nodes. For more information on this daemon, see the doc at /usr/local/DigiEL-
4.0/docs/Software/Packages/ppp-2.4.4 or visit http://[ppp.samba.org/ppp/index.html

6.6.9. mtdutils

mtdutils contains utilities to manipulate memory technology devices, such as flash memory. For
more information about mtdutils, see each tool's man page at /usr/local/DigiEL-
4.0/docs/Software/Packages/mtd-utils-1.0.0 or visit the mtdutils homepage at
http://www.linux-mtd.infradead.org/index.html

6.6.10.wireless-tools

wireless-tools contains a set of tools for configuring wireless interfaces, access points, encryption,
etc. on wireless LANs (WLANS). For more information on the wireless-tools, see their man-pages
located at /usr/local/DigiEL/docs/Software/Packages/wireless_tools-28 or the wireless-tools
homepage at http://iwww.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html

6.6.11.dropbear SSH

dropbear is a small SSH server and client. Because of its small memory footprint, dropbear is
particularly useful for embedded Linux systems. To connect to the target's IP use username root
and password root:

% $ ssh root@®192.168.42.30

For more information about dropbear, see the doc at /usr/local/DigiEL-
4.0/docs/Software/Packages/dropbear-0.48.1 or visit its homepage at
http://matt.ucc.asn.au/dropbear/dropbear.html|

6.6.12.udhcp server/client

udhcp server/client is an embedded DHCP server/client package that strives to be fully functional,
RFC compliant, and very tiny. This makes udhcp useful for embedded systems. For more
information about udhcp, see its homepage at http://udhcp.busybox.net

42

http://ppp.samba.org/ppp/index.html
http://www.linux-mtd.infradead.org/index.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://matt.ucc.asn.au/dropbear/dropbear.html
http://udhcp.busybox.net/

6.7. Launch an application after start-up

%

When the kernel finishes loading, it tries to mount the rootfs. When the rootfs is mounted, the init
process runs and forks additional processes as specified in /etc/inittab file. This file contains a line
to launch the script /etc/init.d/rcS which eventually launches any other script in this folder.

To launch an application automatically after start-up, a launch script must be provided for the
application inside the /etc/init.d/ directory of the rootfs.

The script's name must follow this pattern: S??name.sh. This means begin the name with a capital
S, followed by two numbers that define the order of execution at boot time, followed by a
descriptive name, and the extension sh. For example: S11myscript.sh, S34myOtherScript.sh,
S99final.sh.

The lower the number in the script name, the sooner the script executes.

All the scripts stored in folder /etc/init.d/ are executed at start-up with start parameter. Usually,
start-up scripts define different actions to perform if the parameter is start or stop, but it is not
mandatory to provide such interface. Just create a script that follows the naming pattern
requirement, and it will be executed at startup.

There are already some start-up scripts in that folder, such as S0O4makedevs.sh, S10rdate.sh,
etc, than can be used as examples for creating a start-up script for the application.

Remember that any changes to a project’s build/rootfs/ folder do not apply until the rootfs is
built and installed again.

43

7. Transfer the system to the target

Up to this point in the example shown in this document, these elements have been generated::
e Kkernel image
e root file system image
e applications

As shown in topic 4.4.1, applications are easily transferred to a running target, by means of
network services like FTP.

This topic shows how to transfer the kernel and root file system images to the target for testing
prior to updating the firmware in the Flash memory.

7.1. Basic boot loader commands

Testing the recently created kernel and root file system requires working with several boot loader
commands. This topic explains the basic commands to download and boot a new system. For
more information on U-Boot commands, see the U-Boot Reference Manual.

Power up the target board. When the boot loader messages are displayed in the Serial Console,
press a key to stop the auto boot process.

U-Boot 1.1.4 (Feb 20 2007 - 14:23:03) DEL 4 0 RC3
for Digi ConnectCore Wi-9C on Development Board

DRAM: 64 MB
NAND: 128 MiB

In: serial

Out: serial

Err: serial

CPU: NS9360 @ 154.828800MHz
Strap: 0x03

SP1 1D:2007/01/25, V1_4rc2, CC9C/CCWOC, SDRAM 64MByte, CL2, 7.8us, LE
FPGA: wifi.ncd, 2007/01/25, 17:49:41, V2.01

Hit any key to stop autoboot: O

#

These U-Boot commands will be used:

Command Description

printenv [variable] Displays all (or one) current variables values.

setenv <variable> <value> Sets a U-Boot variable with a given value.

saveenv Saves all U-Boot variables into the NVRAM memory for
permanent storage.

dboot <os> <type> Boots an image.

44

7.2. U-Boot variables

The U-Boot boot loader contains several variables that configure its behavior. Some of the variable
values need to be modified.

Before modifying U-Boot variables, check their values with the ‘printenv’
command, because they might already be properly configured.

Since the transfer of the images takes place over Ethernet, first set proper values for the Ethernet
parameters, such as the IP address of the target and the host. This example uses an IP address of
192.168.42.30 for the target board and 192.168.42.1 for the development computer (host).

S # setenv ipaddr 192.168.42.30
Eﬁgﬁ # setenv serverip 192.168.42.1

Another variable that needs to be set up is the path to the NFS exported folder where the root file
system resides. In this example, the path is the default, /exports/nfsroot-ccw9cjsnand:

}ﬁij # setenv npath /exports/nfsroot-ccw9cjsnand

These variables are modified in RAM. Optionally, to save them permanently in the NVRAM
memory, use the saveenv command:

: # saveenv

}hﬁih Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...

. done

Erased 1 sectors

Writing to Flash... done
Protected 1 sectors

7.2.1. Changing U-Boot variables

U-Boot variables in the target can also be changed from Linux by means of the ubootenv
application. Here is the ubootenv syntax:

5 # ubootenv -h
?ﬁﬁih Usage: ubootenv [options]
ubootenv $Revision: 1.4 $ Copyright Digi International Inc.

Prints or updates the U-Boot environment

-d, --dump Prints the values of all the
environment

-p, --print “var_name_list” Prints the value of the list of
variables

The list has to be simple quoted (°%)

-s, —--set “var_name=var_value” Sets var_value in the variable var_name
The string has to be simple quoted (%)
to allow spaces

-e --erase “var_name_list” Removes the list of variables (simple
quoted)

-c --clean Removes all variables

-a --Tfileadd file_name Adds variables from file name. To init

the full environment from file use -c
-a simultaneously
-h --help Displays usage information

45

7.3. Test the system

Next, the system is transferred to the target and booted it from RAM memory. This allows testing
the system without needing to update the Flash memory.

7.3.1. Transfer the system by Ethernet

In previous topics, the kernel image was installed in the exposed TFTP folder and the root file
system in the exported NFS folder. Now, the boot loader will be instructed to download the kernel
via TFTP and mount the rootfs via the NFS server.

Now that there is a proper Ethernet configuration in U-Boot, it can be instructed to download the
kernel, boot it, and mount the rootfs as NFS. These three steps are done with a single command:

}-’}}ﬁ" # dboot linux tftp

7.3.2. Transfer the system by USB

U-Boot can also read the kernel from a USB flash disk. In this case, the kernel image must be
copied to a USB flash disk formatted with FAT file system. Then, plug the USB to the target, power
up the board and stop the U-Boot auto boot.

A valid JFFS2 rootfs image must reside in the RootFS partition in flash. Only the kernel will be
taken from the USB disk.

Now U-Boot is instructed to read the kernel from the USB disk, boot it, and mount the rootfs from
flash memory RootFS JFFS2 partition. These three steps are done with a single command:

}-’fp:j" # dboot linux usb

46

7.4. Update the Flash memory

7.4.1.

The kernel and rootfs built in previous topics has been tested. This system was dependent on
Ethernet/USB to download the kernel and mount the rootfs.

If the tested system behaves correctly and fulfills our needs, it can now be written to the Flash
memory of the target, and permanently saved.

There are several ways to update the flash memory depending on what needs to be updated.
Applications or simple files, for example, can be simply copied to a file system that resides in a
Flash partition. The kernel and the rootfs image, on the other hand, need special handling.

Learning how to update Flash memory requires an overview of its structure.

Structure of Flash

Flash memory is a programmable non-volatile memory thought to contain the whole operating
system, thus making the target device a standalone solution.

Flash memory is partitioned, or logically divided, to contain the boot loader, the Linux kernel, the
root file system, some system configuration parameters, and some free space to be managed as
needed.

The number, size and position of these partitions can be modified as needed. The factory default
partitioning structure is as follows:

Partition | Name Flash start | Flash end Length | Description

number address address
0 U-Boot 0x00000000 | 0x000c0000 | 768 KB | Stores the U-Boot boot loader image.
1 NVRAM 0x000c0000 | 0x00100000 | 256 KB | Stores permanent configuration

parameters such as the MAC address
of the network interfaces, the serial
number of the module, environment
variables of U-Boot, etc.

2 FPGA 0x00100000 | 0x00200000 | 1 MB Stores the FPGA firmware.

3 Kernel 0x00200000 | 0x00500000 | 3 MB Stores the Linux kernel image.

4 RootFS-JFFS2 | 0x00500000 | 0x01500000 | 16 MB Stores the Linux root file system image.
5 User-JFFS2 0x01500000 | end of flash | rest Free space.

For information about modifying the default Flash partition table, see the topic "Using NVRAM” in
the U-Boot Reference Manual.

47

7.4.2. Update from a running Linux system

Digi Embedded Linux provides a tool called update_flash, which can directly write image files to
the Flash memory if the target is already running a Linux system. It is more powerful than the
standard Linux flash_write or flash_erase as it checks whether the images are correct and
suitable for a certain partition. On NAND memories, bad sectors are also handled.

Here is the update_flash command syntax:

g # update_flash --help

iﬁﬁi Usage: update_flash [--version] [--help] [--log-level] [--checksum-only] [--
reboot] [--verify-only] [--verify] [--checksum] [--dry-run] [--progress-in-

new-line] [--no-image-type-check] [--erase-all] [--clean-marker] [--silent]

[--tmpdir] <file [part] [checksum]>

version > print version and exit

help [-h] : print help

log-level [-1] - log level for messages

checksum-only [-C] : calculates only CRC32 checksum of image

reboot [-R] : reboots the system

verify-only [-V] : verifies current contents, no updates
are done

verify [-v] : After flashing, compare flash contents
with image on byte-to-byte

checksum [-c] : flashes only when checksum matches

dry-run : don"t erase or write to the flash

progress-in-new-line : each percentage is printed in an own
line

no-image-type-check [-i] : doesn"t checks image type for part. 0-2

erase-all [-F] : erases the partition, not only the parts
being written. Ignored for rootfs

clean-marker : writes clean markers to every partition
(implies -T)

silent [-s] : Silent Mode

tmpdir [-t] : copy files to temporary directory before
flashing

<file [part] [checksum]> : file to flash to partition and check for
checksum

Flash Update Tool

Examples of use cases:
update_flash rootfs-ccw9cjsnand-128.jffs2 4 : updates rootfs
update_flash -C ulmage-ccw9cjsnand : calculate CRC32 only
update_flash -c ulmage-ccw9cjsnand 3 0x1051e3c9 :
update only if CRC32 is 0x1051e3c9
update_flash ulmage-ccw9cjsnand 3 rootfs-ccw9cjsnand-128.jFfs2 4:
update both kernel and rootfs

48

7.4.2.1.

»

7.4.2.2.

»

Update the kernel

First, the new kernel image must be accessible from the target side. This can be done by having it
stored in a USB Flash disk or in a Compact Flash card, by transferring it via FTP or by mounting an
NFS folder.

Then, run the update_flash command with the correct parameters. For example, if the new kernel
image is the file /nfs/ulmage-ccw9cjsnand and the kernel partition is number 3, execute:

update_flash ulmage-ccw9cjsnand 3
Partition 3 is NAND (Kernel)

Full Size: 3072 KiB

Good Size: 3072 KiB

Verifying File(s): ulmage-ccw9cjsnand
Updating:

ulmage-ccw9cjsnand (1252 KiB)

Erasing: complete

Flashing: complete

CRC32: Oxa2albf4e
Done

The tool checks and reports the type of partition. Then the partition’s complete size and the size
regarding only good sectors is reported. The file to update is checked whether it fits into the good
size. It is also checked whether it can be read completely or whether there are any I/O errors. Also
a CRC32 sum is calculated on the file.

When all checks are performed, only the necessary Flash blocks are erased and overwritten to
reduce update time. At the end, the image for the Memory Technology Device (MTD), a Linux
subsystem for memory devices, is checked against the CRC32 sum for a quick verify.

Update the rootfs

Updating the rootfs is similar to updating the kernel. For example, if the new rootfs image is the file
Infs/rootfs-ccw9cjsnand-128.jffs2 and the rootfs partition is number 4, execute:

update_flash rootfs-ccw9cjsnand-128.jffs2 4

JFFS2 partitions are always completely erased and marked with clean markers. If the file system is
currently mounted, it is unmounted or remounted read-only. When updating the rootfs, it is
recommended to do a reboot, as the file system layer of Linux isn't informed about underlying
changes.

49

7.4.2.3. Update the kernel and rootfs safely

The update of the Flash is a critical operation as it erases the Flash where the system resides. If
there are errors during the write process, the system cannot reboot Linux. The update_flash tool
has some options to make the process safer.

The file being written, for example, might reside in an NFS folder and there could be network
problems during transmission. To avoid that, copy all files to a temporary directory on the module.

There is an option to do a byte-to-byte verification of the original file and the contents in the Flash
partition. To make sure that the files are copied correctly, but also are really the original files, a
checksum of the files can be provided.

First calculate the checksums of the files (provided the images are in /nfs folder):

5 # update_flash -C /nfs/ulmage-ccw9cjsnand /nfs/rootfs-ccw9cjsnand-128.jffs2
}flﬁb CRC32 Results:

/nfs/ulmage-ccw9cjsnand : Oxa2albf4e
/nfs/rootfs-ccw9cjsnand-128. jFfs2 : 0x2358d051
Done

Then execute the update_flash command with the parameter —c for checking the checksums.

- S # update_flash -R --tmpdir=/tmp -v -c /nfs/ulmage-ccwOcjsnand 3 Oxa2albf4e
ﬁﬁiﬁ /nfs/rootfs-ccw9cjsnand-128. jFfs2 4 0x2358d051

7.4.3. Update from U-Boot

U-Boot is also able to write to the Flash memory. This way, even if the target is not running Linux,
the Flash memory can be reprogrammed.

The update command updates Flash memory in U-Boot. This is the update command syntax:

5 # help update
}ﬁf} update partition source [file]
- updates “"partition” via "source”
values for “partition®: uboot, linux, rootfs, userfs, eboot, wce
or any partition name
values for “source®: tftp, usb
values for "file": the file to be used for updating

The update command gets the file either from a USB Flash disk or from a TFTP exposed folder in
the host, depending on the source parameter. For that, it uses the file given as parameter or, if no
filename is provided, it uses the names stored in the following U-Boot environment variables:

e Kernel image filename: kimg
e Rootfs image filename: rimg
e User image filename: usrimg
e U-Boot image filename: uimg

The default values for these variables correspond to the default image filenames generated during
compilation of the system. If the image filenames were changed, provide the parameter file with
the new name to the update command.

The U-Boot update command takes care of transferring the image file to RAM, erasing the Flash
sectors, and writing the new image.

Q There are some restrictions when updating large image files. See topic 12.3 for more information.

50

7.4.3.1. Update the kernel

For example, if the kernel is in a TFTP exposed folder on the development computer, the update
command is:

},ﬁﬂ # update linux tftp

7.4.3.2. Update the rootfs

Updating the rootfs is similar to updating the kernel. For example, if the new rootfs image is stored
in a USB flash disk, the update command is:

}J‘)}Tﬁ # update rootfs usb

7.5. Boot from Flash memory

Now that the system has been transferred to the Flash memory, the boot loader can be instructed
to boot directly from Flash. This is done with the following U-Boot command:

}J‘;‘s)‘ # dboot linux flash

To boot from Flash automatically, the bootcmd U-Boot environment variable must be modified.

- # setenv bootcmd dboot linux flash
?)ij" # saveenv

Now, the target will automatically boot directly from the Flash memory.

51

8. Devices and Interfaces

This topic explains the different devices and interfaces available in the hardware platform, the
hardware resources they use, how to configure them, how to enable or disable them, how are they
seen by the system, and how to manage them from user application space.

8.1. Table of devices and their hardware resources

This table shows each device/interface with its driver name and the hardware resources it uses.

Device Driver IRQ GPIO Physical Timer | Chip
Memory Select
System 16 0-0x20000000 | 16 dynamic 0
GPIO gpio 0-72
(muxed)
Ethernet ns9xxx_eth 45 50-64
NAND ccx9x_nand OX50XXXXXX static 1
Serial A (UART) ns9xxx_serial | 36,37 | 8,9
[dev/ttyS1 (10-15)*
Serial B (UART) ns9xxx_serial | 34,35 | 0,1
IdevittyS0 (-7
Serial C (UART) | ns9xxx_serial | 38,39 | 40,41
[devittyS2 (42,43,
20-23)Y
Serial D (UART) | ns9xxx_serial | 40,41 | 44,45
[devittyS3 (46,47,
24-27)1
Serial A (SPI NS9XXx_spi 60,61 | 8,9,14,15
mode)
Serial B (SPI NS9XXX_spi 5859 | 0,1,6,7
mode)
Serial C (SPI NS9XXX_spi 62,63 | 40,41,22,
mode) 23
Serial D (SPI NS9XXX_spi 64,65 | 44,45,26,
mode) 27
Touch screen ads7846 EXT3 | 0,1,6,7
(SPI Port B)
12C i2C-NS9xXXX 46,47
12C 1/0 port pcadss4
PCA9554
RTC ns9360_rtc
USB 25
Wireless digi_wi_g 65 58,65-67 | OXBXXXXXXX static 2
Display ns9xxxfb 15,18-41
high performance 1
counter?

! Only when HW Handshaking is enabled

? Only available as an include file for drivers (ns9xxx_hperf.h).

52

To determine the live information of the running system, use the following Linux commands:

Command Information
cat /proc/interrupts Interrupts used by drivers.
cat /proc/ioports GPIOs used by drivers.
cat /proc/iomem Physical Memory used by drivers.
Range 0x90000000 to Oxafffffff are chip's registers.

Most drivers reserve GPIOs, interrupts, and memory only when being used.
This means Serial Port C and LCD cannot be used at the same time because
they share some multiplexed GPIOs.

8.2. GPIO pins and custom driver

The NS9360 processor has a total of 73 programmable GPIO pins, multiplexed with other
functions. A custom driver for configuring and managing the GPIO pins is provided in the Digi
Embedded Linux software. The source files for this custom driver are included into the kernel
modules folder, in /usr/local/DigiEL-4.0/modules.

8.2.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical Memory | Timer | Chip DMA
Select | channel

0-72
(muxed)

8.2.2. Enable the interface in the kernel

GPIO ’ gpio ‘

The GPIO driver is provided as an external kernel module. A project with support for kernel
modules (see topic 3.2.2). is required to include this module into the filesystem. These projects
have the GPIO driver sources automatically included into build/modules/gpio/ folder.

After compiling the kernel and modules, a binary file build/modules/gpio/gpio.ko is created.

For projects created with support for rootfs, the gpio module is placed in the rootfs lib directory,
where appropriate. For projects that do not have rootfs support, this file must be placed somewhere
in the target's rootfs.

53

8.2.3. Load and create the device in the system

8.2.3.1. Load the module

To load the GPIO module use the insmod or modprobe commands without any arguments, as
seen in topic 5.8.

The modprobe command can be used when the project was created with rootfs support, because
it creates the module’s dependencies file within the rootfs. In the modprobe command, only the
driver name must be specified:

S # modprobe gpio
}ﬁﬁib NSOXXX GPI10 driver V1.0

If a project was created without rootfs support and the module was copied manually, the module
must be loaded using the insmod command, specifying the complete path and filename of the
module. For example, if the module has been copied to the /tmp folder, the insmod command to
load the module is:

. =~ | # 1insmod /tmp/gpio.ko
ﬁﬁih NS9XXX GPI10 driver V1.0

8.2.3.2. Create device nodes

Device nodes must be manually created, one per GPIO pin. First, create a container folder named
/dev/gpio. Then add to that location a character node with major number 250 and a minor number
that matches the GPIO number. For simplicity, this example names the GPIO pins by their
numbers, as shown below:

% # mkdir /dev/gpio
}dg} # cd /dev/gpio

mknod 48 c 250 48

mknod 53 c 250 53

mknod 60 c 250 60

Is -1

Crw-rw-——-— 1 root root 250, 48 Jan 1 1970 48
Crw-rw-——-— 1 root root 250, 53 Jan 1 1970 53
Crw-rw-——-— 1 root root 250, 60 Jan 1 1970 60

Alternatively, to have the system create the device nodes after startup, edit the special system file
/etc/makedevs.conf with entries for creating the gpio folder and the required device nodes. For

example:
3 # Example:
}ﬁﬁib #<name> <type><mode><uid><gid><major><minor><start><inc><count>
/dev/gpio d 755
/dev/gpio/48 c 660 O 0 250 48
/dev/gpio/53 c 660 0O 0 250 53
/dev/gpio/60 c 660 O 0 250 60

54

8.2.4. Manage GPIO pins from the user space

The GPIO driver exports several functions to manage the GPIO pins from the applications. To use
these functions, applications must include the driver's header file, gpio.h, which contains some

GPIO driver definitions.

8.2.4.1. Device IO Controls
The driver supports the following 1/0 controls (IOTCLs). Parameters are passed as pointers to
integers.
IOCTL Description Parameter
GPIO_CONFIG_AS_INP | Configures the GPIO as inpu. N/A
GPIO_CONFIG_AS _OUT | Configures the GPIO as output. N/A
GPIO_CONFIG_AS IRQ | Configures the GPIO as IRQ IRQ_FALLING
(falling/rising edge or low/high level IRQ_RISING
sensitive). IRQ_LOW
IRQ_HIGH
GPIO_CONFIG_INV_PIN | Configures whether the GPIO is 01
internally inverted or not.
GPIO_READ_PIN_VAL Reads a GPIO configured as input. variable where to store the
value
GPIO_WRITE_PIN_VAL | Writes a GPIO configured as output. 0]1

8.2.4.2. Open the device nodes

Since each GPIO pin has its own device node, each one has to be opened separately by calling
the standard open system call on each device node, as in this example code:

g int fd48;

if(fd48 = open("'/dev/gpio/48", O RDWR) < 0)

/* ERROR */

3

8.2.4.3. Configure GPIO behavior
GPIO pins can be configured to have the following behaviors:
e |nput
e Output
¢ |RQ, which can be:
» |RQ_FALLING: falling edge sensitive
» |RQ_RISING: rising edge sensitive
» |RQ_LOW: low level sensitive

» |RQ_HIGH: high level sensitive

55

This IOCTL configures the GPIO behavior:

/* Configure GPIO as INPUT */
5 if(foctl(fd48, GPIO_CONFIG_AS_INP, 0) < 0)

/* ERROR */
}

/* Configure GPI10 as OUTPUT */
if(foctl(fd53, GPIO_CONFIG_AS OUT, 0) < 0)

/* ERROR */
}
/* Configure GPI0 as IRQ, sensitive on falling edge */
ext_irg_type_t irqtype = IRQ_FALLING;
if(foctl(fd60, GPIO_CONFIG_AS_IRQ, &irqtype) < 0)

/* ERROR */

3

To configure inversion of the GPIO, use IOCTL GPIO_CONFIG_INV_PIN. The address of the
variable that contains the inversion value 0|1 is passed as an argument.

int inverted = 1;

/* Enable inversion of GPIO */
5 iT(1octl(fd53,’GPIO_CONFIG_INV_PIN, &inverted) < 0)

/* ERROR */

3

8.2.4.4. Read GPIO inputs
There are two ways to read GPIOs working as inputs.

The first uses the IOCTL GPIO_READ_PIN_VAL. The address of the integer variable where the
input value is to be stored is passed as an argument.

int ret_val;
5 int inval;

if(C (ret_val = ioctl(fd48, GPIO_READ PIN VAL, &inval)) < 0)

/* ERROR */

}

The second uses the read system call:

int ret_val;
5 int inval;

if((ret_val = read(fd48, (char *)&inval, sizeof(char))) I= sizeof(
char))

/* ERROR */

56

8.2.4.5.

L

3

8.2.4.6.

8.24.7.

A

Set GPIO outputs
There are two ways to write GP1Os working as outputs.

The first uses the IOCTL GPIO_WRITE_PIN_VAL. The address of the integer variable containing
the output value is passed as an argument.

int ret_val;

/* Set the output to 1 */

int outval = 1;

if(C (ret_val = ioctl(fd53, GPIO_WRITE_PIN_VAL, &outval)) < 0)

/* ERROR */

3

The second uses write system call:

int ret_val;

/* Set the output to 1 */

int outval = 1;

if((ret_val = write(fd53, (char *)&outval, sizeof(char))) != sizeof(
char))

/* ERROR */

3

Close the device nodes

When done working with a GPIO, its descriptor must be closed to free the resources:

/* Close a GPIO descriptor */
close(fd48);

How the test application exercises GPIOs

The Digi Embedded Linux environment includes a test application of the GPIOs which uses a
button and a LED of the development board. This sample application can be included, as shown in
topic 4.2, by selecting the gpio_test template.

The source files of the test application are copied to the project folder in build/apps/gpio_test_c/

The test application configures GPIO49 as output, connected to LED2 on the development board,
and GPIO69 as input, connected to BUTTONZ on the development board.

Before launching the application, device nodes must be created for these
GPI10Os, as shown in topic 8.2.3.2.

The test application inverts the LED's value (output) with each press of the button (input). This is
done 10 times using IOCTLSs, polling the input, 10 times using standard read/write calls, also polling
the input, and 10 times with the input configured as IRQ (interrupt mode).

57

8.2.5. GPIOs on the development board

A

The development board contains two pushbuttons and two LEDs for test purposes, such as the
GPIO test. The buttons and LEDS have these GPIO numbers:

Name GPIO

BUTTON1 | GPIO72
BUTTON2 | GPIO69
LED1 GPI048
LED2 GPI049

A small kernel driver for giving the LEDs a special usage is provided in the Digi Embedded Linux
software.

LED1 can be used as a timer that blinks with a frequency of 1 Hz. This LED can be used, for
example, as a visual check that the system is alive and running.

LED2 can be used as a CPU usage meter, which blinks more frequently as the CPU load
increases.

These two functions can be enabled in the kernel configuration. Run the configuration tool
(described in topic 5.1) Go to Linux Kernel Configuration > Kernel Features and activate the
Timer and CPU usage LED element. Then, check also the other two subelements: Timer LED
and CPU usage LED.

qconf =l CEe S2ed
File Option Help
W o@E | E
Option z Option
®- U-Boot Configuration &
- Linux Kernel Configuration M Preemptible Kernel (EXPERIMEMTAL)
Code maturity level options ODynamic tick timer
® General setup OUse the ARM EABI to compile the kernel
Loadable module support @ Memory model
® Block layer ® Flat Memory
® System Type @ M Timer and CPU usage LEDs
= Bus support [Timer LED
PCCARD (PCMCIA/CardBus) support [CPU usage LED
Boot options
Floating point emulation
Userspace binary formats
Power management options
Metworking

® Device Drivers

® File systems
Profiling support
Kernel hacking

Kernel Features

Security options
®- Cryptographic options @
(O (1)

Activating these uses of the development board’'s LEDs conflicts with the
test application of the GPIOs, which uses the same LEDs.

58

8.3. Ethernet interface

The NS9XXO0 processor contains a high performance 10/100 Ethernet controller. This interface to
the ConnectCore 9C/Wi-9C and ConnectCore 9P modules is an RJ45 network connector.

8.3.1. Hardware resources used by the driver

Interface Chip

Select

Driver | IRQ | GPIO | Physical | Timer
Memory
Ethernet | ns9xxx_eth | 45 | 50-64 | | |

8.3.2. Enable the Ethernet interface in the kernel

The Ethernet interface is enabled and statically linked into the kernel by default as it is fundamental
for any communication with the host system. All configuration settings like IP address and netmask
are given to it via the kernel command line interface.

To see where it is enabled, open the configuration tool and go to Linux Kernel Configuration >
Device Drivers > Network device support > Ethernet (10 or 100Mbit).

qconf f=dfmd fae]

Eile Option Help

—d
WOl |l E
Option [Z] Option
& Device Drivers ..

Generic Driver Options = k Ethernet (10 or 100Mbit}
Connector - unified userspace <-> O Generic Media Independent Interface device support
Memory Technology Devices (MTD OMNS9750 Ethernet support (Deprecated)
Parallel port support &= [NS9x Ethernet support
Plug and Play support O NS9wx Ethernet debugging support
Block devices O SMC 91 COx/91 Clwmod support
SCSl device support ODoM3000 support

Multi-device support (RAID and Lvh
Fusion MPT device support

IEEE 1394 (FireWire) support

120 device support

® Network device support Ethernet (10 or 100Mbit)
PHY device support

Ethernet (10 or 100Mbit)

Ethernet (1000 Mbit)
Ethernet (10000 Mbit)
Token Ring devices

Wireless LAN (non-hamradio)
Wan interfaces

 CT——— R D |

The Ethernet driver support is included by checking the NS9xxx Ethernet support component.

59

8.3.3. The Ethernet interface in the Linux system

In the Linux system, the Ethernet interface is known as eth0O. The network settings, which are
configured in U-Boot by environment variables (IP address, gateway, netmask, etc.), are
automatically assigned to the Ethernet interface after boot.

To enable the Ethernet interface in Linux, enter this command:

}ﬁéih # ifconfig ethO up

To disable with the Ethernet interface, enter this command:

",

}ﬁﬁih # ifconfig ethO down

To assign one or more IP addresses to the Ethernet interface, enter:

5 # ifconfig ethO 192.168.42.31
}fﬁj‘ # ifconfig eth0:2 192.168.42.32
ifconfig eth0:3 192.168.42.33

8.4. Wireless network interface

The ConnectCore Wi-9C module contains a Field-Programmable Gate Array (FPGA) which

implements an IEEE 802. 11ab/g-compatible wireless network interface. Extensive information
about the WLAN adapter is given in topic 9.

8.4.1. Hardware resources used by the driver

Interface ‘ Driver ‘ IRQ | GPIO | Physical memory | Timer ‘ Chip

Select
WLAN | digi_ wi_g | 65 | 58,65-67 | OXBXXXXXXX | | static 2

60

8.4.2. Enable the wireless network interface in the kernel

For ConnectCore Wi-9C platforms, this wireless network interface is enabled and included in the
kernel by default. To see where the wireless network interface is enabled, open the configuration
tool and go to Linux Kernel Configuration > Device Drivers > Network device support >
Wireless LAN (non-hamradio).

File Option Help

@ |l E

I| Option =] |Opti0n
Memory Technology Devices (MTD! M.
Parallel port support = EWireless LAN drivers (non-hamradio) & Wireless Extensions
Plug and Play support Owireless Extension APl over RtNetlink
Block devices Obsolete Wireless cards support (pre-802.11)
SCSI device support OSTRIP (Metricom starmode radio IP)
Mlti-device support (D and 1y | o T TN T S
Fusion MPT device support O Digi Wireless Module 802.11ab/g debugging support
IEEE 1394 (FireWire) support O IEEE 802.11 for Host AP (Prism2/2.5/3 and WEP/TKIP/CCM

120 device support
= Network device support
PHY device support

1 4
Ethernet (10 or 100Mbit) L Ll | G
Ethernet (1000 Mhit) Digi Wireless Module 802.11ab/g (DiGI_wWI_G)
Ethernet (10000 Mbit)
Token Ring devices A 802.11ab/g wireless driver for Digi ConnectCore Wi-9C

Wireless LAN (non-hamradio) modules.

Wan interfaces
ISDN subsystem
= Input device support
Hardware I/O ports

-

Character devices

Y ——— 1 0

The wireless driver support is included by selecting the Digi Wireless Module 802.11 ab/g
component.

8.4.3. The wireless interface in the Linux system

In the Linux system, the wireless interface is known as wlan0. The network settings, which are
configured in U-Boot for the wireless interface by environment variables (IP address, gateway,
netmask, etc.), are automatically assigned to the wireless interface after boot.

In Linux, there are also some tools to configure the behavior, encryption and authentication modes
of the wireless LAN (WLAN) adapter. For a complete guide in using the WLAN, please consult
topic 9.

61

8.5. Flash memory device

The ConnectCore 9C/Wi-9C and ConnectCore 9P modules contain a Flash memory device for
permanent storage of user data, the boot loader, the kernel, the root file system, the wireless FPGA
program and the persistent NVRAM settings. The memory chip is a NAND Flash chip which is
offered in different size configurations. A Linux driver is used to read from and write to the Flash.

8.5.1. Hardware resources used by the driver

Device ‘ Driver | IRQ | GPIO | Physical memory | Timer | Chip
Select
Flash | ccx9x_nand | | | OX50XXXXXX | | static 1

8.5.2. Enable the Flash memory device in the kernel

The Flash memory device is enabled and statically included into the kernel by default. The kernel
checks the device on start-up for bad blocks. To see where the Flash memory device is enabled,
open the configuration tool and go to Linux Kernel Configuration > Device Drivers > Memory
Technology Devices (MTD).

qconf [Caed

File Option Help
o E | I E
Option B Option

ST T =

Floating point emulation M Technol Device (MTD) +

Userspace binary formats ® Memory echnology Levice Suppo

O Debugging

Power management options]
Metworking
= Device Drivers

OMTD concatenating support
& B MTD partitioning support
Generic Driver Options [ORedBoot partition table parsing
Connector - unified userspace <-3 M Command line partition table parsing
Memory Technology Devices (MTD) OJARM Firmware Suite partition parsing
Parallel port support User Modules And Translation Layers
Plug and Plav support [« Direct char device access to MTD devices
Blogk deviceg PP Caching block device access to MTD devices
SCSsl device support e OFTL (Flash Translation Layer) support
Multi-device support (RAID and L OMFTL (MAND Flash Translation Layer) support
Fusion MPT dexﬁse support OIMFTL (Inverse NAMD Flash Translation Layer) support
IEEE 1394 (Firewire) support OResident Flash Disk (Flash Translation Layer) support
120 device support it M RAM/ROM(Flash chip drivers

®- Metwork device support | :lalgpmgt dl”""zr;‘;?[; ZhIE GCSQSS
ISDN subsystem [® Self-containe evice drivers

i [TIMAMND Flash Device Drivers
= Input device support - .
® OneMAMND Flash Device Drivers
Hardware IO ports
= Character devices [II | [III]
Serial drivers MAND Flash Device Drivers
1PMI

Watchdog Cards

Ftape, the floppy tape device
TPM devices

% all

To support the Flash memory device in Linux, include support for Memory Technology Devices
(MTD) and partitioning. The specific driver is included in the NAND Flash Device Drivers. To
access this area, double-click this item. Check the NAND Device Support and Verify NAND page
writes elements. Then check the specific driver NAND Flash on ConnectCore 9C/Wi-9C.

62

8.5.3. The Flash memory device in the Linux system

In the Linux system, Flash partitions are identified as block devices named /dev/mtdblockX. For
example, the default partition structure of the Flash (see topic 7.4.1) is displayed as:

Is /dev/mtdblock* -1

}fﬁih brw-rw---- 1 root root 31, 0 Jan 1 1970 /dev/mtdblockO
brw-rw---- 1 root root 31, 1 Jan 1 1970 /dev/mtdblockl
brw-rw---- 1 root root 31, 2 Jan 1 1970 /dev/mtdblock2
brw-rw---- 1 root root 31, 3 Jan 1 1970 /dev/mtdblock3
brw-rw---- 1 root root 31, 4 Jan 1 1970 /dev/mtdblock4
brw-rw---- 1 root root 31, 5Jan 1 1970 /dev/mtdblock5
cat /proc/mtd
dev: size erasesize name

mtdO: 000c0000 00004000 *‘U-Boot™

mtdl: 00040000 00004000 **NVRAM™

mtd2: 00100000 00004000 *‘FPGA™

mtd3: 00300000 00004000 "Kernel™

mtd4: 01000000 00004000 *"‘ROOtFS-JFFS2™
mtd5: 02b00000 00004000 "User-JFFS2"

Like any other block device, those partitions containing a file system image, such as the rootfs
partition, can be mounted with the Linux mount command. Then, use normal Linux commands to
write to the mounted Flash patrtition.

Whenever something critical is written to Flash, the system should be synchronized, using
the sync command, so that the data is not kept in the cache memory.

To update images in the partitions, use the update_flash application, explained in topic 7.4.2.

Partitions with a read_only flag set in the NVRAM partitions table cannot be
updated with update_flash (all partitions are writable by default).

63

8.6. Serial device driver

The NS9XX0 microprocessor contains four serial ports that can operate in UART or SPI
master/slave modes. A serial driver controls the internal serial ports.

8.6.1. Hardware resources used by the driver

8.6.2.

Device Driver IRQ GPIO Physical Timer | Chip
Memory Select
Serial A (UART) ns9xxx_serial | 36,37 | 8,9
IdevittyS1 (10-15)1
Serial B (UART) ns9xxx_serial | 34,35 | 0,1
IdevittySO (2-7)t
Serial C (UART) ns9xxx_serial | 38,39 | 40,41
[devittyS2 (42,43,
20-23)t
Serial D (UART) ns9xxx_serial | 40,41 | 44,45
[devittyS3 (46,47,
24-27)

! Only when HW Handshaking is enabled

Enable the serial device driver in the kernel

By default, only Serial Port A is enabled in UART mode. To see which serial ports are enabled,
open the configuration tool and go to Linux Kernel Configuration > Device Drivers >
Character devices > Serial drivers.

Token Ring devices
Wireless LAN (non-hamradio)
Wan interfaces

ISDN subsystem

& Input device support

Hardware I/O ports

= Character devices

Serial drivers
IPMI
Watchdog Cards
Ftape, the floppy tape device dri
TPM devices
12C support
SPI suppaort
Dallas's 1-wire bus
Hardware Monitoring support
Misc devices
LED devices

- Multimedia devices

Digital video Broadcasting Devic

Graphics support

Console display driver support
Logo configuration

K T L

qconf fmfmd fae
File Option Help
W oZE I E
Option [~] | option
ETNErNET {LUUuU MBIT) =

[08250/16550 and compatible serial support
Non-8250 serial port support
- [l UART on NSSxK0
OHW Handshake
[Console on NS9xx0
OEnable /dev/ttyso (Port B)
Enable fdevittyS1 (Port A)
OEnable /devfttys2 (Port C)
OEnable /devittyS3 (Port D)
O NSSwx Serial debugging support
[UART over JTAG

Serial drivers

64

Enabling the element UART on NS9xx0 grants access to enabling each of the four serial ports in
UART mode.

To enable the console in a serial port, check Console on NS9xx0. The serial port connected to the
console is selected with the console environment variable in U-Boot. Refer to topic 7.2 for
information about how to change the value of U-Boot variables.

Enabling the option HW Handshake will enable the hardware handshake on the serial ports
enabled in UART mode.

Before enabling UART mode for a serial port, make sure that the SPI
mode is not enabled for the same port (see topic 8.7.2).

more information, see the ConnectCore 9C/Wi-9C Hardware Reference manual or the
ConnectCore 9P Hardware Reference .

Q The development board contains switches for configuring the signals of the serial ports. For

8.6.3. ldentify serial devices in the system

In the Linux systems, serial ports working in UART mode appear as character devices named
/dev/ttySX. For example, in the factory default image, the Is /dev/ttyS* command displays this
serial device:

~ | # Is /dev/ttyS*
}J‘}}% /dev/ttys1

& If enabled, ttySO is Serial Port B and ttyS1 is Serial Port A.

8.6.4. Manage serial ports from the user space

The standard serial programming API applies to the NS9xx0 serial ports. For information about
serial programming, see the Serial Programming HOWTO at http://tldp.org/HOWTO/Serial-
Programming-HOWTO/index.html or the Serial Programming Guide for POSIX Operating
Systems at http://www.easysw.com/~mike/serial/serial.html.

65

http://tldp.org/HOWTO/Serial-Programming-HOWTO/index.html
http://tldp.org/HOWTO/Serial-Programming-HOWTO/index.html
http://www.easysw.com/~mike/serial/serial.html

8.7. Serial Peripheral Interface (SPI) mode

The four serial ports of the NS9XXO0 processor can be configured in SPI mode (master or slave). By
default, no serial port is configured in SPI mode.

8.7.1. Hardware resources used by the SPI driver

Device Driver IRQ GPIO Physical Timer Chip
Memory Select

Serial A (SPI mode) | ns9xxx_spi 60,61 | 8,9,14,15

Serial B (SPI mode) | ns9xxx_spi 5859 | 0,1,6,7

Serial C (SPI mode) | ns9xxx_spi 62,63 | 40,41,22,23

Serial D (SPI mode) | ns9xxx_spi 64,65 | 44,45,26,27

8.7.2. Enable the SPI device in the kernel

Since all serial ports are configured in UART mode, SPI support is disabled by default.

Before enabling SP1 mode for a serial port, make sure that the UART
mode is not enabled for the same port (see topic 8.6.2).

To enable SPI support, open the configuration tool and go to Linux Kernel Configuration >
Device Drivers > SPI support. Enable SPI support and NetSilicon NS9XXX series SPI
elements as built-in kernel features. That grants access to enabling each of the four serial ports in
SPI mode, except for those which are enabled in UART mode.

qconf f=dlm Faed
File QOption Help
o | I E
Option B Option
Adiuwdl e 1w PUILD E

@ Character devices
Serial drivers
IPMI
Watchdog Cards
Ftape, the floppy tape device driver

I2CTPM de:lces Disable Serial Port 1 if you want to enable SPI 1
SuPPo CEnable SPI 2 (Port C) (NEW)

CEnable SPI 3 (Port D) (NEW)

Dallas's 1-wire bus
Hardware Monitoring support
Misc devices
LED devices
= Multimedia devices
Digital Video Broadcasting Devices
= Graphics support
Console display driver support
Logo configuration
OBacklight & LCD device support
Sound
= LSE support
USB Metwork Adapters
USB Serial Converter support
USB DSL modem support
USB Gadget Support @

[K10

SPl support

SPI Master Controller Drivers

O Bitbanging SPI master (NEW)
= NetSilicon MS9XX series SPI
FEnable SPI 0 (Port B) (NEW)

SPI Protocol Masters

SPI support

66

8.7.3. Access to SPI bus

The SPI bus cannot be accessed directly from user space. Instead, it is access via the SPI client
drivers, like the Touch screen driver.

8.8. Touch screen

If an LCD Application Kit was purchased, the provided TFT LCD contains a Touch Screen sensor
and an SPI touch screen controller (ADS 7846). The touch screen lines come together with the
LCD lines in a single cable. Internally, the touch screen lines are connected to Serial Port B.

To use Serial Port B as a Serial Peripheral Interface (SPI), turn off microswitch SW2.2 on the
development board.

B e)
& < >IE TR NEP R 5
[H =

EDE =
"ﬁ'l”@w EE; @E. o

et et oL it % om) :
q -mmu
“J & -EJE-E' Jalil=i] on

[. i.:ﬂ SW2
-‘"@Immmﬂgﬁsﬁgﬂ "ﬁ‘ e

)
0
]

=]

o
o
R
O
0
(]

o]
gl
[R=]

I
)
=
EE
afi)st
miE
5 =
E=rl_
R165
O]

=ify
[=E:i}
=]
=k
=i}
e=ifl
=5
i)

B B
g2 F10 P e
[HHARRAHRHARRRRRRRRHAAR AR AR ERHRHRREAHRHARRARRARRRARRL:

N HARERRNARRAR

SW2 ON | OFF
SW2.2 | UART mode | SPI mode

A Linux driver implements the support for the ADS 7846 touch screen controller.

8.8.1. Hardware resources used by the driver

Device Timer | Chip

Select

Driver IRQ GPIO Physical
Memory
ads7846 ‘ EXT 3 | 0,1,6,7 | ‘ ‘

Touch screen
ADS7846

67

8.8.2. Enable the touch screen device in the kernel

The touch screen device is not included in the default kernel configuration.

/ .

4£ Enable the touch screen device for a TFT LCD with a touch screen based
in the ADS 7846 controller only.

To work with the touch screen driver, make sure that Serial Port B is not enabled in UART mode
(see topic 8.6.2) and turn off microswitch SW2.2 on the development board.

To enable the touch screen driver, open the configuration tool and select Linux Kernel
Configuration > Device Drivers > Input device support.

Eile DOption Help

W o@E | I E

Option

®

®

w Device Drivers

Generic Driver Options

(+]

Connector - unified userspace =-= kernel

Memory Technology Devices (MTD)
Parallel port support

Plug and Play support

Block devices

SCS| device support

Multi-device support (RAID and LvM)
Fusion MPT device support

IEEE 1394 (FireWire) support

120 device support

MNetwork device support

ISDN subsystem

Character devices
12C support

SPl support

Dallas's 1-wire bus
Hardware Monitoring support
Misc dewvices

LED devices
Multimedia devices
Graphics support
Sound

USE support

MMC/SD Card support

%

[0} Input device support

[4]+]
—

:

Option
M.
= Generic input layer (needed for keyboard, mouse, ...}
Userland interfaces
= & Mouse interface
Provide legacy /dev/psaux device
(1024) Horizontal screen resolution
(768) Vertical screen resolution
OJoystick interface
= Touchscreen interface ||
(240} Horizontal screen resolution
(320} Vertical screen resolution
OEvent interface
OEvent debugging
Input Device Drivers
® Keyboards
M Mouse
B Joysticks
B Touchscreens
M Miscellaneous devices

(<1 | ()

Touchscreen interface (INPUT_TSDEV)

Say ¥ here if you have an application that only can understand the
Compagq touchscreen protocol for absolute pointer data. This is
useful namely for embedded configurations.

If unsure, say M.

D]

68

Enable the element Touchscreen interface. Then click the Touchscreens element and enable
ADS 7846 based touchscreens.

qconf [fEm Fae]
File Qption Help
k- |
o | Il E
Option B Option
IEEE L1394 (FIrewire; sUpport =
120 device support ® B Touchscreens
® Network device support E® ADS 7846 based touchscreens
ISDN subsystem (245) Horizontal min coordinate (NEW)
& [t clee SupREr (3880) Horizontal max coordinate (NEW)
Hardware l"_ro ports (320) Vertical min coordinate (NEW)
® Character devices (3811) Vertical max coordinate (NEW)
12C support O Gunze AHL-51S touchscreen
SPI support OElo serial touchscreens
Dallas’s 1-wire bus OMicroTouch serial touchscreens
Hardware Monitoring support O1cs MicroClock MK712 touchscreen
Misc devices
LED devices
® Multimedia devices ADS 7846 based touchscreens (TOUCHSCREEN_ADS7846)
® Graphics support
Sound Say Y here if you have a touchscreen interface using the
®- USB support ADS7846 controller, and your board-specific initialization
MMC/SD Card support code includes that in its table of SPI devices.
Real Time Clock
® File systems If unsure, say N (but it's safe to say "v").
Profiling support
kernel aackgrp: To compile this driver as & module, choose M here: the
- " g module will be called ads7848,
[‘_I—I

The coordinates of the touch screen limits are approximate. Different values may needed to
be configured to calibrate the touch screen properly.

8.8.3. Identifying the touch screen device in the Linux system

In the Linux system, the touch screen appears as devices named /dev/tsO0.
8.8.4. Manage the touch screen device from user space

The touch screen is hardly ever accessed directly. Graphics libraries, like the ones listed in topic
11, take care of managing the touch screen device.

69

8.9. USB host interface

The NS9xx0 processor contains a USB 2.0 host interface that supports full-speed (12 Mbps) and

low-speed (1.5 Mbps). The interface is extracted to the ConnectCore 9C/Wi-9C and
ConnectCore 9P module in the form of two USB host ports.

8.9.1. Hardware resources used by the USB host interface driver

Device

Driver ‘ IRQ

Chip

| GPIO | Physical Memory | Timer ‘
Select

USB Host | | 25

8.9.2.

Enable the USB host interface in the kernel

By default, the USB host interface is enabled in the kernel.

To see where the USB host interface is enabled, open the configuration tool and go to
Linux Kernel Configuration > Device Drivers > USB support.

Eile Option Help
wEE | Il E
Option B Option -
Hardware Monitoring support M.
Misc devices @ [# Support for Host-side USB
LED devices OUsSB verbose debug messages
® Multimedia devices Miscellaneous USB options
® Graphics support 1 USB device filesystem
Sound OEnforce USB bandwidth allocation (EXPERIMENTAL)
® O Dynamic USE minor allocation (EXPERIMENTAL)
USB Network Adapters USE Host Controller Drivers
USB Serial Converter support OISP116X HCD support
USB DSL modem support F QHCI HCD support
USB Gadget Support [O5L811HS HCD support
MMC/SD Card support USE Device Class drivers
Real Time Clock O USB Modem (CDC ACM) support
= File systems . OUSE Printer support
CD-ROM/DWD Filesystems NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support’
DOS/FAT/NT Filesystems may also be needed; see USB_STORAGE Help for more info
Pseudo filesystems # FUSE Mass Storage support
Miscellaneous filesystems OThe shared table of common (or usual) storage devices
Metwork File Systems USB Input Devices
Partition Types & [USB Human Interface Device (full HID) support
MNative Language Support = M HID input layer support
Profiling suppert OEnable support for iBook/PowerBook special keys @F
Kernel hackin []) £ ol Le e st (CYDEDIKACRTALY
Security optio?ws (4] [III]
= Cryptographic options || USB support
Hardware crypto devices
Library routines @

i —— . D)

Check whether the items shown in the figure have USB support for storage media, such as USB
Flash disks, and for HID input devices,

such as a USB mouse.

70

8.9.3. Identify the USB devices in the Linux system

USB devices are identified as soon as they are plugged in. Depending on the log level, a message
reporting that the USB device that has been plugged in may be displayed on the serial console. For
example, plugging in a USB memory stick displays this message:

5 Vendor: 32MB Model : HardDrive Rev: 1.88
}ﬁﬁib Type: Direct-Access ANSI SCSI revision: 02
SCSI device sda: 64000 512-byte hdwr sectors (33 MB)

sda: Write Protect is off

sda: assuming drive cache: write through

SCS1 device sda: 64000 512-byte hdwr sectors (33 MB)
sda: Write Protect is off

sda: assuming drive cache: write through

sd 1:0:0:0: Attached scsi removable disk sda

If nothing is displayed to the console, view all the system messages by printing the contents of the
system log file:

}?)3-:)4 # tail /var/log/messages

8.9.4. Manage the USB interface from user space

8.9.4.1. USB Memory sticks

USB memory sticks must be mounted before using them. To mount a USB memory stick, use
Ixmount. To umount a USB memory stick, use Ixumount.

5 # Ixmount
ey | # Is /media/
hﬁ:h sdal

Ixumount
Is /media/
#

8.9.4.2. Other USB input devices

Other USB input devices, such as a mouse or a keyboard can be used immediately after being
connected.

For example, connect a keyboard to a USB connector. Then, in the serial console, run:

}ﬁéib # cat /dev/tty0

Now, on the keyboard type some text, ending with CTRL+D. The typed text will be displayed in the
serial console.

A USB keyboard in combination with an LCD or VGA monitor can also be used for the console. To
mount a USB memory stick, use, change the std_bootarg variable in U-Boot:

; ~ | # setenv std_bootarg console=ttyS1,38400 console=tty0
ﬁﬁih # saveenv

71

8.10.1°C

The NS9XXO0 processor contains an IZC v.1.0 port, which can be configured in both master and
slave modes. A custom driver has been developed for this interface.

Additionally, the development board contains an I°C 8-bit I/O device (Philips PCA9554). A driver for
this 1/O port is also provided.

8.10.1.Hardware resources used by the I°C interface

Device Driver IRQ | GPIO Physical | Timer | Chip
Memory Select

[2C i2C-NS9XXX 46,47
[2C 1/O port PCA9554 | pca9554

8.10.2.Enable the I°C interface in the kernel

By default, the I°C interface is enabled and built-in into the kernel.

To see where the I2C interface is enabled, open the configuration tool and go to Linux Kernel
Configuration > Device Drivers > 12C support.

qconf [fm e
Eile DOption Help
h' |
o E | E
Option B Option

Plug and Play support ..
Block devices m [12C support
SCSI device support 112C device interface
Multi-device support (RAID and LWM] ®|2C Algorithms
Fusion MPT device support ®I2C Hardware Bus support
IEEE 1394 (FireWire) support ® Miscellaneous 12C Chip support
120 device support O12C Core debugging messages

®- Network device support O12C Algorithm debugging messages
ISDM subsystem O12C Bus debugging messages

®- Input device support O12¢ Chip debugging messages

®- Character devices
SPI support
Dallas's 1-wire bus
Hardware Monitoring support al HIII]
Misc devices I2C support
LED devices

= Multimedia devices

Digital Wideo Broadcasting Devic
w1 Graphics support
Console display driver support
e] D)

72

In the displayed configuration information, the following items must be checked for having support
for the 1°C interface and the I°C 1/O port:

e [2C support
0 I2C device interface
o 12C Algorithms
= |2C bit-banging interfaces
0 12C Hardware Bus support
= NS9360/NS9750 12C bus
0 Miscellaneous 12C Chip support
= Philips PCA9554(A) 8-bit I/O port

8.10.3.Identify the I°C interface in the Linux system

The I°C bus is populated in the Linux system within the /sys folder of the rootfs. A character device,
/dev/i2c-0, is also created for accessing the bus in raw mode.

The PCA9554 12C I/0O port is populated in the system with several file descriptors in the /sys folder:

5 # Is —la /sys/devices/platform/i2c-0/0-0020

}hﬁfb drwxr-xr-x 2 root root 0 Jan 1 00:47 .
drwXxr-xr-x 3 root root 0Jan 1 1970 ..
I rwxrwxrwx 1 root root 0 Jan 1 00:47 bus ->
../../../../bus/i2c
-rw-r--r-- 1 root root 4096 Jan 1 00:47 config
I rwxrwxrwx 1 root root 0 Jan 1 00:47 driver ->
../../../../bus/i2c/drivers/pca9554(a)
-r--r—-r—- 1 root root 4096 Jan 1 00:47 input
-r--r-—-r—-— 1 root root 4096 Jan 1 00:47 name
-rw-r—--r—- 1 root root 4096 Jan 1 00:47 output
-rw-r—-r-- 1 root root 4096 Jan 1 00:47 polinv
——W—————— 1 root root 4096 Jan 1 00:47 uevent

73

8.10.4.Manage the I°C interface from user space

Normally, I°C devices, such as the PCA9554 I/O port, are accessed from applications using the API
provided by the class driver. However the I°C bus can be accessed directly using the device
/dev/i2c-O0.

For more information about writing directly to the 1°C bus, consult the Linux documentation at:

%

/usr/local/DigiEL-4.0/kernel/linux/Documentation/i2c/dev-interface

8.10.4.1. PCA9554 8-bit I/O port

The PCA9554 I/O port can be accessed via the file descriptors config, input, output and polinv
available at /sys/devices/platform/i2c-0/0-0020/.

The config descriptor configures the 1/0Os as inputs or outputs. input is used to read the inputs
values. output is used to write the outputs values. polinv is used to invert the polarity of the I/Os.

A sample application is provided in folder /usr/local/DigiEL-4.0/apps/i2c_gpio_test/. This
application checks for possible shortcuts between adjacent 1/0s. Running this application, requires
interconnecting 1/0s 0-2-4-6 and 1-3-5-7 respectively, which can be found in connector P19 on the
development board:

74

; 1
[-.< >-|E %E%E] - IR AR HHRBRRERBRRRRARRARE R ' _—
& o Ol
] Be == D
5ls = . 0
- IS < ok
g E (st alafets] O[
gy B e
EJEEE' e[l O[
NioM ol
Eglzglmiﬁl B O [
y Ol
e HE[%QJEEE . On
T EIEE O a
-I'1E B8 B |
- B ads : ;
iLle L -
Ll | B = | B EI
“[E pig e
B : |
S GG BYG| e
22 g1o) "B .
" HARHHHRRRRR RR AR HRHARHA I HHHRARRRR R ERRRH AR R AREARR L
B R EEERER

8.11.Real Time Clock (RTC)

The NS9360 processor contains a real time clock (RTC) module that tracks the time of the day to
an accuracy of 10 milliseconds and provides calendar functionality that tracks day, month, and
year. A character driver for the RTC is provided.

date/time. This RTC device is mainly intended for triggering alarms and
scheduled jobs.

& Since the RTC is internal to the processor, no battery maintains the

8.11.1.Hardware resources used by the RTC driver

Device | Driver | IRQ ‘ GPIO ‘ Physical Memory ‘ Timer | Chip
Select

RTC | ns9360_rtc | | | | |

8.11.2.Enable the RTC device in the kernel

By default, support for the NS9360 RTC device is enabled and included into the kernel. To see
where the RTC device is enabled, open the configuration tool and go to Linux Kernel
Configuration > Device Drivers > Character devices. The NS9360 RTC Driver should be

selected.
qconf [fE Faed
FEile Option Help
b |
W Ed | IlE
Option B Option
Networking ..
& Device Drivers _ ® EVirtual terminal
Generic Driver Options Support for console on virtual terminal
Connector - unified userspace <-= kernel O Non-standard serial port support
Memory Technology Devices (MTD) Unix98 PTY support
Parallel port support OLegacy (BSD) PTY support
Plug and Play support O/dev/nvram support
Block devices NS9360 RTC Driver |
SCS| device support ODouble Talk PC internal speech card support
Multi-device support (RAID and LvM) O Siemens R3964 line discipline
Fusion MPT device support O RAW driver (/devfraw/rawN) (OBSOLETE)
IEEE 1394 (FireWire) support OTelecom clock driver for MPBLOO10 ATCA SBC
120 device support
®- MNetwork device support
ISDN subsystem (11 | [III]]
® Input device support NS9360 RTC Driver (NS9360 RTC)
B croracrerdevces -
Serial drivers RTC (Realtime Clock) driver for the inbuilt RTC into the
IPMI NS9360 processor. This can also provide wakeup from Alarm
Watchdog Cards functionality.
Ftape, the floppy tape device driver
TPM devices
12C support
-—,—,

8.11.3.Identify the RTC device in the Linux system

The device driver is accessible via the file descriptor /devi/rtc.
8.11.4.Manage the RTC device from user space

The RTC uses the Linux standard API for RTC devices. For more information, see the Linux
documentation at /usr/local/DigiEL-4.0/kernel/linux/Documentation/rtc.txt. A sample application

75

is in /usr/local/DigiEL-4.0/apps/rtc_test_c/. This sample application performs several operations
on the RTC including read/set the current time, set the alarm, test the periodic interrupt, etc.

8.12.Video/Graphics support

There are two options for video/graphics support using the ConnectCore 9C/Wi-9C and
ConnectCore 9P modules: TFT LCD display or VGA monitor.

The NS9360 microprocessor contains a flexible LCD controller for TFT LCD displays. The
development board contains a VGA DAC (external to the module) that converts the digital signal to
analog, for VGA monitors.

Only one video configuration can be used at a time on the development board: either TFT LCD
display or VGA monitor. Micro switch SW7 on the development board configures this setting.

[=fa[a]=]x]a] 0 0O
o] FEEEEEEREREEEEEEEEEERREEE g

P oM
ERSw QQ s
=1

12

S

0l g @EQE
= [

- Bl
gL i ﬁ)
-['LIE B8 ClEg: ;
BoBs g T
— o e = [Z oo
ol EE oHe L—
BEES f) |
. T= (e A =] | cag? 8 [0)
S Ryl
1= E g =1 HEEE

P

W LREER EEERER

SW7 ON OFF
SW7.1 VGA disabled | VGA enabled
SW7.2 not used

8.12.1.Hardware resources used by the video driver

Device ‘ Driver ‘ IRQ ‘ GPIO ‘ Physical Memory ‘ Timer | Chip
Select

Display | ns9xxxfb | | 15,18-41 | | |

76

8.12.2.Including graphics support in the kernel

A

By default, graphics support is included in the kernel for VGA monitors.

The configuration tool allows removing graphics support, changing it for any of the supported TFT
LCD displays, or selecting to compile the graphics driver as module. To examine the graphics
support, do a make xconfig and go to Linux Kernel Configuration > Device Drivers > Graphics
support.

qconf Cmlfm Fae]
Eile Option Help
oSl Il E
Option B Option
= Device Drivers M.
Generic Driver Options = & Support for frame buffer devices
Connector - unified userspace =-=> kerne Enable firmware EDID
Memory Technology Devices (MTD) O Enable Video Mode Handling Helpers
Parallel port support OEnable Tile Blitting Support
Plug and Play support OEpson S1D13X¥X framebuffer support
Block devices | | ® mNS9360/MNS9750 LCD framebuffer support
SCSI device support = NS9XXX Available Displays
Multi-device support (RAID and LVM) ® CTR VGA Video Support
Fusion MPT device support O LQOS7Q3DC12I TFT LCD Support
|IEEE 1394 (FireWire) support O LQ064V3DGO1 TFT LCD Support
120 device support O Custom display
®- Metwork device support OVirtual Frame Buffer support (ONLY FOR TESTING!)
ISDN subsystem
® Input device support
® Character devices
12C support
SPl support
Dallas's 1-wire bus
Hardware Monitoring support Graphics support
Misc devices —
LED devices
® Multimedia devices
®
Console display driver support
Logo configuration
OBacklight & LCD device support
Sound
= USE support
USB Network Adapters
USE Serial Converter support
USB DSL modem support @
[— (]
|S————————— —

To remove graphics support, uncheck the NS9360/NS7520 LCD framebuffer support.

To compile graphics support as a module, click until a black circle is displayed in the checkbox for
the graphics module named ns9750fb.

To include support for a TFT display, select one of the available TFT LCDs. If working with a TFT
LCD that does not appear in the list, select Custom display.

TFT LCD displays only work if Serial Port B is NOT enabled in UART mode.
To disable UART mode of serial ports, see topic 8.6.2

77

8.12.2.1. Custom graphics display support

To add support for a custom TFT display, that is, TFT LCD that does not appear in the list of
supported TFTs, select Custom display in the Graphics support part of the Linux Kernel
Configuration.

Supporting a custom TFT display also requires modifying a kernel header file. See topic 5.9 for
details on modifying kernel sources. Modify the header file
linux/drivers/video/displays/ns9xxx/custom.h with the appropriate display settings for:

e Resolution
e Timing values

e GPIO to use for LCD power

8.12.3.1dentify the video graphics device in the system

When the kernel loads the video graphics support, it creates a device in the file system called
/dev/fbO0.

If the driver is working, a Linux penguin appears in the display.

8.12.4.Manage the video graphics display from the user space

Normally framebuffer memory is not written to directly. Standard graphics frameworks such as
Qtopia or Nano-X can handle the display device and provide a higher API layer for graphical
applications.

8.13. High-performance counter

To help develop drivers and measure critical timings, Digi Embedded Linux provides a high-
performance counter, named rdtsc. This high-performance counter is similar to the rdtsc
command on x86 processors. The high-performance counter is a timer running with CPU clock
frequency, that measures instruction times.

rdtsc is not a driver, but it can be used by other drivers in debug code. For example, the Ethernet
driver at kernel/linux/drivers/net/arm/ns9xxx_eth.c uses it.

8.13.1.Hardware resources used by the high-performance counter interface

Device ‘ Driver ‘ IRQ ‘ GPIO ‘ Physical ‘ Timer ‘ Chip
Memory Select

High- 1

Performance

Counter

78

8.13.2.Use the high-performance counter in the kernel
To use the high-performance counter, the driver must include this code:

/* for timing collection */
5 enum {
- START_XMIT = O,

START_XMIT_DONE,

b
#define NAME(X) #x
static const char* ns_hperf_type names[] = {

NAME(START_XMIT),
NAME(START_XMIT_DONE),

e

/* ns_hperf_type names needs to be define first before including */
include <asm/arch-ns9xxx/ns9xxx_hperf.h>

The high-performance counter can then be used at any place in the code with these instructions:

Instruction Description

ns_hperf_mark(START_XMIT) Take a timing mark (the first
instance initiates the counter).

ns_hperf_mark(START_XMIT_DONE) | Take the last mark (the counter is
stopped).

ns_hperf_marks_dump() Print the timing results.

For example:

printk(C “A\n”);

ns_hperf_mark(START_XMIT);
printk(“AA\n”);

ns_hperf _mark(START_XMIT_DONE);
ns_hperf_marks_dump();

5 ns_hperf_mark(START_XMIT);

Timings are then printed in the kernel messages. The resolution is presented first, followed by the
absolute time, and the delta (+) since the mark before.

The output for the code above is:

A

?rﬁﬂb AA
ns_hperf: Providing timing resolution of 6 ns for 27 seconds
Timing information

START_XMIT : (start)
START_XMIT : 00000048 us (+000048)
START_XMIT_DONE : 00000070 us (+000022)

79

9. Use the WLAN adapter

The ConnectCore Wi-9C embedded module includes a Wireless LAN adapter, integrated in the
module. This adapter is designed to comply with IEEE 802.11b/g Wireless LAN standard.

This topic explains the details of the WLAN adapter of the ConnectCore Wi-9C, configuration,
security, firmware...

If working with a non-wireless module, skip this topic.

Working and communicating with the ConnectCore Wi-9C via the wireless interface requires that a
wireless Access Point be installed and configured for the network.

9.1. Wireless security concepts

One of the most important concerns when talking about wireless communications is the security
and integrity of the data. For this reason it is necessary to introduce two concepts: encryption and
authentication.

Encryption is the process of making data unreadable without a certain deciphering key.

Authentication is the act of confirming the identity or provenance of something or someone.

9.2. Features of the WLAN adapter

Features of the WLAN adapter include:
e Complies with the IEEE 802.11b and IEEE 802.11g 2.4Ghz (DSSS) standards.
e High data transfer rate — up to 54Mbps.
e Supports 64/128-bit WEP, TKIP and AES encryption.
e Supports open, WPA and WPA2 (personal and enterprise) authentication.

For WLAN security issues, the card supports 64/128-bit WEP data encryption that protects the
wireless network from eavesdropping. It also supports WPA-PSK (Wi-Fi Protected Access) feature
that combines IEEE 802.1x and PSK (Pre-Shared Key), TKIP (Temporal Key Integrity Protocol)
technologies. Client users are required to authorize before accessing to APs or AP Routers, and
the data transmitted in the network is encrypted/decrypted by a dynamically changed secret key.
Furthermore, this adaptor supports WPA2-PSK function, which provides a stronger encryption
mechanism through AES (Advanced Encryption Standard), which is a requirement for some
corporate and government users. Hardware encryption support is available for AES.

WPA and WPA2 enterprise is also supported by the wpa_supplicant package.

80

9.3. Include the wireless interface in the Linux kernel

9.3.1.

The WLAN driver is included in the default kernel for ConnectCore Wi-9C platforms. Topic 8.4.2
explains how to enable the WLAN driver in the kernel.

Necessary components

Several applications are necessary for configuring the WLAN adapter:
e Wireless-tools package
e WPA supplicant package

The Wireless-tools package is a set of command line tools allowing manipulation and configuration
of WLAN adapters.

The WPA supplicant package implements key negotiation with a WPA Authenticator and it controls
the roaming and IEEE 802.11 authentication/association of the WLAN driver.

If the project contains rootfs support, these two packages are included by default in the rootfs.

To see where they are enabled, open the configuration tool and go to Rootfs configuration >
Prebuilt applications.

File Option Help

o | Il E
I| Option Option | (+]
U-Boot Configuration -

O Rdate bootscript

Dropbear 55H server and client
; [Mtd-utils package

& Rootls Configuratian Openssl SSL and TLS support

Pre-built applications O peilitils

Rootfs images

Linux Kernel Configuration
Applications Configuration

O Point-to-Point protocol daemon.
O Qtopia core example applications
Ousbutils

M Vsftp server

EWireless-tools package

EWPA supplicant package -

Pre-built applications

| £ I— A — O €

Both packages should be checked.

81

9.4. Wireless interface LEDs

ConnectCore Wi-9C module has 2 LEDs (one green, one yellow) between the Ethernet and USB
host connectors, related to the wireless interface.

The green LED indicates the wireless status. It can represent several states:

When LED is: Wireless interface is:

Solid ON Connected to an access point
Slow blinking Connected to an ad-hoc computer
Fast blinking Scanning

Solid OFF Not Connected

The yellow LED indicates network activity. It blinks when packets are being transmitted.

82

9.5. Network settings of WLAN interface

The network settings of the WLAN interface are the MAC and IP addresses and the network mask.
These three parameters are configured in U-Boot by means of the following environment variables:

Parameter U-Boot environment variable | Default value
MAC address | wlanaddr

IP address ipaddr_wlan 192.168.43.30
Network mask | netmask_wlan 255.255.255.0

The MAC address of the WLAN interface is unique for each module and it is set during the
production process. The MAC address can be seen on a sticker on the module.

9.5.1. Modify network parameters

The IP address and network mask of the WLAN can be modified with the U-Boot setenv
command, for example:

5 # setenv ipaddr_wlan 192.168.43.30
}mﬁ # setenv netmask wlan 255.255.255.0
saveenv

Linux applies these settings to the WLAN interface during the boot process.

9.6. Basic wireless operations

For first tests please configure an Access Point with ESSID default and disable encryption. The AP
should have an IP address in the 192.168.43.0 subnet.

9.6.1. Show the current wireless network status
There are several ways to get information about the WLAN interface.

The ifconfig command shows basic information of the wireless device such as IP address,
netmask, etc.:

: # ifconfig wlan0O
}ﬁﬁih wlan0 Link encap:Ethernet HWaddr 00:40:9D:2E:91:34
inet addr:192.168.43.30 Bcast:192.168.43.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:114534 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:4810428 (285.9 KiB)
Interrupt:6

83

»

»

9.6.2.

»

»

For extended wireless configuration, use iwconfig. This tool shows wireless-only related
information, like the SSID, encryption method, etc.:

iwconfig wlanO
wlan0 IEEE 802.1l1a/b/g ESSID:"off/any"™ Nickname:"Digi Wireless b/g"
Mode:Managed Frequency=2.484 GHz Access Point: Invalid
Bit Rate=54 Mb/s
Retry limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Link Quality=67/100 Signal level=31/79 Noise level:0/0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

The Signal level is an important parameter. The higher the number, the better the quality. For a
stable connection, the signal level should be greater than 25/79. A signal level below 20/79 will
result in timeouts and possibly connection losses.

The wpa_supplicant package also provides a tool for showing a basic status of the WLAN
interface:

wpa_cli status
Selected interface “wlanO*®
bssid=00:15:c7:2b:57:a0
ssid=default
pairwise_cipher=NONE
group_cipher=NONE
key_mgmt=NONE
wpa_state=COMPLETED
ip_address=192.168.43.30

Scan the wireless network

There are several ways to scan the wireless network in search for wireless devices.

The iwlist command of the wireless-tools package retrieves information about the devices detected

in the range of the target, such as address, protocol, bit rates, and signal quality:

iwlist wlanO scan
wlan0 Scan completed :
Cell 01 - Address: 00:12:17:70:B8:8E

ESSID:""default"

Protocol : IEEE 802.11bg

Mode :Master

Channel :2

Encryption key:off

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s
11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s
48 Mb/s; 54 Mb/s

Quality=67/100 Signal level=31/79

Extra: Last beacon: 340ms ago

The wpa_cli application scans the wireless network. This scanning is done through a two-step
command, and shows basic parameters:

wpa_cli scan

Selected interface “wlanO*

OK

wpa_cli scan_results

Selected interface “"wlanO*

bssid / frequency / signal level / flags / ssid
00:12:17:70:b8:8e 0 31 default
00:90:4c:60:04:00 0 17 Liwi

84

9.7. Authentication and encryption

As discussed earlier, authentication is the act of confirming the identity and encryption is the
process that makes information unreadable for unauthorized users. This topic lists the methods
supported by the ConnectCore Wi-9C WLAN interface Linux driver:

9.7.1. Supported methods

Supported authentication and encryption methods include:

Authentication | Infrastructure mode | Ad-hoc mode
open X X
shared

WPA-PSK X

(personal)

WPA2-PSK X

(personal)

WPA X

(enterprise)

WPA2 X

(enterprise)

Encryption Infrastructure mode | Ad-hoc mode
no encryption X X
WEP 64/128 bits X

TKIP X

AES-CCMP X

9.7.2. Authentication and encryption combinations

There are several combinations of authentication and encryption methods.

Authentication | Encryption

open no encryption
open WEP 64/128 bits
WPA-PSK TKIP

WPA-PSK AES-CCMP
WPA2-PSK AES-CCMP

WPA enterprise | AES-CCMP
WPA2 enterprise | AES-CCMP

The next topic shows how to create connections with some of these combinations.

85

9.8. Wireless connection examples

9.8.1. Open authentication and no encryption

9.8.1.1. Connect to an access point (infrastructure mode)

This topic explains how to connect the ConnectCore Wi-9C wireless interface to an open access
point with no encryption. The different steps are done with the wpa_supplicant tool wpa_cli.

Add a network. This returns the number of this network connection:

5 # wpa_cli add_network
s | Selected interface “"wlanO*
|3

Set the ESSID of the Access Point, in this example, default. Replace the 1 with the number
returned in the previous command, and precede and follow the double quotes with simple quotes:

5 # wpa_cli set_network 1 ssid ""default""
= | Selected interface “"wlanO*
2 | 5

Set the Key management to NONE.

wpa_cli set_network 1 key_mgmt NONE
w47 | Selected interface “"wlanO*
2 |

Select this network to work with it.

5 # wpa_cli select network 1
s | Selected interface “wlanO*
2 | 5

Alternatively, all the commands can be entered in an interactive mode, when wpa_cli is started
without arguments. The following example does exactly the same steps done before:

wpa_cli
}dgm wpa_cli v0.4.9
Copyright (c) 2004-2005, Jouni Malinen <jkmaline@cc.hut.fi> and contributors

This program is free software. You can distribute it and/or modify it
under the terms of the GNU General Public License version 2.

Alternatively, this software may be distributed under the terms of the
BSD license. See README and COPYING for more details.

Selected interface “"wlanO*
Interactive mode

> add_network

1

> set_network 1 ssid "ndtest_wep_apl"
OK

> set_network 1 key_mgmt NONE

OK

> select_network 1

OK

> quit

86

9.8.1.2.

»

»

»

»

»

Connect to a computer (ad-hoc mode)

Connecting to a peer computer (ad-hoc mode) requires the same steps as shown in previous topic

to connect to an Access Point (infrastructure mode), only the mode is changed.

Add a network. This returns the number of this network connection:

wpa_cli add_network
Selected interface “wlanO*
2

Set the ESSID of the peer computer to connect to; in this example, default:

wpa _cli set network 2 ssid ""default"*
Selected interface “"wlanO*
OK

Set the Key management to NONE.

wpa_cli set_network 2 key mgmt NONE
Selected interface “wlanO*®
OK

Set the mode to 1 (ad-hoc):

wpa_cli set_network 2 mode 1
Selected interface “wlanO*
OK

Select this network to work with it.

wpa_cli select network 2
Selected interface “"wlanO*
oK

87

9.8.2

. Open authentication and WEP encryption

To use open authentication and WEP encryption, the steps are similar to those used before, but
only the WEP encryption mode is used. An open AP with WEP encryption must be used.

Add a network. This returns the number of this network connection:

wpa_cli add_network

}hgib Selected interface “"wlanO*

»

»

»

3

Set the ESSID of the Access Point, which, in this example, is default:

wpa _cli set network 3 ssid ""default"*
Selected interface “"wlanO*
OK

Set the Key management to NONE.

wpa_cli set_network 3 key mgmt NONE
Selected interface “wlanO*®
OK

Set the WEP key used in the AP. For example, if the active key is key0 and this a 128 bit key with
the values 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 OxAA 0xBB 0xCC 0xDD, enter:

wpa_cli set_network 3 wep_keyO 112233445566778899AABBCCDD
Selected interface “wlanO*

OK

Select this network to work with it.

»

wpa_cli select_network 3
Selected interface “"wlanO*
oK

88

9.8.3. WPA2-PSK authentication with AES-CCMP encryption

»

»

»

»

»

»

»

»

Now use the WPA2-PSK authentication mode combined with AES-CCMP encryption. An AP with
WPA2-PSK authentication and AES-CCMP encryption must be used.

Add a network. This action returns the number of this network connection:

wpa_cli add_network
Selected interface “wlanO*
4

Set the ESSID of the Access Point, in this example, default:

wpa _cli set network 4 ssid ""default"*
Selected interface “"wlanO*
OK

Set the Key management to WPA-PSK.

wpa_cli set_network 4 key mgmt WPA-PSK
Selected interface “wlanO*®
OK

Set the protocol to WPAZ2, thus resulting in an authentication mode of WPA2-PSK:

wpa_cli set_network 4 proto WPA2
Selected interface “wlanO*
OK

Set the pairwise ciphers for WPA to CCMP:

wpa_cli set network 4 pairwise CCMP
Selected interface “wlan0*
OK

A 256-bit PSK key must be generated basing on the AES pass phrase used in the AP, the MAC
address of the AP, etc. The wpa_passphrase application generates this key. For example, for the
pass phrase my_pass_phrase, execute:

wpa_passphrase default my_ pass_phrase
network={
ssid="default"
#psk=""my_pass_phrase"
psk=8Fe3077782a6262044ca53ff843bT69d143F7T158ad4d07bfd53616b4el69a5b
b5

Set the key in the network:

wpa_cli set_network 4 psk 8fe3077782a6262044ca53ff843bT69d143F7F158ad4d07
bfd53616b4el169a5b
Selected interface “wlanO*

OK

Select this network to work with it.

wpa_cli select network 4
Selected interface “"wlanO*
OK

89

9.9. Save the configuration

»

A

The Linux wireless configuration is done in the file /fetc/wpa_supplicant.conf. The connection
examples seen previously can be done automatically by editing this file with the correct values (see
the MAN page of wpa_supplicant.conf).

If a configuration using the wpa_cli application has been created, save it to the
letc/wpa_supplicant.conf file with the following command:

wpa_cli save_config
Selected interface “"wlanO*
oK

The configuration can only be saved if the rootfs has write permissions.

9.10. Fine-tune wireless connections

»

»

»

The signal quality of wireless connections depends on several conditions, such as absorbability
and reflections in the air, distance between target and access point, etc. The wireless driver tries to
find the best bitrate, beginning with 1MB/s. If there are many more good packets than failures, the
bitrate is increased. This fine-tuning process depends on the amount of data available. If only a few
frames are transmitted per second, the adjusting may take a few seconds.

To establish a specific bitrate, use iwconfig <interface> rate <bitrate>. This example establishes
a bitrate of 54 Mb/s:

iwconfig wlanO rate 54000000

To list the available bitrates, use the iwlist command:

iwlist wlanO rate
wlanO 11 available bit-rates :

1 Mb/s

2 Mb/s

5.5 Mb/s

6 Mb/s

9 Mb/s

12 Mb/s

18 Mb/s

24 Mb/s

36 Mb/s

48 Mb/s

54 Mb/s

Current Bit Rate=54 Mb/s

To return to automatic bitrate selection, enter:

iwconfig wlanO rate auto

90

http://dict.leo.org/ende?lp=ende&p=5qvU.&search=absorbability

10. Boot loader development

This topic shows how to work with the boot loader. It covers how to customize, build, and install a
boot loader image, then update the flash memory with the newly generated boot loader image. This

topic uses the full project, myFullProject, created in previous topics and examples.

10.1. U-Boot projects

Working with the boot loader requires a project with U-Boot support. This is done by adding the -u

option to the project creation script mkproject.sh. Since the previously created project

myFullProject was created with that option, nothing more is required to work with the U-Boot boot

loader.

The project creation script installs the whole U-Boot sources from the installed environment to the

build/U-Boot/ project subfolder. This local copy is used to build the U-Boot images.

10.2. Configure U-Boot

5

Configuring the U-Boot boot loader is done by executing the configuration tool for the project.

The project configuration tool is based on the standard U-Boot configuration tool. It is a set of
Makefile rules that can be used depending on the libraries installed on the development host.

The different options for configuring U-Boot are:

LZR R R

make xconfig (for KDE users - qt libraries required)

make gconfig (for GNOME users - gtk libraries required)
make menuconfig (graphical configuration tool for console)
make config (console configuration tool)

For example, if make xconfig is used, this window is displayed:

®- Linux Kernel Configuration
® Applications Configuration
® Rootfs Configuration

qconf F=ilfE Foed
File Option Help
W oEE I E
Option Option
= U-Boot Configuration M.
w1 Change U-Boot menitor prompt

Monitor Prompt: Digi # (NEW)
@ [Change U-Boot board name
Board Name: Development Board (NEW)
(1) select the serial port for the bootloader console
OKeep console output silent
(4) Delays autoboot
O Define bootfile default value
U-Boot image name: u-boot-cew9cjsnand.bin

[Disable the User Keys read

Disable the User Keys read (UBOOT_DISABLE_USER_KEYS)

Disables the checking for pressed User Keys on the Development board
If enabled, when the keys are pressed, a console output appears:
"User Key 1 pressed".

If environment variable keyl/key2 exists, U-Boot runs this command.
Keyl has higher priority than Key2.

91

10.3. Platform-specific source code

In the U-Boot configuration tool, selecting U-Boot Configuration > U-Boot settings displays

several U-Boot configuration settings:

Change U-Boot Monitor prompt: Prompt to display in U-Boot monitor (shell).

Change U-Boot board name: Board name to display in U-Boot boot message.

Select the serial port for boot loader console: Configures the serial port where the U-

Boot console is redirected.

Keep console output silent: Disables any console output.

Delays autoboot: Default number of seconds to wait before autoboot.

U-Boot Image name: Name of the U-Boot image resultant of the build process.

Disable the User Keys read: Disables the checking for pressed User Keys on the
development board. If enabled, when the keys are pressed, a console output appears:
User Key X pressed. If the environment variable key1/key?2 exists, U-Boot runs this
command. Key1 has higher priority than Key?2.

%

Several platform-specific source code files are involved in customizing U-Boot:

File

Description

include/configs/userconfig.h

Results from the graphical configuration tool.

include/configs/platformname.h

Default configuration for the module.

include/configs/digi_common*.h

Configuration for all Digi modules.

board/platformname/platformname.c

Platform initialization.

Substitute platformname with the actual platform being used. To determine the
platform name, see topic 1.4.

92

10.4.Customize U-Boot

10.4.1.Default environment variables

U-Boot has a set of default environment variables that are defined in the environment variable
CONFIG_EXTRA_ENV_SETTINGS in include/configs/platformname.h (see topic 1.4).

Digi has extended U-Boot by dynamic environment variables. They are auto-generated depending
on the platform and the module U-Boot runs and are used by the commands dboot and update.

To get a list of dynamic variables and their current values, use the U-Boot command
printenv_dynamic. The standard command printenv does not list them unless overwritten by user
action, as seen in this example:

5 # printenv_dynamic

}ﬁﬁi rimg=rootfs-ccwOcjsnand-128.jffs2
1 # printenv rimg

Error: "rimg" not defined

setenv rimg rootfs-my.jffs2

printenv_dynamic
rimg=rootfs-my. jffs2

To reset dynamic variables to their default values, use the setenv command and set them to
nothing:

setenv rimg

}ﬁﬁi # printenv_dynamic
' rimg=rootfs-ccw9cjsnand-128. jFfs2

10.4.1.1. Linux-related environment variables

Digi implements several environment variables for different OS implementations, including Linux,
Windows CE, and Net+OS. Here are the specific Linux-related variables:

Variable Description

console Device where Linux should output the console.

ip IP configuration to give to kernel.

kimg Linux kernel image filename; used for kernel updates.

loadaddr The RAM address in which to place the kernel image.

npath Used when booting via NFS. This variable specifies the path in which
the rootfs system resides on the NFS server.

rimg Linux rootfs image filename; used for rootfs updates.

smtd Options to give to kernel in case of a Flash or USB boot.

snfs Options to give to kernel in case of a TFTP boot.

std_bootarg | A string of arguments passed to the Linux kernel for booting. dboot
automatically appends the console, ip configuration, the partition table
and the location where the rootfs is.

usrimg User partition image filename; used for user partition updates.

93

10.5.Compile U-Boot

Once the U-Boot project element is configured, it can be built.

To build U-Boot, execute this make command:

% $ make build_uboot

This command builds U-Boot and generates the image. The image is stored under the filename
selected during configuration in the project subfolder images/.

Doing a make without any arguments builds the complete project, including applications,
kernel, kernel modules, rootfs, and U-Boot if these elements were included at the moment
when the project was created.

10.6.Install U-Boot

The final stage in using the U-Boot boot loader is installing it, which makes the U-Boot image
available for the target to find.

To install U-Boot, execute this make command:

% $ make install_uboot

This command installs U-Boot image in the /tftpboot/ directory. There, it will be accessible for the
boot loader to update via TFTP.

Q Doing a make install installs the complete project, including every element of the project.

94

10.7.Update U-Boot

10.7.1.Update from a running Linux system

If a Linux system is running on the target, the U-Boot partition can be updated with a new U-Boot
image by using the update_flash tool, as seen in topic 7.4.2.

10.7.2.Update from U-Boot

?I;}}:'_I-,

A useful feature of U-Boot is that it can update itself. As demonstrated in topic 7.4.3, the U-Boot
update command can directly write to the Flash memory.

Depending on the setting for the type parameter, the update command gets the image file either
from a USB Flash disk or from a TFTP exposed folder in the host. The command acquires the file
name from the value stored in this U-Boot environment variable:

e U-Boot image filename: uimg

The default value for this variable corresponds to the default image filename generated during
compilation of the boot loader. If the image filename was changed, this U-Boot variable must be set
accordingly.

The U-Boot update command handles transferring the image file to RAM, erasing the Flash
sectors and writing the new image. For example, if the boot loader is in the TFTP exposed folder
on the development computer, the update command is:

update uboot tftp

At the reboot, the new U-Boot start message will be displayed. To check it, look at the compilation
date.

95

11. Graphics libraries
Embedded devices have limited resources and simply cannot afford the storage space or the
memory to run desktop computer's graphics software.

The Embedded Linux community is working on diverse open source embedded Linux graphics
system software: picoGUI, microwindows, GtkFB, Qtopia core, DirectFB, OpenGUI and many
others.

As an example of what can be done, Qtopia core has been ported to the ConnectCore 9C/Wi-9C
and ConnectCore 9P platforms. An LCD is required.

11.1.Qtopia core

Qtopia Core, formerly Qt/Embedded, is a C++ framework for GUI and application development for
embedded devices. It runs on a variety of processors, usually with Embedded Linux. Qtopia Core
provides the standard Qt API for embedded devices with a lightweight windowing system.

For more information, visit the Trolltech website for Qtopia Core at
http://www.trolltech.com/products/gtopia/qtopia_core

11.2.Qtopia core example applications

Projects with rootfs support can include the provided Qtopia sample applications.

Run the configuration tool from the project folder. Under Rootfs configuration >
Pre-built applications, select the element Qtopia core example applications. This selection
includes two applications and the Qtopia core libraries into the rootfs.

File Option Help
- |
W @ | I E
| Option | Option =
® U-Boot Configuration M.
Linux Kernel Configuration Boa Webserver
= Applications Configuration [ORdate bootscript
= Rootfs Corfiguration Dropbear SSH server and client
Pre-huilt applications ke Mtd-utils package
Rootfs images Openssl 55L and TLS support
O pciutils
O Point-to-Peint protocol daemon.
[ElQtopia core example applications
Cusbutils e
& Vsftp server [~
Qtopia core example applications
(DEL_PACKAGE_QTOPIA)
Adds two gtopia core example applications.
More information about Qtopia and Qtopia Core:
http:/fwww.trolltech.com/products/qtopia/qtopia_core
N T 1D

96

http://www.trolltech.com/products/qtopia/qtopia_core

Including these applications adds around 9MB to the rootfs, specially
because of the size of Qtopia libraries.

The example applications are stored into the folder /usr/bin of the rootfs.
To execute the gradients application, enter this command:

}?i;gb # gradients

To execute the spreadsheet application, enter this command:

}?}ﬁb # spreadsheet

97

12. Troubleshooting

Here are common issues and solutions when using Digi Embedded Linux.

12.1. Getting NFS service when booting with the LiveDVD

L
L

The Linux NFS server does not work with pseudo-file systems such as sysfs, tmpfs, etc. (see
http://nfs.sourceforge.net/#fag c6). For this reason, the NFS server cannot export any directory
of the rootfs if working directly with the liveDVD.

To use the NFS server when booting directly with the liveDVD, a USB memory stick is required.
This memory stick is used to export the rootfs for the target.

To mount the USB memory stick and use the NFS server from the liveDVD:
1. Boot from the liveDVD.
2. Plug in the USB memory stick.

3. Mount the USB memory stick device in /exports folder with:

$ sudo mount <device> /exports

4. Restart the NFS daemon with:

$ sudo Zetc/init.d/nfs-kernel-server restart

5. Create projects using the --nfs-dir=/export/nfsroot-platformname option to the project
creation script. Build and install the project (see topic 1.4).

Following these steps, the NFS server will work properly and the target will mount the rootfs without
problems.

To unmount the USB stick

When the USB stick is no longer needed, unmount it by following these steps. It cannot be
unmounted until the NFS server is down.

1. Stop the NFS server:

$ sudo /etc/init.d/nfs-kernel-server stop

2. Umount the USB stick:

$ sudo umount /exports

3. Unplug the USB stick.

98

http://nfs.sourceforge.net/#faq_c6

12.2.Characters returned by target when target is powered off

When powering off the target, some unknown characters are echoed to the serial port.

With the power supply connected and the main power switch of the board switched off, some
characters may be echoed to the serial console too, probably taking the power from the serial
cable.

12.3. Writing large files to Flash from U-Boot

The update command in U-Boot first transfers files to RAM, then erases the Flash partition, and
finally writes the files from RAM into Flash memory.

The transferred file is copied to a certain physical address in RAM, specified by the variable
loadaddr. Therefore, the maximum length of the file to update is:

update file size limit = total RAM memory — RAM offset where the file was loaded

As a general rule, U-Boot does not allow updating a flash partition with a file whose size exceeds
the available RAM memory. For example, for a module with 32MB RAM and 64MB Flash, U-Boot
will not update a partition with a file that is 35MB.

Note that this limitation is due to the RAM memory size, as U-Boot first needs to transfer the file to
RAM before copying it to flash.

To update files bigger than the available RAM, use the Linux update_flash tool (explained in topic
7.4.2).

To prevent the file from being copied to RAM before being written to Flash, do not use the --tmpdir
option.

99

13. Recover a device

%

Normally, embedded Linux application development involves creating kernel and rootfs images.
Even if bad kernel or rootfs images are written that are unable to boot, new images can be
rewritten from the U-Boot monitor shell. Nonetheless, it may be best to create a custom boot loader
and update it, as seen in topic 8.

If a custom boot loader is not able to boot, or if the boot loader is erased from the Flash, a special
hardware tool, called the JTAG Booster, is needed to recover this fundamental part of software.

The JTAG-Booster tool and its software are sold as a separate product. Contact your Digi
distributor for purchasing information.

13.1.JTAG Booster and software

The JTAG Booster is a hardware tool with a DB25 connector in one end, to be attached to a PC,
and 8 lines, known as JTAG lines, on the other. The JTAG tool comes with several cables and
adaptors so that it can be plugged to the development board. The logic inside the JTAG tool allows
for control over all the lines of the microprocessor via the JTAG bus.

Together with its DOS software, the JTAG Booster is used to program the Flash memory. This is
useful to recover a module that is not able to boot the U-Boot boot loader anymore.

100

14. Uninstall Digi Embedded Linux

To uninstall Digi Embedded Linux, execute the uninstaller:

$ cd Zusr/local/DigiEL-4.0
$./uninstall

This operation removes only the Digi Embedded Linux environment from
the host. The workspace and projects remain on the disk, and must be
deleted by hand.

101

15. References

For additional information on developing embedded Linux applications, see these resources.
Eclipse Workbench User Guide

A general guide on application development and use of the Eclipse workbench. Accessible from
the Digi ESP menu; select Help > Help contents > Additional documents > Workbench User
Guide.

C/C++ Development User Guide

A guide on development using the C/C++ Development Toolkit (CDT) plug-in of Eclipse
workbench. Accessible from the Digi ESP IDE's menu Help > Help contents > Additional
documents > C/C++ Development User Guide.

Kernel parameters

This document lists and describes Linux kernel parameters.
lusr/local/DigiEL-4.0/kernel/linux/Documentation/kernel-parameters.txt
U-Boot Reference Manual

This manual describes Digi's implementation of the U-Boot boot loader, with description of built-in
commands and environment variables.

GNU make manual

This document describes the Linux make utility and how to write Makefiles with rules, commands,
functions, etc.

http://www.gnu.org/software/make/manual/make.html

"Linux Device Drivers 3" edition", by Jonathan Corbet, Alessandro Rubini, Greg Kroah-
Hartman

This book describes writing device drivers for the Linux system (based on kernel version 2.6.10),
including char and block drivers, interrupts, DMA, memory allocation, kernel timers, etc.

ISBN: 0596005903

Digital version available at http://lwn.net/Kernel/LDD3/
JFFS2 file system
http://en.wikipedia.org/wiki/JFFS2

CRAMEFS file system
http://en.wikipedia.org/wiki/Cramfs

ROMFS file system

http://romfs.sourceforge.net/

INITRD file system

http://en.wikipedia.org/wiki/lnitrd

Serial Programming Guide for POSIX Operating Systems

http://www.easysw.com/~mike/serial/serial.html

Serial Programming HOWTO
http://tldp.org/HOWTO/Serial-Programming-HOWTO/index.html

102

http://www.gnu.org/software/make/manual/make.html
http://lwn.net/Kernel/LDD3/
http://en.wikipedia.org/wiki/JFFS2
http://en.wikipedia.org/wiki/Cramfs
http://romfs.sourceforge.net/
http://en.wikipedia.org/wiki/Initrd
http://www.easysw.com/~mike/serial/serial.html
http://tldp.org/HOWTO/Serial-Programming-HOWTO/index.html

	1. Concepts
	1.1. Embedded Linux Concepts
	1.1.1. Cross-compilation
	1.1.2. Boot loader
	1.1.3. Kernel
	1.1.4. Root file system
	1.1.5. Applications

	1.2. Digi Embedded Linux concepts
	1.2.1. Projects
	1.2.2. Workspace
	1.2.3. Makefiles and dependencies

	1.3. Structure of Digi Embedded Linux
	1.3.1. Digi EL directory tree

	1.4. Supported Platforms
	1.5. Conventions used in this manual
	1.6. Abbreviations

	2. Getting started
	2.1. Connections and cabling
	2.2. Configure and open a console session
	2.2.1. Minicom
	2.2.2. Seyon

	2.3. Configure required daemons
	2.3.1. TFTP daemon
	2.3.2. NFS server

	2.4. Configure the target's network parameters
	2.5. Working in the target
	2.5.1. Common Linux commands (busybox)
	2.5.2. Open a Telnet session
	2.5.3. Connect to the web server
	2.5.4. File transfer to the target (FTP)

	3. Develop a full Embedded Linux project
	3.1. Overview of Embedded Linux projects
	3.2. Creating different projects
	3.2.1. Project wizard script
	3.2.2. Kernel project
	3.2.3. Rootfs project
	3.2.4. Applications project
	3.2.5. U-Boot project
	3.2.6. Full Embedded Linux project

	3.3. Identify project parts and contents
	3.4. Delete projects

	4. Develop applications
	4.1. Create an application
	4.2. Add C and C++ sample applications
	4.3. Build the project
	4.4. Run the application
	4.4.1. Transfer application via FTP
	4.4.2. Run application

	5. Configure the Linux kernel
	5.1. Kernel configuration options
	5.1.1. Kernel image filename

	5.2. Built-in features and kernel modules
	5.3. Platform-specific hardware support
	5.4. Kernel arguments
	5.5. Kernel modules
	5.5.1. Write kernel modules

	5.6. Build the kernel and kernel modules
	5.7. Install the kernel
	5.8. Load kernel modules
	5.9. Modify kernel sources
	5.9.1. Import all kernel sources

	6. Customize the root file system
	6.1. Configure the rootfs
	6.1.1. Including pre-built applications
	6.1.2. Rootfs images
	6.1.3. Report the rootfs type to the kernel

	6.2. Put files and folders in the rootfs
	6.2.1. Modify the rootfs folder
	6.2.2. The add_files.sh script

	6.3. Build the rootfs
	6.4. Install the rootfs
	6.5. Special files
	6.6. Built-in applications and services
	6.6.1. busybox
	6.6.2. FTP server
	6.6.3. Boa webserver
	6.6.4. gdbserver
	6.6.5. update_flash
	6.6.6. nvram
	6.6.7. boot_rdate
	6.6.8. pppd
	6.6.9. mtdutils
	6.6.10. wireless-tools
	6.6.11. dropbear SSH
	6.6.12. udhcp server/client

	6.7. Launch an application after start-up

	7. Transfer the system to the target
	7.1. Basic boot loader commands
	7.2. U-Boot variables
	7.2.1. Changing U-Boot variables

	7.3. Test the system
	7.3.1. Transfer the system by Ethernet
	7.3.2. Transfer the system by USB

	7.4. Update the Flash memory
	7.4.1. Structure of Flash
	7.4.2. Update from a running Linux system
	7.4.3. Update from U-Boot

	7.5. Boot from Flash memory

	8. Devices and Interfaces
	8.1. Table of devices and their hardware resources
	8.2. GPIO pins and custom driver
	8.2.1. Hardware resources used by the driver
	8.2.2. Enable the interface in the kernel
	8.2.3. Load and create the device in the system
	8.2.4. Manage GPIO pins from the user space
	8.2.5. GPIOs on the development board

	8.3. Ethernet interface
	8.3.1. Hardware resources used by the driver
	8.3.2. Enable the Ethernet interface in the kernel
	8.3.3. The Ethernet interface in the Linux system

	8.4. Wireless network interface
	8.4.1. Hardware resources used by the driver
	8.4.2. Enable the wireless network interface in the kernel
	8.4.3. The wireless interface in the Linux system

	8.5. Flash memory device
	8.5.1. Hardware resources used by the driver
	8.5.2. Enable the Flash memory device in the kernel
	8.5.3. The Flash memory device in the Linux system

	8.6. Serial device driver
	8.6.1. Hardware resources used by the driver
	8.6.2. Enable the serial device driver in the kernel
	8.6.3. Identify serial devices in the system
	8.6.4. Manage serial ports from the user space

	8.7. Serial Peripheral Interface (SPI) mode
	8.7.1. Hardware resources used by the SPI driver
	8.7.2. Enable the SPI device in the kernel
	8.7.3. Access to SPI bus

	8.8. Touch screen
	8.8.1. Hardware resources used by the driver
	8.8.2. Enable the touch screen device in the kernel
	8.8.3. Identifying the touch screen device in the Linux system
	8.8.4. Manage the touch screen device from user space

	8.9. USB host interface
	8.9.1. Hardware resources used by the USB host interface driver
	8.9.2. Enable the USB host interface in the kernel
	8.9.3. Identify the USB devices in the Linux system
	8.9.4. Manage the USB interface from user space

	8.10. I2C
	8.10.1. Hardware resources used by the I2C interface
	8.10.2. Enable the I2C interface in the kernel
	8.10.3. Identify the I2C interface in the Linux system
	8.10.4. Manage the I2C interface from user space

	8.11. Real Time Clock (RTC)
	8.11.1. Hardware resources used by the RTC driver
	8.11.2. Enable the RTC device in the kernel
	8.11.3. Identify the RTC device in the Linux system
	8.11.4. Manage the RTC device from user space

	8.12. Video/Graphics support
	8.12.1. Hardware resources used by the video driver
	8.12.2. Including graphics support in the kernel
	8.12.3. Identify the video graphics device in the system
	8.12.4. Manage the video graphics display from the user space

	8.13. High-performance counter
	8.13.1. Hardware resources used by the high-performance counter interface
	8.13.2. Use the high-performance counter in the kernel

	9. Use the WLAN adapter
	9.1. Wireless security concepts
	9.2. Features of the WLAN adapter
	9.3. Include the wireless interface in the Linux kernel
	9.3.1. Necessary components

	9.4. Wireless interface LEDs
	9.5. Network settings of WLAN interface
	9.5.1. Modify network parameters

	9.6. Basic wireless operations
	9.6.1. Show the current wireless network status
	9.6.2. Scan the wireless network

	9.7. Authentication and encryption
	9.7.1. Supported methods
	9.7.2. Authentication and encryption combinations

	9.8. Wireless connection examples
	9.8.1. Open authentication and no encryption
	9.8.2. Open authentication and WEP encryption
	9.8.3. WPA2-PSK authentication with AES-CCMP encryption

	9.9. Save the configuration
	9.10. Fine-tune wireless connections

	10. Boot loader development
	10.1. U-Boot projects
	10.2. Configure U-Boot
	10.3. Platform-specific source code
	10.4. Customize U-Boot
	10.4.1. Default environment variables

	10.5. Compile U-Boot
	10.6. Install U-Boot
	10.7. Update U-Boot
	10.7.1. Update from a running Linux system
	10.7.2. Update from U-Boot

	11. Graphics libraries
	11.1. Qtopia core
	11.2. Qtopia core example applications

	12. Troubleshooting
	12.1. Getting NFS service when booting with the LiveDVD
	12.2. Characters returned by target when target is powered off
	12.3. Writing large files to Flash from U-Boot

	13. Recover a device
	13.1. JTAG Booster and software

	14. Uninstall Digi Embedded Linux
	15. References

