
Rabbit® 4000 Microprocessor
Designer’s Handbook

019-0156_H



Rabbit® 4000 Microprocessor Designer’s Handbook

Part Number 019-0156 • Printed in the U.S.A.

Digi International Inc. © 2007-2010 • All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit®  Dynamic C® and RabbitCore® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation.

The latest revision of this manual is available at  www.rabbit.com.

http://www.rabbit.com/docs/


TABLE OF CONTENTS

Chapter 1. Introduction ....................................................................................................................7

1.1  Summary of Design Conventions ............................................................................................................. 7

Chapter 2. Rabbit Hardware Design Overview ...............................................................................9

2.1  Design Conventions .................................................................................................................................. 9
2.1.1 Rabbit Programming Connector .................................................................................................... 10

2.1.2 Memory Chips................................................................................................................................ 10

2.1.3 Oscillator Crystals.......................................................................................................................... 10

2.2  ESD Design Guidelines........................................................................................................................... 11

2.3  Operating Voltages .................................................................................................................................. 11

2.4  Power Consumption ................................................................................................................................ 11

2.5  Through-Hole Technology ...................................................................................................................... 12

2.6  Moisture Sensitivity ................................................................................................................................ 12

Chapter 3. Core Design and Components......................................................................................13

3.1  Clocks...................................................................................................................................................... 13

3.2  Floating Inputs......................................................................................................................................... 14

3.3  Basic Memory Design............................................................................................................................. 15
3.3.1 Memory Access Time .................................................................................................................... 16

3.3.2 Interfacing External I/O with Rabbit 4000 Designs....................................................................... 16

3.4  PC Board Layout and Memory Line Permutation .................................................................................. 17

3.5  PC Board Layout and Electromagnetic Interference............................................................................... 17
3.5.1 Rabbit 4000 Low EMI Features..................................................................................................... 17

Chapter 4. How Dynamic C Cold Boots the Target System..........................................................19

4.1  How the Cold Boot Mode Works In Detail ............................................................................................. 20

4.2  Program Loading Process Overview....................................................................................................... 21
4.2.1 Program Loading Process Details .................................................................................................. 21

Chapter 5.  Rabbit Memory Organization......................................................................................23

5.1  Physical Memory..................................................................................................................................... 23
5.1.1 Flash Memory ................................................................................................................................ 23

5.1.2 SRAM ............................................................................................................................................ 24

5.1.3 Basic Memory Configuration......................................................................................................... 24

5.2  Memory Segments................................................................................................................................... 25
5.2.1 Definition of Terms ........................................................................................................................ 26

5.2.2 The Base (or Root) Segment.......................................................................................................... 27

5.2.2.1 Types of Code Best-Suited for the Base Segment .......................................................... 27
5.2.3 The Data Segment .......................................................................................................................... 27
Rabbit 4000 Designer’s Handbook rabbit.com 3

http://www.rabbit.com


5.2.4 The Stack Segment .........................................................................................................................27

5.2.5 The Extended Memory Segment ....................................................................................................28

5.3  Separate I&D Space.................................................................................................................................29
5.3.1 Enable Separate I&D Space ...........................................................................................................31

5.3.2 Separate I&D Space Mappings in Dynamic C ...............................................................................31

5.3.2.1 Compiling to RAM .........................................................................................................32
5.3.2.2 Compiling to Flash ..........................................................................................................33

5.3.3 Customizing Interrupts ...................................................................................................................34

5.4  How The Compiler Compiles to Memory ...............................................................................................34
5.4.1 Placement of Code in Memory.......................................................................................................34

5.4.2 Paged Access in Extended Memory ...............................................................................................34

5.5  Memory Planning ....................................................................................................................................35
5.5.1 Flash ...............................................................................................................................................35

5.5.2 Static RAM.....................................................................................................................................35

Chapter 6. The Rabbit BIOS..........................................................................................................37

6.1   Startup Conditions Set by the BIOS .......................................................................................................38
6.1.1 Registers Initialized in the BIOS....................................................................................................38

6.1.2 Origins ............................................................................................................................................38

6.2  BIOS Flowchart .......................................................................................................................................39

6.3  Internally-Defined Macros.......................................................................................................................40

6.4  Modifying the BIOS ................................................................................................................................40
6.4.1 Macros that Affect the BIOS..........................................................................................................41

6.4.2 Advanced Options ..........................................................................................................................42

6.5  Memory Mapping in Dynamic C.............................................................................................................43
6.5.1 Origins Starting with Dynamic C 10.21 .........................................................................................43

6.5.1.1 Example of Origin Declarations .....................................................................................44
6.5.1.2 Origin Declaration Syntax ..............................................................................................47
6.5.1.3 Origin Declaration Semantics .........................................................................................47
6.5.1.4 Origin Declaration Start and End Syntax ........................................................................50
6.5.1.5 Origin Application Syntax ..............................................................................................50
6.5.1.6 Origin Macro Declaration Syntax ...................................................................................50

6.5.2 Origins Prior to Dynamic C 10.21..................................................................................................51

6.5.2.1  Origin Directive Semantics ............................................................................................51
6.5.2.2 Defining a Memory Region ............................................................................................52
6.5.2.3 Action Qualifiers .............................................................................................................52
6.5.2.4 I&D Qualifiers ................................................................................................................52
6.5.2.5 Follow Qualifiers ............................................................................................................52
6.5.2.6 Origin Directive Examples .............................................................................................54
6.5.2.7 Origin Directives in Program Code ................................................................................54
6.5.2.8 Origin Directive to Reserve Blocks of Memory .............................................................55

Chapter 7. The System Identification and User Blocks.................................................................57

7.1  System ID Block Details .........................................................................................................................58
7.1.1 Definition of SysIDBlock...............................................................................................................58

7.1.2 Reading the System ID Block ........................................................................................................60

7.1.2.1 Determining the Existence of the System ID Block .......................................................61
7.1.3 Writing the System ID Block .........................................................................................................63

7.2  User Block Details...................................................................................................................................63
7.2.1 Boot Block Issues ...........................................................................................................................63
4 rabbit.com  

http://www.rabbit.com


7.2.2 Reserved Flash Space..................................................................................................................... 64

7.2.3 Reading the User Block ................................................................................................................. 65

7.2.4  Writing the User Block ................................................................................................................. 67

Chapter 8. BIOS Support for Program Cloning.............................................................................69

8.1  Overview of Cloning............................................................................................................................... 69

8.2  Creating a Clone...................................................................................................................................... 70
8.2.1 Steps to Enable and Set Up Cloning .............................................................................................. 70

8.2.2 Steps to Perform Cloning ............................................................................................................... 70

8.2.3 LED Patterns .................................................................................................................................. 70

8.3  Cloning Questions ................................................................................................................................... 71
8.3.1 MAC Address ................................................................................................................................ 71

8.3.2 Different Flash Types ..................................................................................................................... 71

8.3.3 Different Memory Sizes................................................................................................................. 71

8.3.4 Design Restrictions ........................................................................................................................ 71

Chapter 9. Low-Power Design and Support ..................................................................................73

9.1  Details of the Rabbit 4000 Low-Power Features .................................................................................... 74
9.1.1 Special Chip Select Features.......................................................................................................... 74

9.1.2 Reducing Clock Speed ................................................................................................................... 75

9.1.3 Preferred Crystal Configuration..................................................................................................... 75

9.2  To Further Decrease Power Consumption .............................................................................................. 76
9.2.1 What To Do When There is Nothing To Do .................................................................................. 76

9.2.2 Sleepy Mode .................................................................................................................................. 76

9.2.3 External 32 kHz Oscillator............................................................................................................. 77

9.2.4 Conformal Coating of 32.768 kHz Oscillator Circuit.................................................................... 77

9.2.5 Software Support for Sleepy Mode................................................................................................ 77

9.2.6 Baud Rates in Sleepy Mode ........................................................................................................... 78

9.2.7 Debugging in Sleepy Mode............................................................................................................ 78

Chapter 10. Supported Flash Memories ........................................................................................79

10.1  Supporting Other Flash Devices ........................................................................................................... 79

10.2  Writing Your Own Flash Driver............................................................................................................ 80

Chapter 11. Troubleshooting Tips for New Rabbit-Based Systems ..............................................81

11.1  Initial Checks......................................................................................................................................... 81

11.2  Diagnostic Tests..................................................................................................................................... 81
11.2.1 Program to Transmit Diagnostic Tests ......................................................................................... 81

11.2.2 Diagnostic Test #1: Toggle the Status Pin.................................................................................... 83

11.2.2.1 Using serialIO.exe ........................................................................................................ 83
11.2.3 Diagnostic Test #2........................................................................................................................ 84

Appendix A. Supported Rabbit 4000 Baud Rates .........................................................................89

Index ............................................................................................................................................. 91
Rabbit 4000 Designer’s Handbookl rabbit.com 5

http://www.rabbit.com


6 rabbit.com  

http://www.rabbit.com


1. Introduction

This manual is intended for the engineer designing a system using the Rabbit 4000 microprocessor and 
Rabbit’s Dynamic C development environment. It explains how to develop a system that is based on the 
Rabbit 4000 and can be programmed with Dynamic C.

With Rabbit 4000 microprocessors and Dynamic C, many traditional tools and concepts are obsolete. 
Complicated and fragile in-circuit emulators are unnecessary. EPROM burners are not needed. Rabbit 
4000 microprocessors and Dynamic C work together without elaborate hardware aids, provided that the 
designer observes certain design conventions. 

For all topics covered in this manual, further information is available in the Rabbit 4000 Microprocessor 
User’s Manual.

1.1 Summary of Design Conventions
Rabbit-based systems should be designed using the following conventions:

• Include a programming connector. 

• Connect a static RAM having at least 128 KB to the Rabbit 4000 using /CS1, /OE1 and /WE1. 

• Connect a flash memory that is on the approved list and has at least 128 KB of storage to the Rabbit 
4000 using /CS0, /OE0 and /WE0. 

• Install a crystal oscillator with a frequency of 32.768 kHz to drive the battery-backable clock. (Battery-
backing is optional, but the clock is used in the cold boot sequence to generate a known baud rate of 
2400 bps.)

• Install a crystal or oscillator for the main processor clock that is a multiple of 614.4 kHz, or better, a 
multiple of 1.8432 MHz. 

• Do not use pin PB1 in your design if cloning is to be used.

• Be sure unused inputs are not floating.
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As shown in Figure 1-1, the Rabbit programming cable connects a PC serial port to the programming con-
nector of the target system. Dynamic C or the Rabbit Field Utility (RFU) runs as an application on the PC, 
and can cold boot the Rabbit 4000 based target system with no pre-existing program installed in the target. 
A USB to RS232 converter may also be used instead of a PC serial port. Rabbit 4000-based targets may 
also be programmed and debugged remotely over a local network or even the Internet using a RabbitLink 
card.

Figure 1-1  The Rabbit 4000 Microprocessor and Dynamic C

Dynamic C programming uses serial port A for software development. However, it is possible for the 
user’s application to also use serial port A, with the restriction that debugging is not available. 

PC Hosts Dynamic C Rabbit Programming
Cable

Programming
Connector

Target 
System

Rabbit
Microprocessor

Level
Conversion

PC Serial
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2. Rabbit Hardware Design Overview

Because of the glueless nature of the external interfaces, especially the memory interface, it is easy to 
design hardware in a Rabbit 4000-based system. More details on hardware design are given in the Rabbit 
4000 Microprocessor User’s Manual.

2.1 Design Conventions
Rabbit-based systems designed using the following conventions will provide a hardware base that is com-
patible with running Dynamic C applications.

• Include a standard Rabbit programming cable. The standard 10-pin programming connector provides a 
connection to serial port A and allows the PC to reset and cold boot the target system.

• Connect a static RAM having at least 128 KB to the processor using /CS1, /OE1 and /WE1. It is useful 
if the PC board footprint can also accommodate a RAM large enough to hold all the code anticipated. 
Although code residing in some flash memory can be debugged, debugging and program download is 
faster to RAM.

• Connect a flash memory that is on the approved list and has at least 128 KB of storage to the processor 
using /CS0, /OE0 and /WE0. Non-approved memories can be used, but it may be necessary to modify 
several files. Some systems designed to have their program reloaded by an external agent on each pow-
erup may not need any flash memory.

• Install a crystal oscillator with a frequency of 32.768 kHz to drive the battery-backable real-time clock 
(RTC), the watchdog timer (WDT) and the Periodic Interrupt.

• Install a crystal or oscillator for the main processor clock that is a multiple of 614.4 kHz, or better, a 
multiple of 1.8432 MHz. These preferred clock frequencies make possible the generation of standard 
serial baud rates. Common crystal frequencies to use are 7.3728 MHz, 11.0592 MHz, 14.7456 MHz, 
22.1184 MHz, 29.4912 MHz or double these frequencies.

NOTE: The internal clock doubler can double these oscillations for a higher operating fre-
quency.

• Digital I/O line PB1 should not be used in the design if cloning is to be used. PB1 should be pulled up 
with 50K or so pull up resistor if cloning is used. (See “BIOS Support for Program Cloning” on page 69 
for more information on cloning.) 
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2.1.1 Rabbit Programming Connector
The user may be concerned that the requirement for a programming connector places added cost overhead 
on the design. The overhead is very small—less than $0.25 for components and board space that could be 
eliminated if the programming connector were not made a part of the system.

The programming connector can also be used for a variety of other purposes, including user applications. 
A device attached to the programming connector has complete control over the system because it can per-
form a hardware reset and load new software. If this degree of control is not desired for a particular situa-
tion, then certain pins can be left unconnected in the connecting cable, limiting the functionality of the 
connector to serial communications. Rabbit develops products and software that assume the presence of 
the programming connector.

2.1.2 Memory Chips
Most systems have one static RAM chip and one or two flash memory chips, but more memory chips can 
be used when appropriate. Static RAM chips are available in 128K x 8, 256K x 8, and 512K x 8 sizes. 
They are all available in 3 V versions. Suggested flash memory chips between 128K x 8 and 512K x 8 are 
given in Chapter 10, “Supported Flash Memories.” That chapter also includes instructions for writing your 
own flash driver. The list of supported flash memories is in Technical Note 226, “Supported Flash Memo-
ries.”

Dynamic C and a PC are not necessary for the production programming of flash memory since the flash 
memory can be copied from one controller to another by cloning. This is done by connecting the system to 
be programmed to the same type of system that is already programmed. This connection is made with the 
Rabbit Cloning Board. The cloning board connects to the programming ports of both systems. A push of a 
button starts the transfer of the program and an LED displays the progress of the transfer. 

Please visit www.rabbit.com/store/index.shtml to purchase the Rabbit Cloning Board.

2.1.3 Oscillator Crystals
Generally, a system will have two oscillator crystals:

•  A 32.768 kHz crystal oscillator to drive the battery-backable timer, 

• A crystal that has a frequency that is a multiple of 614.4 kHz or a multiple of 1.8432 MHz. Typical val-
ues are 7.3728, 11.0592, 14.7456, 22.1184, and 29.4912 MHz. 

These crystal frequencies (except 614.4 kHz and 1.8432 MHz) allow generation of standard baud rates up 
to at least 115,200 bps. The clock frequency can be doubled by an on-chip clock doubler, but the doubler 
should not be used to achieve frequencies higher than about 60 MHz on a 3.3 V system. A quartz crystal 
should be used for the 32.768 kHz oscillator. For the main oscillator, a ceramic resonator that is accurate to 
0.5% will usually be adequate and less expensive than a quartz crystal for lower frequencies.
10 rabbit.com  Rabbit Hardware Design Overview
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2.2 ESD Design Guidelines
The following guidelines are recommended for designs incorporating a Rabbit 4000 processor with electro-
static discharge (ESD) sensitivity on VBAT. These guidelines are good recommendations for all Rabbit 
processors.

1. The 1.8 V supply for VBAT should be provided by a regulator with at least 2 kV ESD protection 
(human body model).

2. The 3.3 V supply should have smaller 0.1 µF, 0.01 µF, and 2.2 nF bypass capacitors throughout the lay-
out. In addition, the 3.3 V supply should have a large value bulk capacitor (10 µF).

The power going to VBAT should also be protected by a diode and two resistors. See a schematic for a 

RabbitCore® module based on the Rabbit 4000 for more details.

2.3 Operating Voltages
The operating voltage in Rabbit 4000 based systems will usually be 1.8 V ±10% for the processor core and 
3.3 V ±10% for the I/O. The I/O ring can also be run at 1.8 V ±10%.

The maximum computation per watt is obtained in the range of 3.0 V to 3.6 V. The highest clock speed 
requires 3.3 V. The maximum clock speed with a 3.3 V supply is 54 MHz (26.7264 x 2), but it will usually 
be convenient to use a 14.7456 MHz crystal, doubling the frequency to 29.4912 MHz. Good computa-
tional performance, but not the absolute maximum, can be implemented for a 3.3 V system by using an 
11.0592 crystal and doubling the frequency to 22.1184 MHz. Such a system will operate with 70 ns memo-
ries. A 29.4912 MHz system will require memories with 55 ns access time. A table of timing specification 
is in the Rabbit 4000 Microprocessor User’s Manual.

2.4 Power Consumption
Various mechanisms contribute to the current consumption of the Rabbit 4000 processor while it is operat-
ing, including current that is proportional to the voltage alone (leakage current) and dependent on both 
voltage and frequency (switching and crossover current). 

Table 2-1 shows typical current draw as a function of the main clock frequency. The values shown do not 
include any current consumed by external oscillators or memory. It is assumed that approximately 30 pF is 
connected to each address line.

NOTE: VDDCORE = 1.8 V ± 10%, VDDIO = 3.3 V ± 10%, TA = -40°C to 85°C

Table 2-1  Preliminary Current vs. Clock Frequency

Frequency (MHz) I_{core} (mA) I_{IO} (mA) I_{Total} (mA)

7.3728 4 10 14

14.7456 6 11 17

29.4912 10 12 22

58.9824 18 15 33
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2.5 Through-Hole Technology
Most design advice given for the Rabbit 4000 assumes the use of surface-mount technology. However, it is 
possible to use the older through hole technology and develop a Rabbit 4000 system. One can use a Rabbit 
4000-based Core Module, a small circuit board with a complete Rabbit 4000 core that includes memory 
and oscillators. Another possibility is to solder the Rabbit 4000 processors by hand to the circuit board. 
This is not difficult and is satisfactory for low production volumes if the right technique is used.

2.6 Moisture Sensitivity
Surface-mount processing of plastic packaged components such as Rabbit microprocessors typically 
involves subjecting the package body to high temperatures and various chemicals such as solder fluxes and 
cleaning fluids during solder wave and reflow operations. The plastic molding compounds used for IC 
packaging (encapsulation) is hygroscopic, that is, it readily absorbs moisture. The amount of moisture 
absorbed by the package is proportional to the storage environment and the amount of time the package is 
exposed to the humidity in the environment. During the solder reflow process, the package is heated rap-
idly, and any moisture present in the package will vaporize rapidly, generating excessive internal pressures 
to various interfaces in the package. The vapors escaping from the package may cause cracks or delamina-
tion of the package. These cracks can propagate through the package or along the lead frame, thus expos-
ing the die to ionic contaminants and increasing the potential for circuit failures. The damage to the 
package may or may not be visible to the naked eye. This condition is common to all plastic surface-mount 
components and is not unique to Rabbit microprocessors.

Rabbit microprocessors are shipped to customers in moisture-barrier bags with enough desiccant to main-
tain their contents below 20% relative humidity for up to 12 months from the date of seal. A reversible 
Humidity Indicator Card is enclosed to monitor the internal humidity level. The loaded bag is then sealed 
under a partial vacuum. The caution label (IPC/JEDEC J-STD-020, LEVEL 3) included with each bag out-
lines storage, handling, and bake requirements.

The requirements outlined on the label only apply to components that will be exposed to SMT processing. 
This means that completed board-level products that will not be subjected to the solder reflow processing 
do not have to be baked or sealed in special moisture barrier bags. 
12 rabbit.com  Rabbit Hardware Design Overview
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3. Core Design and Components

Core designs can be developed around the Rabbit 4000 microprocessor. A core design includes memory, 
the microprocessor, oscillator crystals, the Rabbit 4000 standard programming port, and in some cases, a 
power controller and power supply. Although modern designs usually use at least four-layer printed circuit 
boards, two-sided boards are a viable option with the Rabbit 4000, especially if the clock speed is not high 
and the I/O is intended to operate at 3.3 V—factors that reduce edge speed and electromagnetic radiation.

Schematics illustrating the use of the Rabbit 4000 microprocessor are available online via links in the man-
uals for the products that are using the Rabbit 4000. Each board-level or core module product has a user 
manual with an appendix labeled “Schematics.” Go to: www.rabbit.com and select “Product Documenta-
tion” from the “Support” tab; this will take you to a list of links for available user manuals.

3.1 Clocks
The Rabbit 4000 has input pins for both the fast clock and the 32.768 kHz clock. The fast clock drives the 
Rabbit 4000 CPU and peripheral clocks, whereas the 32.768 kHz clock is used for the battery-backable 
clock (also known as the real-time clock), the watchdog timer, the periodic interrupt timer and the asyn-
chronous cold boot function.
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Figure 3-1  Main Oscillator Circuit

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason, a wait loop in the 
BIOS waits until this oscillator is oscillating regularly before continuing the startup procedure. The startup 
delay may be as much as 5 seconds, but will usually be about 200 ms. Crystals with low series resistance 
(R < 35 k) will start faster. 

For more information on the 32.768 kHz oscillator please see Technical Note 235, “External 32.768 kHz 
Oscillator Circuits.” This document is available on our website: www.rabbit.com.

3.2 Floating Inputs
Floating inputs or inputs that are not solidly either high or low can draw current because both N and P 
FETs can turn on at the same time. To avoid excessive power consumption, floating inputs should not be 
included in a design (except that some inputs may float briefly during power-on sequencing). Most unused 
inputs on the Rabbit 4000 can be made into outputs by proper software initialization to remove the floating 
property. Pull-up resistors will be needed on a few inputs that cannot be programmed as outputs. An alter-
native to a pull-up resistor is to tie an unused output to the unused inputs. If pull-up (or pull-down) resis-
tors are required, they should be made as large as possible if the circuit in question has a substantial part of 
its duty cycle with current flowing through the resistor.
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3.3 Basic Memory Design
Normally /CS0 and /OE0 and /WE0 should be connected to a flash memory that holds the startup code that 
executes at address zero. When the processor exits reset with (SMODE1, SMODE0) set to (0,0), it will 
attempt to start executing instructions at the start of the memory connected to /CS0, /OE0, and /WE0.

For Dynamic C to work out of the box, the basic RAM memory must be connected to /CS1, /OE1, and 
/WE1.

 /CS1 has a special property that makes it the preferred chip select for battery-backed RAM. The BIOS 
defined macro, CS1_ALWAYS_ON, may be redefined in the BIOS to 1 which will set a bit in the MMIDR 
register that forces /CS1 to stay enabled (low). This capability can be used to counter a problem encoun-
tered when the chip select line is passed through a device that is used to place the chip in standby by rais-
ing /CS1 when the power is switched over to battery backup. The battery switchover device typically has a 
propagation delay that may be 20 ns or more. This is enough to require the insertion of wait states for 
RAM access in some cases. By forcing /CS1 low, the propagation delay is not a factor because the RAM 
will always be selected and will be controlled by /OE1 and /WE1. If this is done, the RAM will consume 
more power while not battery-backed than it would if it were run with dynamic chip select and a wait state. 
If this special feature is used to speed up access time for battery-backed RAM then no other memory chips 
should be connected to OE1 and WE1.

Table 3-1  Typical Interface between the Rabbit 4000 and Memory

Primary Flash SRAM Secondary Flash

/CS0, /OE0 and /WE0 /CS1, /OE1 and /WE1 /CS2, /OE0 and /WE0
Rabbit 4000 Designer’s Handbook rabbit.com 15
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3.3.1 Memory Access Time
Memory access time depends on the clock speed and the capacitive loading of the address and data lines. 
Wait states can be specified by programming to accommodate slow memories for a given clock speed. 
Wait states should be avoided with memory that holds programs because there is a significant slowing of 
the execution speed. Wait states are far more important in the instruction memory than in the data memory 
since the great majority of accesses are instruction fetches. Going from 0 to 1 wait states is about the same 
as reducing the clock speed by 30%. Going from 0 to 2 wait states is worth approximately a 45% reduction 
in clock speed. A table of memory access times required for various clock speeds is given in the Rabbit 
4000 Microprocessor User’s Manual.

3.3.2 Interfacing External I/O with Rabbit 4000 Designs
The Rabbit 4000 provides on-chip facilities for glueless interfacing to many types of external I/O peripher-
als. The processor provides a common I/O read and I/O write strobe in addition to eight user configurable 
I/O strobes that can be used as read, write, read/write, or chip select signals. The Rabbit 4000 also provides 
the option of enabling a completely separate bus for I/O accesses. The Auxiliary I/O Bus, which uses many 
of the same pins used by Parallel Port A and the Slave Port, provides 8 data lines and 6 to 8 address lines 
that are active only during I/O operations. By connecting I/O devices to the auxiliary bus, the fast memory 
bus is relieved of capacitive loading that would otherwise slow down memory accesses. For core modules 
based on the Rabbit 4000, fewer pins are required to exit the core module since the slave port and the I/O 
bus can share the same pins and the memory bus no longer needs to exit the module to provide I/O capabil-
ity.

As far as external I/O timing is concerned, the Rabbit 4000 provides: 

• half a clock cycle of address and chip select hold time for I/O write operations, and 

• zero clock cycles of address and chip select hold times for I/O read operations. 

These can both be increased to a full clock of hold time. These hold times are true if an I/O device is inter-
faced to the common memory and I/O bus. However, if an I/O peripheral is interfaced to the Auxiliary I/O 
bus, address hold time is no longer an issue as the address does not change until the next external I/O oper-
ation. 

For more information on I/O timing please refer to the Rabbit 4000® Microprocessor User's Manual.

Some I/O peripherals such as LCD controllers and Compact Flash devices require address and chip select 
hold times for both read and write operations. If the peripheral is interfaced to the Auxiliary I/O bus, 
address hold time is not an issue. If chip select hold time is required, an unused auxiliary I/O address line 
can be used to generate the chip select. In situations where I/O peripherals are interfaced to the common 
memory and I/O bus, address and chip select hold times can be extended under software control or with 
minor hardware changes. Please refer to Technical Note 227, "Interfacing External I/O with Rabbit 
2000/3000 Designs" for additional information. This document is available online at:

 www.rabbit.com/docs/app_tech_notes.shtml.
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3.4 PC Board Layout and Memory Line Permutation
To use the PC board real estate efficiently, it is recommended that the address and data lines to memory be 
permuted to minimize the use of PC board resources. By permuting the lines, the need to have lines cross 
over each other on the PC board is reduced, saving feed-through’s and space.

For static RAM, address and data lines can be permuted freely, meaning that the address lines from the 
processor can be connected in any order to the address lines of the RAM, and the same applies for the data 
lines. For example, if the RAM has 15 address lines and 8 data lines, it makes no difference if A15 from 
the processor connects to A8 on the RAM and vice versa. Similarly D8 on the processor could connect to 
D3 on the RAM. The only restriction is that all 8 processor data lines must connect to the 8 RAM data 
lines. If several different types of RAM can be accommodated in the same PC board footprint, then the 
upper address lines that are unused if a smaller RAM is installed must be kept in order. For example, if the 
same footprint can accept either a 128K x 8 RAM with 17 address lines or a 512K x 8 RAM with 19 
address lines, then address lines A18 and A19 can be interchanged with each other, but not exchanged with 
A0–A17.

Permuting lines does make a difference with flash memory and must be avoided in practical systems. 

3.5 PC Board Layout and Electromagnetic Interference
Most design failures are related to the layout of the PC board. A good layout results when the effects of 
electromagnetic interference (EMI) are considered. For detailed information regarding this subject please 
see Technical Note 221, “PC Board Layout Suggestion for the Rabbit 3000 Microprocessor.” This docu-
ment is available at: www.rabbit.com/docs/app_tech_notes.shtml.

3.5.1 Rabbit 4000 Low EMI Features
The Rabbit 4000 has powerful built-in features to minimize EMI. They are noted here. For details please 
see The Rabbit 4000 Microprocessor User’s Manual.

• Separate power pins exist for core and I/O rings.

• The I/O bus can be separate from the memory bus.

• The external processor bus cycles are not all the same length.

• The external processor bus does not require running the clock around the PCB.

• The clock spectrum spreader option modulates the clock frequency.

• Some gated internal clocks are enabled only when needed.

• An internal clock doubler allows the external crystal oscillator to operate at 1/2 frequency. 
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4. How Dynamic C Cold Boots
the Target System

Dynamic C assumes that target controller boards using the Rabbit 4000 CPU have no pre-installed firm-
ware. It takes advantage of the Rabbit 4000’s bootstrap (cold boot) mode, which allows memory and I/O 
writes to take place over the programming port.

Figure 4-1  Rabbit Programming Port

The Rabbit programming cable is a smart cable with an active circuit board in its middle. The circuit board 
converts RS-232 voltage levels used by the PC serial port to CMOS voltage levels used by the Rabbit 
4000. The level converter is powered from the power supply voltage present on the Rabbit 4000 program-
ming connector. Plugging the programming cable into the Rabbit programming connector results in pull-
ing the Rabbit 4000 SMODE0 and SMODE1 (startup mode) lines high. This causes the Rabbit 4000 to 
enter the cold boot mode after reset. 
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When the programming cable connects a PC serial port to the target controller board, the PC running 
Dynamic C is connected to the Rabbit 4000 as shown in the table below.

When Dynamic C cold boots the Rabbit 4000-based target system it assumes that no program is already 
installed on the target. The flash memory on the target system may be blank or it may contain any data. 
The cold boot capability permits the use of soldered-in flash memory on the target. Soldered-in memory 
eliminates sockets, boot blocks and PROM programming devices. 

4.1 How the Cold Boot Mode Works In Detail
Cold boot works by receiving triplets of bytes that consist of a high address byte followed by a low address 
byte, followed by a data byte, and writing the data byte to either memory or I/O space. Cold boot mode is 
entered by having one or both of the SMODE pins pulled high when the Rabbit is reset. The pin settings 
determine the source of the incoming triplets:

SMODE1 = 0, SMODE0 = 1 cold boot from slave port. 

SMODE1 = 1, SMODE0 = 0 cold boot from clocked serial port A.

SMODE1 = 1, SMODE0 = 1 cold boot from asynchronous serial port A at 2400 bps.

SMODE1 = 0, SMODE0 = 0 start normal execution at address zero.

The SMODE pins can be used as general input pins once the cold boot is complete.

On entering cold boot mode, the microprocessor starts executing a 12-byte program contained in an inter-
nal ROM. The program contains the following code.

; origin zero
00  ld l,n ; n=0c0h for serial port A

  ; n=020h for parallel (slave port)
02  ioi ld d,(hl) ; get address most significant byte
04  ioi ld e,(hl) ; get least significant byte
06  ioi ld a,(hl) ; get data 
08  ioi or nop ; if the high bit of the MSB of the address is 
1

; (i.e., d[7] ==1) then ioi, else nop
09  ld (de),A ; store in memory or I/O
10  jr 0 ; jump back to zero

; note wait states inserted at bytes 3, 5 and 7 waiting
; for serial port or parallel port ready

Table 4-1  Programming Port Connections

PC Serial Port Signal Rabbit 4000 Signal

DTR (output) /RESET (input, reset system)

DSR (input) STATUS (general purpose output)

TX (serial output) RXA (serial input, port A)

RX (serial input) TXA (serial output, port A)
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The function of the boot ROM program depends on the settings of the pins SMODE0 and SMODE1 and 
on whether the high bit of the high address byte (first byte of a received triplet) that is loaded to register D 
is set. If bit 7 of the high address byte is set, then the data byte (last byte of the triplet) is written to I/O 
space when received. If the bit is clear, then the data byte gets written to memory. Boot mode is terminated 
by storing 80h to I/O register 24h, which causes an instruction fetch to begin at address zero.

Wait states are automatically inserted during the fetching of bytes 3, 5 and 7 to wait for the serial or paral-
lel port ready. The wait states continue indefinitely until the serial port is ready. This will cause the proces-
sor to be in the middle of an instruction fetch until the next character is ready. While the processor is in this 
state the chip select, but not the output enable, will be enabled if the memory mapping registers are such as 
to normally enable the chip select for the boot ROM address. The chip select will stay low for extended 
periods while the processor is waiting for the serial or parallel port data to be ready.

4.2 Program Loading Process Overview
On start up, Dynamic C first uses the PC’s DTR line on the serial port to assert the Rabbit 4000 RESET 
line and put the processor in cold boot mode. Next, Dynamic C uses a four stage process to load a user pro-
gram:

1. Load an initial loader (cold loader) to RAM via triplets sent at 2400 baud from the PC to a target in cold 
boot mode.

2. Run the initial loader and load a secondary loader (pilot BIOS) to RAM at 57600 baud.

3. Run the secondary loader and load the BIOS and user program to flash after compiling them to a file, 
optionally negotiating with the Pilot BIOS to increase the baud rate to 115200 or higher so the loading 
can happen quickly.

4. Run the BIOS. Then run and debug the user program at the baud rate selected in Dynamic C.

NOTE: Step 4 is combined with step 3 when using 4 K (or greater) sector flash.

4.2.1 Program Loading Process Details
When Dynamic C starts to compile a program, the following sequence of events takes place:

1. The serial port is opened at 2400 baud with the DTR line high, and after a 500 ms delay, the DTR line is 
lowered. This pulses the reset line on the target low (the programming cable inverts the DTR line), 
placing the target into bootstrap mode. 

2. A group of triplets defined in the file COLDLOAD.BIN consisting of 2 address bytes and a data byte 
are sent to the target. The first few bytes sent are sent to I/O addresses to set up the MMU and MIU and 
do system initialization. The MMU is set up so that RAM is mapped to 0x00000, and flash is mapped 
to 0x80000.

3. The remaining triplets place a small initial loader program at memory location 0x00000. The last triplet 
sent is 0x80, 0x24, 0x80, which tells the CPU to ignore the SMODE pins and start running code at 
address 0x00000. 

4. The initial loader measures the crystal speed to determine what divisor is needed to set a baud rate of 
19200. The divisor is stored at address 0x3F02 for later use by the BIOS, and the programming port is 
set to 57600 baud.

5. The PC now bumps the baud rate on the serial port being used to 57600 baud. 
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6. The initial loader then reads 7 bytes from the serial port. First a 4-byte address field: the physical 
address to place the secondary loader, followed by a 2-byte length field: the number of bytes in the sec-
ondary loader. The 7th byte is a checksum (simple summation) of the previous 6 bytes. Whether or not 
the checksum matched, it is echoed back as an acknowledgement.

7. The data segment is then mapped to the given physical location, using the DATASEG register. The data 
segment boundary will also be set to 0x6000, so the secondary loader will always be located at the 
same place in logical space, regardless of where it physically resides.

8. The initial loader finally enters a loop where it receives the specified number of bytes that compose the 
secondary loader program (pilot.bin sent by the PC) and writes those bytes starting at 0x6000 (log-
ical). The first byte sent this way MUST be 0xCC, as an indicator to the initial loader. This byte will be 
stored as 0x00 (nop), instead of 0xCC. A 2-byte checksum will be sent after the secondary loader has 
been received, using the 8-bit Fletcher Algorithm (see RFC1145 for details), such that the load can be 
verified. After all of the bytes are received, and the checksum has been sent, program execution jumps 
to 0x6000.

9. The secondary loader does a wrap-around test to determine how much RAM is available, and reads the 
flash and CPU IDs. This information is made available for transmittal to Dynamic C when requested.

10.The secondary loader now enters a finite state machine (FSM) that is used to implement the Dynamic 
C/Target Communications protocol. Dynamic C requests the CPU ID, flash ID, RAM size, and 19200 
baud rate divisor to define internally defined constants and macros. Dynamic C uses the flash ID to 
lookup flash parameters that are sent back to the secondary loader so that it can initialize flash 
write/erase routines. At this stage, the compiler can request the baud rate be increased to a higher value. 
The secondary loader is now ready to load a BIOS and user program.

11.Dynamic C now compiles the BIOS and user programs. Both are compiled to a file, then the file is 
loaded to the target using the Pilot BIOS’ FSM. After the loading is complete, Dynamic C, using the 
Pilot BIOS’ FSM, tells the Pilot BIOS to map flash to 0x00000, map RAM to 0x80000, and start pro-
gram execution at 0x0000, thereby running the compiled BIOS.

12.If the Pilot BIOS detects a RAM compile or small-sector flash that uses sector-write mode, Dynamic C 
uses a slightly different loading procedure. The BIOS will be compiled as normal, and loaded using the 
Pilot BIOS. After the BIOS is loaded, Dynamic C will tell the Pilot BIOS to start it, and the rest of the 
program will be loaded through the compiled BIOS. 

13.Once the compiled BIOS starts up, it runs some initialization code. This includes setting up the serial 
port for the debug baud rate (set in the Communications tab in Options | Project Options), setting up 
serial interrupts and starting the BIOS FSM. Dynamic C sets a breakpoint at the beginning of main() 
and runs the program up to the breakpoint. The board has been programmed, and Dynamic C is now in 
debug mode.

14.If the programming cable is removed and the target board is reset, the user’s program will start running 
automatically because the BIOS will check the SMODE pins to determine whether to run the user 
application or enter the debug kernel.
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5.  Rabbit Memory Organization

The architecture of earlier Rabbit processors was derived from the original Z80 microprocessor. The origi-
nal Z80 instruction set used 16-bit addresses to address a 64 KB memory space. All code and data had to 
fit in this 64 KB space. To expand the available memory space, the Rabbit 4000 adopts a scheme similar to 
that used by the Z180. 

The 64 KB space is divided into segments and the Rabbit’s Memory Mapping Unit (MMU) maps each 
segment to a block in a larger memory. The larger memory is 1 MB by default, although the Rabbit 4000 
allows this larger address space to be resized. The segments are effectively windows to the larger memory. 
The view from the window can be adjusted so that the window looks at different blocks in the larger mem-
ory. Note also that the Rabbit 4000 has many new instructions that allow direct access to the larger mem-
ory space.  Figure 5-1 shows the memory mapping schematically.

NOTE: Please see Technical Note 202, “Rabbit Memory Management in a Nutshell,” for more 
details on how memory mapping works on the Rabbit 2000 and 3000. This document is avail-
able at:

www.rabbit.com/support/techNotes_whitePapers.shtml

5.1 Physical Memory
The Rabbit 4000 has a configurable physical address space. The default addressable space on the 4000 is 
1 MB, the same as that used on the Rabbit 2000 and 3000. However, on the Rabbit 4000, the physical 
address space can be reconfigured to use additional address lines to resize the physical memory from 
512 K to 16 MB. The physical memory can be increased to 4 MB without the use of additional address 
lines by mapping in 1 MB memory devices into the four available physical memory banks. In special cir-
cumstances more than 16 MB of memory can be installed and accessed using auxiliary memory mapping 
schemes. Typical Rabbit 4000 systems have two types of directly addressable physical memory: flash 
memory and static RAM.

5.1.1 Flash Memory
Flash memory in a Rabbit 4000-based system may be small-sector or large-sector type. Small-sector mem-
ory typically has sectors of 128 to 4096 bytes. Individual sectors may be separately erased and written. In 
large-sector memory the sectors are often 16 KB to 64 KB or more. Large-sector memory is less expensive 
and has faster access time. The best solution will usually be to lay out a design to accept several different 
types of flash memory, including the flexible small-sector memories and the fast large-sector memories.

Flash memory follows a write-once-in-a-while and read-frequently model. Depending on the particular 
type of flash used, the flash memory may wear out after it has been written approximately 10,000 to 
100,000 times.
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5.1.2 SRAM
Static RAM may or may not be battery-backed. If the SRAM is battery-backed it retains its data when pri-
mary power is disconnected. SRAM chips typically used for Rabbit systems are 128 KB, 256 KB, 512 KB, 
or 1 MB. With the configurable physical memory of the Rabbit 4000 and support in Dynamic C 10.21 and 
later versions, static RAM chips of 1 MB and larger may also be used.

When the memory is battery-backed, power is supplied at 2 V to 3 V from a battery. While preserving 
memory contents with battery power, the shutdown circuitry must keep the chip select line high.

5.1.3 Basic Memory Configuration
A basic Rabbit system typically contains two or three static memory devices: one flash memory device and 
one or two RAM devices. Additional static memory devices may be added. If an application requires stor-
ing a lot of data in flash memory, it is recommended that a mass storage flash device be added such as 
NAND or serial flash. Dynamic C contains drivers for both NAND and serial mass storage devices. Alter-
natively, another parallel flash memory device could be added, although these devices tend to be smaller 
and more expensive and are not as suitable for larger amounts of data. Note that some board designs may 
only contain a serial boot flash and SRAM. On these boards, the program is copied into the SRAM at boot 
time from the serial flash. The program is then executed from static RAM.

Trying to use a single, parallel flash memory chip to store both a program and live data that must be fre-
quently changed can create software latency problems. When data is written to a small-sector flash mem-
ory, the memory is inoperative during the 5 to 20 ms that it takes to write a sector. If the same memory is 
used to hold data and the program, then the execution of code must cease during this write time. The 5-20 
ms is timed out by a small routine executing from root RAM while system interrupts are disabled, effec-
tively freezing the system for 5-20 ms. The 5-20 ms lockup period can adversely affect real-time opera-
tion.
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5.2 Memory Segments
From the point of view of a Dynamic C programmer, there are a number of different uses of memory. Each 
memory use occupies a different segment in the logical 16-bit address space. The four segments are shown 
in Figure 5-1.

Figure 5-1  Memory Map of 16-bit Logical Address Space

The figure above shows that the segments of the 16-bit logical address space map to the physical address 
space. The extended register set and additional 32 bit registers provided by the Rabbit 4000 make it easy to 
access the physical memory directly, bypassing the logical to physical mapping and allowing linear access 
of up to 16 MB. The size of the physical address space is determined by the quadrant size.

The quadrant size is determined by the MMU Expanded Code Register (MECR). This register contains the 
Bank Select Address setting. The Bank Select Address represents the two most significant bits of the phys-
ical address that will be used to select amony the different quadrants. By default, the MECR selects A19 
and A18, thus leaving 18 bits for the address, which results in a quadrant size of 256 KB. Table 5-1 shows 
the possible MECR values and the resulting quadrant sizes.
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One advantage of retaining the Rabbit 16-bit logical memory organization is that 16-bit addresses and 
pointers can reduce code size and execution times.

NOTE: The relative size of the base and data segments can be adjusted by increasing or 
decreasing the BIOS macro DATAORG in increments of 0x1000.

5.2.1 Definition of Terms
The following definitions clarify some of the terms that will be encountered in this chapter.

Extended Code (a.k.a., xmem code): Instructions located in the extended memory segment.

Extended Constants (a.k.a., xmem constants): C constants located in the extended memory segment. 
They are mixed together with the extended code.

Extended Memory (a.k.a., xmem): Logical addresses in 0xE000 - 0xFFFF range.

Extended RAM: RAM not used for root variables or stack. Extended memory in RAM may be used for 
large buffers to save root RAM space. The Dynamic C compiler supports the far keyword to allow C data 
types to be declared and defined in extended memory. The code generation for the far data types makes use 
of the expanded Rabbit 4000 instructions and registers. The function xalloc() also allocates space in 
extended RAM memory. See the Dynamic C User’s Manual for more information on the far keyword.

Far Constants: C constants declared with the “far” keyword currently located in the extended memory 
segment. The location of far constants may be changed in the future.

Root Code: Instructions located in the base segment.

Root Constants: C constants, such as quoted strings, initialized variables or data tables, that are located in 
the base segment. Root constants share space with root code unless separate I&D space is enabled.

Root Memory: Logical addresses below 0xE000. Please note that root memory is not the same as the root 
segment. The root segment is contained in root memory, as are the data and stack segments. The root seg-
ment is also known as the base segment.

Root Variables: C variables, including structures and arrays that are not initialized to a fixed value, are 
located in the data segment.

Table 5-1  Selecting the Quadrant Size

MECR Value 
Address Bits Used to 

Select Quadrant
Quadrant Size

Physical Address 
Space

11100000b A18, A17 128 KB 512 KB

00000000b A19, A18 256 KB 1 MB (default)

00100000b A20, A19 512 KB 2 MB

01000000b A21, A20 1 MB 4 MB

01100000b A22, A21 2 MB 8 MB

10000000b A23, A22 4 MB 16 MB
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5.2.2 The Base (or Root) Segment
The base segment has a typical size of 24 KB. The larger the base segment, the smaller the data segment 
and vice-versa. Base segment address zero is always mapped to physical address zero. Sometimes the base 
segment is mapped to flash memory since root code and root constants do not change except when the sys-
tem is reprogrammed. It may be mapped to RAM for debugging, or to take advantage of the faster access 
time offered by RAM. Serial flash boot configurations always map the base segment to RAM since there is 
no parallel flash.

With separate I&D space disabled, the base segment holds a mixture of code and constants. C functions or 
assembly language programs that are compiled to the base segment are interspersed with data constants. 
Data constants are inserted between blocks of code. Data constants defined inside a C function are placed 
after the end of the code belonging to the function. Data constants defined outside of C functions are 
placed in memory where they are encountered in the source code.

Except in small programs, the bulk of the code in a program is executed using the extended memory 
(xmem) segment. Code operates at the same speed whether addressed through the base segment or the 
xmem segment, except that calling and returning from xmem functions takes a few extra clock cycles. It 
just takes a few cycles longer to call xmem functions and return from them.

 5.2.2.1 Types of Code Best-Suited for the Base Segment

• Short subroutines of about 20 instructions or less that are called frequently will use less execution 
time if placed in root memory because of the faster calling linkage for 16-bit versus 20-bit addresses. 
For a call and return, 20 clocks are used compared to 32 clocks for xmem calls and returns. This reduc-
tion in execution time becomes more significant when the call/return sequence is a substantial portion of 
the total execution time.

• Interrupt routines. Interrupt vectors use 16-bit addressing so the entry to an interrupt routine must be 
in the base segment.

• The BIOS core. The initialization code of the BIOS must be at the start of the base segment.

• A function that modifies the XPC must always be executed from root memory.

5.2.3 The Data Segment
The data segment has a typical size of 28 KB, starting at 24 KB (0x6000 above root code) and ending at 52 
KB (0xCFFF). The data segment is mapped to RAM and contains C variables. Data allocation starts at or 
near the top and proceeds in a downward direction. It is also possible to place executable code in the data 
segment if it is copied from flash to the data segment. This can be desirable for code that is self modifying, 
code to implement debugging aids or code that controls writes to the flash memory. 

In separate I&D space, the data segment is twice as big (~54 KB), but code cannot be executed from it.

5.2.4 The Stack Segment
Usually the stack segment is assigned to the range of logical addresses 0xD000 to 0xDFFF. It is always 
mapped to RAM and holds the system stack. Multiple stacks may be implemented by defining them in the 
4 KB space, by remapping the 4 KB space to different locations in physical RAM memory, or by using 
both approaches. Multiple stack allocation is handled by µC/OS-II internally. For example, if sixteen 1 KB 
stacks are needed then four stacks can be placed in each 4 KB mapping and four different mappings for the 
window can be used.
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5.2.5 The Extended Memory Segment
This 8 KB segment from logical address 0xE000 to 0xFFFF is a sliding window into extended code and it 
can also be used by routines that manipulate data located in extended memory. The xmem window uses up 
only 8 KB of the 16-bit addressing space. While executing code the mapping is shifted by 4 KB each time 
the code passes the halfway point in the 8 KB xmem window. The halfway point corresponds to the root 
address 0xF000, or 60KB. On all Rabbit processors, up to 1 MB of code can be efficiently executed by 
moving the mapping of the 8 KB window using special instructions that are designed for this purpose: long 
call (LCALL), long jump (LJP) and long return (LRET). Dynamic C currently supports up to 1MB of code 
using these instructions. The Rabbit 4000 processor allows up to 16 MB of code using new extended ver-
sions of these instructions: long long call (LLCALL), long long jump (LLJP), and long long return 
(LLRET). 

The xmem segment is a window into the physical address space. Using the appropriate segment register 
(XPC or LXPC) any logical address in the range 0xE000 to 0xFFFF can be mapped to any address in the 
physical address space. Consider the following examples:

WARNING: The XPC is used for addressing up to 1 MB, and the LXPC is used for addressing 
up to 16 MB. Mixing the use of the XPC and LXPC is dangerous.

Please see Technical Note 202, “Rabbit Memory Management in a Nutshell,” for more details on how 
memory mapping works on the Rabbit 2000 and Rabbit 3000. This document is available at: rabbit.com.

Table 5-2  Mapping Xmem Addresses

Segment Register Logical Address Mapping Equation Physical Address

XPC = 0xFE 0xE74F 0xFE000 + 0xE74F = 0x10C74F 0x10C74F

LXPC = 0x0FE 0xE74F 0x0FE000 + 0xE74F = 0x10C74F 0x10C74F

XPC = 0xF2 0xE000 0xF2000 + 0xE000 =  0x100000 0x100000

LXPC = 0xFF0 0xFFFF 0xFF0000 + 0xFFFF = 0xFFFFFF 0xFFFFFF
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5.3 Separate I&D Space
Separate instruction and data space is a hardware memory management scheme that uses address line 
inversion to double the amount of logical address space in the base and data segments. In other words, this 
doubles the amount of root code and root data available for an application program. 

Without separate I&D space, recall that in a typical memory map of the 16-bit address space, the base seg-
ment holds a mixture of code and constants and is mapped to flash; the data segment holds C variables and 
is mapped to RAM. With separate I&D space, code and data no longer have to divide this space because 
they share logical addresses by inverting address lines depending on whether the CPU is fetching instruc-
tions or data. 

The drawing in Figure 5-2 shows the logical address space when separate I&D space is both enabled and 
disabled. Typical SEGSIZE values are shown. The boundary at 0x3000 (and 0x6000) is determined by the 
macro ROOT_SIZE_4K in the BIOS. The value of this macro is the number of 4 kilobyte pages used for 
the base segment. The boundary may be changed, but care must be taken. To change the boundary, define 
ROOT_SIZE_4K to the desired number of 4K pages on the “Defines” tab in Options | Project Options.

Figure 5-2  16-Bit Logical Address Space

NOTE: This diagram illustrates how separate I&D space works; the actual values used in the 
BIOS may differ from those shown here.
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Separate I&D logical addresses map to physical addresses by inverting address lines A16, the most signifi-
cant address bit or both.The most significant address bit may be A18-A23, depending on the MECR set-
ting. The MMU Instruction/Data Register (MMIDR) determines which lines are inverted. Please see the 
Rabbit 4000 Microprocessor User’s Manual for more information about the MMIDR.

The following diagram (Figure 5-3) shows the physical address space when separate I&D space is 
enabled, SEGSIZE = 0xD3 and code is compiled to flash.

The inversion of A16 causes the root constants in the data space to be addressed in the second 64 KB block 
of the flash. The inversion of MSB (A19 in this example) causes the root data in the data space to be 
located in RAM (RAM is mapped at 0x80000), starting at 0x83000 as directed by the lower nibble of 
SEGSIZE.

Figure 5-3  Physical Address Space when Separate I&D Space is Enabled
 and the Quadrant Size is 256 KB
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When using separate I&D space you can not reference code as data or data as code in logical memory 
below the stack. When using separate I&D space, the processor makes a distinction between fetching an 
instruction from memory and fetching data from memory. The RAM segment register determines the win-
dow in RAM where root code may be executed.

Embedded applications that do not need more code or data space do not require any changes for separate 
I&D space. By default, Dynamic C compiles without separate I&D space enabled.

5.3.1 Enable Separate I&D Space
To use separate I&D space, check the enable separate I&D space option on the Compiler tab of the 
Options | Project Options dialog. The Dynamic C command line compiler equivalent is -id+ (enable 
I&D space) and -id- (disable I&D space). Please see the Dynamic C User’s Manual for more informa-
tion about the command line compiler.

The BIOS and the compiler handle the memory mappings so the user does not need to know the details. 
However, if you want to change the way an interrupt vector is handled or you need to write a flash driver, 
the rest of this chapter provides you with the necessary information.

5.3.2 Separate I&D Space Mappings in Dynamic C
The next two subsections show the default MMU settings that Dynamic C uses when separate I&D space 
is enabled.
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 5.3.2.1 Compiling to RAM

For RAM compiles, all banks (quadrants) are mapped to RAM. In a 20-bit physical address space (i.e., 
1 MB physical address space), a 512 KB memory would be mapped with the lower 256 KB mapped to 
banks 0 and 2. The higher 256 KB are mapped to banks 1 and 3. In this configuration, A16 is inverted to 
provide access to the constants and data starting at the 64K boundary. The standard configuration is to set 
the SEGSIZE register to 0xDD so that the base segment occupies the entire 52 KB region up to the stack 
segment. Note that this configuration causes the DATASEG register to be irrelevant.

The BIOS sets the MMIDR to 0x21. Bit 5 of this register enables the instruction/data split and bit 0 causes 
the inversion of A16.

Figure 5-4  RAM Compile Memory Mapping
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 5.3.2.2 Compiling to Flash

For flash compiles, flash is mapped to banks 0 and 1. The address range depends on the size of the physi-
cal address space. For example, a 20-bit address space with 512 KB of flash would mean that flash is 
mapped from 0x00000 to 0x7FFFF. Alternatively, a 22-bit address space (1 MB quadrants) with 1 MB of 
flash would mean that the flash is mapped to 0x000000 to 0x0FFFFF in bank 0 and is repeated again in 
bank 1 from 0x100000 to 0x1FFFFF. RAM is mapped to banks 2 and 3 (address range 0x80000 to 
0xFFFFF for 20 bit, and 0x200000 to 0x3FFFFF for 24 bit, respectively).

Figure 5-5  Flash Compile Memory Mapping

The BIOS sets the MMIDR to 0x29 to enable the I&D space for flash compilation. Bit 5 of this register 
enables the I&D split, bit 0 enables inversion of A16 for the data space base segment (i.e., the logical 

�����������

"���

������

�7�����

�7�����

�7�����

�7"����

�7"����

�--5��-32

�020��-32

�--5��-(�5/(5�

�020��-32
&-(51(423

��'

�--5��-32

�--5��/5/

�-(�5/(5�

�020

�5/&%
�7����

�7����

�7





�7����

�7����

�7�




�7�




�7����

�7����

(����

�--5��-32

�--5��-32

�7*����

�7*����

�7*����

�5/&%��	/&2 
</5&D��-32

�--5��/5/

�5/&%�;�7/99-&;
25&


��
������������
�
�����:��7�
������:��7��
��'������:��7��
������'�:��7�

�7





Rabbit 4000 Designer’s Handbook rabbit.com 33

http://www.rabbit.com


address space for constants) and bit 3 enables inversion of MSB for the data space data segment (i.e., the 
logical address space for root data).

5.3.3 Customizing Interrupts
No special code is required to customize interrupts using separate I&D space on the Rabbit 4000 with the 
addition of the RAM segment register (RAMSR). Use SetVectIntern() and SetVectExtern() 
to set interrupts. Please see the Dynamic C Function Reference Manual for more information on these 
functions.

5.4 How The Compiler Compiles to Memory
The compiler generates code for root code, root constants, extended code, extended constants, and far con-
stants. It allocates space for data variables, but, except for constants, does not generate data to be stored in 
memory. Any initialization of RAM variables must be accomplished by code since the compiler is not 
present when the program starts in the field. (Please see #GLOBAL_INIT in the Dynamic C User’s Man-
ual.)

Static variables are not zeroed out by default.The BIOS macro ZERO_OUT_STATIC_DATA may be set 
to “1” which will only zero out static variables on board power-up or reset. Zeroing out static variables is 
not compatible with the use of “protected” variables because they will be zeroed out along with the rest of 
the static data.

5.4.1 Placement of Code in Memory
Code may be placed in either extended memory or root memory. Functions execute at the same speed, but 
calls to functions in root memory are slightly more efficient than calls to functions in extended memory.

In all but the smallest programs, most of the code is compiled to extended memory. Root constants share 
the memory space needed for root code (when separate I&D space is disabled), so as the memory needed 
for root constants increases, the amount of code that can be stored in root memory decreases and code 
must be moved to extended memory.

Please see the Dynamic C User’s Manual regarding the compiler directive #memmap for more informa-
tion about controlling the placement of code in memory.

5.4.2 Paged Access in Extended Memory
The code in extended memory executes in the 8 KB window from 0xE000 to 0xFFFF. This 8 KB window 
uses paged access. Instructions that use 16-bit addressing can jump within the page and also outside of the 
page to the remainder of the 64 KB logical space. Special instructions, particularly LCALL, LJP, and 
LRET, are used to access code outside of the 8 KB window for addresses below 0x100000. Similarly, 
LLCALL, LLJP, and LLRET can be used to access code outside of the 8KB window to any place in the 
physical address space. When one of these transfer-of-control instructions is executed, both the address 
and the view through the 8 KB window change, allowing transfer to any instruction in the physical mem-
ory space. The 12-bit LXPC register controls which of two consecutive 4 KB pages the 8 KB window 
aligns with (there are 256 pages in a 1 MB physical address space). The 16-bit PC controls the address of 
the instruction, usually in the region 0xE000 to 0xFFFF. The advantage of paged access is that most 
instructions continue to use 16-bit addressing. Only when a page change is needed does a physical address 
transfer of control need to be made. 
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As the compiler compiles code for the extended code window, it checks to see if the code has passed the 
midpoint of the window or 0xF000. When the code passes 0xF000, the compiler generates code to slide 
the window down by 4 KB so that the code at F000+x becomes resident at 0xE000+x. This automatic pag-
ing results in the code being divided into segments that are typically 4 KB long, but which can be very 
short or as long as 8 KB. Transfer of control within each segment can be accomplished by 16-bit address-
ing. Between segments, physical addressing (19- to 24-bit depending on configuration) is required. 
Assembly blocks are limited to 4 KB because the compiler cannot generate automatic paging code in 
assembly.

5.5 Memory Planning
Design conventions for memory configuration of a Rabbit 4000-based system specify flash and SRAM.

5.5.1 Flash
Code is typically stored in flash memory, so the size of code must be anticipated. Usually code size up to 
1 MB is handled by one or two flash memory chips. If you are writing a program from scratch, remember 
that 1 MB of code is equivalent to 50,000 to 100,000 C statements, and such a large program can take 
years to write. If you are using Dynamic C libraries, it is fairly easy to have this much code in your appli-
cation.

Constant data tables can be conveniently placed in extended memory using the xdata and xstring 
declarations supported by Dynamic C, so the amount of space needed for constant data can be added to the 
amount of space needed for code.The far keyword can also be used to create constants in xmem using stan-
dard C variables.

5.5.2 Static RAM
C programs vary in how much RAM will be required and having more RAM is necessary for debugging. 
Since debugging and program testing generally operate more powerfully and faster when sufficient RAM 
is available to hold the program and data, most controllers based on the Rabbit 4000 use a dual footprint 
for RAM that can accommodate 128K x 8 or 512K x 8, which are both in 32-pin packages. The base RAM 
is interfaced to /CS1 and /WE1, and /OE1.

RAM is required for the following items:

• Root Variables - maximum of 40-44 KB, and about 4 KB more if separate I&D space is enabled.

• Stack Pages - stack is usually 4 KB, rarely more than 20 KB.

• Debugging - as a convenience on prototype units, 1 MB is usually enough to accommodate programs. It 
is not necessary to debug in RAM, but may be desirable.

• Extended Memory (a.k.a., xmem) - can be used for code and data, such as communications applica-
tions or data logging applications. The amount needed depends on the application.

Table 5-3  Typical Interface Between the Rabbit 4000 and Memory

Primary Flash SRAM Secondary Flash

/CS0, /OE0 and /WE0 /CS1, /OE1 and /WE1 /CS2, /OE0 and /WE0
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6. The Rabbit BIOS

When Dynamic C compiles a user’s program to a target board, the BIOS (Basic Input/Output System) is 
compiled first as an integral part of the user’s program. The BIOS comprises files that contain the code 
needed by the user program to interface with Dynamic C and the Rabbit hardware. The BIOS may also 
contain a software interface to the user’s particular hardware. Certain drivers in the Dynamic C library 
suite require BIOS routines to perform tasks that are hardware-dependent.

The BIOS also: 

• Takes care of microprocessor system initialization, such as the setup of memory. 

• Provides the communications services required by Dynamic C for downloading code and performing 
debugging services such as setting breakpoints or examining data variables.

• Provides flash drivers.

The file RabbitBIOS.c is a wrapper that permits a choice of which BIOS to compile. A more modular 
design has been implemented by moving many of the configuration macros to separate configuration 
libraries. The main BIOS file (Stdbios.c) and the multiple configuration libraries are located in 
LIB\Rabbit4000\BIOSLIB.

Dynamic C 10.21 introduces a change in the BIOS files: Origin declarations have been redesigned. One of 
the most dramatic results of the redesign is the ability to define relative relationships between origins dur-
ing the setup of memory. This eliminates many of the macro definitions that were necessary before.

The supplied BIOS allows Dynamic C to boot up on any Rabbit-based system that follows the basic design 
rules needed to support Dynamic C. The BIOS requires either a 128 KB RAM or both a flash device and a 
32 KB or larger RAM for it to be possible to compile and run Dynamic C programs. If the user uses a flash 
memory from the list of flash memories that are already supported by the BIOS, the task will be simpli-
fied. A list of supported flash devices is listed in Technical Note 226, available online at:

rabbit.com/docs/app_tech_notes.shtml

If the flash device is not already supported, the user will have to write a driver to perform the write opera-
tion on the flash memory. This is not difficult provided that a system with 128 KB of RAM and the flash 
memory to be used are available for testing.

An existing BIOS can be used as a skeleton to create a new BIOS. Frequently it will only be necessary to 
change #define statements at the beginning of the file. In this case it is unnecessary for the designer to 
understand or work out the details of the memory setup and other processor initialization tasks. Refer to 
the Dynamic C User’s Manual for details on creating a user-defined BIOS.
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6.1  Startup Conditions Set by the BIOS
The BIOS performs initialization tasks and #use’s library files that contain setup information.

6.1.1 Registers Initialized in the BIOS
The BIOS sets up initial values for the following registers by means of code and declarations.

MBxCR
There are four memory bank control registers: MB0CR, MB1CR, MB2CR, and MB3CR. They are 8-bit regis-
ters, each one associated with a quadrant of the physical memory space. A memory bank control register 
determines which memory chip is mapped into its quadrant, how many wait states will be used for access-
ing that memory chip, and whether the memory chip will be write protected. 

MECR
8-bit register that determines the quadrant size and thus the size of the physical address space.

STACKSEG(H/L)
16-bit register that determines the location of the stack segment in the physical memory space.

DATASEG(H/L)
16-bit register that determines the location of the data segment in the physical memory space, normally the 
location of the data variable space.

SEGSIZE
8-bit register holding two 4-bit values. Together the values determine the relative sizes of the base seg-
ment, data segment and stack segment in the 64 KB logical memory space.

 MMIDR
8-bit register used to control separate I&D space and to force /CS1 to be always enabled or not. Having 
/CS1 always enabled reduces access time if /CS1 is routed through an external battery backup device and 
the propagation delay through the external device may slow the transition of /CS1 during memory cycles.

SP
The SP register is the system stack pointer. It is frequently changed by the user’s code. The BIOS sets up 
an initial value.

6.1.2 Origins
Dynamic C uses a mechanism known as an “origin” to define regions of memory for different purposes. 
The BIOS declares several origins to tell the Dynamic C compiler where to place different types of code 
and data. Starting with Dynamic C 10.21 the origin directives are in the library file 
memory_layout.lib, which is #use’d in the BIOS. 

For more information about the MMU and MIU registers please see the Rabbit 4000 Microprocessor 
User’s Manual.
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6.2 BIOS Flowchart
The following flowchart summarizes the functionality of the BIOS:

Figure 6-1  BIOS Flowchart

NOTE: To use the diagnostic port on the RCM43xx, you must first reset the board 
and then plug in the “Diag” header of the programming cable.

NOTE: If the programming cable is connected at power-up, the Rabbit will never 
execute the BIOS, since the cable holds the board in coldboot mode.
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6.3 Internally-Defined Macros
Some macros used in the BIOS are defined internally by Dynamic C before the BIOS is compiled. They 
are defined using tests done in the bootstrap loading, or by reading variables set in the GUI or set by the 
CLC (command line compiler). 

See the Dynamic C User’s Manual for other internally-defined macros.

6.4 Modifying the BIOS
The BIOS that is supplied with Dynamic C may be modified or replaced. Prudence demands that any 
changes made to this important piece of software be done one step at a time in order to more easily detect 
and isolate any problems that may arise. 

RabbitBios.c is still used, but is more of a wrapper file that brings in some configuration and defini-
tion files, checks a few error conditions and then, before starting compilation of the application, selects 
which BIOS file to activate. The default BIOS is \Lib\Rabbit4000\BIOSLIB\StdBios.c. 

Table 6-1  Partial List of Compiler-Defined Macros

Macro Name Macro Description

_BOARD_TYPE_

This is read from the System ID block or defaulted to 0x100 
(the BL1810 JackRabbit board) if no System ID block is 
present. This can be used for conditional compilation based 
on board type.

CC_VER
Gives the Dynamic C version in hex, i.e., version 10.21 is 
0x0A21.

_CPU_ID_
This macro identifies the CPU type, e.g., R4000 is the 
Rabbit 4000 microprocessor. 

_FLASH_, _RAM_

Used for conditional compilation of the BIOS to distinguish 
between compiling to RAM and compiling to flash. These 
are set in the Compiler tab in the Options | Project Options 
dialog.

_RAM_SIZE_, _FLASH_SIZE_

Used to set the MMU registers and code and data sizes 
available to the compiler. The values of these macros 
represent the number of 0x1000 blocks of memory 
available.

__SEPARATE_INST_DATA__
Flag for identifying whether separate I&D space is enabled 
or disabled.

FLASH_COMPILE, RAM_COMPILE, 
FAST_RAM_COMPILE

Used to determine compile mode in code.
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6.4.1 Macros that Affect the BIOS
There are several macros that may be modified for custom-designed boards or for special situations 
involving off-the-shelf Rabbit 4000-based boards. The following list is not exhaustive.

CLOCK_DOUBLED
Default value of 1 causes the clock speed to be doubled. Setting this to zero means the clock speed will not 
be doubled. 

To override the default, define CLOCK_DOUBLED to zero in the project by using the Defines tab of the 
Project Options dialog.

CS1_ALWAYS_ON
Default value of 0 disables the feature of keeping /CS1 always active. 

To override the default, define CS1_ALWAYS_ON to 1 in the project by using the Defines tab of the Proj-
ect Options dialog. Keeping /CS1 always active is useful if your system is pushing the limits of RAM 
access time. It will increase power consumption a little.

DATAORG
This macro is deprecated. Use ROOT_SIZE_4K instead.

ROOT_SIZE_4K
This macro defines the number of 4 kilobyte pages used for the base segment. The default is 3 when sepa-
rate I&D space is enabled, and 6 otherwise.

To override the default, define ROOT_SIZE_4K in the project by using the Defines tab of the Project 
Options dialog. Increasing this value increases the size of root constants when separate I&D space is 
enabled, and root code when it is disabled.The sum of available root and data is constant, such that 
increasing one decreases the other. This macro can be changed to as high as 11 and as low as 1 when sepa-
rate I&D space is enabled or as low as 3 when separate I&D space is disabled.

ENABLE_CLONING
Default value of 0 disables cloning.

To override the default, define ENABLE_CLONING to 1 in the project by using the Defines tab of the 
Project Options dialog. This slightly increases the code size of the BIOS. 

If cloning is used, PB1 should be pulled up with 50K or so pull-up resistor. On some Rabbit core modules, 
such as the RCM4200, the PB1 (CLKA) signal is either not available or not pulled up on the programming 
port. The master can be forced to invoke cloning support by setting CL_FORCE_MASTER_MODE to 1. 
This will cause the BIOS to assume a cloning cable is attached on every startup, assuring that only the 
cloning code will run. Note that defining CL_FORCE_MASTER_MODE to 1 will not allow the program on 
the board to run, that is, the board will act only as a clone master.

While compiling to the target with CL_FORCE_MASTER_MODE set to 1, the loss of target communication 
is expected and unavoidable. After the program has loaded and target communication is lost the clone mas-
ter will still correctly perform its cloning function after a cloning cable is attached.

Various cloning options are available when ENABLE_CLONING is set to one. For more information on 
cloning, please see Chapter 8, “BIOS Support for Program Cloning,”in this manual and/or Technical Note 
207, “Rabbit Cloning Board,” available at rabbit.com.
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FLASH_SIZE
Sets the amount of flash available. The default value is the internally defined _FLASH_SIZE_ The units 
are the number of 4 KB pages of flash. In special situations, such as splitting flash between two coresident 
programs, this may be modified to a smaller value than the actual available flash.

RAM_SIZE
Sets the amount of RAM available. The default value is the internally defined _RAM_SIZE_. The units 
are the number of 4 KB pages of RAM. In special situations, such as splitting RAM between two coresi-
dent programs, this may be modified to a smaller value than the actual available RAM.

USE_TIMERA_PRESCALE
Uncomment this macro in Lib/Rabbit4000/BIOSLIB/sysconfig.c to run the peripheral clock 
at the same frequency as the CPU clock instead of the standard “CPU clock/2.” This allows higher baud 
rates if Timer A is used as the baud rate generator. USE_TIMERA_PRESCALE affects the resolution of 
the PWM, Input Capture and Quadrature Decoder systems. 

WATCHCODESIZE
This macro defines the size in bytes of the region used for interrupt vectors, debug kernel special variables, 
and watch expressions. This macro must only be set to 0x800 or 0x1000 if the debug kernel is enabled, and 
can be set to 0x400 otherwise.

To override the default, change its value in Lib/Rabbit4000/BIOSLIB/StdBios.c.

6.4.2 Advanced Options
The following macros are defined in STDBIOS.c. See the top of the BIOS source code and/or the various 
configuration libraries for more options. 

ENABLE_SPREADER
Default value is 1, which enables the clock spectrum spreader in normal mode to reduce EMI. 

To override the default, define ENABLE_SPREADER in the project by using the Defines tab of the Project 
Options dialog. Define the macro to 0 to disable spectrum spreading and to 2 for strong spreading.

NUM_RAM_WAITST,NUM_RAM2_WAITST, NUM_FLASH_WAITST
These macros are defined in boardtypes.lib. They define the number of wait states to be used for 
read access to RAM and flash. Write access requires one more wait state than read access. These macros 
are used to determine the relevant bit values in the memory bank control registers.

The only valid values for these wait state macros are 4, 2, 1 and 0.
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MBxCR_INVRT_A18, MBxCR_INVRT_A19
These macros determine whether the MIU registers for each quadrant are set up to invert address lines A18 
and A19 after the logical to physical address conversion. This allows each quadrant of physical memory 
access up to four 256 KB pages on the actual memory device. These would be used for special compila-
tions of programs to be coresident on flashes between 512 KB and 1 MB in size. For more information, 
please see Technical Note 202, “Rabbit Memory Management In a Nutshell.”

6.5 Memory Mapping in Dynamic C
The Dynamic C compiler uses the information provided by origin directives to decide where to place code 
and data in both logical and physical memory. The term “origin” is the mechanism by which a memory 
region is initially described. Dynamic C version 10.21 introduces a greatly improved version of the origin 
directives. The newer version of origin directives is described in Section 6.5.1 and the older version is 
described in Section 6.5.2.

Origin directives allow the programmer to tell the compiler where devices should be mapped in the Rabbit 
processor memory space. The origins are further used to describe what each device is and what properties 
these devices may have. Although origins are normally defined in the BIOS or one of its configuration 
libraries, they may also be useful in an application program for certain tasks, such as compiling a pilot 
BIOS or a cold loader, or special situations where a user wants two applications coresident within a single 
256K quadrant of flash. See Technical Note 218, “Implementing a Serial Download Manager for a 256K 
Byte Flash,” for more information on the later. This document is available at:
 rabbit.com/docs/app_tech_notes.shtml.

6.5.1 Origins Starting with Dynamic C 10.21
The origin directives are all collected in a single library, memory_layout.lib, which is #use’d in the 
BIOS. The origins are arranged as a hierarchy of child and parent “origins” (memory regions) with a 
common parent called the “root” origin, which is essentially an abstract representation of all memory. The 
root origin is never explicitly defined, but any origin declaration not having a named parent origin is a 
child of the root origin.

The hierarchical arrangement provides a mechanism by which child origins recursively inherit the 
properties of their parent origins. This allows for better error checking of the memory mapping itself, since 
the compiler can check that a data origin is not defined in a region mapped as flash memory, for example. 
The example in Section 6.5.1.1 illustrates this functionality.

In addition to the inheritable properties, the origin directives use relative memory mapping. Relative 
memory mapping allows for more flexible descriptions of memory configurations, since the syntax allows 
rules to be enforced on the placement of particular regions of memory with respect to one another without 
having to account for the actual boundaries of those regions. 
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 6.5.1.1 Example of Origin Declarations

The code from memory_layout.lib provides a practical application of origins. In this section, several 
of the origin declarations in the memory layout library are explained. (To simplify matters, the conditional 
compilation macros regarding board type, compile mode and separate I&D settings in  
memory_layout.lib are not shown in this example.) A graphical representation of the regions 
defined by the origin declarations follows their explanation (see Figure 6-2). 

The origin declaration syntax and semantics used in the following example are explicitly defined in 
Section 6.5.1.2 and Section 6.5.1.3, respectively.

The origin declarations shown below were taken from memory_layout.lib in Dynamic C 10.21. This 
library may change in future releases of Dynamic C.

// Macros to help declare origins
#define ORG_FLASH_SIZE (_FLASH_SIZE_*0x1000UL)
#define ORG_RAM_SIZE (_RAM_SIZE_*0x1000UL)

The macros _FLASH_SIZE_ and _RAM_SIZE_ are the number of 0x1000 (4 KB) blocks of memory avail-
able for Flash and RAM, respectively.

// In flash compile mode, the flash is always mapped at address 0x0
#define ORG_FLASH_START (0x0)
#define ORG_RAM_START (RAM_START*0x1000UL)

RAM_START is currently defined in the main BIOS file, StdBios.lib.

#orgdef flashorg flash above phy ORG_FLASH_START size ORG_FLASH_SIZE

The above line defines the flash device mapping. All origin definitions start with the compiler directive 
“#orgdef”. Note that the origin type is “flashorg”, and the origin has the user-defined name “flash”. The 
flashorg origin type has the property of being non-volatile. The syntax “above phy ORG_FLASH_START” 
indicates that the origin is a child of the root origin starting at the physical address defined by the macro 
ORG_FLASH_START. The final piece “size FLASH_SIZE” defines the size of the flash region (this is often 
the size of the device for flashorg and ramorg origin types).

#orgdef resvorg user_block in flash below end size MAX_USERBLOCK_SIZE

The above line defines the user block space as an origin called “user_block”. The type “resvorg” indi-
cates that the region is a reserved origin that should not be touched by the compiler. The syntax “in flash” 
makes the origin a child of the origin named “flash”, defined previously. Following the inheritance, 
“below end” indicates that the origin should be at the end of its parent (in this case, the origin called 
“flash”). The region has size MAX_USERBLOCK_SIZE.

#orgdef bbramorg ram above phy ORG_RAM_START size ORG_RAM_SIZE

Traditional Rabbit memory configurations have a primary SRAM device that is also battery-backed. This 
line defines the primary RAM device as a battery-backed RAM origin (“bbramorg” origin type) with the 
name “ram”. The origin is a child of the root origin, starts at the physical address ORG_RAM_START, 
and has size ORG_RAM_SIZE.
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#orgdef xcodorg xmemcode in flash above start to user_block

Defining origins for the physical memory devices in a particular configuration is not enough for the com-
piler, so we need to define regions for code and data. The line above defines an origin for xmem code with 
“xcodorg” origin type, and called “xmemcode”. The compiler knows to use this origin for xmem code 
because of the origin type. Note that xmemcode is a child of the origin “flash”, so it not only has the prop-
erty of being a code region, but it is also non-volatile since it inherits that property from its parent “flash”.

The final bit of syntax, “above start to user_block” means that the origin region starts at the beginning of 
its parent and extends to the beginning of the sibling “user_block” origin region. The “to” syntax allows 
the origin definition to remain unchanged even if the parent origin changes. A “to” terminal in an origin 
definition can also be followed by the syntax “end” to indicate that the region should occupy the entire 
parent origin region (this is useful for organizational purposes).

#orgdef rcodorg rootcode in xmemcode above start log 0 size 
ROOTCODE_SIZE

The xmem code origin is defined above to take up the entire flash device other than the small space 
reserved for the user block. The reason for this is that we want to be able to put xmem code anywhere in 
the flash device. However, we also need root code for the segmented addressing the Rabbit provides. The 
line above defines the “rootcode” origin to be a child of the “xmemcode” region. This is legal because 
root code addresses can also be used for xmem code (all root addresses have a corresponding physical 
address). The origin starts at the beginning of “xmemcode”, but notice the addition of “log 0”, for “logi-
cal 0”.

The origin type for “rootcode” is rcodorg, a logical origin. This means that “rootcode” can be accessed 
through logical addresses, so the compiler needs to know where it is situated in logical memory, i.e., the 
origin needs a starting logical address. In this case, it starts at logical address “0”. 

#orgdef rvarorg rootdata in ram above start log ROOTCODE_SIZE size 
ROOTDATA_SIZE

The origin named “rootdata” is a child of “ram” and as such inherits the property of being battery-
backed. The origin starts at the beginning of “ram”, and has size ROOTDATA_SIZE. It is a logical origin; 
its starting logical address is ROOTCODE_SIZE, a macro defined in the BIOS. 

#orgdef wcodorg watcode in rootdata below end size WATCHCODESIZE

The origin named “watcode” is a child of “rootdata” and as such is also of logical origin type. Its starting 
logical address is not explicitly stated, but can be determined from the parent origin’s logical extents. Fol-
lowing the inheritance, “below end” indicates that the origin should be at the end of its parent “rootdata”, 
with size WATCHCODESIZE. This information is used to determine the starting logical address: We know 
that the starting logical address of the parent “rootdata” is ROOTCODE_SIZE. The logical addresses for 
child origins necessarily must be relative to their parents. In this case, that means that the starting logical 
address for “watcode” is then, ROOTCODE_SIZE + ROOTDATA_SIZE - WATCHCODESIZE.

#orgdef xvarorg xmemdata in ram above rootdata to userdata_buff

The origin named “xmemdata” is a child of “ram” and as such inherits the property of being battery-
backed. The origin starts where its sibling origin “rootdata” ends; therefore, it starts at 
ORG_RAM_START+ROOTDATA_SIZE. “xmemdata” extends to the beginning of “userdata_buff”. (The 
declaration for the origin named “userdata_buff” is in memory_layout.lib along with the declarations for 
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several other regions needed for buffers. For simplicity’s sake, none of them are shown here and they are 
not reflected in Figure 6-2.) 

Figure 6-2  Origins from memory_layout.lib

Each origin declaration adds a little more to the overall mapping. We recommend reading the code in 
memory_layout.lib and drawing memory maps like the one in Figure 6-2. This exercise will help to 
further your understanding of the complex topic of memory mapping.
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 6.5.1.2 Origin Declaration Syntax

Following is an EBNF (Extended Backus Naur Form) representation of the origin grammar facets: 
declarations, actions, and macros. Angle brackets (“<” and “>”) indicate non-terminals while terminals are 
represented literally with these exceptions: the “|” symbol represents a disjunction, the “::=” represents a 
definition, and the “[” and “]” symbols are used to enclose optional synatx.

<decl> ::= #orgdef <type> <name> [in <name>] <vector> <size> [locate 
<int>]

<type> ::= <phy_org> | <log_org> | wcodorg | resvorg
<phy_org> ::= flashorg | bbramorg | fastramorg | xconorg | xcodorg | 

xvarorg | xmemorg

<log_org> ::= rconorg | rcodorg | rvarorg
<vector> ::= below <offset> | above <offset>
<offset> ::= <position> [ log <int>] | <name> [ log <int> ]
<position> ::= phy <int> | start | end
<size> ::= size <int> | to <offset>

// Origin declaration start and end syntax
<start> ::= #orgstart
<end> ::= #orgend

// Origin application syntax
<orguse> ::= orgact <name> <action> 
<action> ::= apply | resume

// Origin macro declaration syntax
<macdef> ::= #orgmac <define>
<define> ::= <name> = <orgval>
<orgval> ::= <name> [ <int> ] [ <boundary> ] <aspect>
<aspect> ::= <quality> <position> | size | fragments
<quality> ::= physical | logical | segment
<position> ::= start | end

 6.5.1.3 Origin Declaration Semantics

The formal semantics of the origin declaration syntax are explained in this section. 

<decl>
The non-terminal “decl” represents an origin declaration. All origin declarations begin with “#orgdef”.

<type>
The non-terminal “type” represents two subcategories of origins: physical origins and logical origins. 
Physical origins do not require a logical beginning and ending address because they are not accessed 
through logical addresses, or if they are, then through the xmem window, which is fixed. This distinction 
has no obvious effect on the grammar as it is written, but influences a semantic restriction discussed later. 

Physical origins are represented by the phy_org non-terminal and logical origins by log_org. The origin 
types “wcodorg” and “resvorg” are exceptional because they may be either physical or logical. 
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<name>
The non-terminal “name,” though not explicitly defined in the grammar, is equivalent to a C-style identi-
fier (not in the C namespace) and denotes the name of the origin declared.

in
The terminal “in” denotes a new concept for declaring origins – the idea of a hierarchical organization, or 
parentage. Given y is a previously declared origin, stating x in y denotes that x is a child of y or that y is 
the parent of x. The name following “in” qualifier represents the identifier of a previously declared origin. 
We will use the terms 'parent', 'child' and 'sibling' when referring to relationships between origins. The 
principle uses of this concept are the creation of boundary dependence and the enforcement of natural 
boundary constraints. Much of the remaining syntax becomes very natural when following the implica-
tions of this concept. 

Another key concept in the child-parent model of origin declarations is the notion that child origins 
remove space from their parents. The reason for this is that we are still modeling a linear memory space. 
The hierarchy is simply a way to organize the information in a dependent manner, which obviates the 
macro verbosity that was previously required by origin declarations. As shown in the examples above, 
each origin represents an entire space of a particular origin type. Child origins transfer space from their 
parents to themselves. The remaining space in the parent origin is fragmented automatically by the com-
piler. At the end of the origin declaration section, all that remains is a flattened map that represents the true 
layout of memory in the physical space.

Table 6-2  Origin Type Descriptions

Origin Type Keyword Description

flashorg Used for mapping flash; non-volatile.

bbramorg Used for mapping RAM; battery-backed.

fastramorg Used for mapping fast RAM.

xconorg Used for mapping xmem constants.

xcodorg Used for mapping xmem code

xvarorg Used for mapping xmem data.

xmemorg Reserved for future use.

rconorg Used for mapping root constants.

rcodorg Used for mapping root code.

rvarorg Used for mapping root data.

wcodorg Used for mapping watch code.

resvorg Reserved origin, meaning that it will not be touched 
by the compiler.
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<placement>
The non-terminal “placement” denotes the placement of an origin within a larger parent space relative to 
the beginning of that parent (in the absence of the “in” qualifier, the parent can be considered to be all of 
the physical memory or “root”). The “placement” non-terminal is either the “fill” terminal or the non-ter-
minal <vector> followed by the non-terminal “size.” The “vector” non-terminal is not a vector in the math-
ematical sense, but rather denotes a position and an orientation. An origin may be declared relative to the 
beginning or end of its parent or a sibling, and this placement determines its orientation. The orientation 
determines how other siblings may reference the origin; for example, if a child is placed at the end of a 
parent origin, no sibling origins may be declared “above” it.

<vector>
The non-terminal “vector” consists of the terminal “above” or the terminal “below” followed by an the 
non-terminal “offset.” The declaration determines the meaning of offset: “above” indicates that the offset 
will be the lower boundary of the declared origin while “below” indicates that the offset will be the upper 
boundary.

<offset>
The non-terminal “offset” is either the non-terminal “position” or the non-terminal “name.” A name must 
be the identifier of a previously declared sibling origin. When placing an origin “above” a sibling, the 
upper boundary of the reference origin is used as the lower boundary of the origin being declared. Simi-
larly, when placing an origin “below” a sibling, the lower boundary of the reference origin is used as the 
upper boundary of the origin being declared. 

<position>
A position can be either of the special terminals “start” or “end”, or it can be a physical offset followed by 
an optional logical address. Though inessential to the grammar, the terminal symbols “phy” and “log” pre-
vent accidental macro expansion problems and add clarity for inexperienced users. The physical offset is 
measured from the beginning of the parent origin. The logical address is required for origins of logical 
type that are declared relative to a physical origin, and are optional otherwise. It must be omitted if the 
declared origin is of physical type. The exceptional origin types “wcodorg” and “resvorg” may be declared 
with logical offsets, making them logical origins. In the absence of logical offsets, they will still be logical 
origins if declared as children of a logical origin. The terminals “start” and “end” indicate the lower and 
upper boundaries of the parent origin, respectively. In the absence of a parent origin, the extents are the 
physical addressable range defined by the MECR.

<size>
The non-terminal size is either the terminal symbol “size” followed by an integer or the symbol “to” fol-
lowed by an integer. The integer following “size” specifies the number of bytes the origin contains. The 
“to” terminal indicates where the origin ends, in which case its size is the absolute value of the difference 
between the end and beginning of the origin. Note that since origins can be defined in terms of their lower 
or upper boundaries, “to” always specifies the complimentary boundary.
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 6.5.1.4 Origin Declaration Start and End Syntax

<start>
The non-terminal start is simply the terminal “#orgstart”. It must occur exactly once and must occur before 
the end non-terminal. All origin declarations must follow this non-terminal.

<end>
The non-terminal end is simply the terminal “#orgend”. It must occur exactly once and must occur after 
the start non-terminal. When the compiler encounters this non-terminal, it locks the definitions of the ori-
gins and performs final collision detection. All origin declarations must precede this non-terminal.

 6.5.1.5 Origin Application Syntax

<orguse>
The orguse non-terminal specifies which region the compiler should use for the origin type corresponding 
to name. The name non-terminal must be a previously declared origin. All occurrences of orguse must fol-
low orgend.

<action>
The action non-terminal specifies what action the compiler should take for the named origin and may be 
the terminal “apply” or “resume”. The “apply” terminal signifies resetting the memory region, and should 
be used with care since the compiler may have already generated code or data to the origin. The “resume” 
terminal signifies switching to the origin with its state preserved before a previous orguse refocused the 
compiler's attention.

The terminals “apply” and “resume” have no effect on a region of type “xvarorg”.

 6.5.1.6 Origin Macro Declaration Syntax

<macdef>
The non-terminal macdef is the terminal “#orgdef” followed by the non-terminal define and signifies a 
macro declaration based on an attribute of a previously declared origin. Although the compiler does not 
force restrictions on where one may place a macdef, prudence dictates the placing them after orgend is the 
logical choice in most cases.

<define>
The define non-terminal represents the assignment of an origin attribute to a specific macro name. The 
non-terminal name must be a valid C macro identifier not previously declared. The orgval non-terminal 
represents an origin attribute as explained below.

<orgval>
An orgval is the non-terminal name, which must be a previously declared origin, followed by an optional 
non-negative integer, followed by the optional terminal "boundary", followed finally by the aspect non-ter-
minal. The optional integer specifies an origin fragment if the given origin is fragmented, otherwise the 
compiler ignores it. A user must access fragments of an origin linearly as if they were elements of a C 
array. Thus, one accesses the first fragment through index zero, and so forth. The optional terminal 
"boundary" signals the compiler to return attributes that the origin had before it were fragmented or short-
ened by the declaration of any child origins.
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<aspect>
The aspect non-terminal represents an individual aspect of an origin. This non-terminal may be one of 
three things. It may be the "size" terminal, in which case the compiler assigns the size of the origin in bytes 
to the macro. It may be the "fragments" terminal, wherein the compiler will assign the number of frag-
ments within the origin to the macro. Lastly, it may be the non-terminal quality followed by position as 
explained below.

<quality>
This non-terminal specifies a quality of a particular boundary, and may be any of the terminal symbols 
"physical", "logical", or "segment". Each correspond to the physical address, logical address, and segment 
value respectively of the origin boundary in context. If the origin is not a logical origin, then the segment 
and logical terminals will represent the physical boundary converted to an xxx:Exxx address type.

<position>
The position non-terminal is either "start" or "end", and represents the beginning or end respectively of the 
origin in context. 

6.5.2 Origins Prior to Dynamic C 10.21
The following grammar (in BNF) describes the syntax used for the declaration of origin statements prior to 
Dynamic C version 10.21.

origin-directive : #origin-type identifier origin-designator

origin-designator : action-expression | origin-declaration

origin-declaration : physical-address size [follow-qualifier][I&D-qualifier][action-qualifier] 
[debug-qualifier] 

origin-type: rcodorg | xcodorg | wcodorg | wvarorg | rvarorg | rconorg

follow-qualifier : follows identifier [splitbin]

I&D-qualifier : ispace | dspace

action-qualifier : resume | apply

size : constant-expression

physical-address : constant-expression constant-expression

The non-terminals, identifier and constant-expression, are defined in the ANSI C specification. Basically, 
an identifier is a sequence of letters and digits that must start with a letter. The underscore character is 
considered a letter. The definition of constant-expression is more involved as it winds up the restricted 
subset of operators that are allowed in the evaluation of the expression, but the result is a constant. For a 
comphrensive definition of the non-terminals, identifier and constant-expression, please refer to 
Appendix A in  “The C Programming Language” by Kernighan and Ritchie.

 6.5.2.1  Origin Directive Semantics

An origin directive associates a code pointer and a memory region with a particular type of code. The type 
of code is specified by #origin-type. 
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All code sections (rcodorg, xcodorg code and wcodorg) grow up. All non-constant data sections 
(rvarorg) grow down. Root constants are generated to the rcodorg region when separate I&D space is 
disabled. When separate I&D space is enabled, root constants are generated to the rconorg region. 
xdata and xstring are generated to the current xcodorg region.

All origin directives must have a unique ANSI C identifier. The scope of this identifier is only with other 
origin directives or declarations. 

 6.5.2.2 Defining a Memory Region

Each memory region is defined by calculating a physical address from an 8-bit base address (first constant-
expression of physical-address) and a 16-bit logical address (second constant-expression of physical-
address). The size of the memory region is determined by 20-bit size. Overflow of these three values is trun-
cated. 

 6.5.2.3 Action Qualifiers

The keywords apply and resume are action-qualifiers. They tell the compiler to generate code or data 
in the memory region specified by identifier. An apply action resets the code or data pointer for the spec-
ified region to the starting physical address of the region and makes the region active. A resume action 
does not reset the code or data pointer, but does make the memory region active. 

A region remains active (i.e., the compiler will continue to generate code or data to it) until another region 
of the same origin-type is activated with an apply or resume action or until the memory region is full.

 6.5.2.4 I&D Qualifiers

The ispace and dspace qualifiers suppress compiler warnings regarding collisions between the two 
logical regions and the physical memory space. When an ispace or dspace qualifier is used in an ori-
gin directive, that directive is no longer collision checked against origin directives in the other space. For 
example, a rcodorg directive with the ispace qualifier is not checked against any origin directives 
with a dspace qualifier.

 6.5.2.5 Follow Qualifiers

The option follow-qualifier is best described with an example. First, let us declare yourcode in an origin 
statement containing an origin-declaration. A follow-qualifier can only name a region that has already 
been declared in an origin-declaration.

Table 6-3  Origin Types Recognized by the Compiler

Origin Type Keyword

root code rcodorg

xmem code xcodorg

watch code wcodorg

watch code wvarorg

root data rvarorg

root constants rconorg
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#xcodorg yourcode 0x0 0x5000 0x500

then the origin statement:

#xcodorg mycode 0x0 0x5500 0x500 follows yourcode

tells the compiler to activate mycode when yourcode is full. This action does an implicit resume on 
the memory region identified by yourcode. In this example, the implicit resume also generates a jump 
to mycode when yourcode is full. For data regions, the data that would overflow the region is moved to 
the region that follows. Combined data and code regions (like #rcodorg) use both methods, which one 
is used depends on whether code or data caused the region to overflow. In our example, if data caused 
yourcode to overflow, the data would be written to the memory region identified by mycode.
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 6.5.2.6 Origin Directive Examples

The diagram below shows how the origin directives define the mapping between the logical and physical 
address spaces.

#define DATASEGVAL 0x91
#rvarorg rootdata  (DATASEGVAL) 0xC5FF 0x6600  apply // grows down
#rcodorg rootcode  0x00         0x0000 0x6000  apply
#wcodorg watcode   (DATASEGVAL) 0xC600 0x0400  apply 
#xcodorg xmemcode  0xF8         0xE000 0x1A000 apply

// data declarations start here

Dynamic C defines macros that include information about compiling to RAM or flash, and identifying 
memory device types, memory sizes, and board type. The origin setup shown above differs from that 
included in the standard BIOS included with Dynamic C as the standard BIOS uses additional macro val-
ues for dealing with a wider range of boards and memory device types.

 

NOTE: This mapping assumes separate I&D space is disabled.

 6.5.2.7 Origin Directives in Program Code

To place programs in different places in root memory or to compile a boot strapping program, such as a 
pilot BIOS or cold loader, origin directives may be used in the user’s program code.

For example, the first line of a pilot BIOS program, pilot.c, would be

#rcodorg rootcode 0x0 0x0 0x6000 apply

A program with such an origin directive could only be compiled to a .bin file, because compiling it to the 
target would overwrite the running BIOS. 

xmemcode

stack 

rootdata

rootcode

Logical Address Space

Physical Address Space

watcode

0x6000

0xC5FF
0xCDFF

0xE000

0x00000

0x06000

0x20000

0x97000

0x9DDFF

0xFFFFF

rootcode

xmemcode

rootdata
watcode

0xFFFF

0x0000
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 6.5.2.8 Origin Directive to Reserve Blocks of Memory

With the Rabbit 4000, the compiler generates an origin table that contains the blocks that are reserved for 
code and data origin or other non-xalloc use. With this change, the method of reserving a block of memory 
so that xalloc() does not use it has also changed. To reserve a block of memory in DC 9.30 and later, 
the #resvorg should be used. All other origins (e.g., #rcodorg, #rvarorg, etc.) are also tracked by 
the compiler and those blocks are entered into the origin table generated by the compiler so they are not 
used by xalloc().

The #resvorg is used as follows:

#resvorg <NAME> segment offset size [reserve]

For example, the following code would reserve the entire flash memory in flash compile mode

#resvorg flashmem 0x0 0x0 0x80000 reserve

The reserve keyword must be added to the end to reserve the entire block of memory.

Some applications may require that fixed regions of RAM be reserved for their own use. For example, you 
may want to reserve the upper half of a 512K RAM in Flash compile mode. To reserve this you need to 
add the following line of code to \LIB\BIOSLIB\STDBIOS.C just below the “#resvorg removeflash 
0x0 0x0 0x80000 reserve.”

#ifdef RESERVE_UPPER_RAM
#resvorg reserveupperram 0xC0 0x0 RESERVE_UPPER_RAM

batterybacked reserve
#endif

This tells the compiler to reserve RESERVE_UPPER_RAM bytes from physical address 0xC0000 by add-
ing it to the origin table. This removes this memory block from the available xalloc memory.

In the Defines tab of the Options | Project Options dialog, enter the amount of memory you want to 
reserve. For example,

RESERVE_UPPER_RAM=0x40000

would reserve physical memory from 0xC0000-0xFFFFF and make it unavailable for xalloc. You can then 
access this memory directly from your program as follows:

main() {
long addr;
addr = 0xC0000;  // point to block reserved for my use

}
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7. The System Identification and User
Blocks

The BIOS supports a System Identification block and a User block. These blocks are placed at the top of 
the primary flash memory. Identification information for each device can be placed in the System ID block 
for access by the BIOS, flash driver, and users. This block contains specific part numbers for the flash and 
RAM devices installed, the product’s serial number, Media Access Control (MAC) address if an Ethernet 
device, and so on. The earliest version of the System ID for Rabbit 4000 products is version 4, which is a 
mirrored images type.

When mirrored, there are two combined ID/User blocks images placed contiguously at the top of the pri-
mary flash, from the top down as follows: ID “A” + User “A” + ID “B” + User “B.” Ordinarily, only one 
of the ID/User blocks images is valid at a time, and the valid ID/User blocks image alternates between “A” 
and “B” at each call to the writeUserBlock() function. If both “A” and “B” images are simultane-
ously marked valid, the “A” (topmost) image is taken to be correct. Version 5 ID blocks can be configured 
as described above and can also be configured so that the User block is mirrored and the System ID block 
is not. If a version 5 ID block is configured so that only the User block is mirrored, the images will be ID + 
User “A” + User “B”.

If Dynamic C does not find a System ID block on a device, the compiler will assume that it is a BL1810 
(Jackrabbit) board. It is recommended that board designers include System ID blocks in their products 
with unused fields zeroed out to maximize future compatibility. 

The System ID block has information about the location of the User block. The User block is for storage of 
calibration constants and other persistent data the user wishes to keep in flash. It is strongly recommended 
that the User block (using writeUserBlock()) or the Flash File System be used for storage of persis-
tent data. Writing to arbitrary flash addresses at run-time is possible using WriteFlash() or 
WriteFlash2(), but could lead to compatibility problems if the code were to be used on a different 
type of flash, such as a huge, non-uniform sector size flash.

For example, some flash types have a single sector as big as 128K bytes at the bottom. Writing to any part 
of the sector generally requires erasing the whole sector, so a write to store data in that sector would have 
to save the contents of the whole sector in RAM, modify the section to be changed, and write the whole 
sector back. This is obviously impractical. Although Rabbit does not currently sell products with this type 
of flash, there is no guarantee that future flash market conditions won’t require that such flash types be 
used. Other board designers may have to deal with the same flash market issues. The User block is imple-
mented in a way that preserves forward binary compatibility with a wide range of flash devices.
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7.1 System ID Block Details
The BIOS will read the System ID block during startup. If the BIOS does not find an ID block, it sets all 
fields to zero in the data structure SysIDBlock. The user may access the information contained in the 
System ID block by accessing SysIDBlock.

7.1.1 Definition of SysIDBlock
The following global data structures are defined in IDBLOCK.LIB and are loaded from the flash device 
during BIOS startup. Users can access this struct in RAM if they need information from it. The 
reserved[] field will expand and/or shrink to compensate for the change in size. Items marked ‘**’ 
are essential for proper functioning of the System ID block and certain features (e.g., TCP/IP needs the 
MAC address). Items marked ‘*’ are desirable for future compatibility.

typedef struct _SysIDBlockType2 {
uint8    flashMBC;     // Memory Bank Configurations
uint8    flash2MBC;
uint8    ramMBC;
uint32   devSpecLoc; // Count of additional memory devices 

immediately
// preceding this block

uint32 macrosLoc; // Start of the macro table for additional 
board

// configuration options.
uint32 driversLoc; // offset to preloaded drivers start from 

ID block
//  start (positive is below ID block)

uint32 ioDescLoc; // offset to I/O descriptions start from 
ID block

// start (positive is below ID block)
uint32 ioPermLoc; // offset to User mode I/O permissions 

start from ID
// block start (positive is below ID 

block)
uint32 persBlockLoc; // offset to persistent storage block area 

start from
// ID block start (positive is below ID 

block)
uint16 userBlockSiz2; // size of v. 5 “new style” mirrored User 

block image
uint16 idBlockCRC2; // CRC of SysIDBlockType2 type with 

idBlockCRC2
// member reset to zero and base CRC 

value of
// SysIDBlock.idBlockCRC

} SysIDBlockType2;
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typedef struct {
int  tableVersion; // version number for this table layout**
int  productID; // Rabbit part #
int  vendorID; // 1 = Rabbit
char timestamp[7]; // YY/M/D H:M:S
long flashID; // Manufacturer ID/ Product ID, 1st flash 

*
int  flashType; // Write method
int  flashSize; // in 1000h pages
int  sectorSize; // size of flash sector in bytes
int  numSectors; // number of sectors 
int  flashSpeed; // in nanoseconds *
long flash2ID; // Manufacturer ID/ Product ID, 2nd flash 

*
int  flash2Type; // Write method, 2nd flash
int  flash2Size; // in 1000h pages, 2nd flash
int  sector2Size; // byte size of 2nd flash's sectors 
int  num2Sectors; // number of sectors
int  flash2Speed; // in nanoseconds, 2nd flash *
long ramID; // Rabbit part #
int  ramSize; // in 1000h pages *
int  ramSpeed; // in nanoseconds *
int  cpuID; // CPU type ID *
long crystalFreq; // in Hertz *
char macAddr[6]; // Media Access Control (MAC) address **
char serialNumber[24]; // device serial number
char productName[30]; // NULL-terminated string

// Begin new version 5 System ID block member structure.
SysIDBlockType2 idBlock2; // idblock
// End new version 5 System ID block member structure.
char reserved[1]; // reserved for later use - size can grow
long idBlockSize; // number of bytes in the SysIDBlock 

struct **
unsigned userBlockSize; // User block size, in bytes (right below 

ID block)**
unsigned userBlockLoc; // offset in bytes of start of User block 

from this one**
int  idBlockCRC; // CRC of this block (when this field is 

set to 0) **
char  marker[6]; // should be 0x55 0xAA 0x55 0xAA 0x55 

0xAA**
} SysIDBlock;
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7.1.2 Reading the System ID Block
To read the ID block from the flash instead of getting the information from SysIDBlock, call 
_readIDBlock().

_readIDBlock

int _readIDBlock(int flash_bitmap);

DESCRIPTION:

Attempts to read the system ID block from the highest flash quadrant and save it in the system ID 
block structure. It performs a CRC check on the block to verify that the block is valid. If an error 
occurs, SysIDBlock.tableVersion is set to zero.

This function supports combined System ID/User blocks sizes of sizeof(SysIDBlock) and 
from 4KB to 64KB, inclusive, in 4KB steps. Prior versions of Dynamic C only supported mirrored 
combined block sizes of sizeof(SysIDBlock), 8KB, 16KB and 24KB or unmirrored com-
bined System ID/User blocks sizes of sizeof(SysIDBlock) and from 4KB to 32KB, inclu-
sive, in 4KB steps. 

PARAMETER

flash_bitmap Bitmap of memory quadrants mapped to primary flash. 

Examples:
0x01 = quadrant 0 only
0x03 = quadrants 0 and 1
0x0C = quadrants 2 and 3

RETURN VALUE:

0: Successful
-1: Error reading from flash
-2: ID block missing
-3: ID block invalid (failed CRC check)

LIBRARY

 IDBLOCK.LIB
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 7.1.2.1 Determining the Existence of the System ID Block

In Dynamic C versions prior to 7.20, and for ID block versions 1 and 2, the following sequence of events 
is used by _readIDBlock() to determine if an ID block is present:

1. The 16 bytes at the top of the primary flash are read into a local buffer. (If a 256 KB flash is installed, 
the 16 bytes starting at address 0x3FFF0 will be read.)

2. The last six bytes of the local buffer are checked for an alternating sequence of 0x55, 0xAA, 0x55, 
0xAA, 0x55, 0xAA. If this is not found, the block does not exist and an error (-2) is returned.

3. The ID block size (=SIZE) is determined from the first 4 bytes of the 16-byte buffer.

4. A block of bytes containing all fields from the start of the SysIDBlock struct up to but not including 
the reserved field is read from flash at address 0x40000-SIZE, essentially filling the SysIDBlock 
struct except for the reserved field (since the top 16 bytes have been read earlier).

5. The CRC field is saved in a local variable, then set to 0x0000. A CRC check is then calculated for the 
entire ID block except the reserved field and compared to the saved value. If they do not match, the 
block is considered invalid and an error (-3) is returned. The CRC field is then restored. The reserved 
field is avoided in the CRC check since its size may vary, depending on the size of the ID block.

Determining the existence of a valid mirrored ID block may be slightly more complicated, requiring the 
above sequence of events to be repeated at several locations below the top of the primary flash. See 
Figure 7.2 below for complete details.

Not all fields are filled in different versions of the ID block. The table below lists the first ID block version 
that filled each field and whether that field is absolutely required by Dynamic C for normal operation. 
(Much of the ID block data is useful, but not critical.)

Table 7-1  The System ID Block

Offset from 
start of 
block

Size 
(bytes)

Description
Filled as 

of Version
Required 

00h 2 ID block version number 1 x

02h 2 Product ID 1 x

04h 2 Vendor ID 2

06h 7 Timestamp (YY/MM/D/H/M/S) 1

0Dh 4 Flash ID 2

11h 2 Flash size (in 1000h pages) 2

13h 2 Flash sector size (in bytes) 2

15h 2 Number of sectors in flash 2

17h 2 Flash access time (nanoseconds) 4

19h 4 Flash ID, 2nd flash 2

1Dh 2 Flash size (in 1000h pages), 2nd flash 2

1Fh 2 Flash sector size, 2nd flash (in bytes) 2
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21h 2 Number of sectors in 2nd flash 2

23h 2
Flash access time, in nanoseconds, for the 2nd 
flash

4

25h 4 RAM ID 2

29h 2 RAM size, in 1000h pages 2

2Bh 2 RAM access time, in nanoseconds 4

2Dh 2 CPU ID 3

2Fh 4 Crystal frequency (Hertz) 2

33h 6 Media Access Control (MAC) address 1 x

39h 24 Serial number (as a null-terminated string)

51h 30 Product name (as a null-terminated string)

6Fh 27
Version 5 System ID block member structure 
(SysIDBlockType2)

5

8Ah N Reserved (variable size)

SIZE - 
10h

4 Size of System ID block, in bytes 1 x

SIZE - 
0Ch

2 Size of User block, in bytes 1 x

SIZE - 
0Ah

2
Offset, in bytes, of User block location from start 
of this block

1 x

SIZE - 
08h

2
CRC value of System ID block (when this field = 
0000h)

1 x

SIZE - 
06h

6 Marker, should = 55h AAh 55h AAh 55h AAh 1 x

Table 7-1  The System ID Block (Continued)

Offset from 
start of 
block

Size 
(bytes)

Description
Filled as 

of Version
Required 
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7.1.3 Writing the System ID Block
The WriteFlash() function does not allow writing to the System ID block. If the System ID block 
needs to be rewritten, a utility to do so is available for download from the Rabbit website:

www.rabbit.com/support/downloads/downloads_feat.shtml

or contact Rabbit’s Technical Support.

7.2 User Block Details
Starting with the System ID block version 3, two contiguous copies of the combined ID/User blocks are 
used, or in the case of the version 5 ID block, two contiguous copies of the User block are used. Only one 
image contains “valid” data at any time. When data is written to a mirrored User block, the currently 
invalid User block image is updated first and then validated by changing its marker[5] byte from 0x00 
to 0xAA. This marker is located in the user block itself in version 5 ID blocks where the mirrored user 
blocks are separate from the System ID Block, and in version 5 and prior ID blocks where the User block 
and System ID blocks are combined, the marker byte is located in the System ID Block. Next, the previ-
ously valid image is invalidated by changing its marker[5] byte from 0xAA to 0x00. Finally, the newly 
invalidated image is updated. In this way, there is only a short period of time in which both images are 
marked valid, and at no time are both data blocks marked invalid. If a power failure occurs at any time dur-
ing the User block update, the BIOS will still find a valid ID block and the valid User block will contain 
data from the last completed update transaction. In addition to making data more secure, this redundancy 
allows even very large sector flash types to be used without requiring a large RAM buffer to temporarily 
store the contents of a sector, since sectors must be erased before they can be written.

In Dynamic C 7.20 and later, the possibility of mirrored combined ID/User blocks requires that multiple 
locations in flash must be checked for a valid ID block. In versions 7.20 through 7.3x, the sequence 
described above in Section 7.1.2.1 is used to check not only the top of the primary flash, but also 8KB, 
16KB and 24KB below the top, and an error is returned only if no valid ID block is found at any of these 
locations. Note the implication here that mirrored combined ID/User blocks are limited to one of 8KB, 
16KB, or 24KB in size. Dynamic C versions 8 and later check more locations in flash, from the top down, 
at each lower 4KB boundary to 64KB below the top. This allows Dynamic C 8 and up to recognize a com-
bined ID/User blocks size that is any multiple of 4KB up to a maximum of 64KB.

If the version of the System ID block doesn't support the User block, or no System ID block is present, 
then the 8 KB starting 16 KB from the top of the primary flash are designated the User block area. How-
ever, to prevent errors arising from incompatible large sector configurations, this will only work if the 
flash type is small sector. Rabbit manufactured boards with large sector flash will have valid System ID 
and User blocks, so this should not be a problem on Rabbit-based boards.

7.2.1 Boot Block Issues
The System ID and User block implementations have been designed to accommodate huge, non-uniform 
sector flash types, but it is necessary to use ‘T’ type parts with such flash types so that the smaller boot 
block sectors at the top can be used for the blocks. ‘B’ parts have smaller boot block sectors at the bottom.

No code is included with Dynamic C to lock boot blocks, and users should not lock boot blocks unless 
they are sure they will never write to the blocks after the System ID block is written. If a boot block lock is 
irreversible, we strongly recommend never locking it.
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7.2.2 Reserved Flash Space
The macro MAX_USERBLOCK_SIZE (default 0x8000) in the BIOS tells the Dynamic C compiler how 
much flash at the top of the primary flash is excluded from use by the compiler for xmem functions. For 
any application, whether compiled to a single target board or for multiple target boards, the 
MAX_USERBLOCK_SIZE macro value defined in RabbitBios.c must not be lower than the amount 
of flash required for the System ID/User blocks on the target board with the largest requirement. Note that 
in the case of mirrored combined ID/User blocks (version 3 and up), the amount of flash that must be 
reserved is double the size of one combined ID/User block image. For example, if a target board has mir-
rored combined ID/User blocks and the size of one image is 16 KB (0x4000 bytes), then the minimum 
value defined for the MAX_USERBLOCK_SIZE macro is 32 KB (0x8000 bytes).

All of the default MAX_USERBLOCK_SIZE reserved space is not necessarily needed by the System ID 
and User blocks, but reserving this much space maximizes forward binary compatibility should a product 
switch to any of various huge, non-uniform sector flash types. Some of these types have sectors of 8 KB, 8 
KB and 16 KB at the top, and the mirrored design of the User block requires that these 3 sectors be used. If 
you do not need the User block and are not concerned with forward binary compatibility, the 
MAX_USERBLOCK_SIZE macro value could be safely lowered (protecting the sector containing the ID 
block) to as little as 0x4000 (16 KB), but only if the System ID block is rewritten to set the User block size 
to zero (i.e., no run-time flash writes can occur, such as to the User block or to a flash file system).

Reducing the MAX_USERBLOCK_SIZE macro value will only increase available xmem code space, not 
root code space which is generally in shorter supply. To increase available xmem code space, the following 
general procedure should be followed:

1. Determine that binary forward compatibility with large sector flash types as described above is not an 
issue. This means that the application will only ever run on target boards equipped with small sector 
flash (i.e., uniform sectors of a size no larger than 4 KB).

2. Determine the application's minimum User block size requirement. If the application does not write to 
the User block, this size is zero.

3. If the target board has factory calibration constants stored in the User block, add the size reserved for 
these constants. Consult your hardware manual for the reserved size required. 

4. Add the size of the System ID block, which is 132 bytes for versions 2 through 4. 

5. Round this total size up to the next higher 4 KB block boundary.

6. If using mirrored combined (version 3 or 4) ID/User blocks, double the size.

7. Calculate the number of 4 KB blocks required for the total size.

8. Edit the write_idblock.c utility to set the required number of 4 KB blocks, and write a new ID 
block onto the target board.

9. Repeat the previous steps for every board which is to be programmed with the application(s) compiled 
using the updated MAX_USERBLOCK_SIZE macro value.

10.Edit the RabbitBios.c file to update the MAX_USERBLOCK_SIZE macro value.

Note that it is especially difficult to effectively reduce the MAX_USERBLOCK_SIZE macro value below 
0x4000 (16 KB) for the BL20xx or BL21xx board families, which have their combined ID/User blocks 
size hard-coded in the FLASHWR.LIB and IDBLOCK.LIB libraries because their stored calibration con-
stants are in a nonstandard place. For this reason, Rabbit strongly recommends not attempting to make 
System ID/User block changes on these board families.
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7.2.3 Reading the User Block

readUserBlock

int readUserBlock(void *dest, unsigned addr, unsigned numbytes);

DESCRIPTION:

Reads a number of bytes from the User block on the primary flash to a buffer in root memory. 

NOTE: portions of the User block may be used by the BIOS for your board to store values such 
as calibration constants. See the manual for your particular board for more information before 
overwriting any part of the User block.

PARAMETERS

dest Pointer to destination to copy data to.

addr Address offset in User block to read from.

numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range
-2: No valid System ID block found

LIBRARY

IDBLOCK.LIB
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readUserBlockArray

int readUserBlockArray(void *dests[], unsigned numbytes[], int 
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffers in root 
memory. This function is usually used as the inverse function of 
writeUserBlockArray().

PARAMETERS

dests Pointer to array of destinations to copy data to.

numbytes Array of numbers of bytes to be written to each destination.

numdests Number of destinations.

addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid System ID block found (block version 3 or later)

LIBRARY

IDBLOCK.LIB
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7.2.4  Writing the User Block

writeUserBlock

int writeUserBlock(unsigned addr, void *source, unsigned numbytes);

DESCRIPTION:

Rabbit-based boards are released with System ID blocks located on the primary flash. Version 2 
and later of this ID block has a pointer to a User block that can be used for storing calibration con-
stants, passwords, and other non-volatile data. This block is protected from normal writes to the 
flash device and can only be accessed through this function. This function writes a number of 
bytes from root memory to the User block

NOTE:  Portions of the User block may be used by the BIOS for your board to store values 
such as calibration constants! See the manual for your particular board for more information 
before overwriting any part of the User block. 

Backwards Compatibility:

If the version of the System ID block doesn't support the User block, or no System ID block is 
present, then the 8 KB starting 16 KB from the top of the primary flash are designated the User 
block area. However, to prevent errors arising from incompatible large sector configurations, this 
will only work if the flash type is small sector. Rabbit manufactured boards with large sector flash 
will have valid System and User ID blocks, so this should not be problem on Rabbit-based boards.

If users create boards with large sector flash, they must install System ID block version 3 or great-
er to use this function, or modify this function. 

PARAMETERS

addr Address offset in User block to write to.

source Pointer to destination to copy data from.

numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range
-2: No valid User block found (block version 3 or later)
-3: Flash writing error

 LIBRARY

IDBLOCK.LIB
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writeUserBlockArray

int writeUserBlockArray(unsigned addr, void* sources[], unsigned 
numbytes[], int numsources);

DESCRIPTION

Rabbit-based boards are released with System ID blocks located on the primary flash. Version 2 
and later of this ID block has a pointer to a User block that can be used for storing calibration con-
stants, passwords, and other non-volatile data. The User block is protected from normal write to 
the flash device and can only be accessed through this function or writeUserBlock(). 

This function writes a set of scattered data from root memory to the User block. If the data to be 
written is in contiguous bytes, using the function writeUserBlock()is sufficient. Use of 
writeUserBlockArray() is recommended when the data to be written is in noncontiguous 
bytes, as may be the case for something like network configuration data. See the Rabbit Micro-
processor Designer's Handbook for more information about the System ID and User blocks.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is pres-
ent, then the 8K bytes starting 16K bytes from the top of the primary flash are designated User 
block area. This only works if the flash type is small sector. Rabbit manufactured boards with large 
sector flash will have valid System ID and User blocks, so is not a problem on Rabbit-based 
boards. If users create boards with large sector flash, they must install System ID blocks version 
3 or greater to use this function, or modify this function.

PARAMETERS

addr Address offset in the User block to write to.

sources Array of pointer to sources to copy data from.

numbytes Array of number of bytes to copy for each source. The sum of the lengths 
in this array must not exceed 32767 bytes, or an error will be returned.

numsources Number of data sources.

RETURN VALUE

0: Successful.
-1: Invalid address or range.
-2: No valid User block found (block version 3 or later).
-3: Flash writing error.

LIBRARY

IDBLOCK.LIB
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8. BIOS Support for Program Cloning

The BIOS supports copying designated portions of flash memory from one controller (the master) to 
another (the clone). The Rabbit Cloning Board connects to the programming port of the master and to the 
programming port of the clone. This simple circuit can easily be incorporated into test fixtures for fast pro-
duction.

Figure 8-1  Cloning Board

8.1 Overview of Cloning 
If the cloning board is connected to the master, the signal CLKA is held low. This is detected in the BIOS 
after the reset ends, invoking the cloning support of the BIOS. If cloning has been enabled in the master’s 
BIOS, it will cold boot the target system by resetting it and downloading a primary boot program. The 
master then sends the entire user program along with other user selected portions of flash memory to the 
clone, where the boot program receives it and stores it in RAM then copies it to flash. Optionally, the 
cloned program can begin running on the slave. 

For more details on cloning, see Technical Note 207 “Rabbit Cloning Board,” available at: rabbit.com.
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8.2 Creating a Clone
Before cloning can occur, the master controller must be readied. Once this is done, any number of clones 
may be created from the same master. 

8.2.1 Steps to Enable and Set Up Cloning 
The step-by-step instructions to enable and set up cloning on the master are in Technical Note 207. In 
brief, the steps break down to: attaching the programming cable, running Dynamic C, making any desired 
changes to the cloning macros, and then compiling the BIOS and user program to the master.

The only cloning macro that must be changed is ENABLE_CLONING, since the default condition is that 
cloning is disabled.

8.2.2 Steps to Perform Cloning
Once cloning is enabled and set up on the master controller, detach the programming cable and attach the 
cloning board to the master and the clone. Make sure the master end of the cloning board is connected to 
the master controller (the cloning board is not reversible) and that pin 1 lines up correctly on both ends. 
Once this is done, reset the master by pressing Reset on the cloning board. The cloning process will begin. 

8.2.3 LED Patterns
While cloning is in progress the LED on the Cloning board will toggle on and off every 1-1.5 seconds. 
When cloning completes, the LED stays on. If any error occurs, the LED will start blinking quickly. Older 
versions of cloning used different LED patterns, but the Rabbit 4000 is only supported by versions that use 
the pattern described here.
70 rabbit.com  BIOS Support for Program Cloning

http://www.rabbit.com


8.3 Cloning Questions
The following subsections answer questions about different aspects of cloning.

8.3.1 MAC Address
Some Ethernet-enabled boards do not have the EEPROM with the MAC address. These boards can still be 
used as a clone because the MAC address is in the system ID block and this structure is shipped on the 
board and is not overwritten by cloning unless CL_INCLUDE_ID_BLOCKS is set to one.

If you have a custom-designed board that does not have the EEPROM or the system ID block, you may 
download a program at:

http://www.rabbit.com/support/feature_downloads.html 

to write the system ID block (which contains the MAC address) to your board. 

To purchase a MAC address go to:

http://standards.ieee.org/regauth/oui/index.shtml

8.3.2 Different Flash Types
Since the BIOS supports a variety of flash types, the flash EPROM on the two controllers do not have to be 
identical. Cloning works between master and clone controllers that have different-type flash chips because 
the master copies its own universal flash driver to the clone. The flash driver determines the particulars of 
the flash chip that it is driving. 

8.3.3 Different Memory Sizes
It is recommended that the cloning master and slave both have the same RAM and flash sizes. 

8.3.4 Design Restrictions
Digital I/O line PB1 should not be used in the design if cloning is to be used.
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9. Low-Power Design and Support

With the Rabbit 4000 microprocessor it is possible to design systems that perform their tasks with very 
low power consumption. The Rabbit has several features that contribute to low power consumption. They 
are summarized here and explained in greater detail in the following section.

• Special chip select features minimize power consumption by external memories.

• The Rabbit core operates at 1.8 V.

• The I/O ring can operate 3.3 or 1.8 V.

• The main crystal oscillator may be divided by 2, 4, 6 or 8.

• When the main crystal oscillator is divided by 4, 6 or 8, the short chip select option is available.

• The 32 kHz oscillator may be used instead of the main oscillator; this is sleepy mode. The 32 kHz oscil-
lator may be divided by 2, 4, 8 or 16; this is ultra sleepy mode. The self-timed chip select option is avail-
able in both sleepy and ultra sleepy modes. 

Before looking at the Rabbit 4000 low-power features in greater detail, please note that some of the power 
consumption in an embedded system is unaffected by the clever design features of the microprocessor. As 
shown in the table below, the current (and thus power) consumption of a microprocessor-based system 
generally consists of a part that is independent of frequency and a part that depends on frequency. 

Table 9-1  Factors affecting power consumption in the Rabbit 4000 microprocessor

Current Consumption 
Independent of Frequency

Current Consumption 
Dependent on Frequency

Current leakage. CMOS logic switching state.a

a. Ordinary CMOS logic uses power when it is switching from one state to 
another. The power drawn while switching is used to charge capacitance or is 
used when both N and P field effect transmitters (FETs) are simultaneously on 
for a brief period during a transition. 

Special circuits (e.g. pull-up resistors).

Circuits that continuously draw power.
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9.1 Details of the Rabbit 4000 Low-Power Features
This section goes into more detail about the Rabbit 4000 low-power features. 

9.1.1 Special Chip Select Features
Unlike competitive processors, the Rabbit 4000 has two special chip select features designed to minimize 
power consumption by external memories. This is significant because, if not handled well, external memo-
ries can easily become the dominant power consumers at low clock frequencies. Primarily because most 
memory chips draw substantial current at zero frequency. (When the chip select and output enable are held 
enabled and all other signals are held at fixed levels.)

In situations where the microprocessor is operating at slow frequencies, such as 2.048 kHz, the memory 
cycle is about 488 µs and the memory chip spends most of its time with the chip enable and the output 
enable on. The current draw during a long read cycle is not specified in most data sheets. The Hynix 
HY62KF08401C SRAM, according to the data sheet, typically draws 5mA/MHz when it is operating. 
When performing reads at 2.048 kHz, we’ve found that this SRAM consumes about 14 mA. At the same 
frequency, with the short chip select enabled, the SRAM consumes about 23 µA—a substantial reduction 
in power consumption.

As shown, both special chip select modes (i.e. short chip select and self-timed chip select) reduce memory 
current consumption since the processor spends most of its time performing reads (i.e., instruction 
fetches).

The self-timed chip select feature is available in sleepy and ultra sleepy mode; i.e., when the processor is 
running off the 32 kHz oscillator, or when the oscillator is divided by 2, 4, 8 or 16.

The short chip select feature may be used when the main oscillator is divided by 4, 6, or 8. This division 
can be done regardless of whether the clock doubler is on or off. Currently, interrupts must be disabled 
when both the short chip select feature is enabled and an I/O instruction is used. Interrupts can be disabled 
for a single I/O instruction by using code such as:

push ip ; save interrupt state
ipset 3 ; interrupts off
ioe ld a,(hl)  ; typical I/O instruction
pop ip ; reenable interrupts

NOTE:  Short chip selects and self-timed chip selects only take place during memory reads. 
During writes the chip selects behave normally.

For a detailed description of the chip select features, please see the Rabbit 4000 Microprocessor User’s 
Manual.
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9.1.2 Reducing Clock Speed
It is important to know that the lowest speed crystal will not always give the lowest power consumption. 
This is because when the crystal is divided internally, the short chip select option can be used to reduce the 
chip select duty cycle of the flash memory or fast RAM, greatly reducing the static current consumption 
associated with some memories.

Some applications, such as a control loop, may require a continuous amount of computational power. 
Other applications, such as slow data logging or a portable test instrument, may spend long periods with 
low computational requirements interspersed with short periods of high computational load. At a given 
operating voltage, the clock speed should be reduced as much as possible to obtain the minimum power 
consumption that is acceptable.

9.1.3 Preferred Crystal Configuration
The preferred configuration for a Rabbit 4000 based system is to use an external crystal or resonator that 
has a frequency ½ the maximum internal clock frequency. The oscillator frequency can be doubled and/or 
divided by 2, 4, 6 or 8, giving a variety of operating speeds from the same crystal frequency. In addition, 
the 32.768 kHz oscillator that drives the battery-backable clock can be used as the main processor clock. 
To save the substantial power consumed by the fast oscillator, it can be turned off and the processor can 
run entirely off the 32.768 kHz oscillator at 32.768 kHz or at 32.768 kHz divided by 2, 4, 8 or 16. This 
mode of operation (sleepy mode) has a clock speed in the range of 2 kHz to 32 kHz, and a VDD_{core} 
current consumption in the range of 14 to 22 uA, depending on frequency and voltage.

Figure 9-1  Rabbit 4000 Clock Distribution
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9.2 To Further Decrease Power Consumption
In addition to the low-power features of the Rabbit 4000 microprocessor, other considerations can reduce 
power consumption by the system.

9.2.1 What To Do When There is Nothing To Do
For the very lowest power consumption the processor can execute a long string of mul instructions with 
the DE and BC registers set to zero. Few if any internal registers change during the execution of a string of 
mul zero by zero, and a memory cycle takes place only once in every 12 clocks. 

9.2.2 Sleepy Mode
Power consumption is dramatically decreased in sleepy mode. The VDD_{core}current consumption is 
often reduced to the region of 22 µA 3.3 V and 32.768 kHz. The Rabbit 4000 executes about 6 instructions 
per millisecond at this low clock speed. Generally, when the speed is reduced to this extent, the Rabbit will 
be in a tight polling loop looking for an event that will wake it up. The clock speed is increased to wake up 
the Rabbit.

In sleepy mode, most of the power is consumed by:

• memory

• the processor core

• recommended external 32 kHz crystal oscillator circuit

Using the flash memory SST39LF020-45-4C-WH and a self-timed 106 ns chip select, the memory con-
sumed 22 µA at 32 kHz and 1.4 µA at 2 kHz. For a current list of supported flash, please see Technical 
Note 226 “Supported Flash Devices.” This document is available at:

http://www.rabbit.com/docs/app_tech_notes.shtml

The supported flash devices will give approximately the same values as the flash device that was used for 
testing. The processor core consumes between 3 and 50 µA at 3.3 V as the frequency is throttled from 
2 kHz to 32 kHz, and about 40% as much at 1.8 V. The crystal oscillator circuit consumes 17 µA at 3.3 V. 
This drops rapidly to about 2 µA at 1.8 V. 

Additional power consumption in sleepy mode may come from a low-power reset controller which may 
consume about 8 µA and CMOS leakage which may consume several µA. The power consumed by 
CMOS leakage increases with higher temperatures. 

NOTE: Periodic interrupts are automatically disabled when the processor is placed in sleepy 
mode.

Debug is not directly supported in sleepy modes. Please see Section 9.2.7 on page 78 for more 
information.
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9.2.3 External 32 kHz Oscillator
Unlike the Rabbit 2000, the Rabbit 4000 has no internal 32 kHz oscillator. Instead there is a clock input. 
The recommended external crystal oscillator circuit and the associated battery backup circuit are discussed 
in Technical Note 235 available on our website:

 www.rabbit.com.

9.2.4 Conformal Coating of 32.768 kHz Oscillator Circuit
The 32.768 kHz oscillator circuit consumes microampere level currents. The circuit also has very high 
input impedance, thus making it susceptible to noise, moisture and environmental contaminants. To avoid 
leakage due to moisture and ionic contamination it is recommended that the oscillator circuit be conformal 
coated. This is simplified if all components are kept on the same side of the board as the processor. 
Feedthroughs that pass through the board and are connected to the oscillator circuit should be covered with 
solder mask that will serve as a conformal coating for the back side of the board from the processor. Please 
see Technical Note 303, “Conformal Coating,” and Technical Note 235 “External 32.768 kHz Oscillator 
Circuits” on the Rabbit website for more information

www.rabbit.com/support/techNotes_whitePapers.shtml

9.2.5 Software Support for Sleepy Mode
In sleepy mode the microprocessor executes instructions too slowly to support most interrupts. Data will 
probably be lost if interrupt-driven communication is attempted. The serial ports can function but cannot 
generate standard baud rates when the system clock is running at 32.768 kHz or below. 

The 48-bit battery-backable clock continues to operate without interruption.

Usually the programmer will want to reduce power consumption to a minimum for a fixed time period or 
until some external event takes place. On entering sleepy mode by calling use32kHzOsc(), the periodic 
interrupt is completely disabled, the system clock is switched to 32.768 kHz, and the main oscillator is 
powered down. The device may be run even slower by dividing the 32kHz oscillator by 2, 4, 8, or 16 with 
the set32kHzDivider() call. When the 32kHz oscillator is divided, these slower modes are called 
ultra sleepy modes.

On exiting sleepy mode by calling useMainOsc(), the main oscillator is powered up, a time delay is 
inserted to be sure that it has resumed regular oscillation, and then the system clock is switched back to the 
main oscillator. At this point the periodic interrupt is reenabled. 

While in sleepy mode the user may call updateTimers() periodically to keep Dynamic C time vari-
ables updated. These time variables keep track of seconds and milliseconds and are normally used by 
Dynamic C routines to measure time intervals or to wait for a certain time or date. updateTimers() 
reads the real-time clock and then computes new values for the Dynamic C time variables. The normal 
method of updating these variables is the periodic interrupt that takes place 2048 times per second.

NOTE: In ultra sleepy modes, calling updateTimers() is not recommended.
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Functions are provided to power down the Realtek Ethernet chip as well. By calling the pd_powerup() 
and pd_powerdown() functions, the Realtek chip can be placed in and awakened from its own power-
down mode. Note that no TCP/IP or Ethernet functions should be called while the Realtek is powered 
down.

9.2.6 Baud Rates in Sleepy Mode
The available baud rates in sleepy mode are 1024, 1024/2, 1024/3, 1024/4, etc. Baud rate mismatches of 
up to 5% may be tolerated. The baud rate 113.77 is available as 1024/9 and may be useful for communicat-
ing with other systems operating at 110 bps—a 3.4% mismatch. In addition, the standard PC compatible 
UART 16450 with a baud rate divider of 113 generates a baud rate of 1019 bps, a 0.5% mismatch with 
1024 bps. If there is a large baud rate mismatch, the serial port can usually detect that a character has been 
sent to it, but can not read the exact character.

9.2.7 Debugging in Sleepy Mode
Debugging is not supported in sleepy modes. However, running with no polling (Alt-F9) will avoid the 
loss of target communications when execution enters sections of code using sleepy mode, and debug com-
munications will resume when the normal operation mode is reenabled. 
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10. Supported Flash Memories

There are several flash memories that have been qualified for use with the Rabbit 4000 microprocessor. 
Both small and large sector flash devices are supported. To incorporate a large-sectored flash into an end 
product, the best strategy is have a small-sectored development board.

10.1 Supporting Other Flash Devices
Rabbit does not support flash devices other than those listed in Table 10-1. However, if you wish to use 
another flash memory, one that still uses the same standard 8-bit JEDEC write sequences as one of the sup-
ported flash devices, the existing Dynamic C flash libraries may be able to support it simply by modifying 
a few values. Not all flash devices can be supported, and the degree of support will vary depending on the 
flash characteristics.

There are two modifications to be made, depending on the version of Dynamic C that you are using. Step 
through the list below and perform each action that corresponds to your flash type:

1. The flash device needs to be added to the list of known flash types. This table can be found by search-
ing for the label FlashData in the file LIB\Rabbit4000\BIOSLIB\FLASHWR.LIB. The for-
mat is described in the file and consists of the flash ID code, the sector size in bytes, the total number of 
sectors, and the flash write mode. 

See the comments above the “FlashData::” table in FLASHWR.LIB for more information.
2. The same information that was added to the FlashData table needs to be added to the FLASH.INI 

file (in the main directory where Dynamic C was installed) for use by the compiler and pilot BIOS. See 
the top of the file for more information.

Table 10-1  Flash Devices for Rabbit 4000-Based Designs

Device Name
Device Size 

(bytes)
Write Mode Operating Voltage Dynamic C Support

SST39LF040 512x8 byte 3.0-3.6V Starts w/ version 10

SST39VF040-70-41 512x8 byte 2.7-3.6V Starts w/ version 10

SST39LF040-45-4C 512Kx8 byte 3.0-3.6V Starts w/ version 10

SST39LF400A-55-4C 256Kx16 word 3.0-3.6V Starts w/ version 10

SST39LF800A-55-4C 512Kx16 word 3.0-3.6V Starts w/ version 10
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10.2 Writing Your Own Flash Driver
Rabbit does not support using a flash memory that is not listed above and that does not use the same stan-
dard 8-bit JEDEC write sequences as one of the supported flash memories. If you must use such a flash 
memory, the flash driver supplied with Dynamic C  (LIB\Rabbit4000\BIOSLIB\FLASHWR.LIB) 
provides a model for writing your own flash driver.
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11. Troubleshooting Tips for New
Rabbit-Based Systems

If the Rabbit design conventions were followed and Dynamic C cannot establish target communications 
with the Rabbit 4000-based system, there are a number of initial checks and some diagnostic tests that can 
help isolate the problem.

11.1 Initial Checks 
Perform the first two checks with the /RESET line tied to ground.

1. With a voltmeter check for VDDIO, VDDINT, VBAT and VBATIO for the correct voltages.  Also 
check VSSIO and VSSINT for proper connection to ground.

2. With an oscilloscope check the 32.768 kHz oscillator on CLK32K (pin 49). Make sure that it is oscillat-
ing and that the frequency is correct.

3. With an oscilloscope check the main system oscillator by observing the signal CLK. With the reset held 
high and no existing program in the flash memory attached to the processor, this signal should have a 
frequency one eighth of the main crystal or oscillator frequency.

11.2 Diagnostic Tests
The cold boot mode may be used to communicate with the target system without using Dynamic C. As dis-
cussed in Section 4.1, in cold boot mode triplets may be received by serial port A or the slave port. To load 
and run the diagnostic programs, the easiest method is to use the programming cable and a specialized ter-
minal emulator program over asynchronous serial port A. To use the slave port requires more setup than 
the serial port method and it is not considered here. Since each board design is unique, it is not possible to 
give a one-size-fits-all solution for diagnosing board problems. However, using the cold boot mode allows 
a high degree of flexibility. Any sequence of triplets may be sent to the target. 

11.2.1 Program to Transmit Diagnostic Tests
The file SerialIO_1.zip is available for download at:

 http://ftp1.digi.com/support/driver/rabbit_serial_io.zip

The zip file contains the specialized terminal emulator program serialIO.exe and several diagnostic 
programs. The diagnostic programs test a variety of functionality, and allow the user to simulate some of 
the behavior of the Dynamic C download process. 
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After extracting the files, double click on serialIO.exe to display the following screen.

 

Click on Help at the top left-hand side of the screen for directions for using this program. 

A diagnostic program is a group of triplets. You can open the provided diagnostic programs (those files 
with the extension .diag) with Dynamic C or any simple text editor if you would like to examine the 
triplets that are sent to the target. Also serialIO.exe has the option of sending the triplets a line at a 
time so you can see the triplets in the one-line window next to the Transmit button before they are sent.

NOTE: Connecting the programming cable to the programming connector pulls both SMODE 
pins high. On reset this allows a cold boot from asynchronous serial port A. The reset may be 
applied by pushing the reset button on the target board, or by checking then unchecking the box 
labeled DTR when using serialIO.exe.

In the following pages, two diagnostic programs are looked at in some detail. The first one is short and 
very simple: a toggle of the status line. Information regarding how to check the results of the diagnostic are 
given. The second diagnostic program checks the processor/RAM interface. This example provides more 
detail in terms of how the triplets were derived. After reading through these examples, you will be able to 
write diagnostic programs suited for your unique board design.
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11.2.2 Diagnostic Test #1: Toggle the Status Pin 
This test toggles the status pin.

1. Apply the reset for at least ¼ second and then release the reset. This enables the cold boot mode for 
asynchronous serial port A if the programming cable is connected to the target’s programming connec-
tor.

2. Send the following sequence of triplets.

80 0E 20 ; sets status pin low
80 0E 30 ; sets status pin high 
80 0E 20 ; sets status pin low again
 

3. Wait for approximately ¼ second and then repeat starting at step #1.

While the test is running, an oscilloscope can be used to observe the results. The scope can be triggered by 
the reset line going high. It should be possible to observe the data characters being transmitted on the RXA 
pin of the processor or the programming connector. The status pin can also be observed at the processor or 
programming connector. Each byte transmitted has 8 data bits preceded by a start bit which is low and fol-
lowed by a stop bit which is high (viewed at the processor or programming connector). The data bits are 
high for 1 and low for 0. 

The cold boot mode and the triplets sent are described in Section 4.1 on page 20. Each triplet consists of a 
2-byte address and a 1-byte data value. The data value is stored in the address specified. The uppermost bit 
of the 16-bit address is set to one to specify an internal I/O write. The remaining 15 bits specify the 
address. If the write is to memory then the uppermost bit must be zero and the write must be to the first 32 
KB of the memory space. 

The user should see the 9 bytes transmitted at 2400 bps or 416 µs per bit. The status bit will initially toggle 
fairly rapidly during the transmission of the first triplet because the default setting of the status bit is to go 
low on the first byte of an opcode fetch. While the triplets are being read, instructions are being executed 
from the small cold boot program within the microprocessor. The status line will go low after the first trip-
let has been read. It will go high after the second triplet is read and return to low after the third triplet is 
read. The status line will stay low until the sequence starts again. 

If this test fails to function it may be that the programming connector is connected improperly or the 
proper pull-up resistors are not installed on the SMODE lines. Other possibilities are that one of the oscil-
lators is not working or is operating at the wrong frequency, or the reset could be failing.

 11.2.2.1 Using serialIO.exe

This test is available as StatusTgl.Diag, one of the diagnostic samples downloaded in 
ser_io_rab20.zip. 
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11.2.3 Diagnostic Test #2
The following program checks the processor/RAM interface for an SRAM device connected to /CS1, 
/OE1, /WE1. The test toggles the first 16 address lines. All of the data lines must be connected to the 
SRAM and functioning or the program will not execute correctly.

A series of triplets are sent to the Rabbit via one of the bootstrap ports to set up the necessary control regis-
ters and write several instructions to RAM. Finally the bootstrap termination code is sent and the program 
begins executing instructions in RAM starting at address 0x00.

The following steps illustrate one way to create a diagnostic program.

1. Write a test program in assembly:

main(){
;
#asm
boot:
   ld hl,1 
   ld b,16
loop:
   ld a,(hl)
   add hl,hl   ; shift left
   djnz loop   ; 16 steps 
   jp boot     ; continue test
#endasm
}

2. Compile the program using Dynamic C and open the Assembly window. The disassembled code looks 
like this:
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3. The opcodes and their data are in the 2nd column of the Assembly window. Since we want each triplet 
loaded to RAM beginning at address zero, create the following sequence of triplets. 

; code to be loaded in SRAM

00 00 21
00 01 01
00 02 00
00 03 06
00 04 10
00 05 7E
00 06 29
00 07 10
00 08 FC
00 09 C3
00 0A 00
00 0B 00

4. The code to be loaded in SRAM must be flanked by triplets to configure internal peripherals and a trip-
let to exit the cold boot upon completion.

80 14 05     ; MB0CR: Map SRAM  on /CS1 /OE1 /WE1 to Bank 0
80 09 51     ; ready watchdog for disable 
80 09 54     ; disable watchdog timer
.
.            ; code to be loaded in SRAM goes here
.
80 24 80     ; Terminate boot strap, start executing code at address zero

The program, serialIO.exe, has the ability to automatically increment the address. Instead of typing 
in all the addresses, you can use some special comments. They are case sensitive and must be at the begin-
ning of the line with no space between the semicolon and the first letter of the special comment. 

;Address nnnn
;Triplet

The first special comment tells the program to start at address nnnn and increment the address for each 
transmitted data byte. The second special comment disables the automatic address mode and directs the 
program to send exactly what is in the file. The triplets shown in #3 may be rewritten as:

;Address 0000
21 01 00 ;ld hl,1
06 10 ;ld b,16
7E ;ld a,hl
29 ;add hl,hl
10 FC ;djnz loop
C3 00 00 ;jp 0

;Triplet

5.  The following code is required make diagnostics work for 16-bit data transfers:

\\Header Block

; Insert Rabbit 4000 diagnostic code after this comment.

3E 84; ld a, 0x84
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D3 32 24 00;ioi ld (SPCR), a

; .forever:

D3 3A 30 00;ioi ld a, (PADR)

EE 01; xor 0x01

D3 32 30 00;ioi ld (PADR), a

01 0C 00;ld bc, 12 (use 24 vs. 12 for clock doubled vs. not doubled)

; .again0:

21 CC FB;ld hl, 64460

; .again1:

2B; dec hl

B1; ld de, hl

CC; bool hl

A1; ld hl, de

20 FA; jr nz, .again1

ED 10 F4;dwjnz .again0

18 E5; jr .forever

\\Footer Block

; Insert Rabbit 4000 diagnostic code before this comment.

;Triplet

80 1D 00;MACR = 0x00 (set 8-bit operation for both /CS0 and /CS1)

80 14 0D;MB0CR = 0x0D (4WS, write protected, /OE1, /CS1)

80 15 05;MB1CR = 0x05 (4WS, /OE1, /CS1)

80 16 00;MB2CR = 0x00 (4WS, /OE0, /CS0)

80 17 00;MB3CR = 0x00 (4WS, /OE0, /CS0)

80 13 D6;SEGSIZE = 0xD6 (stack @ 0xD000, data @ 0x6000)

80 11 00;STACKSEG = 0x00 (physical stack @ 0x0D000 = 0x00000 + 0xD000)

80 12 00;DATASEG = 0x00 (physical data @ 0x06000 = 0x00000 + 0x6000)

80 24 80;SPCR = 0x80 (terminate bootstrap, start running at address 0)

The above mentioned diagnostic code must be used with the following 16-bit header code for 16-bit data 
transfers:

80 0E A0;GOCR = 0xA0 (set CLK, STATUS outputs low)

80 09 51;WDTTR = 0x51 (prepare to disable the watchdog)

80 09 54;WDTTR = 0x54 (disable the watchdog)

80 00 08;GCSR = 0x08 (CPU = OSC, PCLK = OSC)

80 10 00;MMIDR = 0x00 (8-bit I/O space, shared I&D space, no inversions)

80 16 25;MB2CR = 0x25 (4WS, inverted MSB, /OE1, /CS1)

80 13 D1;SEGSIZE = 0xD1 (stack @ 0xD000, data @ 0x1000)

80 11 80;STACKSEG = 0x80 (physical stack @ 0x8D000 = 0x80000 + 0xD000)

80 12 7F;DATASEG = 0x7F (physical data @ 0x80000 = 0x7F000 + 0x1000)
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80 73 01;PEAHR = 0x01 (preset PE4 as /A0)

80 75 10;PEFR = 0x10 (PE4 is alternate output)

80 77 10;PEDDR = 0x10 (set PE4 as output)

80 1D 20;MACR = 0x20 (set basic 16-bit operation for /CS1)

80 C4 00;SACR = 0x00 (use pport C for Rx, 8-bit async mode, IRQ off)

80 A0 01;TACSR = 0x01 (enable timer A main clock)

;Address 1000

21 21 00;ld hl, 0x0021

00; nop

2B; dec hl

2B; dec hl

2B; dec hl

2B; dec hl (HL = 0x001D, i.e. MACR)

1E 1E; ld e, 0x1E

1C; inc e

1C; inc e (E = 0x20)

7B; ld a, e

7B; ld a, e (A = 0x20)

D3; ioi

D3 77; ioi ld (hl), a (enable basic 16-bit operation on /CS1)

77; ld (hl), a (harmless write into write-protected MB0CR quadrant)

00; nop

00; nop (allow time for 16-bit memory bus to start up)

3E 24; ld a, 0x24

D3 32 1D 00;ioi ld (MACR), a (set basic 16-bit operation for /CS0 and /CS1)

3E 05; ld a, 0x05

D3 32 14 00;ioi ld (MB0CR), a (4WS, /OE1, /CS1)

;3E 40; ld a, 0x00

;D3 32 16 00;ioi ld (MB2CR), a (4WS, /OE0, /CS0)

3E 80; ld a, 0x80

D3 32 10 00;ioi ld (MMIDR), a (enable 16-bit I/O space)

3E C0; ld a, 0xC0

D3 32 20 04;ioi ld (EDMR), a (enable R4000 instructions)

31 00 E0;ld sp, 0xE000

; Insert Rabbit 4000 diagnostic code after this comment.
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Appendix A: Supported Rabbit 4000
Baud Rates

This table contains divisors to put into TATxR registers. All frequencies that allow 57600 baud up to 
30MHz are shown (as well as a few higher frequencies). All of the divisors listed here were calculated 
with the default equation given on the next page.

Crystal 
Freq. (MHz)

2400 
baud

9600 
baud

19200 
baud

57600 
baud

115200 
baud

230400 
baud

460800 
baud

1.8432 23 5 2 0 a

a. Baud rate is not available at given frequency.

- -

3.6864 47 11 5 1 0 - -

5.5296 71 17 8 2 - - -

7.3728 95 23 11 3 1 0 -

9.2160 119 29 14 4 - - -

11.0592 143 35 17 5 2 - -

12.9024 167 41 20 6 - - -

14.7456 191 47 23 7 3 1 0

16.5888 215 53 26 8 - - -

18.4320 239 59 29 9 4 - -

20.2752 b

b. Baud rate is available with further BIOS modification.

65 32 10 - - -

22.1184 * 71 35 11 5 2 -

23.9616 * 77 38 12 - - -

25.8048 * 83 41 13 6 - -

27.6480 * 89 44 14 - - -

29.4912 * 95 47 15 7 3 1

36.8640 * 119 59 19 9 4 -

44.2368 * 143 71 23 11 5 2

51.6096 * 167 83 27 13 6 -

58.9824 * 191 95 31 15 7 3
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The default equation for the divisor is:

If the divisor is not an integer value, that baud rate is not available for that frequency (identified by a “-” in 
the table). If the divisor is above 255, that baud rate is not available without further BIOS modification 
(identified by a “*” in the table). To allow that baud rate, you need to clock the desired serial port via timer 
A1 (by default they run off the peripheral clock / 2), then scale down timer A to make the serial port divi-
sor fall below 256.

Timer A can be clocked by the peripheral clock (PCLK) in addition to the default, which is the peripheral 
clock/2 (PCLK/2). Furthermore, the asynchronous serial port data rate can be 8x the clock in addition to 
the default of 16x the clock. Therefore, in addition to the equation above, the following equations may be 
used to find the asynchronous divisor for a given clock frequency.

Timer A clocked by PCLK/2, serial data rate = 16 x clock

Timer A clocked by PCLK, serial data rate = 16 x clock:

Timer A clocked by PCLK/2, serial data rate = 8 x clock:

Timer A clocked by PCLK, serial data rate = 8 x clock:

divisor CPU frequency in Hz 
32 baud rate

----------------------------------------------------- 1–=

divisor CPU frequency in Hz
16 2 baud rate

--------------------------------------------------- 1–=

divisor CPU frequency in Hz
16 baud rate

--------------------------------------------------- 1–=

divisor CPU frequency in Hz
8 2 baud rate

--------------------------------------------------- 1–=

divisor CPU frequency in Hz
8 baud rate

--------------------------------------------------- 1–=
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