

Customizing Platform Code
in Digi Embedded Linux

90001228_B

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 2/19

©2012 Digi International Inc.
All Rights Reserved.

Digi, Digi International, the Digi logo, the Digi website, NS9360, NS9210, NS9215, ConnectCore 9P, and
Digi JumpStart Kit are trademarks or registered trademarks of Digi International, Inc. in the United States
and other countries world wide.

All other trademarks mentioned in this document are the property of their respective owners.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Digi may
make improvements and/or changes in this manual or in the product(s) and/or the program(s) described in
this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes may be incorporated in new editions of the publication.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 3/19

1 Document History

Date Version Change Description

05/28/2009 A Initial entry/outline

01/05/2011 90001228_A Transferred document to Digi US repository

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 4/19

2 Table of Contents

1 Document History ... 3
2 Table of Contents .. 4
3 Introduction ... 5
4 Terminology .. 5
5 Understanding the platform code .. 5

5.1 A real example ... 6
5.2 What is in the platform code? .. 7
5.3 Can platform code be customized? .. 7

6 Use of a custom machine .. 8
6.1 The formal way .. 8
6.2 The informal way ... 8

6.2.1 Adding the platform to the Kconfig .. 9
6.2.2 Creating the platform code .. 9
6.2.3 Adding the platform to the Makefile .. 10
6.2.4 Adding a new machine type .. 10

7 Customizing the platform code ... 10
7.1 Removing unneeded devices .. 11
7.2 Memory mapped hardware ... 11

7.2.1 Example: charlcd .. 11
7.3 Bus connected devices ... 12

7.3.1 I2C devices .. 12
7.3.2 SPI devices .. 14

8 Appendix A: Create a new machine ... 17
8.1 Registering a Machine ID .. 17
8.2 Creating the platform Kconfig ... 18
8.3 Creating the platform code ... 18
8.4 Adding the platform to the Makefile .. 18
8.5 Configure U-Boot ... 19

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 5/19

3 Introduction
Digi Embedded Linux platforms support different hardware devices and interfaces. To
support them in the Linux kernel, providing only the device driver is usually not enough.
Some devices need information about the hardware, such as the interrupts or GPIOs they
will use, the clock source, initial configuration data, etc. This information is given in the
platform code.

The platform code of Digi platforms is customized to match the specific hardware of Digi
Development Kits. In practice, however, a user would prefer to add their own hardware
(like an I2C or SPI device) to their final base board and control it using the kernel API.

This Application Note helps you understand and customize platform code to add support
for custom hardware devices (like I2C and SPI devices) in Digi Embedded Linux.

4 Terminology
Some terms have multiple meanings and overlap depending on the context:

• architecture: processor architecture, such as ARM, MIPS, x86, etc.
• platform: family inside one architecture or group of CPUs with common stuff.
• sub-architecture: same as platform.
• machine: a specific hardware implementation of a platform.

The term platform also refers to the physical hardware formed by the CPU module and
development board.

In many sources, the terms machine and platform are used with the same meaning.

5 Understanding the platform code
The Linux kernel can be cross-compiled to different CPU architectures (x86, ARM,
MIPS, etc.). Architecture dependent code is placed in the arch/ folder within the Linux
kernel source tree. Within this folder, there is a subfolder per architecture, for example:

arch/alpha/ For ALPHA processors
arch/arm/ For ARM processors
arch/mips/ For MIPS processors
arch/x86/ For x86 processors
…

Within each of these architecture subfolders, there are the specific processors or families
of processors (known as platforms). Platform-specific code is stored within these
subfolders, for example:

arch/arm/mach-at91/ For Atmel AT91 family of processors
arch/arm/mach-ns9xxx/ For NetSilicon NS9xxx family of processors
arch/arm/mach-s3c2443/ For Samsung S3C2443 processor
…

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 6/19

The selection of the System Type in the Linux kernel configuration determines the
platform code to be compiled.

When the platform code comprises more than one processor or hardware board,
additional options are given in the kernel configuration allowing you to select the specific
processor and hardware platform for which to compile the kernel. This is known as a
machine. The selection of a machine basically defines a configuration variable in the
form CONFIG_MACH_PLATFORMNAME=y, which tells the Makefile in the platform
code folder to compile the files containing the code for that specific machine.

5.1 A real example
Let’s see a real example. The folder arch/arm/mach-ns9xxx/ comprises the platform code
for several processors (NS9360, NS9215, NS9210). Not all the files in this folder need to
be compiled. Selecting the files to be compiled is done within the Makefile of this folder
and is dependent upon configuration variables, for example:

obj-$(CONFIG_MACH_CC9P9360JS) += mach-cc9p9360js.o

In this excerpt of the Makefile we can see that the code in file mach-cc9p9360js.c will
only be compiled if the variable CONFIG_MACH_CC9P9360JS is set to y. This variable
is set by the Kconfig file of this folder, if the ConnectCore 9P 9360 platform on a
JSCC9P9360 development board is selected in the kernel configuration tool.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 7/19

The code in the file mach-cc9p9360js.c is specific to the ConnectCore™ 9P 9360
(CC9P9360) module running on the Digi JSCC9P9360 development board. By selecting
this machine, the kernel will add support for the specific hardware contained in that
module and development board.

5.2 What is in the platform code?
Now, what kind of code does a platform file contain?

The drivers for different hardware devices are stored under the drivers/ folder of the
kernel source tree. Device drivers for the Ethernet interface, Serial, SPI controller, I2C
controller, Flash, Wireless, etc. are stored here. However, most of these drivers need
some information that is specific to the hardware platform; for example, the interrupt they
will use, the physical memory address they are mapped to, the GPIOs they will reserve
and use, the clock source, initial configuration data, etc.

This is the kind of information that is stored in the platform code and is passed to the
device drivers by means of platform devices, which are a special kernel structure.

5.3 Can platform code be customized?
In general, the platform folder doesn’t need any modification because it contains support
for most of the hardware present in Digi modules and development boards. Digi
platforms are also prepared to offer users some customizations within the kernel
configuration tool itself. These customizations can include whether or not to enable the
frame buffer support or the touch screen device, or how many serial ports will be
available and how many lines will they use.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 8/19

However, Digi platforms don’t know about any new or different devices that may be
present in your customized hardware. For this reason, it is necessary to create new
platform code that covers your new devices and hardware modifications.

6 Use of a custom machine
Using the standard platform code for Digi embedded modules is fine for developing and
testing on Digi development boards. However, users may eventually want to compile
code for their own hardware board, where different hardware may be present.

This guide presents two ways of adding support to your specific hardware:

• The formal way
• The informal way

Note: The quickest way to add your specific platform code is to directly modify the
source code of the Digi platform you are working with. If you are working with a
ConnectCore 9P 9360 on a JumpStart development board, that would be the file
arch/arm/mach-cc9p9360js.c and maybe some additional files which contain related
functions.

However, this method is not recommended as it will destroy the platform code for your
Development Kit. If you choose to implement this method, remember to do a backup
before making any modifications.

6.1 The formal way
ARM platforms are identified in the kernel tree by a machine ID. Machine IDs are
allocated by the kernel maintainer in order to keep the large number of ARM platform
variants manageable in the source trees. The formal way of adding support for your
custom machine requires that you register a new ID for your custom hardware platform.

The new ID also requires you to make some U-Boot adjustments.

Normally, you would only register a new machine ID if the changes in the platform code
are so extensive that it makes sense to differentiate the new platform code from the
original machine in the kernel sources. Additional information about registering a new
machine can be found in Appendix A: Create a new machine.

6.2 The informal way
If you want to avoid the overhead of registering a new machine ID into the kernel, you
can reuse the ID of the platform which most resembles your hardware. This is the
recommended method.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 9/19

6.2.1 Adding the platform to the Kconfig
Edit the file arch/arm/mach-similarplatformsuffix/Kconfig and add an entry to select your
platform. For example, if you are basing your new platform on the ns9xxx platform, you
would edit the file arch/arm/mach-ns9xxx/Kconfig with:
 config MACH_YOURPLATFORM

 bool " CC9P9360 on my super new hardware"
 select MODULE_CC9P9360
 help
 Say Y here if you are using the ConnectCore 9P 9360
 on my Super new hardware board.

Note that the third line in the Kconfig script eventually sets the variable
CONFIG_MODULE_CC9P9360 which is available in the C code. This variable will
force the compilation of the code specific for the CC9P9360 module. You want to leave
such a line if you are using that module in your custom hardware.

Similarly, you can add other lines to define any custom variables that you need. These
variables will be accessible from the C code by appending the “CONFIG_” prefix to
them.

This will result in your custom hardware being available for selection on the kernel
configuration tool.

6.2.2 Creating the platform code
Create a new file arch/arm/mach-yourplatformsuffix/mach-yourplatform.c based on the
platform code that most resembles your hardware. In our example, we will create a new
platform arch/arm/mach-ns9xxx/mach-yourplatform.c which is a copy of arch/arm/mach-
ns9xxx/mach-cc9p9360js.c.

The following code needs to be modified to match your platform:
 MACHINE_START(YOURPLATFORM, "ConnectCore 9P 9360 on my hardware")

 .map_io = ns9360_map_io,
 .init_irq = ns9xxx_init_irq,
 .init_machine = mach_yourplatform_init_machine,
 .timer = &ns9360_timer,
 .boot_params = 0x100,
MACHINE_END

Then provide the initialization code for your platform, in the function
mach_yourplatform_init_machine(). Additional information about customizing the
platform code is given later in this document.

Note the CC9P9360 macro is used in the above example because we don’t have
registered macros for our custom machine.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 10/19

6.2.3 Adding the platform to the Makefile
In order for your platform code to be compiled, you need to add a rule to the file
arch/arm/mach-yourplatformsuffix/Makefile. This is normally a line, based on your
platform config macro, that tells the Makefile which object files it needs to compile.

obj-$(CONFIG_MACH_YOURPLATFORM) += mach-yourplatform.o

6.2.4 Adding a new machine type
We will add a new machine type without registering it upstream into
linux/arch/arm/tools/mach-types with a line similar to:

 #

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number

yourplatform MACH_YOURPLATFORM YOURPLATFORM YOURID

You will also need to configure U-Boot to use the new machine ID as explained in
Appendix A, section 8.5.

7 Customizing the platform code
As previously mentioned, platform code contains specific information about the devices
present in the hardware platform, such as the interrupt they will use, the physical memory
address they are mapped in, the GPIOs they will reserve and use, the clock source, initial
configuration data, etc.

Most of the code in the platform folder doesn’t require any modification since Digi
modules contain certain hardware that will always be present and cannot be customized;
such as Flash memory, the Ethernet controller, timers and interrupts, the DMA controller,
etc.

The final carrier board design for the Digi module may, however, include additional
hardware that is not present on the Digi development board, and could also not provide
hardware components that are present on the standard Digi development board.

Make sure that you don’t compile two files that have the
MACHINE_START code for the same ID. In the example above we
reused the ID CC9P9360JS and cannot therefore compile the file
mach-cc9p9360js.c, which implements the MACHINE_START code
for this same ID.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 11/19

7.1 Removing unneeded devices
Digi’s JumpStart boards may contain hardware devices or circuitry for interfaces like:

• Display
• Serial ports
• External I2C RTC chip
• ADC
• Watchdog
• SPI touch screen

The initialization code function mach_digiplatform_init_machine() will call other
functions to initialize the corresponding devices which are present on the JumpStart
board.

Usually the supported devices are included, or not, depending on a configuration variable
of the Kconfig file. It is therefore easy to include them (or not) in the kernel configuration.
For example, you may find code like the following:
 static void __init mach_cc9p9360js_init_machine(void)

{
...
 /* Framebuffer */
#if defined(CONFIG_CC9P9360JS_FB)
 ns9xxx_add_device_cc9p9360_fb(18);
#endif
 /* Watchdog timer */
 ns9xxx_add_device_ns9360_wdt();
...

In this example, the frame buffer is only included if previously enabled in the kernel
configuration (the Kconfig defines variable CONFIG_CC9P9360JS_FB if the frame
buffer component is enabled).

Although the watchdog seems as though it is not protected by a similar mechanism, the
function ns9xxx_add_device_ns9360_wdt() itself is actually defined depending on a
similar variable.

Remember, you can always comment or remove the code of the devices that don’t exist
in your hardware platform.

7.2 Memory mapped hardware
If your custom design adds new hardware to the memory map, for example using a free
external chip select of the module, you will need to create the code to reserve the I/O
memory space, interrupts, GPIOs, or any additional resource that the new device may
need.

7.2.1 Example: charlcd
You can use the code of the charlcd driver module, at /usr/local/DigiEL-
X.Y/modules/charlcd/, as an example of a memory mapped device. This is a simple driver
for controlling a 16 character x 2 line LCD display. The display is thought to be

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 12/19

connected to the peripheral application header connector of a Digi JumpStart
development board and use the following lines:

• One external chip select
• Two address lines
• Eight data lines
• One GPIO (for backlight control)

Schematics are given as a reference, and a README file explains how to load and use
the driver. The source code has been divided in two files:

• charlcd.c: contains the code for controlling the LCD display. This code is common
to all hardware platforms.

• lcd_plat.c: contains the platform code, i.e. the code which differs depending on the
platform the LCD is connected to (configuration of the chip select, number of
GPIOs, etc.).

The driver code has been designed to exemplify the use of platform devices. In real
development, the code in lcd_plat.c should go into your platform code mach-
yourplatform.c with the rest of your devices, instead of in a separate file.

The way it works is the platform code lcd_plat.c registers a platform device to be
controlled by a driver with the name charlcd. On the other hand, the driver code
charlcd.c registers a platform driver with the name charlcd. When this happens, the
kernel detects that there is a registered device for this driver and calls the probe() function
of the driver with the information of the device, which contains the platform-dependent
data.

7.3 Bus connected devices
Devices that are connected to a bus constitute a special case. These are, for example, SPI
and I2C devices.

Digi module processors contain SPI and I2C controllers, allowing you to connect SPI and
I2C devices to them. These bus connected devices are not mapped in physical memory;
they are simply connected to the corresponding bus. However, they may need to reserve
and use some of the processor resources, like an interrupt signal or a GPIO. SPI and I2C
devices need to be registered using the bus API so that the master controller can manage
them.

7.3.1 I2C devices
In the platform code that we have taken as reference, we can see the following code
regarding I2C master controller and I2C devices:
 static void __init mach_cc9p9360js_init_machine(void)

{
...
 /* I2C controller */
 ns9xxx_add_device_cc9p9360_i2c();

 /* I2C devices */

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 13/19

 i2c_register_board_info(0,
 i2c_devices,
 ARRAY_SIZE(i2c_devices));
...

The first line adds the I2C master controller of the processor. The second line registers
the different I2C devices connected to the bus using the i2c_register_board_info()
function which is declared in include/linux/i2c.h. Its arguments are:

• The bus number: If there is only one I2C master controller, this will be 0. If there
are two, it can be 0 or 1, and so on.

• An array of struct i2c_board_info, containing the I2C devices connected to the bus
• The number of elements of the given array

Going back to our code, we are passing the array i2c_devices which is defined as follows
for the CC9P9360JS platform (for clarity, we have omitted several #ifdef clauses that
wrap the code):
 /* I2C devices */

static struct pca953x_platform_data pca9554_data = {
 .gpio_base = 108,
};

static struct i2c_board_info i2c_devices[] __initdata = {
 {
 I2C_BOARD_INFO("pca9554", 0x20),
 .platform_data = &pca9554_data,
 },
 {
 I2C_BOARD_INFO("ds1337", 0x68),
 .irq = IRQ_NS9XXX_EXT0,
 },
};

In this example, there are two I2C devices defined:

• A PCA9554 I/O expander at I2C address 0x20. This is a chip that can be found in
the CC9P9360 JumpStart board, connected to the I2C bus.

• A DS1337 Real Time Clock at address 0x68. This is a chip that can be found in the
CC9P9360 module itself, connected to the I2C bus.

Each device in the array must be initialized using the I2C_BOARD_INFO macro, which
assigns the device type (which eventually links to the driver) and the I2C address for the
device. Then, additional data can optionally be provided such as an interrupt to be used,
or specific platform data for the device (in the example, a struct containing the GPIO
number specifying where to start mapping the expander GPIOs).

To see the complete list of parameters, refer to the i2c_board_info struct, defined at
include/linux/i2c.h.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 14/19

Note that the device type passed in the I2C_BOARD_INFO macro, cannot be an
arbitrary string. The I2C device driver registers its name in an i2c_device_id struct. This
is the name that must be passed to the macro to link the device to the driver.

You can remove the I2C devices your platform is not using and add new entries for any
new I2C device of your hardware.

7.3.2 SPI devices
In the platform code that we have taken as reference, we can see the following code
regarding the SPI master controller and SPI devices:
 static void __init mach_cc9p9360js_init_machine(void)

{
...
 /* SPI */
#if defined(CONFIG_CC9P9360JS_SPI_PORTA)
 ns9xxx_add_device_cc9p9360_spi_porta();
#endif
#if defined(CONFIG_CC9P9360JS_SPI_PORTB)
 ns9xxx_add_device_cc9p9360_spi_portb();
#endif
#if defined(CONFIG_CC9P9360JS_SPI_PORTC)
 ns9xxx_add_device_cc9p9360_spi_portc();
#endif
#if defined(CONFIG_CC9P9360JS_SPI_PORTD)
 ns9xxx_add_device_cc9p9360_spi_portd();
#endif

...

 /* SPI devices */
 spi_register_board_info(spi_devices,
 ARRAY_SIZE(spi_devices));

The NS9360 processor is special because it doesn’t have a dedicated SPI controller.
Instead, each of its serial ports can be configured either as UARTs or SPI controllers. For
this reason, the first lines add the SPI controller of each port, depending on the value of a
configuration variable. This means that we can have up to four SPI master controllers in
the system.

The line at the end registers the different SPI devices connected to the bus using the
spi_register_board_info() function which is declared in include/linux/spi/spi.h. Its
arguments are:

• An array of struct spi_board_info, containing all the SPI devices
• The number of elements of the given array

Going back to our code, we are passing the array spi_devices which is defined as follows
for the CC9P9360JS platform (for clarity, we have omitted several #ifdef clauses that
wrap the code):
 #define CC9P9360JS_TOUCH \

 { \
 .modalias = "ads7846", \

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 15/19

 .max_speed_hz = 200000, \
 .irq = IRQ_NS9XXX_EXT1, \
 .bus_num = 0, \
 .chip_select = 0, \
 .platform_data = &cc9p9360js_touch_data, \
 },

static struct spi_board_info spi_devices[] __initdata = {
 CC9P9360JS_TOUCH
 /* Add here other SPI devices, if any... */
};

In this example, there is only one SPI device defined:

• An ADS7846 touch screen controller

Each device in the array must at least define the following fields of the spi_board_struct:

• modalias: The device type (which eventually links to the driver)
• bus_num: This is the ID of the SPI master controller the device is attached to. The

ID of SPI controllers is set also in the platform code, where each master driver is
added (in the example, the ID used is 0 which means the touch screen device is
attached to the SPI port defined with ID 0 in the CC9P9360JS platform code). If
we see an excerpt of the file ns9360_devices.c, we’ll see that this ID corresponds
to SPI port B of the NS9360 processor.

 static struct platform_device ns9xxx_device_ns9360_spi_porta = {
 .name = "spi_ns9360",
 .id = 1,
 .resource = spi_porta_resources,
 .num_resources = ARRAY_SIZE(spi_porta_resources),
 .dev = {
 .dma_mask = &spi_dmamask,
 .coherent_dma_mask = DMA_BIT_MASK(32),
 },
};

static struct platform_device ns9xxx_device_ns9360_spi_portb = {
 .name = "spi_ns9360",
 .id = 0,
 .resource = spi_portb_resources,
 .num_resources = ARRAY_SIZE(spi_portb_resources),
 .dev = {
 .dma_mask = &spi_dmamask,
 .coherent_dma_mask = DMA_BIT_MASK(32),
 },
};

static struct platform_device ns9xxx_device_ns9360_spi_portc = {
 .name = "spi_ns9360",
 .id = 2,
 .resource = spi_portc_resources,
 .num_resources = ARRAY_SIZE(spi_portc_resources),
 .dev = {
 .dma_mask = &spi_dmamask,
 .coherent_dma_mask = DMA_BIT_MASK(32),
 },
};

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 16/19

static struct platform_device ns9xxx_device_ns9360_spi_portd = {
 .name = "spi_ns9360",
 .id = 3,
 .resource = spi_portd_resources,
 .num_resources = ARRAY_SIZE(spi_portd_resources),
 .dev = {
 .dma_mask = &spi_dmamask,
 .coherent_dma_mask = DMA_BIT_MASK(32),
 },
};

• chip_select: This is the chip select of the SPI master controller the device is

attached to. Some SPI master controllers support driving multiple devices with the
use of SPI chip select lines. The SPI ports of the NS9360 processor only support
one device each, so we used a 0 for this field.

Additional data can optionally be given, like the interrupt, the max clock speed, or
specific platform data for the device (in the example, a pointer called
cc9p9360js_touch_data which points to a struct containing the limit coordinates of the
touch screen as well as other information needed by the driver).

For a complete list of parameters, refer to the spi_board_info struct defined at
include/linux/spi/spi.h.

Note that the device type passed in the modalias field, cannot be an arbitrary string.
The SPI device driver registers its name in a spi_driver struct. This is the name that
must be passed in the modalias field to link the device to the driver.

You can remove the SPI devices your platform is not using and add new entries for any
new SPI device of your hardware.

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 17/19

8 Appendix A: Create a new machine

8.1 Registering a Machine ID
You must first register your new machine with the kernel maintainer to get a number for
it. This is not actually necessary to begin work, but you'll need to do this eventually so it's
best to do it at the beginning and not have to change your machine name or ID later.

Registration of a new platform can be done online
at: http://www.arm.linux.org.uk/developer/machines/

The following information needs to be supplied:

• Machine name: This is the long name of your platform and can be any text
• Machine type: This is the short name for your platform (no spaces allowed)
• Directory suffix: This is the suffix name of the platform folder. Although you can

provide a new one, it is recommended to use the same name as the platform you
are basing your platform on. This will allow you to reuse pre-existing code.

• Web site: The web site of the platform (if any)
• Description: The long description of your platform

For example, if you have created a new hardware board for the ConnectCore 9P 9360:

• Machine name: CC9P9360 on my super new hardware
• Machine type: YOURPLATFORM
• Directory suffix: ns9xxx
• Web site: http://my-super-new-machine.net
• Description: ConnectCore 9P 9360 running on my brand new hardware platform,

which contains these and those devices

Upon registration you will receive the machine ID and macros for your platform. Then
you need to add this information to linux/arch/arm/tools/mach-types with a line like this:
 #

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number

yourplatform MACH_YOURPLATFORM YOURPLATFORM YOURID

Or, go to: http://www.arm.linux.org.uk/developer/machines/ where you can download the
latest version of the mach-types file.

The above file is needed so that the kernel script linux/arch/arm/tools/gen-mach-types
can generate linux/include/asm-arm/machtypes.h which sets the necessary defines and
macros that are used by much of the source to select the appropriate code.

Keep in mind that this file won’t be synchronized with the official
Linux kernel until the next major kernel version is released, so do
not update this file if updating the Linux kernel source tree.

http://www.arm.linux.org.uk/developer/machines/�
http://my-super-new-machine.net/�
http://www.arm.linux.org.uk/developer/machines/�

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 18/19

8.2 Creating the platform Kconfig
To allow different options to be selected during the kernel configuration, and also set
some constants for the build process, you need to create a file arch/arm/mach-
yourplatformsuffix/Kconfig and add an entry to select your new platform:
 config MACH_YOURPLATFORM

 bool " CC9P9360 on my super new hardware"
 select MODULE_CC9P9360
 help
 Say Y here if you are using the ConnectCore 9P 9360
 on my Super new hardware board.

Note that the third line in the Kconfig script eventually sets the variable
CONFIG_MODULE_CC9P9360 which is available in the C code. This variable will
force the compilation of the code specific for the CC9P9360 module. You want to leave
such a line if you are using that module in your custom hardware.

Similarly, you can add other lines to define any custom variables that you need. These
variables will be accessible from the C code by appending the “CONFIG_” prefix to
them.

This will result in your custom hardware being available for selection on the kernel
configuration tool.

8.3 Creating the platform code
Create a new file arch/arm/mach-yourplatformsuffix/mach-yourplatform.c based on the
platform code that most resembles your hardware. In our example, we will create a new
platform arch/arm/mach-ns9xxx/mach-yourplatform.c which is a copy of arch/arm/mach-
ns9xxx/mach-cc9p9360js.c.

The following code needs to be modified to match your platform:
 MACHINE_START(YOURPLATFORM, "ConnectCore 9P 9360 on my hardware")

 .map_io = ns9360_map_io,
 .init_irq = ns9xxx_init_irq,
 .init_machine = mach_yourplatform_init_machine,
 .timer = &ns9360_timer,
 .boot_params = 0x100,
MACHINE_END

Then provide the initialization code for your platform, in the function
mach_yourplatform_init_machine() and add code for the rest of your devices, as
explained in this document.

8.4 Adding the platform to the Makefile
In order for your platform code to be compiled, you need to add a rule to the file
arch/arm/mach-yourplatformsuffix/Makefile. This is normally based on your platform
config macro and that tells the Makefile which object files it needs to compile.

obj-$(CONFIG_MACH_YOURPLATFORM) += mach-yourplatform.o

 Customizing Platform Code in Digi Embedded Linux

Copyright 2012 Digi International Page 19/19

8.5 Configure U-Boot
The U-Boot boot loader passes the machine ID to the kernel, and this ID must match the
one the kernel expects (the ID of the machine it was compiled for), otherwise the kernel
will refuse to boot.

The machine ID is hardcoded in the U-Boot image, but can be forced using a variable
called machid in U-Boot.

In order for your kernel to boot, you must change this variable to contain the ID number
of your new machine. For example, if the ID of your machine is 9999:

setenv machid 9999
saveenv

	1 Document History
	2 Table of Contents
	3 Introduction
	4 Terminology
	5 Understanding the platform code
	5.1 A real example
	5.2 What is in the platform code?
	5.3 Can platform code be customized?

	6 Use of a custom machine
	6.1 The formal way
	6.2 The informal way
	6.2.1 Adding the platform to the Kconfig
	6.2.2 Creating the platform code
	6.2.3 Adding the platform to the Makefile
	6.2.4 Adding a new machine type

	7 Customizing the platform code
	7.1 Removing unneeded devices
	7.2 Memory mapped hardware
	7.2.1 Example: charlcd

	7.3 Bus connected devices
	7.3.1 I2C devices
	7.3.2 SPI devices

	8 Appendix A: Create a new machine
	8.1 Registering a Machine ID
	8.2 Creating the platform Kconfig
	8.3 Creating the platform code
	8.4 Adding the platform to the Makefile
	8.5 Configure U-Boot

