

Taking Advantage of Digi’s
Advanced Web Server’s
Repeat Group Feature

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 2/10
 V4.0

 repeat_groups_aws.doc

1 Document History
Date Version Change Description
3/9/10 V1.0 Initial Entry
3/22/10 V2.0 Continued entry
3/29/10 V3.0 Add in corrections
3/31/10 V4.0 Fill in glossary

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 3/10
 V4.0

 repeat_groups_aws.doc

2 Table of Contents
1 Document History ... 2
2 Table of Contents .. 3
3 Introduction ... 4

3.1 Problem Solved .. 4
3.2 Audience ... 4
3.3 Assumptions ... 4
3.4 Scope .. 5
3.5 Theory of Operation ... 5

4 Basics .. 5
4.1 Indices In Your Stub Functions .. 6

5 Example Application Explanation .. 7
5.1 Html code and comment tags ... 7
5.2 Rg_main_page_v.c ... 8
5.3 Indices .. 9
5.4 The rest of the project ... 9

6 Conclusion .. 9
7 Appendix ... 9

7.1 Glossary of terms ... 9

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 4/10
 V4.0

 repeat_groups_aws.doc

3 Introduction
Repeat groups are an Advanced Web Server (AWS) technique, whereby the AWS
generates html tags and accesses device data on a repeating basis, for applications where
the same controls repeat. This saves memory space as the html is not stored, but is
generated as required on request from a browser. This document describes the
development of a Digi Net+OS project which includes Digi AWS repeat groups. Sample
code here - http://ftp1.digi.com/support/documentation/repeat_groups_project.zip

3.1 Problem Solved
There is a class of projects that involve web server access that involve multiple instances
of objects. That is, objects repeat in the applications. One method for implementing such
an application would be to create multiple web pages where each page is tied to an
instance of the object. This would have two deficiencies. First it would be quite tedious to
implement. Secondly, as conditions changed, additional work (tedious work) would be
required to update the application to meet the changes in the real world that the web
application is monitoring.

Another way to implement such an application would be for the data being monitored to
control the generation of web server data so that as conditions changed, the web pages
would automatically change accordingly. This type of dynamic web page generation can
be achieved using AWS repeat groups. Now, one caveat from the start, what is changing
is the number of objects within a structure (or multiple structures). But, there is some
basic structure in the application that will be assumed to be constrained. As we look at
the application that this paper describes, I hope you will get a feel for what I am talking
about.

What this paper describes is the second method. That is, the ability for a Digi AWS
application to change the number of objects displayed on a web page, based on the
current condition of device data.

3.2 Audience
The audience for this paper is software engineers with experience developing firmware
projects under Digi’s NET+OS development system. Additionally the audience will have
had experience developing Digi NET+OS projects that include web pages served by the
AWS component of Digi’s NET+OS development system.

3.3 Assumptions
This paper assumes that you are going to open up the files in the attached application and
look at the files that are discussed later in this paper. You can probably gain insight by
reading this paper only. On the other hand, I would expect you to gain further insight by
reading this paper and following along with the files in the application.

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 5/10
 V4.0

 repeat_groups_aws.doc

3.4 Scope

The scope of this white paper is to describe the use of repeat groups in a Digi NET+OS
development project using the AWS component of Digi’s NET+OS development
environment.

The scope of this white paper does not include any of the following:

• Training about developing web (html) pages
• Training about developing projects under Digi’s NET+OS development system
• Training about AJAX
• Training about developing C code projects
• Training about bringing up a new platform using Digi’s NET+OS development

system

3.5 Theory of Operation
The advanced web server (AWS) has gone to some lengths to help the developer save
memory. One example of this is the use of dictionaries. The technique described in this
paper is repeat groups. This technique allows for an object on a web page (in an html file)
that might occur multiple times, to be described once, in the html code, and have AWS
generate the required code for accessing and displaying multiple instances of that object
to the browser. In addition, depending on your implementation, the number of instances
of that object can vary, from browse to browse. The theory is that the description of that
object and its attributes is consistent across all instances of that object. If you are
describing printers, they all have a consistent set of items attached to that printer (unless
those items are also repeat groups). This picture of that object, that printer in this case can
be described once. Then at execution time, you can tell AWS how many of things objects,
in this case those printers, actually exist. The browser has no notion of the changes,
except more or less of that object are displayed in the browser.

4 Basics
For Developing a Digi AWS-based web page that includes repeat groups, I would
recommend the following steps. This is a conservative approach, but one that I find
brings you to success quickly.

1. Create a flat html file (no repeat groups or AWS comment tags).
2. Continually surf to this page using your favorite browser until it has the look you

desire.
3. To the html file add AWS comment tags that deal with data access only (no repeat

groups yet)
4. Run this file(s) through the pbuilder utility
5. Fill in the “stub functions” (contained in the _v.c file) passing static data back

through the callbacks (we are not ready for “real” device data yet)

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 6/10
 V4.0

 repeat_groups_aws.doc

6. Make sure you have a backup copy of your _v.c file as we will be running the
pbuilder utility again, and doing so overwrites the _v.c file.

7. Build your application, and browse to the device that is running your application
and evaluate the output.

8. Continually perform steps 3 – 7 until your page looks acceptable
9. Take a hard look at your web page, as it stands now, and get a feel for what parts

should repeat and what parts should be nested in what other parts.
10. At the beginning of an area that you’d like to repeat add the appropriate AWS

comment tag. In the attached project, I used the RpRepeatGroupDynamic. There
are, in fact, three different repeat group “header tags”, RpRepeatGroupDynamic,
RpRepeatGroup and RpRepeatGroupWhile. These are described in the Advanced
Web Server Toolkit guide.

11. At the area where the repeat group should end do not forget to add an
RpLastItemInGroup comment tag. Also keep in mind that unlike most other AWS
comment tags, these comment tags do NOT pair with an RpEnd comment tag.

12. Place your repeat group header and trailer comment tags in the appropriate places
in your html file. This is a step where attention to detail is very important.

13. Rerun your html file(s) through the pbuilder utility. Again remember to back up
your _v.c file (each time) before rerunning the pbuilder utility.

14. Rebuild your NET+OS application and download it into your device.
15. Browse to your device and check the look of your web page.
16. Repeat steps 13 – 15 as needed
17. Now replace the static data, in the stub functions with your device data.
18. Rebuild and retest as needed.

4.1 Indices in Your Stub Functions
When you get your repeat groups running cleanly through the pbuilder and compiling and
linking under the NET+OS development environment, you’ll want to start debugging
your repeat groups. There is a good chance that your repeat groups will be nested and
thus the Digi AWS will pass your stub function(s) indices. The way these indices are
passed is not well documented, so I will spend a little time describing it here.

When an AWS comment tag includes the get or set type of Complex (required for repeat
groups) you will notice that the last parameter passed to many of your stub functions is a
field entitled theIndexValuesPtr. The word Values is most important here. There may be
between one and eight indices contained in this parameter (you can nest repeat groups up
to eight deep). What this actually contains is an array of indices. The 0th element contains
the least frequently changing index. The 1th element contains the next most frequently
changing element and so on up to eight (0 – 7). There is nothing inherent in what is
passed to your stub function, to tell you how many of the elements in the index array are
valid. The assumption is that you know the layout of web page and your data and so you
know how many indices to extract for any given field.

The presumption is that you have arranged your data such that the indices are useful for
accessing the correct data for this get/set.

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 7/10
 V4.0

 repeat_groups_aws.doc

To wrap this section up, I will provide an example; let’s say your application is managing
a number of farms. Each farm has one or more barns and each barn has some number of
horses. The 0th index would represent the farm number. The 1st index would represent
the barn on that farm. The 2nd index would represent the horse within that barn on that
farm.

5 Example Application Explanation
The application associated with this white paper implements a printer management
system. In this mythical world, there are a number of buildings, in our case ten. Each
building has two site managers. Each building has a varying number of printers. Each
printer has a varying number of paper trays that can be in varying states. Also each
printer can have a varying number of print jobs. Those jobs have owners that are
associated with those jobs (presumably the owners requested that the jobs be printed).

The available data is implemented in a number of arrays. Which element of the array is
accessed at any point in time, is controlled by some pseudo-random data (based on the
index and the number of timer ticks the operating system has counted). In addition, the
number of printers, print jobs and printer trays are all controlled by similar pseudo-
random numbers. In your application, the presumption is that you’ll be tracking some real
device data, and things will change or not change based on that data. In this case, a
random number is used to show that the number of repeats from access to access can
change (but does not have to do so).

Based on paragraph one, you can see that the data is nested to a maximum depth of three
(building/site manager, building/printer, building/printer/tray, building/printer/job). The
advanced web server allows for a maximum depth of eight.

5.1 Html code and comment tags

For this section of this paper, you’ll want to open file rg_main_page.html. It should be
contained in the project directory\pbuilder\html.

The web page is fairly simple. It is the repeat group structure that makes it a little
daunting. The first repeat group starts just after the <table> tag. This sets up the repeat
group for the buildings. This repeat group ends just before the </table> tag. Please notice
that this has a function pointer of getBuildingLimits. This causes a stub function
entitled getBuildingLimits to be generated when the pbuilder utility processes this part of
the html file. I’ll explain what this function does when we explore the _v.c file.

The next repeat group starts just after the text “Site Manager Information”. This sets up
the repeat group for the number of site managers watching this building. You’ll notice
(and it is easy to see in this isolated case) that the html code and AWS comment tags for
only one manager is stored here in the file. But when you run the application, you’ll see
two site manager records. This is the power of repeat groups. The site manager repeat
group ends (RpLastItemInGroup comment tag) right before the next repeat group begins.

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 8/10
 V4.0

 repeat_groups_aws.doc

The next repeat group is for the printers in this building (so this repeat group is nested in
the building repeat group). It has a function entitled getPrinterLimits. Again, we’ll
discuss this when we discuss the _v.c file.

As you follow the code in this html file, you’ll see repeat groups for printer trays and
printer jobs. I have named the “get limts” functions strategically, thus making them easier
to find. I would recommend using similar naming conventions when you write your
repeat groups.

The outer repeat group (building) and inner ones printer and jobs, all end near the end of
the file. The repeat group for trays ends further up.

Also notice that within each repeat group, are the standard AWS comment tags for
getting device data. These do not change when using repeat groups.

5.2 Rg_main_page_v.c
The next file we’ll look at is called rp_main_page_v.c. It is located in the pbuilder
directory of the project that came with this paper. This contains the stub functions
generated by running the pbuilder utility against your html file(s).

The tables at the top of the file are used to represent device data. In a real application,
you’d be accessing some information stored or generated by your device. For the
purposes of this white paper, though, I am using these tables.

First, let’s skip down to getSiteManagerLimits. In this case, I am assuming that we’ll
never have more than 2 site managers at any one building. The RpRepeatGroupDynamic
AWS comment tag, causes code to run that is analogous to a for loop. So you see in
getSiteManagerLimits we are setting up the parameters for a for loop. In a standard C
language for loop you have a construct looking something like the following:
For (index = 0; index< some_value, index++). So, the first part gives the index an initial
value (a start). The second part sets an upper limit for the loop and the third part
increments the index. So, in getSiteManagerLimts you are setting up similar values.
theStart is the initial value. theLimit is the limit on the number of iterations. theIncrement
is the amount by which the index should increment each time.

 If you look at getPrinterTrayLimts you’ll see something a little different. In this case the
limit is being set to a different value each time the page is surfed to. This shows that the
limit does not have to be a fixed value. Thus, if the number of objects your device is
managing changes over time, the number of repeats can also change allowing your
application to keep up with the reality of your device. In my case, I am generating a
random number based on the number of ticks since the system was rebooted. The mod 5
ensures that the number I generate equates to an entry in one of the tables above.

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 9/10
 V4.0

 repeat_groups_aws.doc

The remainder of the functions in this file, are either similar to the get limits functions we
have already discussed or are standard get functions similar to what you have done on
other AWS projects.

5.3 Indices

The only other things to explore in this file are the indices. We’ll concentrate on function
getThePrinterJobOwner. I concentrate on this function as it is nested three levels deep
and thus has three (3) indices. Notice that I am treating the pointer as an array and am
pulling the indices out one at a time. Remember also that index array[0] has the LEAST
frequently changing index, that index array [1] has the next more frequently changing
index and index array [2] has the next frequently changing index. I am using the indices
to generate a pseudo-random number to use as an index, so that the information filling the
fields of the web pages changes and thus is visually interesting. In your case, your
information will probably not change that frequently.

5.4 The rest of the project

The remainder of the project is a standard run-of-the-mill AWS project and should build
in a similar manner to any AWS-related projects you have built in the past.

6 Conclusion
Repeat groups give the developer the flexibility of having an AWS project expand and
contract based on the number of objects being managed by the device. In the html file,
only one instance of such an object is defined and then using the “get limts” callback
(stub function) AWS generates code required to display the number of objects requisite
for the situation. Additionally, I believe I have shown that over time, if the number of
objects, under management by the device changes, the “get limits” callback can return
different values, thus allowing the web pages returned to the browser to adjust with the
changes but not requiring the developer to change any code (assuming the “get limits”
callback has the ability to sense the change and communicate the change to AWS through
the ”get limits” callback).

7 Appendix

7.1 Glossary of terms

For every acronym and non-standard term, present the term/acronym and explain its
meaning.

• Advanced Web Server (AWS) – a component of Digi’s NET+OS embedded
operating system that provides embedded web server capabilities to NET+OS’s
offerings.

Taking Advantage of Digi’s Advanced Web Server’s Repeat Group Feature

Copyright 2010 Digi International Page 10/10
 V4.0

 repeat_groups_aws.doc

• AJAX – Asynchronous JavaScript and XML. A method of writing html pages
that provides a more PC-like response to browser-related activities.

• Browse – using a web browser (such as MS IE, Monzilla Firefox or Google
Chrome to access a web server. Can also be accomplished more programmatically
through APIs in languages such as PERL.

• Device data – Data that is stored within the device for which you are writing your
application. Generally the accessing of this device data is the reason you are
browsing into your device.

• Digi NET+OS – Digi International’s embedded operating system and
development environment.

• Html – Hypertext Markup Language. The language in which most web pages are
written.

• pbuilder utility – a component of Digi’s NET+OS embedded operating system. It
is used for transforming html code and AWS comment tags into C code for
inclusion in your AWS-enabled application.

• static data – Parts of a web page that do not change
• stub functions – As a result of running the pbuilder utility against your web

page(s), functions are created in a c file whose name is <your html page>_v.c.
Since in their initial instance, they are empty, they are referred to as stub functions.
The idea is that you fill in the stub functions thus give the AWS access to your
device’s data (device data).

• Surf – A synonym for browsing.

