[image: image1.png]NetSilicon




SNTP API


SNTP Client / Server


TABLE OF CONTENTS

1Overview


1Source Code Files


2SNTP Configuration


3SNTP Client API


4fns_sntp_client_terminate ()


5fns_sntp_client_configure()


7SNTP Server API


8fns_sntp_server_terminate ()


9fns_sntp_server_configure()


10fns_sntp_server ()


11SNTP Clock API


12fns_sntp_set_clock ()


13fns_sntp_get_clock ()


14fns_sntp_get_time ()


15fns_sntp_set_time ()


16fns_sntp_clock_configure ()


17fns_sntp_clock_update ()


18fns_sntp_time_milliseconds ()


19SNTP_TIME Structure


20SNTP Client API Example


22SNTP Server API Example





Overview

Simple Network Time Protocol (SNTP) is used to synchronize computer clocks on an IP network.  SNTP is a simplified version of NTP (Network Time Protocol).  SNTP is a client/server protocol. In this protocol, SNTP servers provide SNTP clients with synchronized time information.

The Fusion SNTP Client may operate in one of three modes.  Unicast, Anycast, Multicast.

Library  Files

The modules required to support the SNTP protocol are provided as a library and a header file:
· sntpapi.h
· sntp.lib

· sntp.dba
Sntp.lib and sntp.dba should be copied to the netos4/lib/32b directory or to the project directory. Sntpapi.h should be included in c files in order to use the API.
SNTP Configuration

The SNTP Client is configured through the use of a series of macros.  The first three of these macros are used to control access to critical sections of the SNTP Client / Server code.  These default values for these macros are shown below.

#define USE_SNTP_CRITICAL int sntp_level

#define SNTP_CRITICAL   sntp_level = os_critical()

#define SNTP_NORMAL     os_normal (sntp_level)

The default macros implement the critical section control through the use of the Fusion functions os_critical, and os_normal.  These functions may also be implemented as a semaphore, mutex, or other similar function.  

The remaining two macros are used to set the default poll rates used by the SNTP Client.  These values maybe overridden by values passed in the fns_sntp_client_configure function call, or defined in the users config.h file.  Use of these macros is optional. 

SNTP_DEFAULT_RECEIVE_POLL_RATE is used to set the rate that the SNTP Client will poll for reception of SNTP message.  The default value is 2 * MS_PER_TICK.  

SNTP_DEFAULT_QUERY_POLL_RATE is used to set the rate at which the SNTP server is to be queried.  The default is sixty seconds.

SNTP Client API

The Fusion SNTP Client API consists of two functions, fns_sntp_client_configure, and fns_sntp_client_terminate.  The function fns_sntp_client_configure is used to configure and start execution of the SNTP Client.  The function fns_sntp_client_terminate is used to terminate execution of the SNTP Client and release its resources.

fns_sntp_client_terminate ()

The fns_sntp_client_terminate () function is used by an application program to terminate the SNTP Client daemon. 

Include:

SNTPAPI.H

Prototype:

int fns_sntp_client_terminate(void);

Input Parameters:

void; 
Return Values:

int; SNTP_CLIENT_NOT_RUNNING = Failure.  SNTP Client not running, nothing done.

SNTP_NO_ERROR = SNTP Client successfully terminated.

fns_sntp_client_configure()

The fns_sntp_client_configure() function is used by an application program to initialize and start the Fusion SNTP client demon. 

Include:

SNTPAPI.H

Prototype:

int fns_sntp_client_configure(

int mode,

int options,

void (*p_callback)(u32 offset[2], u32 time[2]),

u32 recv_poll_rate,

u32 query_poll_rate,

char *p_server)

Input Parameters:

mode; SNTP Client mode of operation.  The following values are accepted  as valid:

               SNTP_MULTICAST

               SNTP_UNICAST

               SNTP_ANYCAST

options; Optional operations to perform when a SNTP message is processed.  The following value is accepted as valid: 

SNTP_AUTO_ADJUST_TIME – Automatically adjust internal time to data received from SNTP server.

p_callback; This is a pointer to a function that is called when an SNTP message from a server is received.  Use of this callback is optional.

recv_poll_rate; Rate at which a message from the SNTP Server is polled.  If this value is set to zero, SNTP_DEFAULT_RECEIVE_POLL_RATE will be used.
query_poll_rate; Rate at which the SNTP Server is queried.  If this value is set to zero, SNTP_DEFAULT_QUERY_POLL_RATE will be used.  This value has no meaning for SNTP_MULTICAST mode.

p_server; Pointer to the SNTP server IP address, a ASCII string in dotted decimal notation.  If  DNS_RESOLVER has been defined, this string maybe a domain name which will be resolved by the Fusion DNS Client.

Return Values:

int;


SNTP_NO_ERROR – SNTP Client successfully started.

SNTP_ILLEGAL_MODE – Invalid mode parameter.

SNTP_INVALID_ADDRESS – Invalid IP address specified.

SNTP_CANNOT_OPEN_SOCKET – Error opening socket.

SNTP Server API

The Fusion SNTP Client API consists of three functions,  fns_sntp_server_configure, fns_sntp_server_terminate, and fns_sntp_server.  The function fns_sntp_server_configure is used to configure the SNTP Server prior to its execution as a thread or task.  The function fns_sntp_server_terminate is used to terminate execution of the SNTP Server and release its resources.  The third function fns_sntp_server is the SNTP Server.  Operating system specific code must be written to start execution of this code, as a thread or task.

fns_sntp_server_terminate ()

The fns_sntp_server_terminate () function is used by an application program to terminate the SNTP Server daemon. This function frees resources used by the SNTP Server, and terminates the servers thread.

Include:

SNTPAPI.H

Prototype:

int fns_sntp_server_terminate(void);

Input Parameters:

void; 
Return Values:

int; SNTP_NO_ERROR - No errors

       SNTP_CANNOT_OPEN_SOCKET - Internal error, socket not valid.

       SNTP_SERVER_NOT_RUNNING - Server not running.

fns_sntp_server_configure()

The fns_sntp_client_configure() function is used by an application program to initialize and start the Fusion SNTP client demon. 

Include:

SNTPAPI.H

Prototype:

int fns_sntp_server_configure(

int mode,

u32 poll_rate,

char *p_broadcast)

Input Parameters:

mode; SNTP Server mode of operation.  The following values are accepted  as valid:

               SNTP_MULTICAST

               SNTP_UNICAST

               SNTP_ANYCAST

When selected, Multicast mode also supports Unicast and Anycast modes.  Unicast, and Anycast modes support both Unicast and Anycast modes of operation.

poll_rate; Multicast mode poll interval.  This specifies the interval in milliseconds between Multicast mode time broadcasts.

p_server; Multicast mode broadcast IP address.  Pointer to the broadcast IP address, a ASCII string in dotted decimal notation. 
Return Values:

int;
SNTP_NO_ERROR = Fusion SNTP client has been successfully initialized. 

SNTP_ILLEGAL_MODE = Invalid mode specified.

SNTP_INVALID_ADDRESS = Invalid format broadcast IP address.

fns_sntp_server ()

The fns_sntp_server () function implements the Fusion SNTP Server.  This function must be run as a simple task, or thread.  Please note that it is up to the user to implement code to start execution of this thread.  It is also assumed that return from this function, also terminates execution of the thread.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_server(void);

Input Parameters:

void; 
Return Values:

void;
SNTP Clock API

The Fusion SNTP Clock API consists functions used to maintain and access an internally kept SNTP clock.  This clock is in NTP format UTC.  The SNTP clock must be updated periodically.  The resolution and method of updating this clock are implementation dependent.

fns_sntp_set_clock ()

The fns_sntp_set_clock  function is used to set the internal SNTP clock.  All internal times are NTP format UTC.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_set_clock(u32 *p_ntp_time);

Input Parameters:

p_ntp_time; Pointer to a u32 array of two containing NTP format time used to set internal clock. 
Return Values:

void;
 

fns_sntp_get_clock ()

The fns_sntp_get_clock  function is used to get the current value of the SNTP internal clock.  Time is in NTP format UTC.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_get_clock(u32 *p_ntp_time);

Input Parameters:

correction; Pointer to a u32 array of tw where the current SNTP clock will be copied.  Time is in NTP format UTC. 
Return Values:

void;
 

fns_sntp_get_time ()

The fns_sntp_get_time () function is used by the application program to get the convert time is kept in NTP (UTC) format, to the hour / minute / second, month / day / year format of the SNTP_TIME structure.  The resulting time is also adjusted by a local time zone correction.

Include:

SNTPAPI.H

Prototype:

int fns_sntp_get_time(u32 *p_ntp_time, SNTP_TIME *p_time);

Input Parameters:

p_ntp_time; Pointer to a u32 array of two.  This array contains time in NTP format UTC.

p_time; Pointer to a structure of SNTP_TIME type where time converted from NTP format is stored.

Return Values:

void;

fns_sntp_set_time ()

This function is used to convert local time, passed to this function in the SNTP_TIME structure to NTP format time.  This time is adjusted by the time zone correction, and stored in UTC.

Include:

SNTPAPI.H

Prototype:

int fns_sntp_set_time(u32 *p_ntp_time, SNTP_TIME *p_time);

Input Parameters:

p_ntp_time; Pointer to a u32 array of two.  This array contains time in NTP format UTC (output from this function).

p_time; Pointer to a structure of SNTP_TIME type where local time is passed to fns_sntp_set_time.

Return Values:

int; SNTP_INVALID_TIME= Error.  Invalid time passed in SNTP_TIME structure.

SNTP_NO_ERROR = Time set successfully.

fns_sntp_clock_configure ()

The fns_sntp_clock_configure  function is used to set a local time zone correction.  All internal times are NTP format UTC.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_clock_configure(int correction);

Input Parameters:

correction;Local time zone correction relative to UTC. This value is minutes relative to UTC. 
Return Values:

void;
 

fns_sntp_clock_update ()

The fns_sntp_clock_update () function is used to update the internal time value.  This function may be called based on a real-time clock tick, or based on reading a time interval value from a counter, or some other time source.  The value passed to this function is the NTP format time relative to the last call to fns_sntp_clock_update.  The function fns_sntp_time_milliseconds may be used to convert time in milliseconds to NTP format time.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_clock_update(u32 update[2]);

Input Parameters:

update; A u32 array of two containing the amount of time to add to the internal clock.   This array is in NTP format, update[0] being time in seconds, update[1] fractional seconds.

Return Values:

void;

fns_sntp_time_milliseconds ()

The function fns_sntp_time_milliseconds is used to convert time from milliseconds to time in NTP format (seconds and fractional seconds).  This       function maybe used prior to calling fns_sntp_clock_update to convert an update time in milliseconds to NTP format.

Include:

SNTPAPI.H

Prototype:

void fns_sntp_time_milliseconds (u32 ms, u32 *p_time);

Input Parameters:

ms; Time in milliseconds.  Input to the function.

p_time; Pointer to a u32 array of 2 that will contain the resulting NTP format time.  Pointer to output from the function.

Return Values:

void;

SNTP_TIME Structure

The functions fns_sntp_get_time and fns_sntp_set_time use the structure SNTP_TIME to convert NTP time to/from hour/minute/second, month/day/year format.  Please see the SNTP API Example for actual use of these functions.  The SNTP_TIME structure is shown below :

typedef struct {

    int hour;

/* hour (0 - 23) */

    int minute;

/* minute (0 - 59) */

    int second;

/* second (0 - 59) */

    int month;

/* month (1 - 12) */

    int day;

/* day (1 - 31) depending on month */

    int year;

/* year (1900 – 2036) */

                } SNTP_TIME;

SNTP Client API Example

The following is an example of  the usage of the SNTP Client API.  In this example the SNTP Client is started in Unicast mode.  In this mode the client will periodically poll a specified SNTP Server for the current time.  In this example the client will poll a SNTP Server with the domain name time.nist.gov, at a 60 second rate.

This example also demonstrates the use of the SNTP client callback function.  The use of the callback function is optional, and is used here for informational purposes only.  Here the callback function simply prints the difference between the server clock and the clients internal clock, and the current time.

The SNTP Client example also contains an example of one method of updating the SNTP clients internal clock.  Here the clock is updated periodically based on the operating systems time base.

#include "sntpapi.h"
void sntp_callback (unsigned long clock_correction[2], unsigned long  time1[2]);

void show_time (void);

void start_sntp (void);

SNTP_TIME time;

int start_timer;

extern TX_THREAD *_tx_thread_created_ptr;

void main()
{
   int error_code ;

/*

   Start SNTP Client in Unicast mode,

   Adjust internal time from SNTP server time,

   Register SNTP callback,

   Poll SNTP server every 60 seconds,

   Use SNTP server named time.nist.gov (use DNS name lookup)

*/

    fns_sntp_clock_configure (-240);  // EST timezone UTC-4 hrs

    error_code = fns_sntp_client_configure(SNTP_UNICAST,

                        SNTP_AUTO_ADJUST_TIME,

                        sntp_callback,

                        0,

                        3600000L,

//repeat evry hour

                        "192.43.244.18");
//sntp timeserver time.nist.gov

}

void sntp_callback (unsigned long clock_correction[2], 

                       unsigned long  ntp_time[2])

{

  TX_THREAD_PTR tp;

  //int start_timer;   //must be global

  //  SNTP_TIME time;

//must be global

    tp = _tx_thread_created_ptr;  //first thread is always timer

    start_timer= tp->tx_run_count;  // lets remember timer value during update

    


// we'll compare it with the timer value every time we need to know time

    







//and we'll know the difference

    printf("SNTP Time Update\r\n");

    printf("Internal time correction (NTP) %X seconds %X\r\n",

                   clock_correction[0],clock_correction[1]);

    printf("Current Time (NTP UTC) %X %X\r\n", ntp_time[0], ntp_time[1]);

    fns_sntp_get_time(ntp_time, &time);  /* convert to readable format*/

    printf ("local time %d:%d:%d  %d/%d/%d\r\n",



time.hour, time.minute, time.second,



time.month, time.day, time.year);

}
void TimeThread (void)

{


u32 periodic_update[2];
/* ntp format clock update amt*/


fns_sntp_time_milliseconds(MS_PER_TICK, periodic_update);


while (1)

/* do forever */

{


t_clock();



fns_sntp_clock_update(periodic_update);



/* insert os specific time delay here */

}

}

void show_time (void)

{

//
SNTP_TIME time_now;


unsigned long  ntp_time[2];


TX_THREAD_PTR tp;


int delta_timer;


tp = _tx_thread_created_ptr;  //first thread is always timer

        delta_timer= (tp->tx_run_count)-start_timer;  // lets remember timer value during update


fns_sntp_get_clock(ntp_time);


//fns_sntp_set_time(ntp_time, &time);


ntp_time[0]=ntp_time[0]+(delta_timer/100);


fns_sntp_get_time(ntp_time, &time);  /* convert to readable format*/


printf ("local time %d:%d:%d  %d/%d/%d\r\n",time.hour, time.minute, time.second,



time.month, time.day, time.year);

}

SNTP Server API Example

The following is an example of  the usage of the SNTP Server API.  In this example the SNTP Server is configured to support both Unicast and Anycast modes.  Since the SNTP Server must run as a thread or task, operating system specific code must be written to begin execution of the server.

As with the SNTP Client example, the SNTP Server must periodically update the internal SNTP clock.  Although the clock update function could be implemented as in the SNTP Client example, here it is assumed that a higher resolution is desired.  Source of the high resolution time information is implementation dependant.  

void main()
{

    u32 ntp_time[2];

    SNTP_TIME time;


     so_initialize ();               /* initialize Fusion */

.


.


.

/*

   Start SNTP Server in Unicast / Anycast mode,

*/

    error_code = fns_sntp_server_configure(SNTP_UNICAST, 0, 0);

/* Insert code here to acquire time, and store it in the SNTP_TIME structure time (hour:minute:second, month/day/year format).

 */

    fns_sntp_set_time (ntp_time, &time); /* initialize internal clock */

/* Insert OS specific thread create function here to start

   TimeThread task.

*/

/* Insert OS specific thread create function here to start

   fns_sntp_server

*/

.

.

.
}



void TimeThread (void)

{


u32 high_res_update[2];
/* ntp format clock update amt*/


while (1)

/* do forever */

{


t_clock();

/*

Insert code here to read high resolution time

*/



fns_sntp_clock_update(high_res_update);



/* insert os specific time delay here */

}

}
















ii
 COMMENTS  \* MERGEFORMAT 
 COMMENTS  \* MERGEFORMAT 

i

[image: image1.png][image: image2.png]NetSilicon



[image: image3.png]NetSilicon



