Modifying and Rebuilding Android
Kernel and Root Filesystem

Modifying and Rebuilding Android Kernel and Root Filesystem

1 Document History

Date Version | Change Description
02/27/2012 | 1.0 Initial version

04/16/2012 | 1.1 Integrating review changes
12/06/2012 | 1.2 Updated to support AADK 1.2

Copyright 2012 Digi International Page 2/13

V1.2 Modifying and re-building Android Kernel and rootfs

2
1
2
3

ol

Modifying and Rebuilding Android Kernel and Root Filesystem

Table of Contents
DOCUMENT HISTOIY ...ttt enne e e 2
Table OF CONENEScviiiiiiiic e bbb ereas 3
T T [N ot A o] o RSP SPRR 4
3.1 Problem SOIVE........oooiiiie 4
T N E (o [1=] o o SRR 4
3.3 ASSUMPLIONS. ..cteeiicieecteete ettt te e e et et e e e s st e sbaeteeneesreenteeneesraees 4
Bid SCOPE .ttt 4
3.5 Theory Of OPEratioN........ccceiieiieieiiese et nas 4
BiASICS ..ttt ettt E et Re e be e e reenre e s 4
4.1 Preparing the system and installing toolScccccceiiiiiie i 4
4.2 Configuring the enVIFONMENT.........cciiiiiiiieee e 5
4.3 Re-Configuring Android Kernel...........cccooveveiieiicii i 7
4.4 Modifying ROOE FIlESYSIEMoviiiiiiiiiieeee e 9
45 Re-building Android Kernel and rootfs...........cccocevveieiciiicie e 10
4.6 Checking generated Android Kernel and rootfs images..........ccccovevevvriernnennnns 11
4.7 Deploying new images on to the target...........cccovevveiecicce e 12
4.7.1 FLASH BOOTING (TFTP server required)..........ccooeverenenenenenennnnnns 12
4.7.2 NFS BOOTING (NFS server required)ccceveveeieeiieseene e 12
4.8 Debugging NEW SYSTEIMccueiuiiiiriiriiriiiiei ettt 13
CONCIUSION ... bbbttt bbb eareenes 13
N 0] 61<] 1o | TP T PO R PP PPRPTPRTRTPRRORN 13
6.1 GlOSSAry Of tEIMS ..ot 13

Copyright 2012 Digi International Page 3/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

3 Introduction

e Customers who need to add additional device support, drivers and features to
Android will have to rebuild Android Kernel and rootfs.

3.1 Problem Solved

e This document will show how to customize and rebuild Android kernel and root
filesystem images

3.2 Audience

Customers using Digi embedded Android SDK on ccwmx51 and ccwmx53 based
modules, who need to add additional device drivers our other functionality and/or
customize root filesystem to contain their own applications and configurations.

3.3 Assumptions
This document was created in reference to Android SDK v1.2.0

3.4 Scope

Extract and install sources and toolchain

Configure and customize Android kernel and root filesystem
Rebuild

Load and run new images on target

4 Basics

The copy of the source code and toolchain required to rebuild Android kernel and
root filesystem images is located on the Android SDK DVD in the tar file. Following
the procedure below will require having an installation of Linux distribution on a
host machine. Rebuilding Android Kernel and rootfs under Windows is currently not
possible. As we only supply Linux based toolchain. Kubundu 10.x installed from
Digi Embedded Linux Live DVD was used as an example to demonstrate the process
below.

4.1 Preparing the system and installing tools

The copy of the source code and toolchain required to rebuild Android kernel and
rootfs images is located on the Android SDK DVD in the tar file.

Extract the code from a tarball included in the DVD (/src folder). Once
uncompressed, the whole project occupies nearly 3.5 GBs.

cd ${HOME}
tar xvfj /<path to tarfile on DVD>/aadk-<version>.tar.bz2

Copyright 2012 Digi International Page 4/13

V1.2 Modifying and re-building Android Kernel and rootfs

4.2

Modifying and Rebuilding Android Kernel and Root Filesystem

Here is an example showing my steps on a host machine. | am using a Kubuntu
Linux that comes with Digi Embedded Linux kit. Digi Android SDK DVD v1.2 is
mounted under /media/AADK:

leonidm@ubuntu:~$ Is -la /media/AADK/sources/aadk-1.2.0.tar.bz2
-r-xr-xr-x 1 leonidm 4294967295 1023820093 2012-02-15 15:10
/media/AADK/sources/aadk-1.2.0.tar.bz2

I will switch to my home directory(or any other folder you have write permission to):
leonidm@ubuntu:~$ cd

leonidm@ubuntu:~$ pwd

/home/leonidm

Make sure | have at least 4Gb of free space (I have almost 8GB):
leonidm@ubuntu:~/aadk-1.2.0$ df -k .

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sdal 29640780 20148416 7986676 72% /

And will start uncompressing the tar file:

leonidm@ubuntu:~$ tar xvfj /media/AADK/sources/aadk-1.2.0.tar.bz2
tar: Record size = 8 blocks

aadk-1.2.0/

aadk-1.2.0/external/

aadk-1.2.0/external/neven/

Configuring the environment

To prepare the environment:
cd aadk-<version>
. build/envsetup.sh
lunch

Choose the desired platform from the lunch menu:
5. imx51_ccwmx51js-eng
6. imx53_ccwmx53js-eng

In my example | will install some missing tools needed for build:
leonidm@ubuntu:~$ sudo apt-get install bison flex gperf

To prepare the environment:
leonidm@ubuntu:~/aadk-1.2.0$ pwd
/home/leonidm/aadk-1.2.0

Copyright 2012 Digi International Page 5/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

leonidm@ubuntu:~/aadk-1.2.0$. build/envsetup.sh
including device/fsl/imx5x/vendorsetup.sh
leonidm@ubuntu:~/aadk-1.2.0$ lunch

You're building on Linux

Lunch menu... pick a combo:
1. generic-eng
2. simulator
3. imx51 bbg-eng
4. imx51_bbg-user
5. imx51_ccwmx51js-eng
6. imx53_ccwmx53js-eng
7. imx53_evk-eng
8. iImx53_evk-user
9. imx53_ard-eng

10. imx53_ard-user

11. imx53_smd-eng

12. imx53_smd-user

13. imx50_rdp-eng

14. imx50_rdp-user

[1' will do this for ccwmx53 so | will choose 6, choose 5 if you use ccwmx51]

Which would you like? [generic-eng] 6

PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.4
TARGET_PRODUCT=imx53_ccwmx53js
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
HOST_ARCH=x86

HOST_0OS=linux

HOST _BUILD_TYPE=release
BUILD_ID=GRJ22

Copyright 2012 Digi International Page 6/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

4.3 Re-Configuring Android Kernel

To make changes to android kernel cd to kernel_imx folder
and run following command:
make ARCH=arm xconfig

in my example:

leonidm@ubuntu:~/aadk-1.2.0$ cd kernel_imx/
leonidm@ubuntu:~/aadk-1.2.0/kernel_imx$ pwd
/home/leonidm/aadk-1.2.0/kernel_imx
leonidm@ubuntu:~/aadk-1.2.0/kernel_imx$ make ARCH=arm xconfig
scripts/kconfig/qconf arch/arm/Kconfig

Graphical Kernel configuration screen will come up:

D% Linux Kernel v2.6.35.14 Configuration ¥ 4 WEEw o0 o o |
File Edit Option Help
oW Il E]
Option = ||| Option =l
-~ EPrompt for development andjor incomplete code/drivers
*RCU Subsystem -~ Crass-compiler tool prefix:
-0 Control Group support - Local version - append to kernel release:
Configure standard kernel features (for small syster [Automatically append version information to the version string
Kernel Performance Events And Counters = Kernel compression mede
GCOV-based kernel profiling i@ Gzip
- Enable loadable module support ~OLZMA
~- [Enable the block layer L-0LZO —
-10 Schedulers ~ [Support for paging of anonymous memory (swap)
~ System Type - ESystem V IPC
= Freescale MXC Implementations - POSIX Message Queues
Serial Port Options, OBSD Process Accounting
SPI Interface Options O Export task/process statistics through netlink (EXPERIMENTAL)
12C Interface options OAuditing support
- CAN Port Options =M Kernel .config support
~SD/MMC Interface options ‘.- Enable access to .config through /proc/cenfig.gz
~Video Interface(s) - (14) Kernel log buffer size (16 => 64KB, 17 => 128KB)
Bus support ~-Menahle denrerated suefs featiires tn stinnnrt nld nseranars tfonls =l

-OPCCard (PCMCIA/CardBus) support
Kernel Features
Boot options
CPU Power Management
- Floating point emulation
- Userspace binary formats
- Power management options
Networking support
= Networking options
O Netwerk packet filtering framework (Netfilter)
O The DCCP Protocol (EXPERIMENTAL)
O The SCTP Protocol (EXPERIMENTAL)
-~ The TIPC Protocol (EXPERIMENTAL)
~OLayer Two Tunneling Protocol (L2TP)
~[ODistributed Switch Architecture support

~0QoS and/or fair queueing -
4 | ;IJ I

General setup

Copyright 2012 Digi International Page 7/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

Alternatively depending on your Linux distribution and available packages you
can use GTK based GUI (might require
sudo apt-get install libgtk2.0-dev libglib2.0-dev libglade2-dev)

make ARCH=arm gconfig

!ng Linux Kernel v2.6.35.14 Configuraticn

(o0 o o 5

| File Qptions Help
s | B o =
Back Load Single Split Collapse Expand
Options |Options Narme —
P General setup
P Enable loadable module support (NEW) MoDU
I Enable the block layer (NEW) BLOCK
b Systermn Type
b Bus support
P Kernel Features
i P Boot options
E b CPU Power Management
b Floating point emulation
P Userspace binary formats
I Power management options Ad
1 O

I

Sarry, no help available for this option yet.

Copyright 2012 Digi International

Page 8/13

Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

Or text menu based Kernel configuration tool
make ARCH=arm menuconfig

kernel_imx : make l<"> | E ” = | = |ﬁl

File Edit View Scrollback Bookmarks Settings Help
.config - Linux Kernel v2.6.35.14 Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=. Highlighted letters are hotkeys. Pressing <Y=
includes, <N= excludes, <M= modularizes features. Press <Esc><Esc> to exit, <?» for Help, </> for Search.
Legend: [*] built-in [] excluded <M= module < = module capable

[*] Enable loadable module support ---
[*] Enable the block layer ---=
System Type ---=
Bus support ---=
Kernel Featurss ---=
Boot options ---=
CPU Power Management ---
Floating point emulation ---
Userspace binary formats ---
Power management options ---
[*] Networking support ---=
Device Drivers --->
File systems --->
Kernel hacking ---=>
Security options ---=
-*¥- Cryptographic API ---=
Library routines --->

< Exit > < Help >

] kernel_imx : make

This is standard Linux Kernel configuration screen you should be familiar with.
Make the changes you need to the Kernel configuration, save and exit the tool. This
step will update .config files with the changes you’ve just made in Kernel
configuration tool.

To see the differences between new .config file created and the default one you
can use following command issued from the kernel_imx folder:

diff .config arch/arm/configs/imx5_android_ccwmx53js_defconfig

To discard your changes and go back to defaults manually delete .config file.

Modifying root filesystem

Whenever a file is modified, the whole root filesystem must be built again to
generate new images to boot from FLASH or from NFS. The build process after
modifying the root filesystem is much quicker than the first time.

Copyright 2012 Digi International Page 9/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

4.5 Re-building Android Kernel and rootfs

Now the build process can be launched:
Go back to the top level of ./ aadk-1.2.0/
First make clean to prepare the build:

make -j<number_of CPUs> clean
Now you can start building the entire tree:
make -j<number_of CPUs>

or to rebuild just the kernel:
make -j<number_of CPUs> del_linux_image

The resulting images can be found at:
out/target/product/<platform>

To clean the results of the last build:
make -j<number_of CPUs> clean

Depending on the number of CPU's, building process can take from 15 minutes to
several hours.

In my example :
leonidm@ubuntu:~/aadk-1.2.0/kernel_imx$ pwd
/home/leonidm/aadk-1.2.0/kernel_imx
leonidm@ubuntu:~/aadk-1.2.0/kernel_imx$ cd ..
leonidm@ubuntu:~/aadk-1.2.0$ pwd
/home/leonidm/aadk-1.2.0
leonidm@ubuntu:~/aadk-1.2.0$ make -j2

PLATFORM_VERSION_CODENAME=REL

PLATFORM_VERSION=2.3.4

TARGET_PRODUCT=imx53_ccwmx53js

Target system fs image:
out/target/product/imx53_ccwmx53js/obj/PACKAGING/systemimage_intermediates/
system.img

Install system fs image: out/target/product/imx53_ccwmx53js/system.img

Installed file list: out/target/product/imx53_ccwmx53js/installed-files.txt

[UBIFS]: out/target/product/imx53_ccwmx53js/android-ccwmx53js-128.ubifs
[UBI]: out/target/product/imx53_ccwmx53js/android-ccwmx53js-128.ubi
[UBIFS]: out/target/product/imx53_ccwmx53js/android-ccwmx53js-512.ubifs
[UBI]: out/target/product/imx53_ccwmx53js/android-ccwmx53js-512.ubi
[NFS]: out/target/product/imx53_ccwmx53js/android-ccwmx53js.tar.bz2

Copyright 2012 Digi International Page 10/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

leonidm@ubuntu:~/aadk-1.2.0$

4.6 Checking generated Android Kernel and rootfs images

All the files generated after building the source code. Below is brief description of those
files:

out/target/product/<platform> contains:
- files to be flashed into the device:
- ulmage-android-<platform>: kernel image
- android-<platform>-<size>.ubifs: root filesystem
- files necessary to boot the device from NFS:
- ulmage-android-<platform>: kernel image
- root folder
- data folder: copy content to root/data
- system folder: copy content to root/system

So in our example all images go to
aadk-1.2.0/out/target/product/imx53_ccwmx53js/:

leonidm@ubuntu:~/aadk-1.2.0$ Is -Ih out/target/product/imx53_ccwmx53js/ [more
total 488M

-rw-r--r-- 1 leonidm leonidm 78M 2012-02-27 15:49 android-ccwmx53js-128.ubi
-rw-r--r-- 1 leonidm leonidm 77M 2012-02-27 15:49 android-ccwmx53js-128.ubifs
-rw-r--r-- 1 leonidm leonidm 82M 2012-02-27 15:49 android-ccwmx53js-512.ubi
-rw-r--r-- 1 leonidm leonidm 81M 2012-02-27 15:49 android-ccwmx53js-512.ubifs
-rw-r--r-- 1 leonidm leonidm 62M 2012-02-27 15:51 android-ccwmx53js.tar.bz2
-rw-r--r-- 1 leonidm leonidm 16 2012-02-27 14:58 android-info.txt

-rw-r--r-- 1 leonidm leonidm 3.4K 2012-02-27 14:33 clean_steps.mk

drwxr-xr-x 3 leonidm leonidm 4.0K 2012-02-27 15:03 data

-rw-r--r-- 1 leonidm leonidm 35K 2012-02-27 15:48 installed-files.txt

drwxr-xr-x 14 leonidm leonidm 4.0K 2012-02-27 15:48 obj

-rw-r--r-- 1 leonidm leonidm 297 2012-02-27 14:33 previous_build_config.mk
-rw-r--r-- 1 leonidm leonidm 1.9M 2012-02-27 15:23 ramdisk.img

drwxr-xr-x 3 leonidm leonidm 4.0K 2012-02-27 15:23 recovery

drwxr-xr-x 8 leonidm leonidm 4.0K 2012-02-27 15:23 root

drwxr-xr-x 6 leonidm leonidm 4.0K 2012-02-27 15:23 symbols

drwxr-xr-x 11 leonidm leonidm 4.0K 2012-02-27 15:23 system

-rW=---=---- 1 leonidm leonidm 103M 2012-02-27 15:48 system.img
-rw-r--r-- 1 leonidm leonidm 2.6M 2012-02-27 14:37 ulmage-android-ccwmx53js
-rW==-=--- 1 leonidm leonidm 1.5M 2012-02-27 15:14 userdata.img

Copyright 2012 Digi International Page 11/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

4.7 Deploying new images on to the target

4.7.1 FLASH BOOTING (TFTP server required)

Instructions to flash the images into the device:
- Copy both images, kernel and root filesystem, in the TFTP server (i.e. /tftpboot).
- Boot the device and press any key to stop boot at u-boot.
- Check the flash sector size to know which root filesystem image has to be
flashed (FLASH erase block size will be reflected in rootfs image file name
containing -128 or -512):

nand info
- Flash the kernel:

update android tftp ulmage-android-<platform>

or just

update android tftp
- Flash the root filesystem:

update androidfs tftp android-<platform>-<size>.ubifs

or just

update androidfs tftp
In this case system will determine —<size> automatically so this should be a
preferred method.
- Set bootcmd to boot from FLASH:

setenv bootcmd dboot android flash

saveenv
- Restart the device and let it complete boot process:

reboot

4.7.2 NFS BOOTING (NFS server required)

Assuming NFS server path is /exports/<folder>, instructions are:
- Copy built images to NFS server:
sudo cp -r out/target/product/<platform>/ulmage-android-<platform>
/exports/<folder>
sudo cp -r out/target/product/<platform>/root/* /exports/<folder>
sudo cp -r out/target/product/<platform>/system/* /exports/<folder>/system
sudo cp -r out/target/product/<platform>/data/* /exports/<folder>/data
- Boot the device and press any key to stop boot at u-boot.
- Set bootcmd to boot from NFS (to boot from flash, remember to set it back
to “dboot android flash”) and set npath with the NFS server path:
setenv bootcmd dboot android
setenv npath /exports/<folder>
- Set the proper kernel image name:
setenv aimg ulmage-android-ccwmx53js

Copyright 2012 Digi International Page 12/13

V1.2 Modifying and re-building Android Kernel and rootfs

Modifying and Rebuilding Android Kernel and Root Filesystem

To boot from NFS the ulmage file can be copied in the NFS server or in the TFTP
server. Depending on this, the bootcmd variable will be different.
- ulmage in TFTP server --->
setenv bootcmd dboot android tftp
- ulmage in NFS server --->
setenv bootcmd dboot android nfs.

During boot, user may be asked to calibrate the touch screen if that's the selected video
interface.

4.8 Debugging new system

The main commands to retrieve debug messages in the device's console are:

- dmesg: diagnostic messages created by the kernel.

- logcat: logging messages provided by Android.
In case of error, these two commands allow users to determine, at least in a first approach,
what's going on.

5 Conclusion
Give the reader a synopsis of what he just read.

6 Appendix

6.1 Glossary of terms
rootfs — Root File System

Copyright 2012 Digi International Page 13/13

V1.2 Modifying and re-building Android Kernel and rootfs

