

Application Note for ConnectCore
module accessing external perhiperals

 2

 Digi International Inc. 2007. All Rights Reserved.
The Digi logo is a registered trademark of Digi International, Inc.
All other trademarks mentioned in this document are the property of their
respective owners.
Information in this document is subject to change without notice and does not
represent a commitment on the part of Digi International.
Digi provides this document “as is,” without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of
fitness or merchantability for a particular purpose. Digi may make improvements
and/or changes in this manual or in the product(s) and/or the program(s)
described in this manual at any time.
This product could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes may be incorporated in new
editions of the publication.
Digi International Inc.

11001 Bren Road East

Minnetonka, MN 55343 (USA)

 +1 877 912-3444 or +1 952 912-3444
http://www.digi.com

 3

Table of contents

History .. 4

References ... 4

Acronyms ... 4

4 Overview ... 5
4.1 Introduction ... 5

5 External Peripheral Implementation ... 6
5.2 Device Driver example ... 6

5.2.1 Stream Interface Driver Functions .. 6
5.2.2 Export Driver functions .. 6
5.2.3 Registry settings ... 7
5.2.3 Driver API calls ... 7

5.3 Low Level functions .. 8
5.4 Use Interrupt to Access External Device .. 9

5.4.1 Implement IST in Driver .. 9
5.4.2 Use GPIO Driver ... 10

5.5 Static Memory Register .. 11

 4

History
Date Version Author Description
03/12/07 0.1 ME First version

References
Number Name Description
1
2

Acronyms
Name Description
OS Operating System.
CS Chip Select
PB Platform Builder
BSP Board Support Package
OAL Original Equipment Manufacturer
IST Interrupt Service Thread
ISR Interrupt Service Routine
WE Write Enable
DLL Dynamic Link Library
DM Device Manager
PM Power Manager

 5

4 Overview

4.1 Introduction

This document will describe what is necessary to access a device connected to
the peripheral external bus of the NS9360 or ConnectCore 9 modules.

External peripherals are normally accessed through an address mapping and the
corresponding read and write cycles are handled by the OE# and WR# signal
that are available on the external bus.

The CS signal is used to map the connected device on the external bus to a
specific memory address range. If several devices will be connected to the same
CS signal address space additional logic might be necessary to access each of
the connected devices.

These control signals have the possibility to adjust to timing configuration of the
peripheral device that is connected to the bus. The NS9360 CPU contains
several control register to adjust the external bus timing of the CS#, WR# and
OE# signal. This allows connecting a huge variety of devices to the external bus
to increase or enhance the functionality of the CPU. Additionally, the CS signal
and the address range are configurable by a register of the CPU. In that register
the start of the CS address and the CS mask can be setup.

The bus width to access to an external peripheral can be 8bit, 16bit or 32bit. In
the static memory configuration register that value can be set to select one of the
three bus width.

For more details please refer to the hardware manual of the corresponding CPU.

 6

5 External Peripheral Implementation

5.2 Device Driver example

The access to the external peripheral can be done through a Windows CE
standard stream interface device driver for more details on that kinds of driver
please refer the online help. Depending on the external peripheral also another
driver models could be used.

The stream interface driver can be implemented either in kernel or user mode
depending on the performance that is required to access the connected device.

5.2.1 Stream Interface Driver Functions

A Windows CE driver is normally implemented as a DLL. The DLL will exports
functions that allow applications to access the driver. The main entry point into a
DLL is DllEntry. That is called when the DLL is loaded either by the DM or an
application.

The standard stream interface driver uses normally the following functions.

Driver Function API call Description
XXX_Init() Called by the DM when loaded
XXX_DeInit() Called when unloaded
XXX_Open() CreateFile() Opens a driver handle
XXX_Close() CloseHandle() Closes a driver handle
XXX_Read() ReadFile() Read from the external device
XXX_Write() WriteFile() Write to the external peripheral
XXX_PowerUp() Called by the PM
XXX_PowerDown() Called by the PM
XXX_Seek() SetFilePointer() Set data pointer
XXX_IOControl() DeviceIoControl Driver specific IOCTLs

Table 5.2.1.1: Stream interface functions

The XXX of each function need to be changed by a three letter prefix that will be
used to identify each of the functions implemented in the driver.

5.2.2 Export Driver functions

The functions that are exported by the driver are listed in a file with the extension
DEF.

 7

5.2.3 Registry settings

To load the driver by the DM, for more information of the DM task please refer to
the online help, a specific registry path need to be used. The DM checks all
entries under the path HKEY_LOCAL_MACHINE\Drivers\BuiltIn and tries to load
each of the driver entries.

Following an example of such a registry entry for a Windows CE driver

 [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\My_Driver_Name]
 "DeviceArrayIndex"=dword:0
 "Prefix"="XXX"
 "Dll"="my_driver_name.dll"
 "Order"=dword:0
 "MyRegKey"=dword:ffff

All DWORD values in the registry are red as hexadecimal and all strings as
Unicode by the OS.

5.2.3 Driver API calls

To access the driver from an application there are only a few APIs available for a
stream interface driver. Table 5.2.1.1 shows each of the APIs that are available,
for more details on each of the APIs and the necessary parameters please refer
to the Platform Builder online help.

 8

5.3 Low Level functions

The BSP for the ConnectCore 9 family includes several low level functions that
can be used to configure the external bus interface of the NS97XX CPU family.
These functions can be found in the BSP sources at

%(_WINCEROOT)\platform\common\src\soc\NS9XXX_DIGI_V1\oal\oalmemcrtl

Here a list of the current functions implemented in the BSP and their functionality

Low level function Description
OEMNS9xxx_set_static_mem_cfg Writes static memory config register
OEMNS9xxx_get_static_mem_cfg Read static memory config register
OEMNS9xxx_set_static_mem_wen Set write enable delay time
OEMNS9xxx_set_static_mem_oen Set output enable delay time
OEMNS9xxx_set_static_mem_rd Set read delay time
OEMNS9xxx_set_static_mem_pg Set page mode read delay time
OEMNS9xxx_set_static_mem_wr Set write delay time
OEMNS9xxx_set_static_mem_tn Set turn round delay time
OEMNS9xxx_set_static_mem_extw Set extended wait state

Table 5.3.1: Low level BSP functions

 9

5.4 Use Interrupt to Access External Device

To reduce CPU load and increase performance to access the external peripheral
device an interrupt should be used. The NS9XXX series has 4 external interrupt
lines that can be used to implement that functionality into the system. Please
refer to the hardware manual to verify which external interrupt line is free for use.

There are two possibilities to implement the interrupt functionality to the OS.

1. Implement an IST in the device driver of the external peripheral device. When
an interrupt occurs the system will enter the IST and perform the necessary
operations

2. Use from the application the GPIO driver to detect an incoming interrupt. The
GPIO driver included in the BSP includes several IOCTLs to configure a pin and
to detect an interrupt on the four external interrupt pins. For more information on
how to use the GPIO driver please review the “Windows CE User Guide”.

5.4.1 Implement IST in Driver

The implementation of the interrupt into the driver is normally made by using a
thread that handles the interrupt and an event that is linked to the interrupt itself.
In the thread the driver waits that the OS signals that the created event has be
signaled.

Windows CE offers the possibility to add an installable ISR to the system to avoid
modifying the OAL to implement the interrupt, because in some cases it might
not be possible to modify the OAL.

The Platform Builder already comes with a generic installable ISR. If that
installable ISR fulfills the needs for the driver the following entries need to be
added to the driver registry.

 "IsrDll"="giisr.dll"
 "IsrHandler"="ISRHandler"

In case the installable ISR need to be modified the source code is available at

%(_WINCEROOT)\PUBLIC\COMMON\OAK\DRIVERS\GIISR

 10

5.4.2 Use GPIO Driver

The GPIO driver can be accessed from any Windows CE application. A source
code example on how to use the GPIO driver is included in the BSP.

How to configure and use an external IRQ line with the GPIO driver the following
code example

….
GPIOMessage gpioMessage;
DWORD dwMessagesTransferred;

/* opening the GPIO driver and receive a handle */

gpioMessage.unPinNumber = unPinNumber; // external irq pin
gpioMessage.mode = nMode;

gpioMessage.ulFlags = 0;
gpioMessage.unValue = 0;

/* wait for the external interrupt to occur */
if (!DeviceIoControl(hPort, IOCTL_GPIO_WAIT_FOR_IRQ, &gpioMessage,

sizeof(gpioMessage), 0, 0, &dwMessagesTransferred, 0))
{
 /* failure while waiting for interrupt */
}
else
{
 /* received external interrupt */
}

When an interrupt occurs on the external interrupt line the driver will signal that to
the application returning from API. Now the application can do the necessary
steps to access the external device.

 11

5.5 Static Memory Register

The following table shows all the static memory register available on the
NS9XXX family.

Register Default Max. Value Min. Value Description
Extended Wait 0 0x3FF 0x001 Long static write and read
Configuration 0 0x18X1CF 0x000000 Static memory configuration
Write Enable
Delay

0 0x0F 0x01 Delay from CS to WE

Output Enable
Delay

0 0x0F 0x01 Delay from CS to OE

Read Delay 0x1F 0x1F 0x00 Delay from CS to read access
Page Mode
Read Delay

0x1F 0x1F 0x00 Delay asynchronous page
mode access

Write Delay 0x1F 0x1F 0x00 Delay from CD to write
access

Turn Round
Delay

0x0F 0x0F 0x00 Number of bus turnaround
cycles

Table 5.5.1: Static Memory Register of NS9XXX family

For more details on each of the register, please refer the hardware manual of the
corresponding CPU.

