

Controlling Page Changes in AWS
Applications

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 2/11
 V1.3 controlling_page_changes.doc

1 Document History
Date Version Change Description
8/4/09 1.0 Initial Entry
8/4/09 1.1 Initial edits
8/5/09 1.2 Added application description content
8/6/09 1.3 More edits added Glossary

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 3/11
 V1.3 controlling_page_changes.doc

2 Table of Contents
1 Document History ... 2
2 Table of Contents .. 3
3 Introduction ... 4

3.1 Problem Solved .. 4
3.2 Audience ... 4
3.3 Assumptions ... 4
3.4 Scope .. 4
3.5 Theory of Operation ... 5

4 Basics .. 6
4.1 Catching and redirecting unsecure browser connections 6
4.2 Redirecting web page flow in NET+OS application code (C code) 7
4.3 Handling your exit .. 7

5 Example Application Explanation .. 8
5.1 front_page.html .. 8
5.2 createAccountPage.html ... 9
5.3 optionsPage.html .. 9
5.4 Stub functions – front_page_v.c ... 9

5.4.1 getTheAccount() ... 10
5.4.2 SetThePassword .. 10

5.5 exitPage.html .. 10
6 Conclusion .. 11
7 Appendix ... 11

7.1 Glossary of terms ... 11

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 4/11
 V1.3 controlling_page_changes.doc

3 Introduction
This document describes methods for controlling all page transitions within a NET+OS
AWS-based application. The solutions and examples described herein use a combination
of JavaScript and Advanced Web Server (AWS) Toolkit function calls.

3.1 Problem Solved
For many simple embedded web applications, based on NET+OS’s Advanced Web
Server, giving the AWS engine decision-making power over the next page to which the
application transitions is inadequate. On the other hand, there can be times where the
default page flow is not adequate for your application. For example, you might want your
application to catch non-secure accesses (http:) and relay those accesses to secure
accesses (https:). In another case, suppose while processing a web request, an error
occurs (can’t open a file, can’t allocate memory….) how do you alert the user of this
pathological case? The contents of this paper and its associated sample application,
explain handling these and other cases with web page transitions controlled by your
application.

3.2 Audience
The audience for this white paper is users with both web development experience and
NET+OS development environment and specifically NET+OS AWS development
experience. The amount of JavaScript used in this document will be small, meaning that
extensive JavaScript knowledge is not required.

3.3 Assumptions
This paper assumes the reader has access to a version of the NET+OS development
environment of at least V7.0. More recent versions, in the area of V7.3 and later are more
desirable but not required. The techniques shown here may be compatible with the
NET+OS development environment V6.3 but we have not specifically tested these
techniques in that environment.

3.4 Scope
• The scope of this paper is to describe methods in html, JavaScript and AWS

Toolkit function calls for transitioning web page flow. That is altering the
“normal” flow of web pages within a web application.

• In the sample application, there is also extensive use of NET+OS’s file system
using C library calls. Though the application uses these calls, there will be no
description of usage models for these calls in this paper.

 The following subjects are not within the scope of this white paper:

• An extensive discussion of JavaScript coding techniques or general uses of
JavaScript

• Any discussion of Ajax techniques using JavaScript
• Any discussion of Ajax techniques using XML

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 5/11
 V1.3 controlling_page_changes.doc

• A general discussion of developing AWS applications in a NET+OS development
environment

• A general discussion of developing applications in a NET+OS development
environment

• Any discussion of C coding techniques
• Any discussion of TCPIP
• Any discussion of NET+OS’s file system and its usage except where it is used to

clarify the attached sample application
• Any discussion of web page development and/or html
• Any discussion of the PBuilder utility

3.5 Theory of Operation
There are four reasons (that I can think of at this writing) why I might want my
application to more directly control the flow of web pages within a web application.
Specifically, within a NET+OS AWS web application. These reasons are as follows:

• Redirecting a browser request from unsecure (http – port 80) to secure (https –
port 443).

• Displaying a “successful outcome achieved” page on the conclusion of an
operation.

• Displaying an “unsuccessful outcome achieved” page on the unsuccessful
conclusion of some operation.

• Closing the browser window after a user hits an “exit” button.

The first page flow change can be achieved by checking the “protocol” of the browser
request and either redirecting or not redirecting the request, based on the needs of the
application. The method to be described for performing this operation is the JavaScript
method window.redirect().

The second and third page flow changes can be achieved in the application’s stub
function, supporting the web page. If a get operation is successful, the web page to which
AWS is returning, presumably, will display some additional information that was not
available before the get operation was completed. This might be an IP address, an
account balance or a name, for example. If a put operation is complete, there is nothing
returned by the AWS engine, to the browser. A get operation might immediately follow
the set operation. This get operation might update some data that might instruct the user
that something good has occurred. On the other hand, if a set operation fails, it is
infinitely more difficult to alert the user of the failure. To facilitate alerting users of the
success and failure of operations, this paper describes and demonstrates the use of the
RpSetNextPage() and the RpSetRedirect() NET+OS AWS toolkit function calls. There is
also an RpSetNextFilePage() function call that assumes the page contents are in the
NET+OS file system as opposed to being built into the AWS application. Though,
RpSetNextFilePage() is not discussed in this paper, I bring it up to make the reader aware
of its existence. Please see the Advanced Web Server Toolkit Users’ Guide for more
information about the function call RpSetNextFilePage().

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 6/11
 V1.3 controlling_page_changes.doc

The final page flow is simply performed by calling the JavaScript method window.exit().
The user will be informed, by the browser that the application wishes to close the browser
window. The user is then asked if he’d like to proceed. Hitting the yes button causes the
browser to close. For applications where security is important having the user close the
browser window ensures that a non-authorized user can not gain access to the system, as
a login is required.

4 Basics
The following section describes, with a little more detail, the use of the methods and
functions described above. Later, in this white paper, actual code examples in the sample
application will be referenced.

4.1 Catching and redirecting unsecure browser connections
In this case, my application accepts both unsecure (http:) and secure (https:) accesses. I
do this for the convenience of my users. In this way, if they accidently type in
http://my_device_id, they do not get some potentially useless message. Instead my code
redirects their browser to the secure port.

The JavaScript method window.location, provides the URL of the browser access. The
method window.location.protocol provides the first component of the URL, that being
http:, vs. https:, vs. file:.

So in JavaScript you might provide some code to do something like this:
switch(window.language.protocol)
{
 case “http:”
 // redirect to https:
 break;
 case “https:”
 // do nothing
 break;
 default:
 // maybe put out an error message

}

At this point, there are two things you might need to know. One is how do I get to the
JavaScript function, the other is how do I perform the redirect.

To get to the JavaScript code, we recommend using an onLoad attribute in the body tag
of the first web page of your AWS application. The onLoad attribute directs the browser
to run the JavaScript function as soon as the page is loaded but before actually doing
anything, such as calling AWS stub functions. We’ll dive into this further when we study
the sample application.

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 7/11
 V1.3 controlling_page_changes.doc

To perform the redirection, you’ll need to do two things. First you’ll need to change the
protocol portion of the browser’s URL from http: to https:. Using string manipulation and
methods in the window.location object, this is doable. Once you have created your
updated URL, use the JavaScript method window.location.replace(). The parameter
placed between the parentheses is the newly created URL. Again, I’ll go into details
when we look at the sample application.

4.2 Redirecting web page flow in NET+OS application code (C
code)

Suppose your NET+OS AWS application web page has directed the user to a function
associated with a web page, or a web page’s components. You attempt to open a file and
the file open function fails. Or your function attempts to allocate some temporary (or
permanent) memory, but the malloc call fails. Or you are given a user name and
password for accessing the system access database. You make the call but the return code
indicates that the user/password pair does not exist. How do you alert the user back at the
browser? It is not easy as the options you have for returns are very limited.

In your application code, when you get to a code path that is to manage an error, you’ll
want to make the following function calls:

• RpSetNextPage()
• RpSetRedirect()

RpSetNextPage(). The parameters to RpSetNextPage() are the AWS data structure (the
return from a call to RpHSGetServerData() followed by the page object pointer. You will
find this declared in the .c file of your AWS application. This is the .c file as opposed to
the _v.c file. Following the call to RpSetNextPage() you’ll need a call to RpSetRedirect().
The single parameter to RpSetRedirect() is the AWS data structure. Again, that is the
return value from a call to RpHSGetServerData() . When your code path returns to the
AWS engine, the browser is redirected to the page pointed to in the call to
RpSetNextPage().

If you wish, and this is how successful operations are handled in the attached sample
application, you can also call RpSetNextPage() and RpSetRedirect() following a
successful operation.

It goes without saying that the pages that you are redirecting to must be written in html,
JavaScript or some related language, and must be run through the Pbuilder utility for
inclusion in the application.

4.3 Handling your exit
This section presumes that you are giving your users the ability to exit the web
application via a button. To do so you’ll want to add a JavaScript call to method
window.exit(). So the question is how do I get from my button to a page to some
JavaScript? As we did before, you’ll want to create a page with very little on it. It will

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 8/11
 V1.3 controlling_page_changes.doc

need, though, a body tag and that body tag must have an onLoad attribute. The onLoad
attribute needs to call a JavaScript function whose only purpose is to call the JavaScript
method window.close(). Upon doing this, the user gets a box, stating that the application
wishes to close this window. Presumably the user clicks the OK button and the browser
window closes.

5 Example Application Explanation
The sections above have provided you with a high level view of how to more closely
control the web page flow in a NET+OS AWS-based application. In this section, we will
look at the code in the sample application and look at how the functions and methods
described above are actually used. Since most of the calls to RpSetNextPage() and
RpSetRedirect() are repetitive, I will only go through enough representative samples to
allow the reader to fully understand their use. Get Source Here

5.1 front_page.html
The first file we will explore is front_page.html. This is the page that your browser
displays by default when browsing to http://<your device id> or https://<your device id>.
To ensure that this page is the default web page in your application, ensure that this web
page is the first web page listed in file list.bat or PBuilder.pbb if your are developing
under the ESP integrated development environment.

The html code in this file is fairly mundane except for the fact that the body tag has an
onLoad attribute. The onLoad attribute points to JavaScript function
checkProtocolGotohttps(). So as soon as your browser pulls up html page
front_page.html, this function will be executed. What is interesting is the JavaScript code
of function checkProtocolGotohttps(). You’ll notice a switch statement that is very much
like switch statements in C and C++. The switch statement first checks for https: in upper
and lower case. Please note that, from what I have seen, you need to check for https + “:”.
If your case statements look for https without the “:”, you will not find them. For https:,
we want to do nothing. If we find upper or lower case http + “:” or nothing, then we want
to redirect the browser to the secure site. To do this, the window.location.replace()
method is used. But before calling the method, we must create the new URL. To do this,
you concatenate the window.location.host and window.location.pathname members
together (in this order). You add in front of this https://. Please notice that I have
included both a “:” and a set of “//”. So to be clear, the new URL is made up of “https”
+ ”:” + “//” + window.location.host + window.location.pathname . This whole new
URL is used as a parameter to the window.location .replace method. When you leave the
JavaScript function, you will see the browser redirect to this new URL.

Last, please notice that front_page.html uses an anchor html tag with a href attribute to
transition to page createAccount.html.

ftp://ftp1.digi.com/support/documentation/controlling_page_changes.zip

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 9/11
 V1.3 controlling_page_changes.doc

So the page transition to the https page is accomplished using the
window.location.replace method while the page transition to createPage.html is
accomplished using an html anchor tag with a href attribute.

5.2 createAccountPage.html
createAccountPage.html looks like any standard html page set up with pbuilder tags and
ready to be converted to C using the pbuilder utility. Its purpose is to solicit a user name
and password for creating a new bank account. A question you might ask is if the account
creation attempt fails, how would we know? Hang on; we’ll explore this in a few pages.

5.3 optionsPage.html
The “Please log in” prompt on front_page.html is tied to an anchor tag and a href
attribute. The href attribute points the application to optionsPage.html. This first
transition to optionsPage.html will solicit a challenge screen. The question is why. If you
look at the very top of file options_page.html you’ll see an RpPageHeader AWS toolkit
tag with an RpAccess attribute whose value is Realm1. This tag and attribute
combination means that users must belong to Realm1 in order to access this page. In this
sample application, there is only one realm and all users belong to it. In addition, there
are two issues that adding this tag and attribute present. First, all pages that might be
transitioned to must also have this tag and attribute set. One reason for this is that some of
the stub functions that make up this application rely on the AWS function call
RpGetCurrentUser. RpGetCurrentUser only returns authenticated users. If you transition
to a page without an RpPageHeader and an RpAccess pair, the new page will have no
authenticated users. This may break your application. You need to keep this in mind
when designing your application. You’ll notice that front_page.html,
createAccountPage.html and accountCreated.html do not have this RpPageHeader tag.
This is because, these pages are accessed before the user can log in (before he has an
account or before he has logged in with his account). Once the application transitions to
optionsPage.html, it and all other pages have an RpPageHeader tag with an RpAccess
attribute.

5.4 Stub functions – front_page_v.c
The remainder of the html files are fairly mundane. If you have done any AWS
development, you‘ll recognize the AWS toolkit tags and the references to stub functions.
So we’ll now explore the stub functions in file front_page_v.c. Ensure that you are
looking at the version located in directory \pbuilder in your application.

The first thing to notice is that at the top of the file, there are five extern references to
rpObjectDescription objects. These refer to page objects. The page objects are actually
declared in front_page.c in the \pbuilder\html directory. In calls to RpSetNextPage you
do not present URLs as parameters. Instead you use pointers to rpObjectDescription
objects. So that might be &PgoverdrawnPage. Please notice the ‘&’, as it is important. To
get the rpObjectDescription object for a particular page that has been processed by the
pbuilder utility, look in the front_page.c file (or the .c file for your particular application).

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 10/11
 V1.3 controlling_page_changes.doc

5.4.1 getTheAccount()
Function getTheAccount, gets the account name for use by the system. In our case, the
account name is the user name of the currently authenticated user. First notice the call to
RpHSGetServerData(). This returns a void * that is used by almost all AWS toolkit
functions. If the void * is equal to NULL, this generally means that the AWS is not
running. No AWS functions will function normally, should this call return NULL.

Next notice the call to RpGetCurrentUser(). Notice that the parameter is the returned void
* from the call to RpHSGetServerData(). If RpGetUserData() fails (there are no
authenticated users currently available), the application makes two function calls. The
first is to RpSetNextPage() and the second is to RpSetRedirect(). The parameters to
RpSetNextPage are the retuned void * from RpHSGetServerData() and a pointer to an
rpObjectDescription that we talked about in the last section. These two calls cause the
AWS engine to force the browser to do a redirect to the page described by the pointer to
rpObjectDescription. This use of RpSetNextPage and RpSetRedirect is a method used in
most of the remaining stub functions.

5.4.2 SetThePassword
If the application is able to set up a username and a password for the account and is able
to create a file named username.password, then the user’s account is considered
successfully accomplished. If the password for the account (user name) cannot be found
or for some reason the file cannot be created or written to, then the operation is
unsuccessful. If you look to the end of function setThePassword, you see calls to
RpSetNextPage and RpSetRedirect, where the rpObjectDescription (pointer) used is &
PgaccountCreated. This represents a transition to a page showing that the account
creation was successful. All of the other such calls within setThePassword, represent
transitions to pages telling the user that the account creation operation was unsuccessful.
You’ll remember that when we explored createAccountPage.html, I asked what happens
when an operation fails. That is, how I notify the user of the failure. You use calls to
RpSetNextPage and RpSetRedirect to send failure (or success) pages to the user.

5.5 exitPage.html
Since all of the other stub functions use methods that have already been described, I will
not belabor this white paper with their descriptions. Instead I am going to jump to web
page exitPage.html. Notice in this page the html body tag has an onLoad attribute and
this attribute points to a call to JavaScript function closeThatWindow(). So when this
page is loaded, this function will immediately be executed. The JavaScript function
contains one call to the window.close() method. This method causes an alert window to
appear from your browser announcing that the application wishes to close the window. If
the user hits the ok button, the browser window closes. For a secure application, you
probably want your exit button to perform such a task.

Controlling Page Changes in AWS Applications

Copyright 2009 Digi International Page 11/11
 V1.3 controlling_page_changes.doc

6 Conclusion
In this white we have explored different ways of performing page transitions. We have
looked at using anchor tags with href attributes, JavaScript window.location.replace and
the AWS toolkit set of RpSetNextPage() and RpSetRedirect(). In doing so, we have
shown how to inform users of the success or failure of operations within stub functions.
We have also looked at how to redirect a browser for (in our case) redirecting from an
insecure URL to a secure URL.

When using RpSetNextPage, you must remember that rpObjectDescription pointers, must
first be created as html files and then those html files must be run through the pbuilder
utility. The name of the rpObjectDescription can be found by editing the .c file (not the
_v.c file) AFTER you have run your html files through the pbuilder utility. As an
example, the object description for exitPage.html looks like the following in file
front_page.c of the attached sample application:
rpObjectDescription PgexitPage = {
 "/exitPage.html",
 PgexitPage_Items,
 (rpObjectExtensionPtr) 0,
 (Unsigned32) 0,
 kRpPageAccess_Realm1,
 eRpDataTypeHtml,
 eRpObjectTypeDynamic
};

Notice that the name of the object description (PgexitPage) is followed immediately by
the URL for the page (/exitPage.html).

7 Appendix

7.1 Glossary of terms

• Ajax – Asynchronous JavaScript and XML – a method of developing web page
applications using JavaScript and xml giving the applications a more Pc-based
feeling

• AWS – Advanced Web Server – an embedded web server shipped as part of Digi
International’s NET+OS embedded operating system

• Html – hypertext markup language. The language used for creating web pages
• JavaScript – not to be confused with Java. A scripting language developed by

Netscape. It is used by web developers to create more interactive web applications
then what might be doable with html alone.

• NET+OS – An embedded operating system and development environment,
available from Digi International

• tcp/ip – a suite of protocols, originally developed by DARPA. It is the basis for
the internet.

