

Adding custom MIBS to NET+OS
V7.X’s SNMP component

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 2/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

1 Document History

Version Initials Change Description
V1.0 JZW Initial entry
V1.2 JZW Add Glossary of terms, general clean up
V1.3 JZW Roll in editorial feedback
V1.4 JZW Further edits

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 3/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

2 Table of Contents

1 Document History ... 2
2 Table of Contents .. 3
3 Introduction ... 4

3.1 Problem Solved ... 4
3.2 Audience ... 4
3.3 Assumptions .. 4
3.4 Scope ... 4
3.5 Theory of Operation .. 5
3.6 Conventions .. 6

4 Basics .. 6
4.1 SNMP .. 6
4.2 MIBS ... 6
4.3 Connections to Device Data .. 7
4.4 Utilities .. 8

4.4.1 Mib2c .. 8
4.5 Your tasks ... 8

4.5.1 Writing callback functions .. 8
4.5.2 Compiling MIBs into the MIB browser .. 9

5 Application Explanation ... 9
5.1 jzwpeoplemib_local.c ... 10
5.2 mibstubs.c ... 10

6 Conclusion .. 11
7 Glossary of Terms ... 11

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 4/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

3 Introduction
This white paper contains a more detailed explanation of the methods and procedures
required for adding a custom MIB to NET+OS V7.X SNMP component. This includes
both converting your MIB into C code and adding callback functions to the application
thus giving the SNMP component of NET+OS access to your device data. For a quick
overview of the process required for adding MIBs to your application, Digi recommends
that you read the readme file associated with the example application entitled snmpv3.

3.1 Problem Solved
Integrating SNMP into an embedded device is not easy. The protocols and standards
integrated into SNMP are made to make interfacing into SNMP generic and flexible but
in doing so, understanding the how to is complex. The NET+OS’s SNMP component has
gone a long way to separating the work of accessing your device data from the mechanics
of integrating your data into the SNMP data structures.

This white paper shows that using NET+OS V7.X’s SNMP component, following the
directions already contained within the NET+OS documentation set and using some
additional details laid out here, integrating your data into SNMP is just not that hard. We
would like to think that when you have completed reading this paper and looking at the
associated sample application and sample MIB that you’ll say, “Oh is that all there is!”

3.2 Audience
This paper is of a technical nature. It is intended for software engineers and software
practitioners with knowledge of SNMP, MIBs, NET+OS V7.X and development
experience in Green Hills, GNU (CLI) or GNU/ESP environments. In order to debug an
SNMP-based application you will also need to have some knowledge of the TCP/IP
protocol stack and the use of a network protocol analyzer.

3.3 Assumptions
This paper assumes that you have access to a Green Hills Multi or GNU NET+OS V7.X
development environment. We do not believe you will take in as much by just passively
reading this document as you will by reading it and trying out the sample application
simultaneously. Additionally, we presume that you have access to a MIB browser. You
will require a MIB browser in order to access the SNMP component of NET+OS. The
MIB browser must also have the ability to integrate new MIBs into its MIB database
(sometimes called MIB compiling).

3.4 Scope
This document adds additional details to already existing SNMP and MIB-related
NET+OS V7.X documentation. It is intended to help customers get “over the hump” of
adding a custom MIB their application. The feeling is that once a customer has added one,
adding additional custom MIBs should be that much easier.

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 5/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

The following is a list of items and subjects that this document does NOT cover:
• Instructions in C programming
• Instructions on the details of building a custom MIB
• Details of the SNMP protocol
• Details of ASN1
• Instructions of developing NET+OS applications under Green Hills or GNU
• Instructions on running a MIB browser or compiler
• Instructions on TCP/IP protocols
• Instructions on using a network protocol analyzer
• Instructions on downloading NET+OS applications into a Digi device
• Anything referencing .NET or LINUX

Our feeling is that there are a plethora of texts dealing with these subjects and taking time
to cover these subjects would be a waste.

If you have weaknesses in some of these areas, the following are some texts that we
would recommend:

Understanding SNMP MIBS by Perkins & McGinnis
Managing Internetworks with SNMP by Miller
Internetworking with TCP/IP by Comer
The Digi web site http://www.digi.com

3.5 Theory of Operation
Device data is your data. You created it; you own it and you understand it. It is not the
purpose of the SNMP component of NET+OS to have any understanding of your data.
What the SNMP component does do is act as a formatter and a conduit for your data
between your Digi device and an SNMP MIB browser.

SNMP uses a complicated protocol for formatting and transferring data between your
device and your SNMP management station (generally an SNMP Browser). The
NET+OS SNMP component abstracts the ASN1 formatting complexities from your
application. Thus you do not have to worry about it. All you do have to worry about is
physically accessing your data, through callback functions, and returning that data to an
unknown caller. If you have used the “stub function” callbacks that the AWS component
utilizes, these MIB-related callback functions are not that far removed from the AWS-
related stub functions.

So what’s required? You need to write your MIB. Your MIB is where this entire process
starts. You’ll need to run your MIB through Digi’s MIB to C utility (mib2c). The mib2c
utility reads in your MIB file and generates a number of C and H files, specifically geared
to your application and your MIB. You’ll need to make some edits (to your code) that are
explained in a file created as a result of mib2c converting your MIB (<mib file
name>.ins). Next you’ll need to write callback functions that are tasked with either
reading or writing your device data. This will be the most time consuming part of this

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 6/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

process. Once you have completed that, you‘ll need to compile and build your application,
with the SNMP component included. Before downloading your application into your
device, for the first time, you’ll need to “compile” your MIB into your MIB browser. You
will save yourself a lot of time by performing this step before attempting to debug your
application.

What should happen? You’ll point your MIB browser at your device. You’ll connect to
your device. You’ll tell your MIB browser to walk through your device’s MIB. If you set
a breakpoint inside your callback functions, your application should “break” when the
NET+OS’s SNMP component attempts to read the first item of your new MIB. At that
point you can debug your application.

3.6 Conventions

4 Basics

4.1 SNMP
Simple Network Management Protocol (SNMP) has become the protocol used for
managing network-connected devices. SNMP is layered on top of UDP/IP. SNMP can be
broken into two primary components, namely managers and agents. The manager might
be the user using a MIB browser to access some device the user wishes to manage
(control in some way). The agent is a software layer, generally residing within a device
that accesses device data.

The device being managed contains objects. The objects are housed in databases,
accessible by the manager through the agent. These databases are arranged in logical
structures entitled management information bases (MIBs).

4.2 MIBS
As mentioned above, your device data is contained in data structures entitled MIBs. A
MIB is a very precisely defined structured document that you create. It is editable with a
text editor. The structure, layout and keyword set of a MIB are beyond the scope of this
white paper. To further understand MIBs we recommend the book Understanding SNMP
MIBs by Perkins and McGinnis and published by Prentice-Hall PTR. Your MIB(s) is
used by the mib2c utility to convert your MIB into C code that can then be integrated into
your application. The MIB is used to generate data structures and functions used to
access the device data that the MIB represents to the agent.

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 7/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

4.3 Connections to Device Data
The following diagram describes the parts of an SNMP application:

Ethernet

phy

ethernet

IP

UDP

SNMP

agent MIB

Read
callback

Write
callback

Device
data

“get “
/”set”

“response”

NET+OS/device

MIB browser/manager

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 8/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

4.4 Utilities

4.4.1 Mib2c
The mib2c utility converts your MIB into .c and .h files that you can then integrate into
your application. In addition, the mib2c utility produces an .ins file which contains
instructions and code that needs to be moved into some of the .c and .h files produced by
running the mib2c utility. In addition to structures, the utility generates stub functions
that you fill in with the actual implementation of your get and set operations. The files
generated by virtue of running mib2c are as follows:

• <your mib name>.ins
• <your mib name>_local.c
• <your mib name>_local.h
• <your mib name>_var.c
• <your mib name>_var.h

Additionally, the example application snmpv3’s readme file contains an excellent
explanation of usage model for the mib2c utility. Digi recommends that you read this file
before attempting to run the mib2c utility.

4.5 Your tasks
In order to integrate your MIB into your application, you have three main tasks as
follows:

• Run your MIB through the MIB2C MIB compiler
• Write your callback functions into the .c files generated by the MIB2C utility
• Integrate (compile) your MIBs into your MIB browser

The first task was discussed in the previous section entitled utilities. The second two
tasks are discussed below.

4.5.1 Writing callback functions
The most application specific task involved in implementing MIBs is writing the callback
functions. You’ll need two types, namely get and set. The get type callback function
reads data from the MIB and returns that data to the manager. The set type callback
function takes updates from the manager and writes that data to the MIB. In the section
entitled Application Explanation, I will explore the specifics of the application associated
with this white paper.

Your callback functions are called from functions in the file <your app name>_local.c in
a function probably called something like tf<mibname>_entry_get(). The function has
two parameters, namely exact and a pointer to your data structure. Exact tells your
callback function how to interpret the index (used with tabular data). Exact tells whether
you are looking for an exact match or the next one closest to the index you are looking

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 9/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

for. The comments generated instruct you on how to manage the index. The index itself is
contained in the data structure.

Additionally you’ll need to create an initialization routine. The purpose of the
initialization routine is to copy initial values from some tables you’ll need to set up into
the in-memory MIBs. In this way your MIBs will have values when your MIB browser
first makes contact with your device. These could have real values, or they could be
blank strings and integer zero. This piece is application dependant (up to you).

4.5.2 Compiling MIBs into the MIB browser
Before you can successfully walk your MIB, including your newly included MIB, you
need to perform the task of “compiling” your MIB into your MIB browser. In the book
“Understanding SNMP MIBS”, Perkins refers to this as a “backend MIB compiler” built
into a MIB browser. The purpose of this step is to allow the MIB browser to access the
definition objects in the MIB in a more expeditious manner.

The specifics of MIB browser-based backend MIB compilers is quite MIB browser
specific and thus beyond the scope of this paper. You will, therefore, need to consult the
help and/or documentation of your MIB browser to understand how it handles this
activity. But I must emphasize that you should not begin attempting to walk your MIB,
looking for your new MIB until you have performed this task.

5 Application Explanation
At this point in this paper, you will want to begin editing the source files of the attached
application. I will be making liberal references to certain files in order to explain how to
bolt your callback functions into the SNMP component.

Example Source

ftp://ftp1.digi.com/support/documentation/example_people_mib.zip

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 10/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

5.1 jzwpeoplemib_local.c
I chose to place my application-specific code in a separate file entitled mibstub.c. This
follows the model of the AWS coding. In jzwpeoplemib_local.c there are two functions,
entitled tfpeopletable_entry_get() and tfwrite_peopletable_entry(). You will notice that
all these functions do is call my functions. I could have done all of the callback function
coding in this file, but I felt it was architecturally purer to implement the functions in two
files.

5.2 mibstubs.c
mibstubs.c is the file where all the real work gets done. You will notice that there are nine
(9) static tables. This is the initialization data used to fill the MIB. Since the MIB
contains people information, the application contains tables of names, addresses, cities,
etc.

RAMTableInit() is used to initially fill in the MIB with initialization data. You’ll notice
that I have defined a variable numberOfEntries to calculate the number of loops needed
to fill the table. This is done so that you could add entries and recompile without touching
loop code. You do, though need to ensure that you add entries to all of the tables.

Space is allocated for the MIB (if required). After that the values in the static tables are
written into the RAM-based MIB. When done a global flag is set, signifying that
initialization has been performed. We’ll discuss why this is done, later.

getMeATableEntry() implements the get operation. The purpose of this operation is to
return one set of entries for one index of the MIB (assuming a table). The pointer to the
entry (the place where you place the data) comes into the callback function containing an
index. This tells you which entry to return. Because of the way SNMP gets are performed
the index is used in conjunction with the exact parameter. If exact is one, then that exact
entry must be available, else an error is returned. If exact is 0, then if the index entry is
not available then the next one can be returned. Bottom line is all this is doing is
retrieving the ith entry (based on index) and returning that entry. Everything else is taken
care of by the NET+OS SNMP component.

writeMeATableEntry() is a little more complex than getMeATableEntry(). Your write
callback function is passed an index, a “what”, a value and a length (of the value). The
index is straight forward. The “what” represents the object within the MIB that is to be
updated. In our case, the “what” could represent the person’s name, address, city, state,
etc. A write operation only updates one object.

There is one quirk with the indexing. Index is 1-based while (in most cases) the index
into the table attached to the MIB is 0-based. So by decrementing the index passed in to
the callback function by one, you create parity.

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 11/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

File mibstubs.c contains a global flag entitled RAM_table_initialized. This is set at the
end of function RAMTableInit(). If, through some coding mistake you do not call
RAMTableInit() before entering one of your get or set functions, this flag allows you to
check for a lack of initialization state, and call RAMTableInit() before actually truing to
get or write data.

6 Conclusion
Though implementing an SNMP agent implementation might be difficult, I believe I have
shown that added a custom MIB to an existing NET+OS SNMP implementation is not
really that complicated. By writing a couple of callback functions, implementing read and
write operations, your device-based MIB will be accessible, over the network, to your
SNMP agent.

7 Glossary of Terms

Callback function – (generally) a user function called by the operating system. Used to
allow the user to slightly change the functionality of a running system. Also used to give
the operating system access to user (or device) data

CLI – Command line interface. A non-graphical method of accessing commands

ESP – Digi’s graphical development environment

MIB – Management information base. A description of data layout used by SNMP for
accessing user data

MIB Browser – A utility that is SNMP-aware and capable of exchanging SNMP
messages with an SNMP-capable device

mib2c utility – A utility provided as part of the NET+OS V7.X product, that converts
MIB files into C files for inclusion into a NET+OS SNMP-based application

NET+OS – A Digi produced embedded operating system and development environment
for developing embedded applications for running on the family of Digi microprocessors
and modules

Network protocol analyzer – either a piece of software or a software/hardware component
that is capable of accessing (capturing) some or all packets on a LAN and displaying
those packers in a formatted, human readable format. Examples are etherpeek, wireshark,
ethereal

SNMP – Simple Network Management Protocol, a network protocol, which is generally
encapsulated within UDP/IP and is used for managing objects on the network.

TCP/IP – Transmission Control Protocol/ Internet Protocol – A connection-based
protocol that is part of the IP suite of network protocols

Adding custom MIBs to NET+OS V7.x’s SNMP component

Copyright 2008 Digi International Page 12/12
 V.1.4 netosV7_new_adding_custom_MIBS.doc

UDP/IP – User Datagram Protocol/Internet Protocol – A datagram-based protocol that is
part of the IP suite of network protocols

