

Adding a Second Ethernet
Driver to NET+OS

Adding a Second Ethernet Driver to NET+OS September 2004

www.netsilicon.com ii

Table of Contents

1 Overview___ 1

2 Writing the Ethernet driver__ 2
2.1 Fusion Stack Interfaces ___ 2

2.1.1 Initialization Function __ 2
2.1.2 Transmit Function ___ 4
2.1.3 Ioctl function ___ 5
2.1.4 Enable and Disable function ___ 6
2.1.5 Receive operation__ 6
2.1.6 Memory allocation___ 7

2.2 MMU Concerns ___ 8
2.2.1 The MMU Translation Table ___ 8
2.2.2 DMA Buffer Descriptors ___ 10
2.2.3 DMA To or From a Cached Buffer ___ 10
2.2.4 DMA and Virtual Addresses __ 10

3 Integrating into the NET+OS Startup Code______________________________ 12
3.1 Create a Device Driver Table Entry ______________________________________ 12
3.2 Add the Device into Network Device Table ________________________________ 13
3.3 Integrate with Ace __ 14

3.3.2 Update the Default ACE Configuration. _______________________________________ 15
3.3.3 Auto-IP __ 15
3.3.4 customizeAceGetDefaultEthernetConfig () _____________________________________ 16

3.4 Setting Routing Information __ 16

Adding a Second Ethernet
Driver to NET+OS

Overview

This application note describes how to:

 Interface a second Ethernet driver with the Fusion stack.

 Make the driver compatible with the memory management functions supported
on ARM9-based processors.

 Update the NET+OS startup code to add the new Ethernet interface to the
network device table.

 Update ACE to automatically configure a second network interface.

Limitations

The Fusion stack requires the two Ethernet interfaces to be on separate subnets.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 2

Writing the Ethernet driver

Fusion Stack Interfaces

To interface with the Fusion TCP/IP stack, the driver must provide functions that
the stack can call to:

 Initialize the driver.

 Enable and disable the driver.

 Send a packet.

 Perform I/O control operations.

The driver must call functions in Fusion to transfer receive packets to the stack and
to allocate and free packet buffers.

Initialization Function

Fusion calls the initialization function once. The function prototype is:

int initFunction (struct netdev * ndp);

The netdev structure is defined in the netdev.h header file in the h/tcpip directory.

The function must:

 Save the value of the ndp argument. This value is a pointer to the device’s entry
in the network device table. The Ethernet driver uses this value to process other
calls from the TCP/IP stack, and to call functions in the TCP/IP stack.

 Initialize the Ethernet hardware.

 Initialize the rest of the Ethernet driver, including:

− Creating any threads or other OS resources the driver will need

− Allocating any buffers the driver will need

 Copy the interface’s Ethernet MAC address into the ndp->nd_lladdr.a_ena array.

 Set ndp->nd_lladdr.a_type to AF_ETHER.

 Set ndp->nd_lladdr.a_len to 6.

 Set the transmit mode the driver will use.

 Return either of these values:

− If the driver is initialized: 0

− If the driver isn’t initialized: -1

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 3

The initialization function must set the transmit mode by calling one of these
functions:

 FUSION_DRV_BLOCK_UNTIL_TXCOMPLETE(ndp): The driver’s transmit function does
not return until after the packet is completely transmitted. The stack can free or
reuse the packet buffer when the transmit function returns and can call the
transmit function again with another packet to transmit.

 FUSION_DRV_TXCOMPLETE_NOTIFY_COPY(ndp, limit): The transmit function copies
the transmit packet to an internal buffer and places it in an internal transmission
queue. The function returns before the packet is completely transmitted. The
stack frees or reuses the packet buffer when the transmit function returns. The
Ethernet driver notifies the stack when the transmit is complete by calling
ndq_restart(ndp). The stack continues to call the Ethernet driver’s transmit
function until either the driver’s queue is full or the stack has no more packets
to transmit.

The initialization function must set the limit argument, which is an int, to
the maximum number of transmit packets that can be placed in the driver’s
transmit queue.

Because of the performance cost in copying the packet, NetSilicon does not
recommend using this mode unless it is required by the Ethernet hardware.

 FUSION_DRV_TXCOMPLETE_NOTIFY_NOCOPY (ndp, limit): The transmit function
places the packet in an internal transmission queue. The function returns before
the transmit operation completes. The Ethernet driver notifies the stack when the
transmit is complete by calling ndq_restart(ndp); the stack can free or reuse the
packet buffer at this point. The stack continues to call the transmit function until
either the driver’s queue is full or it has no more packets to transmit.

 The initialization function must set the limit argument to the maximum number
of transmit packets that can be placed in the queue. The stack uses the
ndq_restart() function to keep track of the number of packets in the Ethernet
driver’s transmit queue and when it can free the current transmit packet. The
Ethernet driver must transmit the packets in the order in which the stack
provides them.

 FUSION_DRV_ZEROCOPY (ndp, limit): This mode operates in the same way as
FUSION_DRV_TXCOMPLETE_NOTIFY_NOCOPY, with this difference: the Ethernet driver
can transmit packets that are broken into more than one buffer.

 FUSION_DRV_NEAR_ZEROCOPY (ndp, limit): This mode operates in the same way
as FUSION_DRV_ZEROCOPY, with this difference: the stack ensures that all buffers are
aligned on 32-bit boundaries.

For an example of how to write an Ethernet driver initialization function, see the
eth0_init() function in eth_stack.c and the eth_init() function in eth_init.c.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 4

Transmit Function

The stack calls the Ethernet driver’s transmit function to send a packet. The function
prototype is:

int transmitFunction(struct m * mp);

The m structure and macros to manipulate it are defined in the m.h file in the h/tcpip
directory. For additional information, see the online help.

This function needs to transmit the packet (or initiate its transmission). The stack
calls this function with a pointer (mp) to a message (m) structure. A reference to the
appropriate device table entry is defined in the m_ndp member of the message
structure. (If the driver supports one Ethernet interface, mp->m_ndp is set to the value
of the ndp argument passed to the initialization function).

The size of the packet can be determined with the m_dsize(mp) macro. If the packet is
smaller than the minimum packet for the network, you want the driver (or the
Ethernet hardware) to pad the packet to the minimum length. The m_hp member of
the message structure points to the beginning of the packet. The function returns
either 0 on success or -1 on failure.

 If the FUSION_DRV_BLOCK_UNTIL_TXCOMPLETE, FUSION_DRV_TXCOMPLETE_NOTIFY_COPY,
or FUSION_DRV_TXCOMPLETE_NOTIFY_NOCOPY transmit mode was specified by the
initialization function, the packet is stored in a single buffer that mp->m_hp points
to. The macro call m_dsize(mp) returns the length of the packet.

 If FUSION_DRV_ZEROCOPY or FUSION_DRV_NEAR_ZEROCOPY mode was specified,
the packet can be in more than one buffer. The mp->m_hp field stores a pointer
to the first buffer, whose length can be determined by subtracting mp->m_hp from
mp->m_ptail.

The mp->m_cell_count field indicates the number of additional buffers (if any) in the
packet. The additional buffers are stored in the mp->m_datacells array. A pointer to
each of the additional packet buffers is stored in mp->m_datacells[index].celldata,
with the length stored in mp->m_datacells[index].cellsize, where index is a zero-
based array index.

 If the FUSION_DRV_BLOCK_UNTIL_TXCOMPLETE transmission mode was specified by
the init function, this function must initiate transmission of the packet and wait
until the packet has been fully transmitted before returning to Fusion. On return,
Fusion assumes that the packet has been transmitted and frees its memory.
Fusion doesn’t need to receive a transmit complete notification.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 5

 If one of the other transmission modes was specified by the initialization
function, the transmit function should return after starting transmission of (or
queuing) the packet. The stack can submit multiple packets to the driver (each by
a separate call this function), up to the limit specified in the macro by which the
mode was selected. For each packet that completes transmission, the driver must
notify the stack by calling the ndq_restart() function. Fusion applies this
notification to packets in the order in which packets were submitted to the
driver. The ndq_restart() function must be called from a thread.

 If the FUSION_DRV_TXCOMPLETE_NOTIFY_NOCOPY, FUSION_DRV_ZEROCOPY, or
FUSION_DRV_NEAR_ZEROCOPY mode was specified, Fusion preserves the packet in
memory until a transmit complete notification has been received for that packet.
From a performance standpoint, this is the preferred mode of operation.

Because Fusion calls the transmit function from within a critical section, keep the
transmit function as short as possible and do not use ThreadX functions. Complex
operations should be handed over to another thread. Fusion assumes that this
function always succeeds, and it does not check the return value.

For an example of an Ethernet driver transmit function, see the eth0_start()
function in eth_stack.c. For an example of a routine that notifies Fusion when
a packet has been completely transmitted, see the eth_restart() function in
eth_stack.

Ioctl function

The stack calls this function to perform I/O control operations. The prototype for
this function is:
int ioctlFunction(struct netdev * ndp, int cmnd, char * addr);

Fusion calls this function with a pointer (ndp) to the device table entry for the device.
The cmd argument is set to a device-specific I/O control. The codes shown next are
defined for Ethernet I/O control operations. These codes select an action in the I/O
control routine.

Code Action selected

ENIOCNORMAL Receive broadcast and unicast packets.

ENIOCPROMISC Receive all undamaged packets with any destination address.

ENIOCALL Receive all packets.

ENIOCRESET Reset the device.

ENIOCWHATRU Return the device name.

ENIOADDMULTI Add a multicast address.

ENIODELMULTI Delete a multicast address.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 6

Use the addr argument only in conjunction with the IGMP protocol to add and
delete multicast addresses from a device. In this case, the argument points to a
6-byte buffer that contains the Ethernet multicast address to add or delete.

For an example of an Ethernet I/O control function, see eth0_ioctl() in eth_stack.c.

Enable and Disable function

The stack calls this function to enable or disable the interface. The function prototype is:
int enableDisableFn(struct netdev *ndp, u16 flags, char

*options);

Fusion calls this function with a pointer (ndp) to the device table entry for the device.
Set the flags argument to 1 (flags=1) to bring a device up or 0 (flags=0) to bring the
device down.

The options argument is reserved for future use; ignore this argument.

This function should return either 0 to indicate success or -1 to indicate failure.
When this function is called to bring a device on-line, it activates the device to start
sending and receiving data.

Fusion calls this function from within a critical section. The function must not use
ThreadX function calls or block.

For an example of this function, see the eth0_updown() function.

Receive operation

The Ethernet hardware DMAs the receive packets into memory. The Ethernet driver
must either:

 Set up the hardware to DMA the packets directly into buffers allocated using the
stack’s m_new() routine. (See the next section, “Allocating Packet Buffers.”)

 Copy packets into these buffers before passing them up to the Fusion stack.

After a packet has been received, the driver must examine the packet to
determine whether it should be passed up to the TCP/IP stack. Packets should
be passed up only if they meet both of these conditions:

− They are encapsulated in Ethernet-II frames.

− The packet type field is set to one of the IP packet types. The IP packet types
are 0x800 (IP), 0x806 (ARP), and 0x8035 (RARP). Other packets should be
either discarded with the smkill() function (see the section “Freeing Packet
Buffers”) or passed to other protocol stacks.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 7

To indicate the beginning and end of the packet data, the driver must adjust the head
and tail pointers of the m structure. Assuming that the pointer to the m structure is
named mp, the head pointer, mp->m_hp, must point to the beginning of the packet, and
the tail pointer, mp->m_tp, must point to the end of the packet. The field mp->m_ndp
must be set to the value of the ndp argument that was passed to the initialization
function.

The Ethernet driver uses the msm() function to pass packets to the stack. The function
prototype is:
void msm(struct m *mp, en_up);

A pointer to the packet’s m structure should be passed in the first argument, and the
second argument should always be set to en_up, which is defined in h/tcpip/enet.h.
The Ethernet driver must not use the packet buffer after calling this function. The
stack frees the buffer when it finishes processing it.

The driver should pass packets up to the stack only if the driver is enabled. Any
packets received while the driver is disabled should be discarded.

The msm() routine must be called from a thread, not from an ISR.

For a sample implementation of the Ethernet receive operation, see the code in
eth_recv.c and the eth_recv_up() function in eth_stack.c. Be aware that this code is
specific to the NET+ARM Ethernet hardware module.

Memory allocation

Allocating Packet Buffers

The driver must use the m_new() function to allocate packets buffers. The prototype
for this function is:

struct m *m_new(int size, NULL, F_NOBS);

The size argument indicates the specified buffer size in bytes. The second and third
arguments must be set to NULL and F_NOBS, respectively. F_NOBS is defined in
h/tcpip/flags.h. If m_new succeeds, it returns a pointer to an m structure, which
contains the buffer. If m_new is unable to allocate the buffer, it returns NULL.

When a buffer is allocated with m_new(), both the head and tail pointers point to the end
of the packet buffer. The Ethernet driver must adjust the head pointer so it points to the
beginning of the buffer. Assuming that mp is an m structure pointer, and packetLength is
the specified length of the packet, the code to allocate a packet is:

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 8

mp = m_new(packetLength, NULL, F_NOBS);

if (mp == NULL)

{

 /* code to handle out of memory error goes here*/

}

else

 {mp->m_hp -= packetLength;

}

For an example of a packet allocation routine, see the NAEthMsgAllocate() routine in
eth_stack.c.

Freeing Packet Buffers

The Ethernet driver should use the smkill() function to free buffers allocated with
m_new(). Note that received packets passed up to the stack and transmit packets are
automatically freed by the stack and should not be freed by the Ethernet driver.

The prototype for smkill() is:

void smkill(struct m *mp);

The mp argument should be set to the m structure pointer returned by m_new().

For an example of a routine that frees a packet buffer, see the NAEthMsgFree()
function in eth_stack.c.

MMU Concerns

Netsilicon’s ARM9-based processors have a Memory Management Unit (MMU).
Support for the MMU was added in NET+OS 6.1. If you are using NET+OS 6.1 or
later, you must write your Ethernet driver so it can work with the ARM9 MMU.

The MMU Translation Table

The Control and Status Registers (CSRs) for the second Ethernet interface appear
somewhere in the system address space. The MMU uses an address translation
table to determine which areas of the address space can be accessed by the CPU.
You need to add the section of memory used by the second Ethernet interface’s
CSRs to this table.

If the Ethernet interface is connected through PCI, and the NET+OS PCI API is
used to set it up, the PCI API automatically updates the MMU’s translation table
as necessary. In such a case, you can skip the rest of this section. Otherwise, you
must update the translation table yourself if the Ethernet interface is connected to
the processor through some other mechanism (a chip select, for example).

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 9

The customizeCache.c file in the BSP platform directory contains an array, mmuTable
that is used to build the MMU address translation table. The array entries include:

 The start and stop addresses of the memory region.

 The page size of the memory region, which determines the granularity of the
region’s address map. 1 MB, 64K, and 4K page sizes are supported.

 The cache mode for the memory region, which determines the type of buffering
and caching done for the memory region.

 The access mode, which determines the types of accesses (reads and writes) that
are allowed to the memory region.

Memory regions that are not listed in this array are assigned the MMU_NO_ACCESS access
mode. A data abort exception is generated if the processor tries to access memory
assigned this access mode. The default entries in this table set up the memory map for
the processor’s CSRs, as well as ROM and RAM.

You must add an entry to the mmuTable array for the section of memory occupied by
the second Ethernet interface’s CSRs; otherwise, the MMU generates data abort
exceptions when your driver accesses it. Set up CSRs with the cache mode set to
MMU_BUFFERED and the access mode set to MMU_CLIENT_RW. The page size is usually set
to MMU_PAGE_SIZE_4K if the memory region contains only CSRs. However, you may
want to set the page size to MMU_PAGE_SIZE_64K if the module has more than 64K of
CSRs (a piece of shared RAM, for example).

For example, suppose the CSRs for the second Ethernet interface are mapped to
addresses 0xB0000000 to 0xB00001F0. You would add this entry to mmuTable:
{0xB0000000, 0xB00001F0, MMU_PAGE_SIZE_4K, MMU_BUFFERED,

MMU_CLIENT_RW}

The Ethernet hardware should signal a data abort if code with errors attempts to
access a nonexistent CSR; otherwise, the processor (and JTAG debugger) can hang.
If the second Ethernet module does not signal a data abort, you can use the MMU
to prevent such a hang by using the smallest page size (MMU_PAGE_SIZE_4K) for CSRs.
Using this page size breaks up that portion of the address space into 4K chunks. The
only accesses that can hang the processor are those to addresses that are between the
actual end of the CSRs and the end of the page that contains them. This is because
these are the only addresses with the access mode of MMU_CLIENT_RW that map to
nonexistent memory.

For detailed information about mmuTable array and the MMU API, see the
online help.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 10

DMA Buffer Descriptors

DMA buffer descriptors must not be in cached memory. You must use the
nonCachedMalloc() function to allocate memory used for DMA buffer descriptors;
failing to do so causes intermittent problems that are difficult to debug. The
nonCachedMalloc() and nonCachedFree() functions are described in the online help.

For an example of how to use nonCachedMalloc(), see the
eth_allocate_rx_buffer_descriptors() function in eth_dma.c.

DMA To or From a Cached Buffer

The buffers that store Ethernet packets can be in cached memory. Cached buffers
must be cleaned and/or invalidated before data is DMAed to or from them, ensuring
that the contents of cache are in sync with the contents of the buffer. Use the
NABeforeDMA() and NAAfterDMA() functions for this purpose. Use the NABeforeDMA()
function to clean and invalidate buffers before a DMA operation, and call the
NAAfterDMA() function after a DMA operation completes. These functions are
described in detail in the online help.

For example, this would be used to prepare a transmit buffer for DMA and process
the buffer after the DMA engine finishes reading it:

NABeforeDMA(NA_MEMORY_TO_DEVICE, buffer, NULL, length);

/** code to DMA the transmit buffer goes here **/

/** the call below should be executed after DMA completes **/

NAAfterDMA(NA_MEMORY_TO_DEVICE, buffer, NULL, length);

DMA and Virtual Addresses

The MMU can remap memory to different locations in RAM. For example, the
MMU can map a piece of RAM located at physical address X to virtual address Y.
The pointers to packet buffers given to the Ethernet driver are virtual addresses,
not physical addresses. However, the Ethernet driver must supply the DMA engine
with the physical address of buffers, not their virtual address. The Ethernet driver
must use the NAVaToPhy() function to convert the packet buffer pointers passed to it,
which are virtual addresses, into physical addresses when it constructs the DMA
buffer descriptors.

For example, suppose mp is a pointer to an m structure with a single transmit packet
buffer, and dmaDesc is a pointer to an fb_buffer_desc_t DMA descriptor structure.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 11

The code to set up dmaDesc would be:

void *virtualAddress = mp->m_hp;

physical_address_t physicalAddress;

int length = m_dsize(mp);

volatile NA_DMA_DESCRIPTOR_TYPE *dmaDesc;

dmaDesc = nonCacheMalloc(sizeof(fb_buffer_desc_t));

if (NAVaToPhys(virtualAddress, &physicalAddress) == FALSE)

{

 /** code to handle error goes here **/

}

NABeforeDMA(NA_MEMORY_TO_DEVICE, virtualAddress, NULL, length);

dmaDesc->src_addr = physicalAddress;

dmaDesc->dst_addr = 0;

dmaDesc->buf_len = length;

For detailed documentation about the NAVaToPhy() function, see the online help.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 12

Integrating into the NET+OS Startup Code

You must update the NET+OS startup code to add the Ethernet device into Fusion’s
table of network devices. After you add the device to the table, the device can be
accessed as a Fusion network interface. You also need to modify the startup code to
acquire and configure a network configuration for the interface.

Create a Device Driver Table Entry

The netosStartTCP() function in starttcp.c is called during system startup to bring
up the Fusion stack and the network devices. Modify this function to add your
Ethernet driver into Fusion’s device table.

The first step is to create a NADeviceTableEntryType structure with information about
the device. The structure is defined as:
typedef struct {

char devName[MAX_DEV_NAME];

u16 devDevid;

u16 devXflags;

u32 devParam0;

u32 devParam1;

u32 devParam2;

u32 devParam3;

u16 devFamily;

NADevInitFnType devInit;

NADevUpDownFnType devUpdown;

NADevAddLinkLayerFnType devAddLinkLayer;

NADevTransmitFnType devTransmit;

NADevIoctlFnType devIoctl;}

NADeviceTableEntryType;

Set the fields as described in this table:

Field Setting

devName Set to the name of the device

devDevid One of these:

- 0, if the Ethernet driver supports a single Ethernet port.

- If the driver supports more than one port, create a
NADeviceTableEntryType structure for each port, and set
this field to a zero-based index to each port.

devXflags One of these:

- F_X_MULTI_ENBL if the Ethernet driver supports the
ENIOADDMULTI and ENIODELMULTI I/O control commands

- 0 if the driver does not support multicast.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 13

devParam0 –

devParam3

The devParam3 fields hold context information for the device
driver. If you do not need these fields, you can leave them
uninitialized.

devFamily AF_ENET.

devInit The address of the Ethernet driver’s initialization function.

devUpdown The address of the Ethernet driver’s enable/disable function.

devAddLinkLayer The address of a routine that will construct the link layer packet
headers. For Ethernet devices, set this field to en_scomm, which
is defined in h/tcpip/enet.h.

devTransmit The address of the Ethernet driver’s transmit.

devIoctl The address of the Ethernet driver’s I/O control function.

This example shows what you want your table entry to look like:
static NADeviceTableEntryType eth1 =

{

 "eth1", /* name */

 0, /* device minor ID */

 F_X_MULTI_ENBL, /* driver supports multicast */

 0, /* OEM parameter 0 (not used) */

 0, /* OEM parameter 1 (not used) */

 0, /* OEM parameter 2 (not used) */

 0, /* OEM parameter 3 (not used) */

 AF_ENET, /* family */

 eth1_init, /* initialization function */

 eth1_updown, /* enable/disable function */

 en_scomm /* Ethernet link layer headers function

*/

 eth1_start, /* transmit function */

 eth1_ioctl /* no ioctl function */

 };

For details about the NADeviceTableEntryType structure, see the online help.

Add the Device into Network Device Table

You must insert code into netosStartTCP() to add the device to Fusion’s device
table. The code must call the NAAddDeviceToTcpipDeviceTable() function. Add this
code after netosStartTCP() calls so_initialize(), and before the stack’s timer
thread is created.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 14

The prototype for NAAddDeviceToTcpipDeviceTable is:

BOOLEAN NAAddDeviceToTcpipDeviceTable(NADeviceTableEntryType *entry);

where entry is a pointer to the device’s NADeviceTableEntryType structure discussed
in the previous section. The function returns TRUE if it succeeds or FALSE if it fails
(that is, if the table is full).

Here’s an example of how you want your code to look when you add a device into
the network device table:

/** The code below should be inserted after the call **/

/** to so_initialize() completes, but before the **/

/** Fusion timer thread is created. **/

if (NAAddDeviceToTcpipDeviceTable(ð1) == FALSE)

{

/** code to handle error goes here **/

}

The netosStartTCP() function already has code in it to add two PPP devices. Use
that code as a template.

For detailed information about the NAAddDeviceToTcpipDeviceTable function, see the
online help.

Integrate with ACE

The next step is to integrate your Ethernet driver with the Automatic Configuration
Executive (ACE). ACE is responsible for getting a configuration (IP address, subnet
mask, and so on.) for each network interface and configuring Fusion with these
settings. ACE determines what to do by reading an array of aceConfigInterfaceInfo
from NVRAM. The data structure has information that tells ACE which protocols to
use to get the IP configuration and the options to use with those protocols. You must
update this structure so that ACE configures your network interface as well as the
primary one.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 15

CONFIG_ACE_MAX_INTERFACES

This manifest constant, which is defined in h/tcpip/ace_params.h, determines how
much space is reserved in NVRAM for ACE configuration settings. By default, this
constant is set to 2; if you need more than two interfaces, you must increase this value.

Be aware that a virtual interface is created when the Auto-IP protocol is
used. So, if Auto-IP is used with a second Ethernet port, you must set
CONFIG_ACE_MAX_INTERFACES to at least 3.

Update the Default ACE Configuration.

ACE uses default configuration settings when NVRAM is uninitialized. These
settings are stored in the NADefaultEthInterfaceConfig array, which is an array of
aceConfigInterfaceInfo structures defined in the aceParams.c file in the platform
directory. This array has one element for each network interface. You must create a
new entry in this array that has the default settings for the second Ethernet port.

The first entry in NADefaultEthInterfaceConfig contains the default settings for the
primary Ethernet port. To create an entry for the second Ethernet port, paste a copy
of the first entry between the first and second entries. This makes the new entry,
which is for the second Ethernet device, the second entry in the array. Change the
field ifname of this entry to match the second Ethernet interface you set in the
interface’s NADeviceTableEntryType structure you created (eth1). Update the other
fields in the new array element with the default configuration settings for the port.
The aceConfigInterfaceInfo structure is described in detail in the online help. You
can probably use the same settings as the primary Ethernet port.

You also must increment the DEFAULT_NUMBER_OF_INTERFACES and AUTO_IP_INTERFACE
manifest constants, which are defined in the aceParams.c file as well.

Auto-IP

Auto-IP is a protocol for acquiring an IP configuration even if no servers are
available on the network. The Fusion stack allows Auto-IP to be run only on a single
interface. You cannot use Auto-IP on two Ethernet interfaces simultaneously.

The last entry in NADefaultEthInterfaceConfig contains the configuration settings
for Auto-IP. Set the field ifname in this entry to the name of the network interface
Auto-IP runs on concatenated with :0. For example, ifname must be set to eth0:0 to
specify the primary Ethernet interface, which is named eth0. If you want to use
Auto-IP on the second Ethernet port and you named that port eth1, change the
ifname field to eth1:0.

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 16

customizeAceGetDefaultEthernetConfig ()

Each application has a configuration file named appconf.h. This file defines the
APP_IP_ADDRESS, APP_IP_SUBNET_MASK, and APP_IP_GATEWAY manifest constants that set
the default IP address, subnet mask, and gateway for the primary Ethernet interface.
The APP_USE_STATIC_IP manifest constant determines whether the values defined by
the other constants should be used instead of trying to get an IP address from a
network server.

The customizeAceGetDefaultEthernetConfig() and customizeAceGetDefaultConfig()
functions in aceParams.c update the default ACE configuration stored in
NADefaultEthInterfaceConfig with the settings in appconf.h. You must to update
these functions to initialize the defaults for the second interface also.

Setting Routing Information

ACE sets the default gateway and subnet mask for the interface, provided it can get
this information from either a network server or NVRAM. To set additional routes,
use the ip_add_static_route() function. The prototype for this function is:

int ip_add_static_route(char *device,

 WORD32 subnetAddress,

 WORD32 subnetMask,

 WORD32 gatewayAddress,

 int cost);

Set the arguments as shown here:

Argument Setting

device The name of the device.

subnetAddress The subnet address formatted as a 32-bit word.
For example, the IP address 1.2.3.4 would be
formatted as 0x01020304.

subnetMask The subnet mask of the destination network.

gatewayAddress The address of the gateway for the subnet.

cost The distance to the subnet in hops.

For example, this code adds a route to the network at 10.64.32.0 with subnet mask
255.255.248.0 and gateway address 10.32.32.1:

ip_add_static_route(“eth1”, 0x0a40200, 0xfffff000, 0xa202001, 1);

Adding a Second Ethernet Driver to NET+OS December 2004

www.netsilicon.com 17

Set a default route by passing the subnetAddress and subnetMask arguments as 0. For
example:

ip_add_static_route(“eth1”, 0x0, 0x0, 0xa202001, 1);

You can specify only a single default route.

The ip_del_static_route() function deletes static routes. The prototype is:

int ip_del_static_route(char *device,

 WORD32 subnetAddress,

 WORD32 subnetMask);

Set the arguments as shown here:

Argument Set to

device The name of the device

subnetAddress The subnet address to delete

subnetMask The subnet mask

For example, this code deletes the default route to the subnet at 10.64.32.0:

ip_del_static_route(“eth1”, 0x0a40200, 0xfffff000);

Convert the TCP/IP Stack to use the Low Interrupt Latency Option

The TCP/IP stack makes Thread-X kernel calls. Adding additional Ethernet
interfaces can cause instabilities if high priority interrupts are prevented from
executing.

To avoid this condition, the TCP/IP stack should be configured to use the low
interrupt latency option.

To configure the TCP/IP stack for low interrupt latency:

1. In bsp.h, change the BSP_LOW_INTERRUPT_LATENCY definition to TRUE.

2. Recompile the platform’s BSP.

