

www.digi.com

© 2024 Digi International Inc. All rights reserved.

For more information, visit:

877-912-3444 952-912-3444

Digi Containers: Rapidly Deploy, Monitor,
and Manage Applications at Scale

Introduction
Digi Containers are available as an add-on service that simplifies
and centralizes the process of building, deploying and running
custom applications on devices managed with Digi Remote
Manager® (Digi RM). With a Digi RM license and Digi Containers,
you can deploy containerized programs or Python applications at
scale on any device running DAL OS.

Implemented via Lightweight Linux Containers (LXC), Digi
Containers make the process portable, scalable, secure, fast and
efficient. Digi empowers companies to orchestrate and manage a
complex series of containers in various structures and configura-
tions across enterprise, industrial, transportation and other use
cases.

Theory
LXC is a combination of Linux cgroups and chroot. A chroot
(CHange ROOT) is a method by which an application sees a
specified location as its root file system. For example, if you had a
directory in your home called rootfs, and under that had a
directory called bin containing applications, you could specify
~/rootfs as the root for the chroot. This gives:

Native system
~/rootfs
~/rootfs/bin
~/rootfs/bin/ls
~/rootfs/bin/sh
.....

Setting the chroot to ~/rootfs would mean any process running in
the chroot would just see:

/bin
/bin/ls

/bin/sh
.....

This allows a chroot environment to look like a different device — a
virtual device. The problem is that a process running in the chroot
still has access to the entire device and is in no way partitioned/
sandboxed from the running system. An application inside the
container can easily take over the system.

Introducing Containers
Linux cgroups, or Control Groups, can define and control what kind
of access various processes have on the system. They can stop
processes from accessing hardware (such as CPUs, devices, RAM,
disk, or I/O), or other processes being run by the system. This is like
sandboxing your process so it can’t harm the running system. By
combining cgroups and chroot, we can have a device that has its own
root file system and can’t interfere or harm the device it is running
on. This is called a container.

LXC is a set of tools that help create and manage the container. For all
intents and purposes, it is a virtual machine. The only thing in
common with the physical device is the running kernel. This means
that processes running inside a container run at native speed, as they
are actually running directly on the host device.

If access to a host device/service is required, cgroups can be
instructed to allow access to that device/service. For example, the
container may be able to access the network of the host device, or a
serial port. An added security measure is that cgroups can map user
IDs such that inside the cgroup a user ID may be 0, but on the real
system it may be 100000. LXC maps the user IDs so that even if a
process managed to escape the container, it is mapped to a user
with little to no rights on the host device.

https://www.digi.com/products/iot-software-services/value-added-services/digi-containers
https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.digi.com/solutions/by-technology/dal-operating-system
https://linuxcontainers.org/lxc/introduction/

www.digi.com

© 2024 Digi International Inc. All rights reserved.

For more information, visit:

877-912-3444 952-912-3444

Containers in DAL OS
A container consists of two parts: the root file system, and the
configuration file. The root file system is either an archive, file
system image, or a directory tree that becomes the roots of the
container. DAL OS accepts a tgz (gzipped tar file), sqfs (squashfile
system), or a directory tree as the root file system. The configura-
tion file defines the access the container has on the host system. It
defines network access, common directories, devices and user
mappings. A process running inside the container will see these
resources as “native” to the container — just like a virtual machine.

In order to protect the system security, the configuration file is
generated as part of the Digi device’s configuration; we don’t allow
user-defined configuration files. This means users can’t request
features that could defeat DAL OS security. This configuration file is
written by the container action script. The user can select several
settings:

• Clone DAL — The container will mount standard DAL OS
directories like bin, lib, etc.

• Network device — Containers can attach to a network bridge
on the DAL OS device for independent networking.

• Serial device access — The container can access one or more
serial ports on the DAL OS device.

Resources
The host can share resources with the container. The resources can
be devices (such as eth1 or ttyS1), files (such as /etc/accns.
schema), or directories (such as /var/log or /var/run). Any shared
resource becomes available inside the container and appears as a
native resource. By this, we mean a process running inside the
container will believe the device/file/directory is part of its virtual
machine. These resources are configured in the container configu-
ration file. In DAL, the configuration file is generated and not under
direct user influence. This is so that access to system resources can
be tightly controlled.

Privileged vs. Unprivileged Containers
Containers that map the user ID to provide another layer of
protection are called unprivileged containers. They are the
standard container, and any third-party applications would be run
in an unprivileged container. This protects the system from
unauthorized access. Privileged containers, or system containers,
do not map the user ID, and as such, all access to the system is
based on the user ID outside the container. By this, we mean if you
are root in the container, you are root outside the container. The
container still provides protection, as cgroups can limit access to
system resources. If access is granted to a resource, the container
has the same rights as the equivalent user outside the container.
For example:

www.digi.com

© 2024 Digi International Inc. All rights reserved.

For more information, visit:

877-912-3444 952-912-3444

Container config -> mount the host /var/log as /var/log in the container
ls -l /var/log
-rw-r----- 1 root root 10866 Mar 2 05:10 /var/log/messages

An unprivileged container has its user mapped from 0 to 100000,
so the messages file above would be inaccessible either for reading
or writing even for the user ID 0 (root) inside the container. A
privileged container doesn’t map user IDs, so it would have the
same access as the root user in the host, and hence would be able
to read and write the messages file. This access applies to every
resource shared by the host in the container config file.

Persistent vs. Non-Persistent Containers
A non-persistent container is a container that is loaded from the
archive each time, and only exists in a RAM disk. When shut down,
all data “saved” in the container is lost. This means that each
invocation of the container is from a known state and can’t be
modified. A persistent container creates a file system on the DAL
OS device which is used as the root file system. All files saved in the
persistent file system will be retained in the DAL OS file system
location.

The next invocation will present the same file system that was
present when the container was last shut down. In other words,
the container behaves like a conventional device with non-volatile
storage. If the container root file system is contained in a squash
file system (sqfs), then a hybrid model is used. The root file system
is mounted from the squash file system as read only, and writable
directories are mounted on top of this. That allows, for example,
for the /bin directory to be read only, but /home to be writable.
This is how the Python container works.

Loading a Digi Container
In order to utilize containers on a Digi device, you must first have
the Digi Containers subscription enabled in your Digi RM account
and added to your Digi device. To do so, order the Digi Containers
license (SKU name: DIGI-RM-PRM-CS). You will need to provide
your customer ID for your Digi RM account and order a license for
each device you would like to deploy the container(s) onto.

To load a container on a Digi DAL OS device, you simply need the
root file system in either squashfile (.sqfs) or gzipped tar file (.tgz)
format. This can be loaded via Digi Remote Manager, the web UI,
or the admin CLI (command line interface). See the documenta-
tion link here for instructions on loading the container.

When you add the container, the configuration is automatically
generated. This configuration can be edited to enable the required
features for this container. If a container is run as persistent, the
root file system is written to the DAL OS flash, and is fully writable
inside the container. Writing to the flash should be minimized to
extend the life of the flash. Running a container in non-persistent
mode will extract a clean file system each time the container is run.
Non-persistent file systems are based in RAM and will be lost when
the container is stopped. This means an external actor can’t
compromise security on the DAL device as each time the container
is run, it starts from a clean state.

Running Containers in DAL OS
All containers run using the DAL OS generated configuration.
Containers are started, stopped and queried using the lxc com-
mand. Container root file systems can be as simple as a single,
statically linked file, or a complete operating system. The syntax of
the lxc command is as follows:

lxc <container_name> [-s] [-p] [command [arg1 [arg2 ...]]

The container name is taken from the root file system filename,
minus the extension. For example, a root file system file my_con-
tainer.tgz would create a container with the name my_container.
Supplying no parameters will list the available containers and
show their current state. Containers can be RUNNING or STOPPED
and will show associated network addresses and container type.
Python containers are privileged (flagged as unprivileged=false),
with all others being unprivileged. Supplying just the container
name will, by default, look for and run (if found) /bin/sh inside the
container. Providing a -s will start the container in the background
like a virtual machine rather than running a specific command. The
-p option runs the container as a persistent container. If a file
system has already been created, it will use this as the root file
system. Any changes from the previous invocation will be saved
and available in this invocation. If the file system doesn’t exist, a
new one is created using the supplied file system as a base.

https://www.digi.com/products/iot-software-services/digi-containers#partnumbers
https://www.digi.com/products/models/digi-rm-prm-cs
https://www.digi.com/resources/documentation/digidocs/90002435/#containers/containers-cont.htm
https://www.digi.com/resources/documentation/digidocs/90002435/#containers/containers-cont.htm

www.digi.com

© 2024 Digi International Inc. All rights reserved.

For more information, visit:

877-912-3444 952-912-3444

If you want to run a specific command inside a container, you can
supply a command with parameters, and the container will start
and immediately execute the given command. For example, if you
have a container with a custom command you want to run in /bin/
my_command, for a container named my_container, you would
run it with:

lxc my_container /bin/my_command

This would start a non-persistent container (i.e. a fresh clone of the
installed root file system) and run the command my_command in
the container’s bin directory. Containers can be used anywhere
scripts can be used in DAL, for example in scheduled tasks. Instead
of running a script stored on the DAL device, you run the lxc
command associated with the application inside an installed
container.

Running User-generated Code
Containers act as virtual machines. All libraries, applications and
files need to be available to the container. You can either link to the
native DAL firmware libraries for convenience or supply your own.
A user who has their own proprietary code can compile for a target
architecture without any knowledge of DAL, provided they supply
all required libraries.

As an example, consider customer A. They have an application
they have developed that can update firmware on a device via a
serial port. The firmware is downloaded from a central site. They
want to be able to manage the device using a DAL router. They
don’t want or need any specific DAL features or services other
than to run the application every day. We would create a contain-
er with their application, using their tools. The application is
called our_app and requires one library — our_library. The
configuration file for the app is in /etc.

/bin/our_app
/lib/our_libraries
/etc/our_config_files

Running ldd on “our_app” will show what libraries are required to
run the application. A standard C library may be required. If it is, it
must be included in the file system. An alternative is to clone DAL,
which mounts the standard binary and library directories. To use
these libraries, the application will need to be compiled using the

DAL tool chain. We compress the file system to firmware_writer.
tgz. We add this container to the system, and edit the configura-
tion to allow serial port access, and network access.

We now add the container command to the scheduled task in the
normal DAL way. We don’t need to tick “sandbox” as containers
are by default sandboxed. We would add the command to the
scheduled task:

lxc firmware_writer /bin/our_app

If a parameter was required, for example “upload,” we would use:

lxc firmware_writer /bin/our_app upload

When the scheduled time arrives, our_app will be run inside the
container. It will have access to the network, so it can download
the firmware, and has access to the serial port, so it can upload
the firmware to the third-party device connected by serial. We
have successfully used a proprietary application compiled with
no knowledge of DAL in a DAL container.

www.digi.com

© 2024 Digi International Inc. All rights reserved.

For more information, visit:

877-912-3444 952-912-3444

Creating a Container
To create a container root file system, you need all files required by
the application available to the container. This is either in the form
of files in the root file system, or a link to a DAL OS file/directory. If
the container is unprivileged, then the file system rights need to be
set to the DAL user ID of the container user. The root user (0) in the
container is mapped to the DAL OS user ID 165536. User ID 1 is
mapped to 165537 and so on. Once the root file system has been
created, the files need to be changed so that they are owned by
user 165536 (or whichever user is required). Use the following
command, where rootfs is the directory in which your container
root file system has been created:

chown -R 165536:165536 rootfs

Once the permissions are updated, you can tar up the file with:

tar zcvf my_container.tgz rootfs

NOTE: You need to include the rootfs directory, and it must be
named rootfs in the archive.

You can now install the container on the DAL OS device, select the
resources it has access to, and run it. The simplest container is
one that uses the DAL OS binaries and utilities (Clone DAL option).
The following is a listing from a minimal container that provides a
shell access based on the current DAL OS binaries/libraries.

tar tvf test_lxc.tgz
drwxrwxrwx 165536/165536 0 2021-06-25 13:50 rootfs/
drwxr-x--- 165536/165536 0 2021-06-25 11:10 rootfs/etc/
-rw-r----- 165536/165536 80 2021-06-25 11:18 rootfs/etc/passwd
-rw-r----- 165536/165536 30 2021-06-25 11:18 rootfs/etc/group
-rw-r----- 165536/165536 99 2021-06-25 10:44 rootfs/etc/profile
drwxr-x--- 165536/165536 0 2021-06-25 10:36 rootfs/tmp/

The container configuration is set to “Clone DAL,” and network
enable. This will give a fully functional shell environment that can
use standard DAL OS tools to make network connections. Below is
a simple example of using this container. One thing to note is that
the profile of the container is set to provide the prompt “lxc #”
when inside the container. This makes it easier to know if you are
inside the container or on the normal DAL OS system.

lxc test_lxc
lxc # ping -c 1 192.168.210.1
PING 192.168.210.1 (192.168.210.1) 56(84) bytes of data.
64 bytes from 192.168.210.1: icmp_seq=1 ttl=64 time=0.544 ms
--- 192.168.210.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.300/0.422/0.544/0.122 ms

lxc # date
Wed Mar 2 05:55:35 UTC 2022
lxc # cat /etc/profile
export PS1=”lxc # “
[$(df /tmp | grep -c tmpfs) -ne 1] && mount -t tmpfs -o size=40M tmpfs /tmp
lxc # exit
#
#
#
lxc test_lxc /bin/cat /etc/profile
export PS1=”lxc # “
[$(df /tmp | grep -c tmpfs) -ne 1] && mount -t tmpfs -o size=40M tmpfs /tmp

#
#
lxc
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
test_lxc STOPPED 0 - - - true
#

Conclusion
Implementing Digi Containers via LXC (Lightweight Linux Containers)
provides users of DAL OS-based Digi devices a secure environment
to develop, distribute, and run custom programs or Python
applications.

Further documentation and details on utilizing containers on DAL
OS devices can be found in our user guides and Containers SDK.

If your team needs assistance, Digi Professional Services can help.
Reach out if you want to get in touch and learn how our team can
support your goals.

• Ready to talk to a Digi expert? Contact us

• Want to hear more from Digi? Sign up for our newsletter

• Or shop now for Digi solutions: How to buy

Connect with Digi
Seeking next-generation solutions and support?
Here are some next steps:

91004580 A5/424

https://www.digi.com/resources/documentation/digidocs/90002348/#containers/containers-cont.htm
https://www.digi.com/support/knowledge-base/digi-containers-sdk
https://www.digi.com/support/professional-services
https://www.digi.com/contactus
https://www.digi.com/newsletter
https://www.digi.com/how-to-buy

